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ABSTRACT
In this paper we develop algorithms for distributed compu-
tation of a broad range of estimation and detection tasks
over networks with arbitrary but fixed connectivity. The
distributed algorithms we develop are linear dynamical sys-
tems that generate sequences of approximations to the de-
sired computation. The algorithms are locally constructed
at each node by exploiting only locally available and macro-
scopic information about the network topology. We present
methods for designing these distributed algorithms so as to
optimize the convergence rates to the desired computation
and demonstrate their performance characteristics in the
context of a problem of signal estimation from multi-node
signal observations in Gaussian noise.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications

General Terms
Algorithms

Keywords
Sensor networks, distributed algorithms, distributed estima-
tion

1. INTRODUCTION
Ad-hoc networks of autonomous sensors and actuators are

attractive solutions for a broad range of data collecting ap-
plications due to their inherent mobility, the spatial flexibil-
ity they allow in collecting measurements, and, consequently
the quality of the data they can provide. Such networks find
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Figure 1: Ad-hoc network with 200 nodes.

use in various civilian and military applications, including
target tracking and surveillance for robot navigation [11,
16] source localization [13] and radar applications [19], data
gathering for weather forecasting and environmental appli-
cations[5, 7, 12], and medical monitoring and imaging [2, 3,
14]. In general, the networks envisioned for many of these
applications involve large numbers of possibly randomly dis-
tributed inexpensive sensor nodes, with limited sensing, pro-
cessing, and communication power on board. A typical ad-
hoc network is shown in Fig. 1. Scalability, robustness to
changes in network topology, and fault tolerance are few
of the challenges encountered in performing these tasks in
ad-hoc sensor networks [1].

As technological advances allow the deployment of grow-
ing numbers of increasingly powerful sensors, many impor-
tant constraints invariably arise [1]. In many of these appli-
cations, limitations in bandwidth and sensor battery power
and computing resources place tight constraints in the rate
and form of information that can be exchanged. Equally im-
portant, growing network sizes together with changes in the
network topology due to node mobility and/or node failures
make global knowledge of the changing network topology
impractical [15]. As a result, decentralized approaches are
becoming increasingly attractive over their centralized coun-
terparts for performing data fusion in large ad-hoc networks
of sensors and actuators.
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Distributed routing and fusion algorithms have received
attention recently in an effort to design algorithms that are
scalable, fault-tolerant and robust to changes in the network
topology. These algorithms are constructed via locally avail-
able information for routing and fusion. In particular, local-
ized techniques have been developed for routing information
in these networks [15, 17]. These techniques mainly focus on
dynamic localized routing of important distributed informa-
tion based on information-driven sensor querying and data
processing [10, 20]. These algorithms for localized routing
can be applied to networks with arbitrary connectivity, but
the single fusion center they employ remains a single point
of failure in the network [17, 6, 18].

An alternative approach to such distributed implemen-
tations involves viewing each node in the network as a fu-
sion host in its own right and developing integrated rout-
ing/fusion algorithms such that the fusion objectives are
made available to every node in the network. Such dis-
tributed algorithms for data fusion over ad-hoc networks are
considered in [6], with objective to develop fully distributed
Kalman filter implementations (with no global fusion center)
over arbitrary topologies, by assuming only local knowledge
of the network topology. The investigation is based on a
model where each node in the network uses local connectiv-
ity information to perform partial data fusion and to share
results with its neighbors. The inherent challenge is identi-
fying and managing redundant information due to commu-
nication loops. Based on the analysis in [6], it is concluded
that, in general, such distributed implementations cannot
be used for arbitrary fusion tasks over arbitrary topologies.

The subject of this paper is the development of algorithms
for ad-hoc sensor networks that allow distributed computa-
tion of a class of functions of the node data. These algo-
rithms generate at each node in the network a sequence of
estimate approximations to the desired computation. As we
demonstrate, by exploiting knowledge of local network con-
nectivity, these algorithms can be locally constructed and
optimized at each node so that the sequences they generate
converge to the desired global computation objective.

The locally constructed algorithms we develop for per-
forming global computations have strong connections to large
systems of weakly coupled nonlinear oscillators. Such sys-
tems have been exploited for pattern recognition [8] and
have served as mathematical models used to explain how
biological species achieve global synchronization via local
interactions [4]. As we demonstrate, the two key properties
of reciprocity and balancing found in these large systems
of locally coupled nonlinear oscillators, are also present in
the locally constructed distributed algorithms we develop
for performing global computations.

The outline of the paper is as follows. In Sec. 2 we present
the class of distributed rules of interest and describe the
sense in which algorithmic approximation to the desired
computation is evaluated. In Sec. 3 we develop distributed
fusion rules for computing global averages. In Sec. 4 we con-
sider these algorithms in the context of a problem of linear
estimation in Gaussian noise, and present metrics for quan-
tifying the performance of these algorithms. In Sec. 5 we
present an evaluation of these algorithms based on a rep-
resentative set of Monte-Carlo simulations. Sec. 6 includes
a brief discussion on generalizations of these algorithms for
computation of a broader class of tasks. Finally, Sec. 7 con-
tains some concluding remarks.

2. SYSTEM MODEL AND DEFINITIONS
We consider a network of N nodes that wish to compute

a scalar function of their data, i.e., they wish to compute
G(x) where

x =
�
x1 x2 · · · xN

�T
, (1)

and xi denotes the scalar observation at the ith sensor node.
The fusion rules we consider in this paper are algorithms
that are implemented on the given network topology and
generate at each node a sequence of approximations to G(x).

We assume network topologies according to which, each
node can establish bidirectional noise-free communication
with a subset of the nodes in the network. We represent an
N -node topology by the N×N matrix Φ = {φij}i,j∈{1, 2, ··· , N},
where for i 6= j

φij =

(
1 if nodes i and j directly communicate

0 otherwise
. (2a)

For convenience, we set

φii = −
X
j 6=i

φij . (2b)

As a result, |φii| corresponds to the number of nodes in
direct communication with the ith node. Throughout we
assume connected topologies, i.e., topologies for which there
exists a multi-hop communication path between every pair
of nodes in the network. For connected topologies, it is
evident that |φii| > 0 for all i. Furthermore, Φ is negative
semidefinite and has one eigenvalue equal to 0, and N − 1
negative eigenvalues. We also let Uj denote the set of nodes
that have a direct (bidirectional) communication link with
node j, i.e.,

Uj
4
= {i ∈ {1, 2 · · · , N} ; φij 6= 0} . (3)

Evidently, there is an one-to-one correspondence between
the connectivity matrix Φ and {Uj}N

j=1.
The fusion rules that are the subject of this paper are

algorithms that are implemented over a connected network
topology and generate at the jth node a sequence of approx-
imations xj [n] to the desired scalar computation G(x). The
class of rules that can be implemented over a given topology
Φ are described by the following definition:

Definition 1. A set of rules, {F (n)
j }N

j=1, n > 0, will be
referred to as an admissible distributed rule with respect to
a given topology Φ, if

xj [n + 1] = F
(n)
j (xj , {xi[k]; k ≤ n, i ∈ Uj(Φ)}) . (4)

In this paper we focus on linear admissible rules, viz, rules
of the form

x[n] =
X
k≥1

W [n; k]x[n− k], n > 0 , (5)

where x[n]
4
=
�
x1[n] x2[n] · · · xN [n]

�T
, and W [n; k] is

an N × N admissible matrix kernel. Admissibility of the
rule (5) in the sense (4) places restrictions on the entries of

W [n; k]. In particular, letting Wij [n; k]
4
= {W [n; k]}ij , we

have Wij [n; k] = 0, if k ≤ 0, or if φij = 0.
A special and important subclass of these systems involves

admissible LTI rules, i.e., rules of the form (5) with

W [n; k] = W [1; k]
4
= W [k] , (6)
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and where the N × N matrix sequence W [n] is admissible
in the sense (4), i.e. Wij [n] = 0, if n ≤ 0, or if φij = 0.

We are interested in developing admissible rules which
asymptotically compute a desired scalar function G(x).

Definition 2. An admissible rule on a topology Φ is asymp-
totically converging (AC) to the desired scalar function
G(x), if the sequence x[n] satisfies

lim
n→∞

||x[n]− 1G(x)|| = 0, (7)

where || · || is the ordinary Euclidean norm, and 1 is N × 1
vector of 1’s.

Our objective in this paper is to design AC rules by ex-
ploiting only locally available information at each node. In
selecting the rules, we will assume that the jth node has
available Uj in (3), but not the full network topology, Φ. We
will also consider the use of additional forms of macroscopic
information about the network topology, including estimates
of the average and squared-average number of connections
in the network.

3. ASYMPTOTICALLY CONVERGING
RULES FOR COMPUTING AVERAGES

In this section we develop AC rules for computing averages
of the node data by only exploiting locally available infor-
mation at the nodes. Without loss of generality we consider
distributed computation of the function

G(x) =
1

N

NX
i=1

xi =
1

N
1T x . (8)

In particular, this type of rule and its linearly weighted gen-
eralizations can be used for computations that arise in a va-
riety of problems involving signal estimation in noise, includ-
ing problems of source detection classification and tracking
[13]. We first develop and analyze a class of locally con-
structed first-order LTI rules for computation of (8). Then
we extend our results to develop improved constructions of
AC LTI rules.

3.1 Asymptotically Converging First-Order
LTI Rules

In this section we develop methods for constructing ad-
missible first-order LTI AC rules based on locally available
information. We first present a set of sufficient conditions
for asymptotic convergence, and then develop simple locally
constructed algorithms that asymptotically converge to the
desired G(x) in (8).

First-order admissible LTI rules are special cases of (5)
corresponding to W [n; k] = W δ[k−1], where W is an N×N
admissible matrix, i.e., satisfying Wij = 0 for all φij = 0.
In this case, (5) reduces to

x[n] = W x[n− 1] . (9)

We use the notation W (Φ) when it is deemed necessary to
explicitly denote the dependence of W on Φ. In light of the
target computation (8), we consider the initialization of the
recursion (9) via

x[n] = x, for n ≤ 0 , (10)

and where x is given by (1). This initialization is admissible
in the sense of (4), as it amounts to setting xi[n] = xi for

xi|φii|
[n]

...

xi1 [n]

received
states

-⊕−

-⊕−
...
R
µ
⊕ --ρ ⊕?- z−1

register

--

¾6

¾
?

6

?
xi[n]

trasmitted
state

ith node
ª

Figure 2: Block diagram for a first-order admissible
rule at the ith node.

all n ≤ 0 and all 1 ≤ i ≤ N . The following set of conditions
on W (Φ) guarantees asymptotic convergence to (8):

W (Φ)1 = W (Φ)T 1 = 1 (11a)

λ1 = 1 (11b)

|λi| < 1, for 2 ≤ i ≤ N , (11c)

where {λi}N
i=1 denote the eigenvalues of W in nonincreasing

order.
For any arbitrary but fixed connected topology Φ, condi-

tions (11a)–(11b) can be guaranteed by selecting the entries
of W so that Wij = Wji (with the need for Wij = Wji = 0
if φij = 0) and Wii = 1 −Pj 6=i Wij . Achieving condition

(11c) is dictated by the choice of the nonzero off-diagonal
entries of W .

The simple choice Wij = ρ φij for all i 6= j (and Wii =
1−ρ

P
j 6=i φij for all i) yields asymptotically converging rules

for proper choice of the uniform diffusion (UD) parameter
ρ. Fig. 2 shows a block diagram for an implementation of
this rule at the ith node. This implementation form reveals
strong connections between this class of rules and networks
of coupled nonlinear oscillators used to explain global syn-
chronization in biological species. In particular, similar to
these global-synchronization models, these UD rules possess
the properties of reciprocity and balancing. Reciprocity cor-
responds to each pair of connected nodes using the same
fraction of each other’s state in their computation (ρ if the
nodes are connected and zero otherwise), while balancing
corresponds to ensuring that the sum of all fractions used
in adjusting the state of any particular node is zero.

Using (2), these UD rules can be expressed in the following
convenient form

W (Φ, ρ) = I + ρ Φ . (12)

Due to the structure of Φ, any rule of the form (12) satis-
fies conditions (11a)–(11b). In particular, due to (2), the
eigendecomposition of Φ is of the form Φ = V M V T , which,
when combined with (12) yields

W = V ΛV T (13)

where λi = {Λ}ii = 1 + ρµi, and where {µi}N
i=1 are the

eigenvalues of Φ (diagonal elements of M) in nonincreasing
order. Since for connected topologies, (as it can be readily
verified) µ1 = 0 and µi < 0 for all i > 1, condition (11c) is
satisfied if and only if ρ ∈ (0, − 2

µN
), i.e.,

|λi| < 1, 2 ≤ i ≤ N ⇔ ρ ∈ (0, ρUB) (14)

where ρUB
4
= − 2

µN
.

The choice of ρ in (12) determines the rate of convergence
of the sequence x[n] to the desired objective function (8).
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Letting

x̃ = V T x , (15)

where V is given by (13), the squared-error at step n in-
curred by the rule (12) is given in terms of x̃i = {x̃}i as
follows

||x[n]−1G(x)||2 =

NX
i=2

λ2n
i |x̃i|2 =

NX
i=2

(1+ρ µi)
2n|x̃i|2 , (16)

and is dominated for large n by the slowest decaying mode,
max2≤i≤N |λi|. The choice of ρ that results in minimizing
max2≤i≤N |λi|, yields λ2 = −λN and is given by

ρminmax = − 2

µ2 + µN
. (17)

In general, the choice of ρminmax requires knowledge of Φ
(or, its eigenvalues) and does not lead to locally constructed
rules.

Good selections of ρ can be made by exploiting macro-
scopic and/or locally available information about the net-
work topology. One such choice corresponds to

ρmax−con =
1

maxi |φii| . (18)

Indeed, as |φii| denotes the number of connections of the
ith node, maxi |φii| can be obtained via a finite-step (dis-
tributed) voting scheme for obtaining the maximum of the
|φii|’s. Furthermore,

max
i
|φii|+ 1 ≤ |µN | ≤ 2 max

i
|φii| , (19)

and where the upper bound on |µN | is readily established by
using Gersgorin’s theorem ([9], pp. 344–348). Consequently,
we have 0 < ρmax−con ≤ ρUB. Although, as we show in
App. A, network topologies exist for which ρmax−con = ρUB,
thereby leading to rules that do not satisfy (14), in gen-
eral the choice (18) yields AC rules.1 However, the choice
ρmax−con typically yields eigenvalues in (13) with larger mag-
nitudes than can be achieved with the optimal choice ρminmax

from (17).

3.2 Asymptotically Converging LTI Rules
First-order AC rules can be used to design more general

LTI admissible rules that are asymptotically converging with
improved convergence rates. In particular, given an admis-
sible first order rule described by W satisfying (11), we con-
sider LTI rules of the form

W [k] = W h[k] (20)

where h[k] is an arbitrary strictly-causal scalar sequence.
These rules are admissible in the sense (4) provided W is
admissible. Fig. 3 shows the local implementation of the
rule at the ith node corresponding to (20) in terms of the

causal filter H̃(z) = z H(z), in the case that W is given by
(12).

Proper choice of the strictly causal filter h[k] in (20) with
W in the form (12) can lead to AC rules with faster conver-
gences rates than the associated first-order rules. In partic-
ular, provided X

k

h[k] = 1,

1We remark that we can readily construct AC rules for ar-
bitrary connected topologies by adding to the denominator
of the fraction on the right-hand side of (18) an ε > 0.

xi|φii|
[n]

...

xi1 [n]

received
states

-⊕−

-⊕−
...
R
µ
⊕ --ρ ⊕?- H̃(z)

eigenshaping
filter

- z−1 --

¾6

¾
?

6

?

xi[n]
trasmitted

state

Figure 3: Block diagram for admissible rule at the
ith node corresponding to (20) with W given by (12)

and where H̃(z) = z H(z) is a causal filter.

and assuming that W is of the form (12) and satisfies (14),
the vector x[0] = 1 is an eigenvector of the LTI rule de-
scribed via (5)–(6), (20), and (12), initialized via (10), with
1 as the associated eigenvalue. Consequently, the objective
is to select h[k] so that the rest of the resulting eigenvalues
are, in magnitude, as small as possible. To this end consider
the sequence

x̃[n] = V T x[n] (21)

where V is given by (13). Premultiplying each side of (5) by
V T , and using (6), (20) and (21) in (5), we obtain a set of
N decoupled scalar equations

x̃i[n] = λi

X
h[k] x̃i[n− k] + vi[n] , (22)

for 1 ≤ i ≤ N and n > 0, and where vi[n]
4
= x̃i u[−n], and

x̃i = {x̃}i from (15). Equivalently, as (22) suggests, we may
view x̃i[n] for n > 0 as the response of an LTI system with
transfer function Dλi(z) to the input vi[n], where

Dλ(z)
4
=

1

1− λ H(z)
.

Maximizing the rate of convergence of |x̃i[n]|2 to 0, is equiv-
alent to minimizing the spectral radius of the denominator
of Dλi(z).

A simple yet effective class of filters yielding AC LTI rules
is given by

H(z) =
(1 + c) z−1

1 + c z−2
, (23)

for some 0 ≤ c < 1. These filters yield a spectral radius
(magnitude of maximum-magnitude pole of Dλ(z))

β(λ) =

(√
c if |λ| ≤ λo

|λ|(1+c)+
√

λ2(1+c)2−4c

2
if λo ≤ |λ| ≤ 1

,

where λo = 2
√

c/(c + 1). The reshaping of the eigenvalues
{λi}N

i=1 of W , induced by a filter of the form (23) is shown
in Fig. 4. As the figure reveals, these filters increase the
spectral radius for λi’s for which |λi| < √

c, at the benefit of
decreasing the spectral radius for large magnitude λi’s, i.e.,
for |λi| > √

c.
Fig. 5 shows the eigenvalue-magnitude distribution of four

different rules applied on the network topology in Fig. 1.
The top-left and top-right graphs in Fig. 5 show the eigen-
value distribution for the first-order rules described via (9)
and (12) initialized via (10), with ρ = ρminmax and ρ =
ρmax−con, respectively. The bottom-left and bottom-right
graphs on Fig. 5 show the eigenvalue distribution of the LTI
rules described via (5)–(6), (20), (12), and (23) initialized
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Figure 4: Eigenvalue shaping by the filter (23) with
c = 0.1 (dashed), c = 0.3 (dash-dot), and c = 0.6
(solid). For comparison purposes, the lines |λ|
(solid), corresponding to the case c = 0 (i.e., no fil-
tering) are also shown.

via (10) with ρ = ρmax−con for two values of the filter param-
eter c. As the figure demonstrates, filtering at each node via
H(z) reduces the large-magnitude modes in the system at
the expense of low-magnitude modes. In light of (16), these
rules would outperform, in general, the associated first-order
rules.

Finally, due to the initialization (10), a rule with H(z)
from (23) can also be viewed as a time-varying rule form
(5) with various choices for the kernel W [n; k] = h[n; k] W .
Although all these rules are equivalent in terms of the output
sequence x[n] that they yield, the choice with kernel

W [n; k] =

8><>:W δ[k − 1] if n = 1

(1 + c) W δ[k − 1]− c W δ[k − 2] if n = 2

(1 + c) W δ[k − 1]− c I δ[k − 2] if n > 2

(24)
is preferable for implementation, due to its finite-memory
computation requirements.

4. DISTRIBUTED SIGNAL ESTIMATION
IN GAUSSIAN NOISE

In this section we characterize the performance of the ad-
missible AC rules presented in Sec. 3 in the context of a
driving example involving signal estimation for noisy signal
observations at the network nodes. In particular, we con-
sider estimation of an unknown parameter A based on ob-
servation of a vector x ∼ N (1A, σ2I), where I is the N ×N
identity matrix, and x is given by (1). The minimum vari-
ance unbiased estimator (MVUE) of A based on x is given
by

Â(x) =
1

N
1T x . (25)

and yields the following mean-square error (MSE)

σ2
Â

4
= var Â =

σ2

N
. (26)
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Figure 5: Eigenvalue-magnitude distribution of four
LTI rules applied on the topology depicted in Fig. 1.

As (25) corresponds to computation of (8), the AC rules
of Sec. 3 of the form (5), initialized via (10), can be used

to obtain a sequence of unbiased estimates Ãi[n] at the ith

node, which asymptotically converges to Â(x) in (25). To
this end, we consider the nth step N × 1 vector estimate
sequence

Ã[n] =
�
Ã1[n] Ã2[n] · · · ÃN [n]

�T
, (27)

where Ãi[n] = xi[n] from (5). The total MSE associated

with Ã[n] is given by trΛÃ[n] (the trace of ΛÃ[n]), where

ΛÃ[n]
4
= E

��
Ã[n]− 1A

� �
Ã[n]− 1A

�T
�

. (28)

The quality of finite-delay approximations to (25) pro-
vided by a distributed rule (5) can be characterized by the
relative MSE induced by the distributed rule after n itera-
tions, i.e.,

RMSE
�
Ã[n]

� 4
=

1
N

trΛÃ[n]− σ2
Â
[n]

σ2
Â
[n]

= σ−2 trΛÃ[n]− 1 .

(29)
The relative MSE denotes the relative additional MSE in-
curred by the distributed algorithm, on average, as com-
pared to the desired rule (25).

In the case of first-order admissible AC rules based on
(12), the form of the relative MSE can be readily deter-
mined. In particular, by using (16) we obtain

RMSE
�
Ã[n]

�
=

NX
i=2

(1 + ρ µi)
2n . (30)

As (30) reveals, the relative MSE performance depends on
the network topology, through the eigenvalues of Φ, and the
choice of the diffusion parameter ρ. The value of ρ that
minimizes the relative MSE for a given Φ after n iterations,
i.e.,

ρn = arg min
ρ>0

NX
i=2

(1 + ρ µi)
2n (31)
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is a function of n. In the limit n →∞, we have

ρ∞
4
= lim

n→∞
ρn = ρminmax .

Attaining ρn in (31) for some fixed n requires, in general,
knowledge of the network topology matrix Φ. For n = 1,
the minimization in (31) yields

ρ1 = −
PN

i=1 µiPN
i=1 µ2

i

, (32)

which can be computed via macroscopic network informa-
tion. In particular, due to the structure of Φ,

1

N

NX
i=1

µi =
1

N

NX
i=1

φii,
1

N

NX
i=1

µ2
i =

1

N

NX
i=1

φ2
ii− 1

N

NX
i=1

φii ,

i.e., the numerator and the denominator of (32) can be ob-
tained via the average and squared-average number of con-
nections in the network. Thus, (32) can be rewritten as

ρ1 =

PN
i=1 |φii|PN

i=1 |φii|+
PN

i=1 |φii|2
. (33)

Although, as we show in App. B, network topologies can
be constructed for which ρ1 does not yield an AC rule, for
large networks this choice yields, in general, AC rules with
eigenvalue distribution superior to the one based on (18).

The relative MSE incurred by LTI rules described by (5)–
(6), (20), (12), and (23), initialized via (10) in computing
the MVUE (25) can also be obtained in closed form. In par-
ticular, by applying the energy-preserving transformation
x̃[n] = V T x[n] and using (24), we obtain

RMSE
�
Ã[n]

�
=

NX
i=2

λ2
i (ai1 ξn

i1 + ai2 ξn
i2)

2 , (34)

where

ξi1 =
(1 + c) λi +

p
(1 + c)2λ2

i − 4 c

2
,

ξi2 =
(1 + c) λi −

p
(1 + c)2λ2

i − 4 c

2
,

ai1 = ui (ξi1 − ξi2)
−2(ξi1γi − ξi1ξi2) ,

ai2 = −ui (ξi1 − ξi2)
−2(ξi2γi − ξi1ξi2) ,

and γi
4
= (1 + c)λi − c, ui

4
=
p
|ξi1|2 + 1

p
|ξi2|2 + 1, and

λi = 1 + ρµi.

5. SIMULATIONS
In this section we present a simulation-based performance

evaluation of the rules of Sec. 3. All our simulations involve
networks with N nodes uniformly distributed on a disk of
unit radius, where the probability that any two nodes i and j
are connected, is a function of their distance, dij . In partic-
ular, we employ a two-parameter model according to which
nodes i and j are connected with probability

Pr [φij = 1] = 2
−
�

dij
dnom

�m

, (35)

for some m ≥ 1 and dnom > 0. Although the above choice of
a connectivity model is somewhat arbitrary, it has various
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Figure 6: Relative MSE incurred by various AC LTI
rules for computing (25), applied on the network in
Fig. 1.

desirable properties. First, Pr [φij = 1] is a decreasing func-
tion of dij , with Pr [φij = 1] = 1/2 at dij = dnom. As a re-
sult, according to model (35), closely located nodes are more
likely to be connected. Also, as m increases, Pr [φij = 1] in-
creases toward 1 for any dij < dnom, and decreases toward
0 for any dij > dnom. Hence, in the limit m → ∞, all node
pairs with distance less than dnom are connected, while all
node pairs with distance greater than dnom are not. We
remark that the general trends observed in the simulations
are not a feature of the choice of the connectivity model (35)
and are typical of other models.

Fig. 6 shows the relative MSE in the Gaussian estimation
problem of Sec. 4, incurred by various LTI AC rules for the
200-node network in Fig. 1. The network was constructed
according to model (35) with dnom = 1/4 and m = 6. The
dashed and dash-dot curves show the relative MSE per-
formance of the first order rules (9)–(10) and (12), with
ρ = ρminmax and ρmax−con, respectively. The solid curves
depict the relative MSE performance of the LTI rule de-
scribed by (5)–(6), (20), (12), and (23) initialized via (10)
with ρ = ρ1 for different values of the parameter c. Specifi-
cally, the successively steeper solid curves show the relative
MSE performance of the algorithm for c = 0 (no filtering),
c = 0.3, and c = 0.6, respectively. As the figure demon-
strates, the first-order rules with ρ = ρ1 and ρ = ρminmax

have similar relative MSE performance characteristics on
this network. Furthermore, filtering can significantly reduce
the relative MSE achieved after a given number of itera-
tions, and can thus reduce the number of iterations needed
to achieve a desired relative MSE level. Alternatively, the
LTI rule with c = 0.6, can reach any given target RMSE
level, in a fraction of the number of iterations needed by the
associated first-order rule (c = 0) to reach the same target
RMSE.

The improvement in the convergence rate due to the pres-
ence of a filter H(z) of the form (23) can be quantified by
means of the gain provided by H(z) in terms of the number
of iterations required to achieve a given quality of approxi-
mation. To this end, we define the iteration-gain factor as
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Figure 7: Iteration-gain factors provided by H(z) in
(23) in terms of the iterations needed to achieve a
target relative MSE in networks with N = 400 nodes,
for target relative MSEs −20, −30 −40, −50, and −60
dB.

the ratio of the number of iterations needed by a first-order
rule over the number of iterations needed by the associated
LTI rule based on H(z) to reach a target level of relative
MSE, i.e.,

γ(D, c, Φ, ρ)
4
=

n0(D, Φ, ρ)

nc(D, Φ, ρ)
, (36)

where nc(D, Φ, ρ) is the number of iterations needed by the
LTI rule described by (5)–(6), (20), (12), and (23) initialized
via (10) with a diffusion parameter ρ and a filter parameter
c to reach a target RMSE of D dB over a topology Φ, while
n0(D, Φ, ρ) is the number of iterations required by the asso-
ciated first-order rule (LTI rule with c = 0, or, equivalently,
the rule described via (9), with W given by (12) and initial-
ized via (10)) to reach the same target RMSE level over the
same topology.

Fig. 7 shows iteration-gain factor estimates obtained via
L = 100 network realizations, {Φi}L

i=1, for various levels of
target relative MSE D (in dB). All networks have N = 400
nodes and were generated according to model (35) with
dnom = 0.15 and m = 6. All the curves in the figure cor-
respond to AC rules that employ ρ = ρmax−con from (18).
The successively higher-gain solid curves in the figure depict
the sample-mean iteration-gain factor, i.e.,

γ̄(D, c, ρ) =
1

L

LX
i=1

γ(D, c, Φi, ρ) (37)

as a function of the filtering parameter c, for target relative
MSEs −20, −30, −40, −50 and −60 dB, respectively. The
associated dashed curves correspond to the iteration-gain
factor estimates obtained by taking the ratio of the average
number of iterations needed by the first-order rule to achieve
the target RMSE level, over the average of the number of
iterations needed the associated LTI rule; viz,

γ̃(D, c, ρ) =
1
L

PL
i=1 n0(D, Φi, ρ)

1
L

PL
i=1 nc(D, Φi, ρ)

. (38)

As the figure demonstrates, use of the filter (23) can pro-
vide significant improvements in the convergence rates of
the distributed algorithm. Furthermore, the choice of the

filter parameter c in (23) that optimizes the convergence
rates is a function of the target relative MSE. Finally, both
(37) and (38) yield effectively equivalent estimates of the
iteration-gain factors achieved, revealing that these gains
are consistent over different network realizations.

6. ASYMPTOTICALLY CONVERGING
RULES FOR OTHER COMPUTATIONS

The distributed fusion rules of Sec. 3 can be readily gen-
eralized to compute a broader class of functions. First, they
can be employed to compute averages of functions of the
data of the form

G(x) =
1

N

NX
i=1

fi(xi) (39)

for arbitrary fi(·). In particular, given an AC rule of the
form (5) initialized with (10) for computing G(x) in (8), we
may obtain an AC rule for computing a G(x) of the form
(39) by replacing the initialization step (10) with

x[n] =
�
f1(x1) f2(x2) · · · fN (xN )

�T
n ≤ 0 .

The quality of approximations provided by these algorithms
subject to finite-delay computations can be evaluated, in
principle, using techniques similar to those in Sec. 4. In
general, the associated approximation quality is dictated by
fi(·) and the prior on x, and is, hence, case and context
specific. It is interesting to remark that computations of
the form (39) can arise in a number of detection and es-
timation problems, where, often, the functions fi(·) in the
global computation (39) are not locally available, but rather
depend on the quality of the measurements throughout the
network. One such example arises in the context of esti-
mation of a signal parameter A based on observation of
x ∼ N (Ab, σ2I), whereby node i only knows bi but not
the rest of the elements of b. The MVUE of A in that case
takes the form

Â(x) =
bT x

||b||2 , (40)

and can be recast in the form (39), where fi(x) = αi x, with

αi =
bi

σ2
b (b)

,

and where

σ2
b = σ2

b (b) =
1

N

NX
i=1

b2
i . (41)

Given an AC rule (5) initialized with (10) for computing
(8), we may obtain an AC rule for computing σ2

b in (41) by
replacing the initialization step (10) with

x[n] =
�
b2
1 b2

2 · · · b2
N

�T
n ≤ 0 .

Assuming sufficient convergence of the algorithm to σ2
b (b),

the same AC rule can be used to compute (40), via the
initialization

xi[n] =
bi

σ̂
(i)
b

xi n ≤ 0, 1 ≤ i ≤ N ,

where σ̂
(i)
b denotes the approximation of σ2

b at node i via
the distributed computation of σ2

b .
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The class of functions G(·) that can be computed via the
distributed algorithms presented in Secs. 2–3 also includes
functions that can be expressed as compositions of an invert-
ible transformation with G(x) in (39). One such example
involves computation of the geometric mean

Ggm(x) =

 
NY

i=1

xi

! 1
N

= exp

(
1

N

NX
i=1

ln xi

)
. (42)

Given an AC rule (5) that computes (8), we can obtain
Ggm(x) by first applying the AC rule with initialization
xi[n] = ln xi for n ≤ 0, and then obtaining the approxi-
mating sequence to Ggm(x) at the ith node as exp{xi[n]}.

7. CONCLUDING REMARKS
We developed distributed algorithms for performing a class

of global computations in ad-hoc networks. These algo-
rithms provide sequences of approximations to the desired
global computation at each node and are constructed using
only locally available information about the network topol-
ogy. As we have shown, these distributed algorithms can
be locally designed, so as to optimize the convergence rates
of the approximating sequences at each node to the desired
computation.

Due to their locally constructed and optimized nature,
these algorithms can accommodate changing topologies, of
the type that are encountered in networks of wireless, poten-
tially mobile, nodes, as they only require that nodes know
and incorporate local changes in the network topology. Fur-
thermore, these algorithms are inherently scalable and fault
tolerant.

The distributed algorithms we presented allow asymptotic
computation of weighted global averages of the node data.
More generally, the approach we presented can be extended
to compute a broad range of global computations arising
in data fusion applications, by decomposing them into sets
of weighted average computations. One such example in-
volves distributed implementation of source localization al-
gorithms based on sensor measurements that provide infor-
mation about the relative range of the source from each
sensing node [13].
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APPENDIX

A. CONVERGENCE OF FIRST-ORDER LTI
RULES WITH ρ = ρmax−con

In this section we present network topologies for which
first-order rules with ρ = ρmax−con in (18) do not yield
asymptotically converging rules. These N -node topologies
are described as follows:

– each node is connected to exactly two other nodes to
form a ring topology;

– N is even.

Each of these topologies yields a topology matrix, Φ, with
|φii| = 2 for all i. Consequently, maxi |φii| = 2 which, when
substituted in (18), yields

ρmax−con =
1

2
.

As it can be readily verified, any network topology matrix
Φ corresponding to such networks with N even, has a max-
imum (in magnitude) eigenvalue µN = −4, resulting in

ρUB = − 2

µN
=

1

2
,

thereby yielding ρmax−con = ρUB, i.e. a ρmax−con value out-
side the ρ range in (14) for asymptotic convergence.

B. CONVERGENCE OF FIRST-ORDER LTI
RULES WITH ρ = ρ1

In this section we present network topologies for which
first-order rules with ρ = ρ1 in (32) do not yield asymp-
totically converging rules. These N -node topologies are de-
scribed as follows:

– N − 1 of the nodes form a ring topology;

– the Nth node is connected to all N − 1 nodes.

As it can be readily verified, each of these topologies yields
a topology matrix, Φ, with maximum (in magnitude) eigen-
value µN = −N , and thus ρUB = 2

N
. The associated ρ1

from (33) in this case is given by

ρ1 =
(N−1)+ 3 (N−1)

(N−1)2+9 (N−1) + (N−1)+3 (N−1)
=

4

N+12
.

For N > 12 these network topologies yield ρ1 > ρUB, i.e. a
ρ1 value outside the ρ range in (14) for asymptotic conver-
gence.
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