
Selection, Routing, and Sorting on the Star Graph ∗

Sanguthevar Rajasekaran
Dept. of Comp. and Info. Sci. and Engg.

University of Florida, Gainesville, FL 32611
e-mail: raj@cise.ufl.edu

David S. L. Wei
School of Computer Science and Engineering

The University of Aizu, Fakushima, 965-80, Japan
e-mail: d-wei@u-aizu.ac.jp

Abstract

We consider the problems of selection, routing and sorting on an n-star graph (with n! nodes), an

interconnection network which has been proven to possess many special properties. We identify a tree

like subgraph (which we call as a ‘(k, 1, k) chain network’) of the star graph which enables us to design

efficient algorithms for the above mentioned problems.

We present an algorithm that performs a sequence of n prefix computations in O(n2) time. This

algorithm is used as a subroutine in our other algorithms. We also show that sorting can be performed

on the n-star graph in time O(n3) and that selection of a set of uniformly distributed n keys can be

performed in O(n2) time with high probability. Finally, we also present a deterministic (non oblivious)

routing algorithm that realizes any permutation in O(n3) steps on the n-star graph.

There exists an algorithm in the literature that can perform a single prefix computation in O(n lg n)

time. The best known previous algorithm for sorting has a run time of O(n3 lg n) and is deterministic.

To our knowledge, the problem of selection has not been considered before on the star graph.

1 Introduction

Interconnection Networks (denoted as ICNs from hereon) have been generally accepted to be the most
practical models of computing. Among those suggested ICNs, a binary n-cube is one of the most popular
networks because it possesses some attractive features. The n-cube is a highly fault-tolerant ICN and has low
degree and small diameter (which is logarithmic in the network size). The n-star graph has been suggested
in [1] as a better alternative ICN to the n-cube. In [1], it has been shown that the star graph has better
features than the n-cube with respect to the degree, diameter, etc. The network needs fewer links per node
(processing element) and fewer communication steps per message passing request. A number of interesting
algorithms have been designed for the star graph (see e.g., [1, 9, 2]). But still a lot more work has to be
done.

In this paper, we consider the following problems: 1) Selection, 2) Sorting, and 3) Packet Routing.
Sorting is the process of rearranging a given sequence of keys in either ascending or descending order. Packet
routing is the problem of sending packets of information from their origins to their destinations. We are
interested in permutation routing wherein at most one packet originates from any node in the ICN and at

∗This research was supported in part by an NSF Research Initiation Award CCR-92-09260 and an NSF Grant CCR-9503007.

1

most one packet is destined for any node. Efficient sorting algorithms for various ICNs have already been
developed [8, 17, 6].

Before our work, the best known sorting algorithm for the n-star graph ran in O(n3 lg n) time [7, 2]. A
different algorithm with the same run time has been given in [15]. Whereas [7, 2]’s algorithm is based on
shearsort, [15]’s algorithm is based on bitonic sort and the underlying constant is also small (i.e., 1

2). We
present an improved sorting algorithm which runs on the n-star graph in O(n3) time with high probability.
Our approach to randomized sorting differs from previous approaches in that we use repeated selection. These
algorithms make use of prefix and selection algorithms that we have designed. Our selection algorithm can
perform a set of n selections in O(n2) time with high probability provided the keys to be selected have ranks
uniform in the interval [1, n!]. The prefix algorithm presented in this paper can compute the prefixes of n
different sequences in O(n2) time. In contrast, Akl and Qiu [2] show that a single prefix computation can
be performed in O(n lg n) time, which is the best possible. Prefix computation is performed using a tree
like subgraph (which we call as a ‘(k, 1, k) chain network’). This network, we believe, is applicable for many
other computations as well. Similar networks have been used before [7, 2].

Efficient packet routing algorithms for the star graph have already been obtained in [9]. Although the
best known randomized routing algorithm for the star graph runs in O(n) time with very high probability
[9], due to the lower bound of [5], the best known deterministic oblivious routing algorithm for the star graph
needs a much higher running time. In this paper we develop a non-oblivious deterministic routing algorithm
with O(n3) running time.

The rest of this paper is organized as follows. Section 2 introduces some properties of the star graph.
Section 3 contains our prefix algorithm. In section 4 we present our selection algorithm for the star graph
while Section 5 describes our randomized sorting algorithm. The deterministic routing algorithm is presented
in section 6. Section 7 concludes the paper.

2 Preliminaries

We first define the star graph and then give some definitions and lemmas that will be helpful throughout.

2.1 The Star Graph

Definition 2.1 Let s1s2 . . . sn be a permutation of n symbols, e.g., 1 . . . n. For 1 < j ≤ n, we define
SWAPj(s1s2 . . . sn) = sjs2 . . . sj−1s1sj+1 . . . sn.

Definition 2.2 An n-star graph is a graph Sn = (V,E) with | V |= n! nodes, where V = {s1s2 . . . sn |
s1s2 . . . sn is a permutation of n different symbols}, and E = {(u, v) | u, v ∈ V and v = SWAPj(u) for some
j, 1 < j ≤ n}.

The 3-star and 4-star graphs are shown in Figure 1. It is not hard to see (from Definition 2.2) that
the degree of the n-star graph is n − 1. Also, in [1], Akers, Harel, and Krishnamurthy have shown that
the diameter of the n-star graph is � 32 (n− 1)	. On the other hand, an n-cube has 2n nodes, degree n, and
diameter n. Thus, in comparison with the n-cube, the degree and diameter of the star graph grow more
slowly as functions of the network size. Moreover, the star graph is both vertex (node) symmetric and edge
symmetric (just like the n-cube). We assume that the star graph is a MIMD machine in which at each step
different nodes could perform different instructions.

Definition 2.3 A subgraph of an n-star graph Sn is said to be an i-th stage subgraph, denoted Sn−i(sn−i+1sn−i

· · · sn), iff Sn−i is itself an (n− i)-star graph, 0 < i < n, and the last i symbols of labels of all the nodes in
it are identical.

2

The Si−1’s of an Si partition the Si into i identical subgraphs. For example, an S4 consists of 4 S3’s,
viz., S3(1), S3(2), S3(3), and S3(4), and each of the S3’s consists of 3 S2’s, and so on.

Definition 2.4 The i-th position of the permutation labeling a node u in Sn is denoted by usi , 1 ≤ i ≤ n.

Definition 2.5 The path between a pair of nodes u, v ∈ V is an ordered sequence of nodes and links (edges)
in the graph, such that the first and the last nodes in the sequence are u and v. Adjacent nodes are directly
connected by a link in the sequence. The length of the path is the number of links in the path. Adjacent nodes,
say uj and uj+1 = SWAPi(uj), together with the link connecting them, are denoted by uj

SWAPi←→ uj+1. For

example, in S4, 4231
SWAP4←→ 1234 SWAP2←→ 2134 SWAP4←→ 4132 denotes a path of length 3.

Definition 2.6 The distance between two nodes u and v is the length of the shortest path between u and v.

For any network sorting algorithm, we need to specify an ordering (also known as an indexing scheme) of
the nodes. The indexing scheme we adopt is reverse lexicographic order and is the same as the one assumed
in [7]. Table 1 gives the indexing scheme for S4.

Definition 2.7 (Reverse lexicographic order:) Let ≺ be the ordering of nodes in the network. Let u be the
node labelled as us1us2 · · ·usn and v be the node labelled as vs1vs2 · · · vsn . Then u ≺ v iff there exists an
i, 1 < i ≤ n, such that usj = vsj for all j > i, and usi < vsi .

Definition 2.8 Consider a k-star graph Sk. Sk consists of k copies of Sk−1. These copies can be arranged
as Sk−1(k), Sk−1(k−1), . . . , Sk−1(2), Sk−1(1) in reverse lexicographic order. We say two or more nodes from
distinct Sk−1’s are corresponding if they have the same index in their respective Sk−1’s.

As an example, in S4 (see Figure 2), the two nodes 2341 and 1243 are corresponding (since both have
index 5 in their S3’s).

Definition 2.9 A (k, 1, k) chain in Sk is defined to be a sequence of k corresponding nodes qk, qk−1, . . . , q2, q1
such that qj ∈ Sk−1(j) for 1 ≤ j ≤ k.

Figure 2 identifies all the (k, 1, k) chains (for 1 < k ≤ 4) in an S4. Notice that there are (k− 1)! different
(k, 1, k) chains in an Sk. Also, each node in any Sk−1 belongs to a unique (k, 1, k) chain. If vs1vs2 . . . vsk

is
any node in Sk, its left neighbor in its (k, 1, k) chain is defined to be the node that is obtained as follows:
‘exchange’ vsk

with the next smallest symbol. For instance in Figure 2, the left neighbor of 1243 is 1342 and
1342 is obtainable from 1243 by ‘exchanging’ 3 with 2. Any two symbols can be exchanged with three or less
SWAP operations. Right neighbor of vs1vs2 . . . vsk

is defined analogously and can be obtained by exchanging
vsk

with the next largest symbol.
Thus one could think of a (k, 1, k) chain as a linear array with k nodes. A packet (or item) from one

node to its neighbor along the chain can be sent via a physical path of length 3. A (k, 1, k) chain also has
the following nice property: Say there is an item at each node of a (k, 1, k) chain qk, qk−1, . . . , q2, q1, and
each item has to be moved to its (say) left neighbor. It is easy to see that these items could be moved
simultaneously in 3 steps. For an illustration see Table 2.

2.2 Packet Routing and Chernoff Bounds

The following Lemma due to Palis, Rajasekaran and Wei [9] will be applied in our randomized algorithms:

Lemma 2.1 Permutation routing on Sn can be performed in O(n) time with high probability.

3

One of the most frequently used facts in analyzing randomized algorithms is Chernoff bounds. These
bounds provide close approximations to the probabilities in the tail ends of a binomial distribution. Let X
stand for the number of heads in n independent flips of a coin, the probability of a head in a single flip being
p. X is also known to have a binomial distribution B(n, p). The following three facts (known as Chernoff
bounds) are now folklore:

Prob.[X ≥ m] ≤
(np
m

)m

em−np,

Prob.[X ≥ (1 + ε)np] ≤ exp(−ε2np/2), and
Prob.[X ≤ (1− ε)np] ≤ exp(−ε2np/3),

for any 0 < ε < 1, and m > np.
Like the O() function is used to specify the asymptotic resource bounds of deterministic algorithms, Õ()

is used to specify resource (like time, space etc.) bounds of randomized algorithms. We say a function f(.)
is Õ(g(.)) if there exist constants c and n0 such that f(n) ≤ cαg(n) with probability ≥ (1 − n−α) on any
input of size n ≥ n0, for any α > 0.

Throughout let w.h.p. stand for ‘with high probability.’ By high probability we mean a probability of
≥ (1− n−α) for any fixed α, n being the input size.

3 Prefix Computation on the Star Graph

Given a sequence of items x0, x1, . . . , xN and a binary associative operator ⊗, let pi = x0 ⊗ x1 ⊗ · · · ⊗ xi

for 0 ≤ i ≤ N . The process of computing the values p0, p1, · · · , pN is called a prefix computation. A prefix
computation algorithm is an essential tool for the design of numerous other algorithms. In this section we
show that on Sn a sequence of n prefix computations can be simultaneously completed in O(n2) time. In
contrast, Akl and Qiu [2] show that a single prefix computation can be completed in O(n lg n) time and their
algorithm is clearly optimal.

First we present our prefix algorithm for a single sequence and later explain how to modify this algorithm
for the case of a sequence of prefixes. The star graph under concern is an Sn and there is an element at
each node of the graph. The indexing scheme assumed is reverse lexicographic order. There are two phases
in the algorithm, namely the forward phase and the reverse phase. There are n− 1 stages in each phase. In
stage i of the forward phase, computation is local to the different Si’s, for 2 ≤ i ≤ n.

In fact in any Si, computation takes place only along a specific (i, 1, i) chain, namely the chain in which
nodes of largest index from the i different Si−1’s lie. Call any such chain as a special (i, 1, i) chain. (Each
Si has a unique special (i, 1, i) chain.) Referring to Figure 2, in stage 3 of the forward phase, computation
takes place only along the chain 2341, 1342, 1243, 1234. Similarly, in stage 2, computation occurs only along
the chains 3421, 2431, 2341; 3412,1432,1342; 2413,1423,1243; and 2314,1324,1234. (See also Figure 3.) More
details follow.

Algorithm Prefix

(* The forward phase *)

for i := 2 to n do
(* Computation is local to each Si *)

Perform a prefix computation along the special (i, 1, i) chain.

(* The reverse phase *)

for i := n downto 2 do
(* Computation is local to each Si *)

4

Each node q in the special (i, 1, i) chain obtains the sum from its
left neighbor and propagates this sum to all the nodes in the special
((i− 1), 1, (i− 1)) chain that q belongs to;
The nodes in this ((i − 1), 1, (i− 1)) chain, excepting q, simply accu-
mulate the propagated sum to the previously computed sums;

Analysis. In the forward phase, each stage i takes 3(i− 1) steps. Thus the total run time is O(n2). In the
reverse phase stage i takes time 3i, accounting for a total of O(n2) time. Thus the whole algorithm runs in
time ≤ 3n2. The correctness of the algorithm is quite clear. Thus we get the following

Lemma 3.1 The prefix computation of a single sequence can be completed on Sn in time O(n2).

We could indeed perform a sequence of n prefix computations in O(n2) time. The idea is to pipeline.
The precise definition of our problem is this: There are n items in each one of the n! nodes of Sn. The
problem is to: 1) compute the prefix sums of the first items of the nodes; 2) compute the prefix sums of the
second items of the nodes; . . . ; and n) compute the prefix sums of the nth items of the nodes.

We could make use of the same algorithm with a very simple modification. In stage i of the forward
phase, compute the prefix sums of the n numbers along the special (i, 1, i) chain using pipeline. Now stage
i will terminate in time 3(n + i − 2) steps. Likewise in stage i of the reverse phase, each node q along the
special (i, 1, i) chain obtains the n sums from its left neighbor in 3n steps; Followed by this, it propagates
these n numbers along its ((i − 1), 1, (i− 1)) chain, using pipeline, in ≤ 3(n+ i) steps. Thus the total run
time will be ≤ 9n2. We get the following

Lemma 3.2 A sequence of n prefix computations can be performed on Sn in O(n2) time.

COPYING. Consider an Sn. For any k < n, say there is a specific Sk of Sn that has k! items (stored
one per node), and we want to copy these items to every other Sk. (Similar, but not the same, problems are
considered in [2].) This operation will be used in the context of sorting when there are only a small number
of keys to be sorted. The idea is to compute the rank of each key making multiple copies of the keys to be
sorted.

We could do this copying task as follows: Use all the ((k + 1), 1, (k + 1)) chains (in the Sk+1 that this
Sk is in) to copy the contents of the specific Sk into every Sk in its Sk+1. The result of this copying is that
nodes with the same index in every Sk (of Sk+1) will have the same item. Now use all the ((k+2), 1, (k+2))
chains in the Sk+2 that our Sk is in to make k + 2 copies of the Sk+1. The algorithm proceeds in a similar
fashion. Clearly such an algorithm runs in O(n2) time. Therefore we have the following

Lemma 3.3 The contents of any Sk in an Sn (for k < n) can be copied onto every other Sk in O(n2) time.

4 Randomized Selection on the Star Graph

In this section we show that the problem of selection can be solved in Õ(n2) time on a star graph with n!
nodes. Given a sequence of N numbers and an integer 1 ≤ i ≤ N , the problem of selection is to find the ith
smallest element from out of the given N keys. We assume that there is a key at each one of the N = n!
nodes to begin with. We prove a stronger result, namely, that we can perform selection of n keys within
Õ(n2) time if the ranks of these keys are uniform in the interval [1, N].

4.1 Approach

Randomized selection has a long history [4, 16, 12]. There is a central theme in all these algorithms which
we also adopt in our algorithm. The basic steps are: 1) To sample and sort s = o(N) keys from the input;

5

2) To identify two keys from the sample (call these q1 and q2) such that the key to be selected will have a
value in the interval [q1, q2] w.h.p.; 3) To eliminate all the keys from the input which do not have a value in
the interval [q1, q2]; and 4) Finally to perform an appropriate selection in the set of remaining keys (there
will not be many of them w.h.p.).

We adopt the same approach to perform n selections on the star graph. In particular if there is a key at
each node of the star graph to begin with, and if ij = jN

n for 1 ≤ j ≤ n, our algorithm will output the i1th
smallest element, the i2th smallest element, . . . , and the inth smallest element all in Õ(n2) time.

4.2 The Algorithm

First we show how to perform the selection of a single key and then explain how the same algorithm could
be modified to select n different keys. We’ll make use of the following facts: We assume a star graph with
N = n! nodes.

Fact 4.1 If 1 ≤ " ≤ N is any integer, then there exists a sub-star graph of the n-star graph whose size is
≥ " and ≤ "n.

Lemma 4.1 For any fixed ε < 1
2 , a set of N

ε keys distributed in a N -node star graph with no more than
one keys per node can be sorted in Õ(n2) time.

Proof. 1) Perform a prefix computation to assign a unique label to each key from the range [1, N ε]. 2) Now
route these keys to a sub-star graph of size N ε′ where ε′ ≥ ε and ε′ ≤ 1

2 . Realize that a sub-star graph of
this size exists (cf. Fact 4.1) and a packet whose label is q can be routed to a node indexed q in the sub-star
graph. With this prefix computation and routing step we basically concentrate the keys to be sorted in a
sub-star graph whose size is no more than N1/2. Let the sub-star graph in which the keys are concentrated
be an Sr (with r! nodes). Prefix computation takes O(n2) time (Lemma 3.2) and routing takes Õ(n) time
(Lemma 2.1).

3) Next we make a copy of these keys in every Sr in Sn. The number of such copies made will be at
least

√
N and these copies can be made in O(n2) time (cf. Lemma 3.3). If S1

r , S
2
r , . . . , S

t
r is the sequence of

Sr’s in Sn, we make use of the copy in Sp
r to compute the rank of the pth key, i.e., the key whose label is p

(as computed in step 1). Rank computation is done in O(n2) time as follows: Broadcast the pth key to all
the nodes in Sp

r (Notice that broadcast is a special case of prefix computation); Each node then compares
its own key with the key received producing a 1 or 0; Then a prefix computation is performed to determine
the rank. 4) Finally we route the key whose rank is j to the node indexed j in a specific Sr.

Clearly this algorithm runs in Õ(n2) time. ✷

Note: The above algorithm can be made deterministic to achieve the same run time. The task of concen-
tration in step 2 can be accomplished using the algorithm of [2]. Step 4 also can be done deterministically
in O(n2) time [2].

We also need the following sampling lemma from [13]. Let S = {k1, k2, . . . , ks} be a random sample from
a set X of cardinality N . Let ‘select(X, i)’ stand for the ith smallest element of X for any set X and any
integer i. Also let k′1, k

′
2, . . . , k

′
s be the sorted order of the sample S. If ri is the rank of k

′
i in X and if

|S| = s, the following lemma [13] provides a high probability confidence interval for ri.

Lemma 4.2 For every α, Prob.
(
|ri − iNs | > cα N√

s

√
lgN

)
< N−α for some constant c.

A description of the selection algorithm follows. This algorithm and the analysis of it is very similar to
the ones in [10]. To begin with each key is alive.

6

Algorithm Select

repeat forever

1) Count the number of alive keys using the prefix sums algorithm. Let M be this
number. If M is ≤ N2/5 then quit and go to 7);

2) Each alive element includes itself in a sample S with probability N1/3

M . The total
number of keys in the sample will be Θ̃(N1/3);

3) Concentrate the sample keys in a sub-star graph of size no more thanN1/2 and sort
them. Let q1 be select(S, i s

N −δ) and let q2 be select(S, i s
N +δ), where δ = d

√
s lgN

for some constant d (> cα) to be fixed;
4) Broadcast q1 and q2 to the whole star graph;
5) Count the number of alive keys < q1 (call this number M1); Count the number of

alive keys > q2 (call this number M2); If i is not in the interval (M1,M −M2], go
to 2) else let i := i−M1;

6) Any alive key whose value does not fall in the interval [q1, q2] dies;

end repeat
7)

Concentrate the alive keys in a sub-star graph and sort them; Output the ith
smallest key from this set.

Theorem 4.1 The above selection algorithm runs in Õ(n2) time.

Proof. We first show that the repeat loop is executed no more than 5 times w.h.p. Followed by this, we
show that each of the seven steps in the algorithm runs in Õ(n2) time.

An application of Lemma 4.2 implies that if d is chosen to be large enough (> cα), the ith smallest
element will lie between q1 and q2 w.h.p. Also, the number of keys alive after j runs of the repeat loop is
Õ

(
N

(
√

N1/3)j
(
√
lgN)j

)
. After 4 runs, this number is Õ(N1/3(

√
lgN)4) = Õ(N2/5).

Step 1) of the algorithm takes O(n2) time since it involves just a prefix sums computation. Steps 2) and
6) take O(1) time each. In Step 3), concentration of keys can be done by a prefix computation followed by a
packet routing step (cf. the proof of Lemma 4.1). Sorting is done using the algorithm of Lemma 4.1. Thus
step 3) takes Õ(n2) time. Steps 4) and 5) can be completed in O(n2) time using the prefix algorithm. Step
7) is similar to 3). ✷

4.3 A Set of n Selections

We show now how to modify the above selection algorithm to perform n selections within time Õ(n2). In
particular, we are interested in selecting keys whose ranks are N

n ,
2N
n , . . . ,

Nn
n . The main idea is to exploit the

fact that a sequence of n prefix computations can be completed in O(n2) time. Let ij = jN
n for 1 ≤ j ≤ n.

We only indicate the modifications to be done. Steps 1) and 2) remain the same. In step 3, we select 2n
keys (instead of just two). Call these keys q11, q12, q21, q22, . . . , qn1, qn2. qj1 and qj2 (for any 1 ≤ j ≤ n) are
such that the ijth smallest key in the input (i.e., the jth key to be selected) will have a value in the range
[qj1, qj2] w.h.p. and qj1 and qj2 are defined as before. For instance qj1=select(S, ij s

N −δ) where δ = d
√
s lgN

for some constant d > cα. After identifying this sequence of 2n keys, in step 4) the sequence is broadcast
to the whole star graph so that each processor has a copy. Clearly, this can be done in Õ(n2) time (Lemma
3.2).

In step 5, count the number of alive keys < qj1 (call this number Mj1) and the number of alive keys
> qj2 (call this number Mj2), for each 1 ≤ j ≤ n. Broadcast these numbers to each processor as well. If ij
is not in the interval (Mj1,M −Mj2] for any j go to 2) else let ij := ij −Mj1 +

∑j−1
r=1(M −Mr1−Mr2), for

7

each j. In this step we need to perform twice a sequence of 2n prefix computations and hence we only need
O(n2) time (Lemma 3.2).

In step 6), any alive key that does not fall in any of the intervals [q11, q12], [q21, q22], . . . , [qn1, qn2] dies.
We emphasize that these n intervals will be disjoint w.h.p. This step takes O(n) time.

In step 7), we output n keys whose ranks are i1, i2, . . . , in.
Analysis At any time in the algorithm the intervals [q11, q12], [q21, q22], . . . , [qn1, qn2] will be disjoint w.h.p.
for the following reasons: During any run of the repeat loop, 1) if N ′ is the number of alive keys, the ij’s
(for 1 ≤ j ≤ n) will be nearly uniform in the range [1, N ′] w.h.p., and 2) the number of sample keys in the
range [qj1, qj2] (for any 1 ≤ j ≤ n) will be O(

√
s lgN ′).

The number of alive keys after step 6) of run j is seen to be Õ
(

N

(
√

N1/3)j
(
√
lgN)jnj

)
. After 4 runs, this

number is Õ(N1/3 lg2N n4) = Õ(N2/5).
The analysis of the other steps is similar. Thus we get the following

Theorem 4.2 A set of n keys whose ranks are uniform in the interval [1, N] can be selected on an Sn with
N = n! nodes in Õ(n2) time, the queue size being O(n).

5 Randomized Sorting

Randomized algorithms for sorting have been proposed on various models: [16] (PRAM), [17] (CCC), etc.
All the abovementioned algorithms have a central idea similar to that of Quicksort. A summary of their
approach follows. 1) Given N keys to be sorted, sample o(N) keys and sort the sample using any nonoptimal
algorithm; 2) Partition the input using the sample keys as splitters; and 3) Finally sort each part recursively.

Our algorithm takes a different approach. We make use of the selection algorithm as a subroutine. In fact
we exploit Theorem 4.2 to partition the given input into n exactly equal parts and sort each part recursively.
The indexing scheme used is the reverse lexicographic order.

There are n phases in the algorithm. In the first phase each key will end up in the correct Sn−1 it belongs
to. In the second phase, sorting is local to each Sn−1. At the end of second phase each key will be in its
correct Sn−2. In general, at the end of the "th phase, each key will be in its right Sn−� (for 1 ≤ " ≤ n− 1).

Algorithm Sort

for i := n downto 2 do
(* Computation is local to each Si. Let Mi = i! and the nodes in any Si be named
1, 2, . . . ,Mi. *)

1) Select i keys whose ranks are uniform in the range [1, i!] using the algorithm of the
previous section. At the end of this selection, each node will have a copy of these
i keys (call them k1, k2, . . . , ki in sorted order).

2) Each processor p (1 ≤ p ≤ i!) identifies the Si−1 its key k belongs to, by sequentially
scanning through the i selected keys. In particular it sets Np

j := 1 if kj−1 < k ≤ kj ;
for every other j (1 ≤ j ≤ i) it sets Np

j := 0. (Assume that k0 = −∞.)
3) Compute the prefix sums of the following i sequences: 1) N1

1 , N
2
1 , . . . , N

Mi
1 ; 2)

N1
2 , N

2
2 , . . . , N

Mi
2 ; . . .; i) N1

i , N
2
i , . . . , N

Mi

i .
4) If processor p has set Np

j to 1 in step 2), it means that the key k of processor p
belongs to the jth Si−1. The pth prefix sum of the jth sequence will then assign
a unique node for this key k in the jth Si−1. Route each one of the i! keys to a
unique node in the Si−1 it belongs to.

8

Analysis. We first compute the time needed for the completion of a single phase (say the ith phase). Later
we compute the high probability run time of the whole algorithm. The proof technique for obtaining high
probability bound is adopted from [14].

Step 1 can be completed in O(i2) time w.h.p. Here by high probability we mean a probability of ≥ 1− 1
(i!)c

for any constant c. Step 2 can clearly be completed in O(i) steps. Step 3 involves the computation of a
sequence of i prefix sums and hence can be performed in O(i2) time (according to Lemma 3.2). The routing
task in step 4) takes Õ(i) time (cf. Lemma 2.1).

Thus we can make the following statement: If Ti is the run time of the ith phase, then,

Prob.[Ti ≥ cαi2] ≤ 1
(i!)α

for some constant c and any α. But i! is Ω((i/e)i) for large i’s. Therefore rewriting the above we get

Prob.[Ti ≥ cαi2] ≤ 2−αi lg i

for some constant c and any α. Let ti = c′αi2 for some constant c′. Then,

Prob.[Ti ≥ cαi2 + ti] ≤ 2−αi lg i.

Also,
Prob.[Ti ≥ cαi2 + ti] ≤ 2−

√
ti .

Let Q =
∑n

i=1 i
2. (Of course Q is O(n3)). If T is the run time of the whole algorithm, we are interested

in computing the probability that T > Q+ t for any t. This probability is less than the probability of events
where

∑n
i=1 ti = t+ j for 0 ≤ j ≤ Q. We compute the probability that

∑n
i=1 ti = t and multiply the result

by Q to get an upper bound.
Consider a computation tree the root of which is phase 1 of the algorithm. There are n children for the

root (one corresponding to phase 2 of each one of the Sn−1’s). The tree is defined for the rest of the levels
in a similar way. We can associate a time bound for each path in this tree. The run time of our algorithm is
nothing but the maximum of all the path times. Consider one such worst case path. Probability that along
this path

∑n
i=1 ti is = t is ≤

Π∑
ti=t

2−
√

ti ≤ 2−
√

t.

The number of ways of distributing t over the n phases is tO(n). Therefore,

Prob.[T > Q+ t] < Q2−
√

t+O(n lg t).

Taking t = c′Q we get
Prob.[T > Q+ c′Q] < n32−Ω(n1.5)+O(n lg n)

which is less than
(

1
n!

)α, for any fixed α and c′ > 0.
Thus we have the following

Theorem 5.1 Sorting of N = n! keys can be performed on an Sn in Õ(n3) time, the queue size being O(n).

6 A Deterministic Routing Algorithm for the Star Graph

The routing problem is defined as follows: A network has a set of packets of information in which a packet
is a 〈source, destination〉 pair. To start with, the packets are placed in their sources. These packets must
be sent in parallel to their correct destinations such that at most one packet passes through any link of
the network at any time and all packets arrive at their destinations as quickly as possible. Usually, the

9

performance of a routing algorithm is determined by its run time and queue size. The run time of a routing
algorithm is the time needed for the last packet to reach its destination, and the queue size is the maximum
number of packets that will accumulate at any node in the network during the entire course of routing. A
paradigmatic case of general routing is permutation routing in which initially there is exactly one packet
at each node, and exactly one packet is destined for any node. An optimal randomized on-line permutation
routing algorithm for the star graph has been obtained in [9]. It runs in time O(n) w.h.p., but requires a
queue of size O(n) for each link. Although an oblivious deterministic permutation routing algorithm is also
obtained in the same paper, it takes O(

√
n!) steps, and needs a queue of size O(

√
n!) for each node due

to the lower bound of [5]. We will present a deterministic routing algorithm which realizes a permutation
routing in time O(n3), and requires only a queue of size n for each node, and without a queue needed for
each link.

We first introduce a packing procedure which will be invoked by our routing algorithm. A packing problem
is a restriction of routing problem, which routes M ≤ N packets (one per node), where N is the size of the
network, from their sources to a set of M contiguous nodes, say from node s to node s+M − 1, where s ≥ 1
and s+M − 1 ≤ N , so that the relative order of these M packets is still preserved. The following Lemma
pertains to packing:

Lemma 6.1 Given an n-star graph of N = n! nodes and a set of M ≤ N packets, one per node, these M
packets can be packed in O(n2) steps.

Proof : Packing can be done using a ‘concentration’ followed by a ‘cyclic shift’ operation both of which can
be done in O(n2) time [2][Section 2.5]. ✷

Definition 6.1 A general version of packing called multiple packing will be invoked in our packet routing
algorithm. Consider an n-star graph Sn where there are a total of n! packets such that there are no more
than n packets in any node. If node i has ki packets, let these packets be arbitrarily named 1, 2, . . . , ki. We
could now define n sequences of packets as follows: All the packets that have been named 1 will form the first
sequence; All the packets that have been named 2 will form the second sequence, and so on. Let the number
of packets in the ith sequence be Mi, for i = 1, 2, . . . , n. The problem of multiple packing is to route the
packets in the first sequence to the first M1 nodes of Sn (one per node), to route the second sequence packets
to the next M2 nodes, and so on.

The following Lemma applies to multiple packing:

Lemma 6.2 If each node in the n-star graph can receive a packet from each incoming link and send a packet
along each outgoing link in one unit of time, then multiple packing can be performed in O(n2) steps.

Proof : We use the multiple prefix sums algorithm (Lemma 3.2) to determine the destination of each packet
in every sequence. Followed by this, we simply pipeline the packings. After each packing is triggered for n
steps, we trigger the next packing. Since each individual packing takes < n2 steps (Lemma 6.1), totally n se-
quences of packing will take< 2n2−n steps (because of the overlap due to the pipeline) which is stillO(n2). ✷

We need the following definition to describe our permutation routing algorithm.

Definition 6.2 A stage is said to be i-th stage stable, denoted Si
stable, iff for every i-th stage subgraph Sn−i,

the destination of each packet in the subgraph is in the subgraph itself, and each node of the subgraph has
exactly one packet.

Our algorithm is designed as a sequence of stage transitions S0
stable, · · · , Sn−1

stable in which initially we are in
S0

stable. In each subsequent stage we route packets such that the stage transits from S
i
stable to S

i+1
stable. This

could be done by routing each packet along the (n − i, 1, n − i) chain to which it belongs. However, some

10

nodes may accumulate several packets because many packets in the same chain may be destined for the same
subgraph, and thus end up at the same node. For example, in Figure 2, if the destinations of nodes 1234,
1243, 1342, and 2341 are all in subgraph S3(1), then during the transition from S0

stable to S
1
stable, all these

four nodes will be accumulated at node 2341. So as not to keep accumulating too many packets at some
nodes in subsequent stages (which might mean longer delays for some packets) we do the following: Before
we start the next transition, we balance the network such that each node contains exactly one packet. This
could be done by token distribution.

According to our algorithm, in stage i, after routing each packet along its (n− i+1, 1, n− i+1) chain to
its right subgraph, every node of each subgraph Sn−i has between 0 and n− i+1 nodes, and each Sn−i has
exactly (n − i)! nodes. To distribute the packets so that each node of the subgraph has exactly one packet
we perform multiple packing, i.e., we simply invoke packing procedure (in Lemma 6.1) ≤ n − i times. In
each packing, a node which contains more than one packets will contribute a packet to be packed. Also, if
previous packing ends at position s, and there are M nodes which contribute packets in current packing,
then these packets will be packed to positions from s+1 to s+M . If the maximum number of packets in the
individual nodes of a subgraph is k, then after k − 1 packings, each node of the subgraph will have exactly
one packet.

Remark 1 Observe that for each node in the network, although there may be several packets accumulated at

the node during routing, it’s not necessary to put these packets in the queue along the links they come in. Because

excepting for one of the packets, all other packets will be distributed to other nodes in the same subgraph, and

we simply store these packets in the local memory of the node before sending them out.

Theorem 6.1 A permutation routing on the n-star graph can be realized in time O(n3) without queues
needed for each link.

Proof : For a permutation routing, initially the n-star graph is in S0
stable. We perform n−1 stage transitions

so that eventually the network is in Sn−1
stable. During the transition from S

i
stable to S

i+1
stable, we first route each

packet in a Sn−i along its (n − i + 1, 1, n − i + 1) chain to its right subgraph Sn−i (this will take at most
n − i steps), and then perform packing for n − i times such that the network is in Si+1

stable. Each transition
takes (n − i) steps for routing and O((n − i)2) steps for token distribution (Lemma 6.2). Totally we have
n − 1 transitions, and hence the permutation algorithm takes total of <

∑n−1
i=1 (n − i) + (n − i)2 = O(n3)

steps. Also, according to Remark 1, the algorithm requires no queues for each link. ✷

7 Conclusions

In this paper we have addressed the problems of selection, sorting and routing on the star graph. Randomized
algorithms have been given in this paper for sorting and selection. The time bound of our randomized sorting
is better than that of the previously best known sorting algorithm. We also have presented a deterministic
routing algorithm which runs in O(n3) time on Sn. Both selection and sorting have the obvious lower bound
of Ω(n lgn) on the star graph. Discovering algorithms with matching time bounds is still open.

Acknowledgements

The authors thank the referees for their careful reading and very helpful comments. We are grateful to an
anonymous referee for pointing out that the algorithm of Lemma 4.1 can be made deterministic.

11

References

[1] S. Akers, D. Harel and B. Krishnamurthy, The Star Graph: An Attractive Alternative to the n-Cube,
Proc. International Conference of Parallel Processing, 1987, pp. 393-400.

[2] S.G. Akl and K. Qiu, Data Communication and Computational Geometry on the Star and Pancake
Interconnection Networks, TR 91-301, Dept. of Computing and Information Science, Queen’s University
at Kingston, Ontario, Canada, May 1991.

[3] K. Batcher, Sorting Networks and Their Applications, Proc. AFIPS Spring Joint Comput. Conf., 1968,
pp. 307-314.

[4] R.W. Floyd and R.L. Rivest, Expected Time Bounds for Selection, Communications of the ACM, vol.
18, no.3, 1975, pp. 165-172.

[5] C. Kaklamanis, D. Krizanc and Th. Tsantilas, Tight Bounds for Oblivious Routing in the Hypercube,
Proc. ACM Symposium on Parallel Algorithms and Architectures, 1990, pp. 31-36.

[6] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Trees, Arrays, Hypercubes,
Morgan-Kaufmann Publishers, San Mateo, CA, 1992.

[7] A. Menn and A.K. Somani, An Efficient Sorting Algorithm for the Star Graph Interconnection Network,
Proc. International Conference on Parallel Processing, 1990, vol. 3, pp. 1-8.

[8] D. Nassimi and S. Sahni, Bitonic Sort on a Mesh Connected Parallel Computer, IEEE Trans. on
Computers, C-28:2-7, 1979.

[9] M. Palis, S. Rajasekaran and D.S.L. Wei, Packet Routing and PRAM Emulation on Star Graphs and
Leveled Networks, Journal of Parallel and Distributed Computing 20, 1994, pp. 145-157.

[10] S. Rajasekaran, Mesh Connected Computers with Fixed and Reconfigurable Buses: Packet Routing,
Sorting and Selection, Proc. First Annual European Symposium on Algorithms, 1993. See also IEEE
Transactions on Computers, 45(5), 1996, pp.529-539.

[11] S. Rajasekaran, k − k Routing, k − k Sorting, and Cut Through Routing on the Mesh, Journal of
Algorithms 19, 1995, pp. 361-382.

[12] S. Rajasekaran, Randomized Parallel Selection, Proc. Tenth International Conference on Foundations
of Software Technology and Theoretical Computer Science, 1990. Springer-Verlag Lecture Notes in Com-
puter Science 472, pp. 215-224.

[13] S. Rajasekaran and J.H. Reif, Derivation of Randomized Sorting and Selection Algorithms, in Paral-
lel Algorithm Derivation And Program Transformation, edited by Paige, Reif, and Wachter, Kluwer
Academic Publishers, 1993, pp.187-205.

[14] S. Rajasekaran, and S. Sen, Random Sampling Techniques and Parallel Algorithms Design, in Synthesis
of Parallel Algorithms, editor: Reif, J.H., Morgan-Kaufmann Publishers, San Mateo, California, 1993.

[15] S. Rajasekaran and D.S.L. Wei, Selection, Routing, and Sorting on the Star Graph, Proc. International
Parallel Processing Symposium, 1993.

[16] R. Reischuk, Probabilistic Parallel Algorithms for Sorting and Selection, SIAM Journal of Computing,
14(2), 1985, pp. 396-411.

[17] J.H. Reif and L.G. Valiant, A Logarithmic Time Sort for Linear Size Networks, Journal of the ACM,
volume 34, January, 1987, pp. 60-76.

12

δ

δ χ

χ

α

βα 1234

3214

2314

1324

2134

3124

3241

2341

 4231

4321

2431

3421

3412

3142

4312

1342

β
1432

4132

4213

1243

2413

2143

1423

4123

213

312

132

231

321

123

Figure 1: 3-star graph and 4-star graph.

permutation index
4321 0
3421 1
4231 2
2431 3
3241 4
2341 5
4312 6
3412 7
4132 8
1432 9
3142 10
1342 11
4213 12
2413 13
4123 14
1423 15
2143 16
1243 17
3214 18
2314 19
3124 20
1324 21
2134 22
1234 23

Table 1: An indexing scheme for S4.

Figure 2: All the (k, 1, k) chains in an S4, for 1 < k ≤ 4.

123 213 132 312 231 321

(3, 1, 3) chains

(2, 1, 2) chains

1
x x x x x x2 3 40 5

Figure 3: A tree-like (k, 1, k) chain network for the prefix computations of the star graph.

4321 SWAPk←→ 1324 SWAP3←→ 2314 SWAPk←→ 4312

3421 SWAPk←→ 1423 SWAP3←→ 2413 SWAPk←→ 3412

4231 SWAPk←→ 1234 SWAP2←→ 2134 SWAPk←→ 4132

2431 SWAPk←→ 1432 SWAP4←→ 2431 SWAPk←→ 1432

3241 SWAPk←→ 1243 SWAP2←→ 2143 SWAPk←→ 3142

2341 SWAPk←→ 1342 SWAP4←→ 2341 SWAPk←→ 1342

4312 SWAPk←→ 2314 SWAP2←→ 3214 SWAPk←→ 4213

3412 SWAPk←→ 2413 SWAP4←→ 3412 SWAPk←→ 2413

4132 SWAPk←→ 2134 SWAP3←→ 3124 SWAPk←→ 4123

1432 SWAPk←→ 2431 SWAP3←→ 3421 SWAPk←→ 1423

3142 SWAPk←→ 2143 SWAP4←→ 3142 SWAPk←→ 2143

1342 SWAPk←→ 2341 SWAP2←→ 3241 SWAPk←→ 1243

4213 SWAPk←→ 3214 SWAP4←→ 4213 SWAPk←→ 3214

2413 SWAPk←→ 3412 SWAP2←→ 4312 SWAPk←→ 2314

4123 SWAPk←→ 3124 SWAP4←→ 4123 SWAPk←→ 3124

1423 SWAPk←→ 3421 SWAP2←→ 4321 SWAPk←→ 1324

2143 SWAPk←→ 3142 SWAP3←→ 4132 SWAPk←→ 2134

1243 SWAPk←→ 3241 SWAP3←→ 4231 SWAPk←→ 1234

Table 2: The communication between each pair of adjacent nodes in (4, 1, 4) chains of S4.

