
Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer

Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, and Edward W. Felten
Department of Computer Science, Princeton University, Princeton NJ 08544

Jonathan Sandberg
Panasonic Technologies, Inc., 2 Research Way, Princeton, NJ 08540

Abstract

The network interfaces of existing multicomputers
require a signi�cant amount of software overhead
at the operating system and user levels to provide
protection and to implement message passing proto-
cols. This paper describes the design of a low-latency,
high-bandwidth, virtual memory-mapped network in-
terface for the SHRIMP multicomputer project at
Princeton University. Without sacri�cing protection,
the network interface achieves low latency by using
virtual memory mapping and write-latency hiding
techniques, and obtains high bandwidth by providing
a user-level block data transfer mechanism. We have
implemented several message passing primitives in an
experimental environment, demonstrating that our
approach can reduce the message passing overhead
to a few user-level instructions.

1 Introduction

The new trend of constructing parallel systems from
commodity, o�-the-shelf components o�ers a great
cost/performance advantage over traditional custom-
designed parallel systems. The SHRIMP multicom-
puter project at Princeton University studies the use
of commodity PCs or workstations and commercially
available routing backplanes to construct scalable,
high-performance multicomputers. Our focus is on
building a low-cost communication mechanism whose
latency and bandwidth are comparable to or better
than existing custom-designed multicomputers.
The design challenges for such a high-performance

communication mechanism are to minimize message
passing overhead, to accommodate multiprogram-
ming under a variety of scheduling policies without
sacri�cing protection, and to overlap communication
with computation. We address these challenges by
designing a simple, low-cost, custom network inter-
face, and using it to connect commodity computing

engines with a commercially available routing back-
plane.

The �rst challenge is to minimize message passing
overhead. The cost of communication on existing
multicomputers with traditional network interfaces
is due almost entirely to the amount of CPU time
required to send and receive a message. Compared
to these software overheads, hardware communica-
tion latencies are almost negligible. For example,
on the Intel DELTA multicomputer, sending and
receiving a message requires 67 �sec, of which less
than 1 �sec is accounted for by hardware latency
[18]. The main reason for such high overheads is
that communication is usually provided as a service
of the operating system. This is expensive because
it requires several crossings between user-level and
kernel-level for each message, and also because it
prevents applications from using the communication
hardware in customized ways. Our goal of low-
overhead communication can be achieved by support-
ing communication directly at the user level.

The second challenge is to support multiprogram-
ming, under a variety of scheduling policies, without
compromising protection. Our user-level commu-
nication mechanism must be designed carefully to
meet this challenge. Some existing network interface
designs support user-level message passing, but they
either prohibit multiprogramming, or constrain how
processes are scheduled. Systems that prohibit mul-
tiprogramming use hardware to divide the machine
into partitions, and then run a single parallel job in
each partition. Systems that restrict multiprogram-
ming allow several parallel jobs to share a partition,
but guarantee protection only if certain scheduling
policies are used. For example, the CM-5 hardware
provides safe user-level communication, provided the
operating system uses strict gang scheduling in each
partition. Even under these constraints, the CM-5
network interface still requires signi�cant user-level
message handling overhead. The best case using

Page 1

the active message mechanism requires 3.3 �sec, or
over 100 SPARC CPU cycles, for software message
handling [29].

We require our mechanism to support general mul-
tiprogramming, which is needed on parallel systems
for the same reasons as on uniprocessor systems: it
allows useful processing to go on during I/O and
paging, and it supports interactive jobs well. Re-
stricting multiprogramming, as the CM-5 does with
its gang-scheduling requirement, is probably not the
right choice for a research machine. Having hard-
ware that supports general multiprogramming gives
us the ability to experiment with various scheduling
policies, and allows us to support the best scheduling
algorithm, whatever it turns out to be.

The third research challenge is to support the
overlap of communication and computation e�ec-
tively. This requires a communication mechanism
with very low transfer initiation overhead in order
to use the transfer time e�ectively. Some multipro-
cessors address this issue by using multithreading,
but the commodity processors and operating systems
targeted for use in a SHRIMP system do not support
rapid context switching. Therefore, we provide two
types of low-overhead transfer initiation mechanisms
in the SHRIMP network interface: one with no over-
head and one requiring a few user-level instructions.
Neither of these mechanisms requires any operating
system assistance to send or receive a message.

This paper describes the virtual memory-mapped
network interface for the SHRIMP multicomputer
being constructed at Princeton University. By taking
a system level design approach that considers not
only the hardware latency, but also the operating
system and user-level overhead, we were able to move
protection related work out of the critical message
passing path and to provide applications or compilers
with the ability to overlap communication with com-
putation without using multiple threads of control.
We have implemented several message passing primi-
tives in an experimental environment, demonstrating
that our approach can reduce the message passing
overhead to a few instructions.

2 Main Ideas

There are three main ideas in our network in-
terface design: providing applications with a vir-
tual memory-mapped interface, separating protec-
tion from data movement, and delivering updates to
mapped memory in an overlapped fashion. These
ideas lead to a simple network interface with greatly
reduced message passing overhead.

Our virtual memory network interface allows the
virtual memory of a sending process to be mapped to
the virtual memory of a receiving process in such a
way that ordinary store instructions by the sending
process cause data to be propagated to the virtual
memory of the receiving process. This can be used
to support a simple,
exible message passing mech-
anism, or a programming model with many of the
properties of shared memory.

The separation of protection from data movement
is accomplished by separating destination speci�ca-
tion from data speci�cation in message passing prim-
itives. The traditional send primitives usually have
the form:

send(destination, send-buf, nbytes ...)

where destination usually contains the destination
node-id, process-id, and other information used to
build a message header and check protection. The
send-buf and nbytes speci�cations are used to tell
the network interface where the data is.

Our approach is to use virtual memory-mapped
segments for all message passing primitives. The tra-
ditional send primitive becomes two separate primi-
tives:

map(send-buf, destination, receive-buf)

send(send-buf, nbytes ...)

where the map primitive is a kernel call that per-
forms protection checking and stores memory map-
ping information on the network interface, and the
send primitive initiates data transfer completely at
user level. Once the mapping has been established,
send can be used repeatedly to transfer data with
minimal overhead. The mapping allows one-way
data transfer using local virtual memory addresses.
Communication can be made bidirectional by adding
a complementary mapping in the reverse direction.

Separating protection from data movement allows
the common case to be performed entirely at user-
level. Setting up a mapping is necessarily slow, since
it requires protection to be veri�ed in the operating
system kernel. Once a mapping has been set up,
communication can proceed without any operating-
system involvement. The common case, communi-
cation, is fast; the rare case, mapping, is slow but
ensures protection.

The separation of destination speci�cation and
data speci�cation �ts multicomputer programs very
well. Most multicomputer programs have a process
on each node, and each process loops until the desired
result is computed. Each iteration of the loop requires

Page 2

sending messages to, and receiving messages from
other processes using the same bu�ers. For such
processes, map calls can execute outside the loops
and send can be performed completely at user level
(Figure 1).

......

......

......

......

......

......

Process i Process j

map(...)

send

receive

send

receive

Loop Loop

map(...)

Figure 1: A typical multicomputer program.

The network interface supports two transfer strate-
gies: automatic update and deliberate update. Un-
der automatic update, a sending process can map
the memory of its data structures as \send bu�ers"
and there is no need to have an explicit send call.
Any time the sending process writes to a mapped
(outgoing) data structure, the newly written value
is automatically propagated to the virtual memory
of the destination process which is mapped to. The
sending process continues its computation as the
value is propagating. Automatic update requires the
network interface to snoop the CPU's memory store
operations, and requires the CPU to use a write-
through caching strategy for its mapped memory.
This method overlaps communication and computa-
tion at the user level without using multiple threads.
Under deliberate update, newly written values are

not propagated immediately, but only after the send-
ing process issues an explicit send command. Our
network interface uses deliberate updates for user-
level block data transfers to achieve high-bandwidth
communication with no operating system overhead.

3 SHRIMP System

The SHRIMP system is a new multicomputer being
designed at Princeton University. Each node in the
SHRIMP multicomputer is an Intel Pentium Xpress
PC system [13] and the interconnect is an Intel
Paragon routing backplane. These state-of-the-art
components allow SHRIMP to take advantage of the
latest available technology at a fraction of the cost of
current multicomputer systems.
The Xpress PC consists of a Pentium CPU [26, 14]

with a second level cache connected to DRAM mem-
ory modules and I/O bus adapters (EISA [3] or

PCI [23]) via the Xpress memory bus. Memory
can be cached as write-through or write-back on a
per-virtual-page basis, as speci�ed in process page
tables. The caches snoop DMA transactions and
automatically invalidate corresponding cache lines,
keeping consistent with all main memory updates.
The PC baseboard has a memory extension connector
which carries the majority of the Xpress bus signals,
as well as a number of system expansion connectors
(EISA or PCI).

The Intel Paragon routing backplane is a two-
dimensional mesh of Intel iMRC routers [28], which
are essentially faster and wider versions of the Caltech
Mesh Routing Chip [7]. The backplane supports
deadlock-free, oblivious wormhole routing [8] and
preserves the order of messages from each sender to
each receiver.

MAIN

INTERCONNECT

NETWORK
INTERFACE

PENTIUM

MEMORY

CACHE

CPU

L1

CACHE
L2

Xpress Bus

Other devices...

EISA Bus

Figure 2: A SHRIMP node with network interface

The custom designed SHRIMP network interface
is the key system component which connects each
Xpress PC system to the processor port of an iMRC
router on the routing backplane. The current gen-
eration of the network interface is connected to both
the Xpress memory extension connector and an EISA
expansion connector (Figure 2). Outgoing data, des-
tined for other nodes, is snooped directly o� the
Xpress memory bus through the memory extension
connector. Since this connector does not provide
the capability for mastering the Xpress bus, incom-
ing data from other nodes is transferred to main
memory by way of the EISA expansion bus without

Page 3

involving the CPU. The snooping cache architecture
of the Xpress PC system insures that the caches re-
main consistent with main memory during this trans-
fer. Therefore, a SHRIMP system can use normal,
cacheable DRAM memory as send and receive bu�ers
for message passing without any special hardware.
Note that future versions of the Xpress PC system

will provide mastering capability for the Xpress mem-
ory bus, thereby simplifying the bus interface of the
next generation SHRIMP network interface.

3.1 Physical Memory Mapping

The network interface implements virtual memory-
mapping as described in Section 2 by using a physical
memory mapping mechanism. Each page of local
physical memory can be \mapped out" to a physical
page of some other node in the system. We say
that this other page is \mapped in", since it is the
destination of data sent from the mapped-out page.
The physical mapping information is retained in a
Network Interface Page Table, described in Section 4.
To create a virtual memory-mapping from one node

to another, the network interface requires a map sys-
tem call to set up the appropriate physical mapping
information in the page tables of both network in-
terfaces, and con�gure the physical pages which are
mapped out for write-through caching.
After the map call establishes the physical memory

mapping, the network interface snoops all writes to
the mapped memory directly o� the Xpress bus,
packetizes them, and sends the packets to the routing
backplane (Figure 2). A packet consists of routing
information, the absolute mesh coordinates of the
intended receiver, destination memory address, data,
and a CRC checksum to detect network errors.
When a packet is received by the network inter-

face, the absolute mesh coordinates of the intended
receiver and the CRC are used to verify that the
packet was routed correctly and arrived intact. The
network interface uses the destination address to
transfer the data directly to the mapped-in physical
memory without CPU assistance. This transfer is
done through the EISA expansion bus on the current
implementation of the network interface, although
any path to the main memory could be used.
Figure 3 shows how two processes coexist on a

SHRIMP system. One process is using the gray
mapping to send data from Node A to Node B. The
other process is using the black mapping to do the
same. The network interface stores information to
maintain the mapping between the physical memo-
ries, and the virtual memory systems of the nodes
maintain the mappings between virtual and physical

memory
Physical

spaces

spacespace
memory

memory
VirtualVirtual

memory
spaces

Physical

NODE A NODE B

INTERCONNECT

Figure 3: Virtual memory mapping

memory. Since the physical memory used by the two
processes is distinct, a context switch between them
does not require any action on the part of the network
interface.

3.2 Mapping Alignment

An ideal virtual memory-mapped network interface
would allow application programs to map arbitrarily
sized segments of memory without any restriction,
but it is di�cult to implement such a scheme inexpen-
sively. The SHRIMP network interface approximates
this ideal by allowing a physical page to be split
between two separate mappings at some con�gurable
o�set. As long as applications insure that the gran-
ularity of their mapped data structures exceeds the
size of a page, this scheme can accommodate all map-
pings, including those which are not page-aligned.
For the rest of this paper we will discuss physical

memory mappings on a page basis in order to avoid
confusion. It should be understood, however, that
any page can be split between two mappings.

4 The Network Interface

Figure 4 shows the datapath of the SHRIMP virtual
memory-mapped network interface.
The key component of the network interface is the

Network Interface Page Table (NIPT). The NIPT
has one entry for each page of physical memory on
the node, and contains information about whether,
and how, the page is mapped. Each page table
entry speci�es the destination node and physical page
number which is mapped to, and includes various bits
to control how data is sent and received.
To illustrate how the network interface works, let

us consider how the components of the datapath

Page 4

FIFO
Outgoing

Packetizing

Interface
Chip

Network

EISA
DMA
Logic

INTERCONNECT

Network

Table
Page
Interface

Checking
Unpacking/

Incoming
FIFO

EISA BusXpress Bus

Figure 4: SHRIMP Network Interface Data Path

cooperate to propagate a written value from one node
to another, assuming that a mapping has already
been set up. This example does not explain all the
features of the network interface; it is meant merely
to illustrate one simple case.

The source process writes to mapped memory,
which takes place on the Xpress memory bus since
mapped out pages are cached as write-through. It
is convenient to think of the address of this write
as a physical page number and an o�set on that
page. While the write is updating main memory,
the network interface snoops it and indexes into the
NIPT using the page number to reveal that the page
is mapped out. Using the destination and physical
mapping information from the NIPT entry along
with the original o�set from the write address, the
network interface constructs a packet header. The
written data is appended to this header, and the
now-complete packet is put into the Outgoing FIFO.
When it eventually reaches the head of the FIFO,
the Network Interface Chip (NIC) injects it into the
network.

When the packet arrives at the destination proces-
sor, the NIC puts it into the Incoming FIFO. Once
it reaches the head of this FIFO, the page number
is again used to index into the NIPT to determine
if that page has been mapped in. The destination
address from the packet is used by the EISA DMA
logic to transfer the data directly to main memory.

The system
ow control mechanism is very simple.
If the Incoming FIFO becomes full (exceeding some

programmable threshold), the NIC will cease to ac-
cept more packets from the network, possibly causing
Outgoing FIFOs on other network interfaces to cease
draining. If the Outgoing FIFO becomes full (ex-
ceeding another programmable threshold), the CPU
is interrupted and waits until the FIFO drains. A
full Incoming FIFO will eventually drain to memory,
allowing the NIC to accept network packets. Since
the routing network is deadlock-free, all packets will
eventually be delivered to their destinations, allowing
stalled Outgoing FIFOs to drain. Since the CPU does
not write to any mapped pages while it is waiting, the
Outgoing FIFO cannot over
ow.

4.1 Supporting Automatic Update

Recall that \automatic update" means that an up-
date to a mapped-out page initiates data transfer
immediately (often called \eager" or \anticipatory"
sharing). There are two implementations of auto-
matic updates: single-write and blocked-write. The
two implementations o�er the same semantics, but
di�er in performance. While single write is optimized
for low overhead, blocked write is optimized for e�-
cient network bandwidth usage.
When the network interface snoops a memory write

o� the memory bus, it always looks up the refer-
enced page in the NIPT. If the referenced address
is mapped out for single-write automatic-update, the
network interface packetizes the data of the write
and sends the packet to the network immediately, as
described in the beginning of Section 4. If the address
is mapped for blocked-write automatic-update, the
network interface bu�ers the data into the Outgoing
FIFO without sending it out immediately. Subse-
quent writes are merged into the same packet if they
are consecutive, occur within the same page, and
occur within a programmable time limit from one
another. Otherwise, the packet is terminated and
sent.
The automatic-update method used in the network

interface is an e�ective way to overlap communication
with computation. The CPU issues regular store

instructions to initiate data transfer, and su�ers only
the local write-through cache latency. The data
propagates to the destination memory while the CPU
goes on with its computation.

The automatic-update page type can be used to
share memory between processes and support a pro-
gramming model based on PRAM consistency [17].
That is, processes retain a local copy of a shared
address \space" and maintain consistency between
their local copy and all the other copies by duplicating
local updates to remote copies. Although there is

Page 5

no global consistency mechanism preventing the in-
dividual copies from becoming inconsistent with one
another, protocols can be used to maintain consis-
tency within applications. In order to share memory,
two processes on di�erent nodes simply create com-
plementary mappings. Writes to local shared memory
are sent to the mapped memory of the remote node.
Because there is a unique path from a source node
to a destination node and the hardware guarantees
that all messages from the same sender are delivered
in the same order, software consistency schemes can
be applied.

4.2 VM Mapped Commands

In order to allow an application to control some
operations of the network interface without involving
the kernel, we provide a mechanism called Virtual
Memory Mapped Commands. The network interface
command memory is located in the node's physical
address space, but does not address any actual RAM.
References to command memory simply transmit in-
formation to or from the network interface. For
example, command memory might be used to switch
some page from single-write to block-write mode, or it
might request an interrupt the next time data arrives
for some page.

The current network interface supports one com-
mand memory space the same size as the actual
physical memory, and assigns a unique command
page to each page of physical memory. Since both
address spaces are linear and of equal size, the assign-
ment is simply determined by the distance between
them in the physical address space. The operating
system kernel gives a user-level process access to a
command page by mapping that command page into
the process's virtual memory space. For example, if
physical page p currently holds the contents of some
virtual page of process X, then the kernel can give
X access to the command pages that control p. This
allows X to \talk to" the network interface about p
directly from user-level. If the kernel later decides
to reallocate p to another process, it can revoke X's
right to access the command pages corresponding to
p.

The command memory mechanism uses physical
address space (but not physical memory) to achieve
low-overhead control of the network interface. It
consumes a fraction of the physical address space
whose size is a small constant times the size of the
local physical memory, and it consumes the same
amount of virtual address space.

4.3 Supporting Deliberate Update

In order to achieve high bandwidth data transfer,
memory can be mapped out for deliberate update.
Data written to a deliberate-update page is not auto-
matically transferred to the destination node, but the
transfer takes place only when the user-level applica-
tion issues an explicit send command. The command
is issued through a command page corresponding to
the page from which the transfer is to occur. This
method allows user programs to control the point at
which data is transferred from a mapped-out data
structure to its destination.

The protocol for the command to transfer a block
of deliberate-update type data is nontrivial for two
reasons. First, the network interface has only one
DMA engine to perform deliberate updates, and it
serves only one request at a time. The DMA engine is
not always available, so attempts to initiate a transfer
might fail. This requires the network interface to
return a success/failure code to each process attempt-
ing to start a transfer, and it requires processes
to retry operations that fail. Second, the network
interface has no control over process scheduling, so a
context switch could happen at any time. This re-
quires processes to use a single, atomic instruction to
start a transfer and determine whether it succeeded.

The current network interface supports deliberate-
update transfer initiation using the compare-and-
exchange (CMPXCHG) instruction [14], which gener-
ates a read cycle followed by a write cycle if the value
returned by the read matches the accumulator. To
transfer n words of data starting from a mapped-out
base address, the application loads a source register
with n, and issues a CMPXCHG instruction whose
destination address is the command page address
associated (same o�set) with the mapped-out base
address. If the DMA engine is free, the network
interface reacts to the read cycle by returning zero,
which causes the CMPXCHG to generate the write
cycle and start the transfer. So, the application
initiates a deliberate-update transfer by clearing the
accumulator, setting up the source register with n,
and repeatedly performing a locked (atomic) CMPX-
CHG instruction to the command page address until
successful (zero returned).

When the DMA engine is busy, the network inter-
face reacts to a read cycle by returning the number
of words remaining to be transferred, and a binary

ag to indicate whether the read address matches the
current base address of the DMA engine. Therefore,
a single read cycle allows an application to deter-
mine whether a transfer it initiated is complete, or
the number of words remaining to be transferred if

Page 6

not. This feature can be used to implement backo�
strategies to optimize the use of the memory bus for
the DMA transfer.
Deliberate-update data transfer is accomplished

with minimal additional hardware support because
the network interface simply enables the Xpress mem-
ory bus snooping mechanism while the DMA engine
reads the data from main memory. The outgoing
datapath then captures the data in a manner equiv-
alent to automatic-update writes (Section 4.1), and
packetizes it for network transmission.
Because protection and mapping are on a page ba-

sis, each deliberate-update command can transfer at
most one page of data. Larger transfers, or transfers
that span a page boundary, must be broken up into
several smaller transfers. The command sequence to
send a large piece of data crossing page boundaries
can easily be embedded in a macro or a run-time
library routine.

4.4 Consistency of Mappings

Since entries in the network interface page table
(NIPT) refer to remote physical addresses, the op-
erating system must take some care when paging,
to ensure consistency between its local virtual-to-
physical page mapping, and the virtual-to-physical
mappings implied by remote NIPTs. This is essen-
tially the same as the TLB consistency problem in
shared-memory multiprocessors.
Note that there is no consistency problem for pages

that have only outgoing communication mappings.
These pages are not referenced in remote NIPTs,
so they can safely be replaced, provided that the
outgoing mapping information is stored in the page
table.
The simplest consistency policy is simply to pin

into physical memory all pages that have incom-
ing communication mappings, eliminating the con-
sistency problem since a page referred to by a remote
NIPT entry can never move. This solution is sat-
isfactory if there are not too many communication
mappings.
We can design a more sophisticated solution by

exploiting the similarity to the TLB consistency
problem, and borrowing the standard solution [25].
Space does not permit a detailed discussion of this
policy. Brie
y, before replacing a communication-
mapped page, a node's kernel must cause all remote
NIPT entries referring to that physical page to be
invalidated. This is done by sending messages to the
remote kernels, which invalidate their NIPT entries
and then respond with an acknowledgement. When
all acknowledgements are received, the page can be

replaced. NIPT entries are \invalidated" by marking
the source virtual pages as read-only. If the applica-
tion later tries to initiate a transfer by writing such
a page, a page-fault will occur and the kernel can try
to re-establish the invalid mapping.

5 Performance

This section discusses the performance of the
SHRIMP system. We evaluate two aspects of per-
formance: hardware performance, and the software
overhead required by various message passing opera-
tions.
We de�ne communication latency to be the time

between a write operation by the sending CPU, and
the arrival of the written data in the destination mem-
ory. The SHRIMP hardware has a communication
latency of less than 2 �sec, and a peak communication
bandwidth of 33 Megabytes/second. These �gures
are comparable with several modern multicomputers,
and demonstrate that we do not lose signi�cant hard-
ware performance by using commodity parts rather
than building the machine from scratch.
Table 5 summarizes the software overheads for

various message passing primitives presented in this
section. Overhead is measured in the number of CPU
instructions required to carry out each operation.
The expressions in parentheses divide each overhead
into instructions executed by the source, and instruc-
tions executed by the destination.

Message Passing Software Overhead
Primitive (instructions)

single bu�ering 9 (4+5)
single bu�ering + copy 21 (4+17)
double bu�ering (case 1) 2 (1+1)
double bu�ering (case 2) 8 (3+5)
double bu�ering (case 3) 10 (5+5)
deliberate-update transfer 15 (15+0)

csend and crecv 151 (73+78)

Table 1: Software overhead of message passing prim-
itives

A discussion of the experimental procedure, and
descriptions of the primitives, are given below.
With the exception of csend and crecv, software

overhead is very small, requiring no more than 21
instructions for each primitive. The more complex
semantics of csend and crecv result in larger soft-
ware overhead, but these operations are still rela-
tively cheap, with overheads of under 80 instructions

Page 7

each. Overall, we conclude that the virtual memory
mapped network interface supports e�cient imple-
mentation of a range of message passing primitives.

5.1 Hardware Performance

We evaluate the performance of the SHRIMP hard-
ware by measuring the latency and bandwidth of
transfers. Of course, the performance of individual
processors when computing locally is not determined
by us.

Latency

We evaluate latency for the automatic-update mech-
anism, using the single-write mechanism. This is the
strategy recommended for applications requiring very
low latency. Each write by the originating processor
becomes a network packet immediately, allowing the
hardware latency to be completely overlapped with
computation.
In the absence of bus and network contention, the

propagation latency on a 16-node system with the
current EISA-based prototype network interface is
estimated to be slightly less than 2 �sec. This latency
includes the time to get the data o� the Xpress bus,
to build a packet, to transfer the packet through the
Outgoing FIFO and the NIC, to route it through the
backplane, to pass it through the destination NIC
and Incoming FIFO, and �nally to transfer it to the
destination address over the EISA bus. Our next
implementation of SHRIMP will bypass the EISA
bus and drive the Xpress memory bus directly, thus
reducing the latency to less than 1 �sec.

Peak Bandwidth

We evaluate bandwidth for the deliberate-update
mechanism, since it is the strategy recommended
for applications that require the highest bandwidth.
Deliberate-update communication takes place as a
single burst, driven by DMA engines on both the
sending and receiving nodes.
The EISA bus on the receiver's side is the bot-

tleneck that limits bandwidth. The peak bandwidth
of the EISA bus in burst mode is 33 Mbytes/second
[3]. All other parts of the datapath have at least
twice this bandwidth. Our next implementation of
SHRIMP will bypass the EISA bus, thus achieving
peak bandwidth of about 70 Mbytes/second.

5.2 Software Overhead

We measured the software overhead required by typ-
ical message passing primitives. Because SHRIMP

o�ers user-level communication, applications are free
to use customized message passing operations rather
than a single, generic mechanism. As a result, the
software overhead cannot be characterized by a single
number; we must measure the overhead induced by
a variety of message passing primitives. Generally,
primitives with richer, more useful, semantics require
higher overhead than do simpler primitives.
We measured software overhead as the total num-

ber of instructions required by the sending and receiv-
ing processors to implement a particular primitive.

Experimental Environment

Because we do not yet have SHRIMP hardware,
we measured software overheads on an experimental
implementation environment. This environment can
be viewed as a restricted version of SHRIMP { appli-
cation code that works on the implementation envi-
ronment will run without change on a real SHRIMP
system. Hence, our instruction counts are accurate.
The implementation environment consists of two

i486-based Xpress PCs, connected via a pair of
Pipelined RAM (PRAM) network interfaces [17].
Each network interface contains 32 Kbytes of dual-
ported SRAM which is mapped to the SRAM of
the other in a manner similar to a complementary
SHRIMP single-write, automatic-update mapping.
The PCs run a modi�ed OSF-1/MK AD operating
system.
Because the PRAM interface does not support

deliberate-update transfers, we could not run the
deliberate-update code in the experimental environ-
ment. However, we are con�dent that this code is
correct, since it is very small (less than 50 lines).

Single Bu�ering

We used the experimental environment to measure
the performance of single-bu�ered send and receive
operations. These primitives use a single memory
bu�er, mapped by the sender and receiver, to com-
municate data.
A simple way to implement single bu�ering is to

use an automatic-update virtual memory mapping.
Figure 5 shows an example implementation using this
idea. A send-bu�er in the memory of the sending
process is mapped to a receive-bu�er in the memory
of the receiving process using an automatic-update
mapping. The processes use a single
ag, mapped for
bidirectional automatic update, to synchronize their
access to the bu�er and to transmit the message size
from sender to receiver.
To send a message, the sending process waits until

the nbytes
ag is set to zero, signifying that the

Page 8

bu�er is empty. The sender puts the message data
into the send bu�er, then sets the nbytes
ag equal to
the message size. Because the send-bu�er is mapped
to the remote receive-bu�er, the SHRIMP hardware
automatically propagates the data to the receive-
bu�er. To receive a message, the destination process
waits until nbytes is nonzero. After consuming the
message data, it sets nbytes to zero to indicate that
the bu�er is available.

Process jProcess i

Receive
Buffer

nbytesnbytes

Buffer
Send

bcopy
optional

while(nbytes = 0)
;

while(nbytes <> 0)

put data in Send Buffer
nbytes = buf_len

;
consume received data
nbytes = 0

Figure 5: Single-bu�ered transfer

Depending on the circumstances, the receiver may
choose to copy the message out of the receive bu�er.
Although this uses some CPU time, it allows the
sender to start the next transfer sooner. Since
the decision to copy depends on the situation, we
measured single-bu�ering overhead both with and
without copying. Without copying, a single-bu�ered
message requires 9 instructions: 4 for the sender and 5
for the receiver. Copying adds an additional overhead
of 12 instructions on the receiving side, not including
per-byte copying costs.

Double Bu�ering

A disadvantage of single bu�ering is that the sender
cannot start transmitting data until the receiver has
�nished consuming the previous message. A tech-
nique known as double bu�ering can be used to
overlap the consumption of one message with the
transmission of the next.
Figure 6 shows the double-bu�ering method used

in a typical multicomputer program. This method
requires unrolling the loop of each process once, and
using two bu�ers for each communication bu�er of
the original loop, one for odd iterations and another
for even iterations.

Iterations 0, 2, ...

Iterations 1, 3, ...

Buffer 1
Send

Send
Buffer 2

Receive
Buffer 1

Receive
Buffer 2

flagsflags

Figure 6: Double bu�ered transfer

The cost of double-bu�ering depends on the struc-
ture of the loop in the original program. There are
three kinds of loops, two of which require synchro-
nization between iterations. Since this synchroniza-
tion is not necessary for message transport, we will
not consider it part of the message-passing overhead.
In the �rst kind of loop, iteration i+1 uses data pro-

duced by iteration i. In this case, neither the sender
nor the receiver must wait for bu�ers to empty or
�ll, since these conditions are ensured by the barrier
synchronization. Therefore, the software overhead is
2 instructions to swap bu�er pointers between odd
and even iterations.
In the second kind of loop, the receive side uses

data sent in the same iteration, so it needs to spin on
a data-arrival
ag. The sender does not need to wait
for the send bu�er contents to be consumed, because
this is ensured by the barrier synchronization. In this
case, the software overhead is 8 instructions: 3 for the
sender and 5 for the receiver.
In the third kind of loop, synchronization is not

required between iterations; all the necessary syn-
chronization is provided by messages. This type of
loop requires the receiving process to spin until data
has arrived in the receive bu�er. Additionally, before
re-using a send bu�er, the sender waits until the
bu�er's previous contents have been consumed. In
this case, the software overhead is 10 instructions: 5
for the sender and 5 for the receiver.

Deliberate-Update Transfer

Pages mapped in deliberate-update mode do not
transfer data until the originating process issues an
explicit \send" operation. This operation is issued by
accessing memory-mapped command pages from the
user level, as described in Section 4.3.
We wrote a small macro that implements

deliberate-update send. If the data to be transferred

Page 9

spans a page boundary, our implementation uses a
series of single-page DMA transfers (Section 4.3).
Software overhead is minimized between successive
transfers because the preparation of the next page
transfer command is overlapped with the outgoing
DMA of the current transfer. In the simplest case,
when only a single data transfer is required, this
initiation requires 13 instructions. Checking whether
a DMA operation has �nished is much cheaper, re-
quiring only 2 instructions.

NX/2 Primitives

Finally, we implemented versions of the standard
send and receive operations o�ered by most message
passing systems. We used the Intel NX/2 csend and
crecv primitives, which bu�er incoming messages in
system-managed memory, and use message types to
dispatch messages in a FIFO fashion [24]. In our
implementation, we restrict the message type to a
16-bit integer, and assume that each message type
represents only point-to-point communication (i.e.
there is only one sender associated with each message
type).
We expect SHRIMP to have two main advantages

over existing systems when implementing these prim-
itives. First, SHRIMP allows user-level communi-
cation, so bu�er management can be moved to the
user level, thus avoiding the overhead of copying
data across the user/kernel boundary. Second, our
memory-mapped interface semantics will allow data
transport to be controlled using fewer instructions,
and interrupting the CPUs less often.
The current implementation requires 73 instruc-

tions for csend and 78 instructions for crecv, which is
about 1/4 of the overhead of the Intel implementation
for the iPSC/2. We compare to the iPSC/2, since
it uses i386 CPUs which have the same instruction
set as the CPUs in both our implementation envi-
ronment and the �nal SHRIMP system. The NX/2
implementation is more general, but introduces much
higher overhead than our implementation. The NX/2
csend requires 222 instructions on the fast path to
send a message, plus the cost of a system call and
a DMA send interrupt. The NX/2 crecv overhead
includes 261 instructions on the fast path to receive
and dispatch a message, plus the cost of a system call
and a DMA receive interrupt.

6 Related Work

The traditional method of designing network inter-
faces for multicomputers is based on DMA data
transfer. Examples include the NCUBE [22], iPSC/2

and iPSC/860 [21]. The network interface designs of
these machines are very similar. An application sends
messages by making operating system calls to initiate
DMA data transfers. The network interface initiates
an incoming DMA data transfer when a message
arrives and interrupts the local processor when the
transfer has �nished so it can dispatch the arrived
message. The application makes a system call to
receive the message. The network interface based on
this approach is simple and can be used for commod-
ity PCs or workstations. The main disadvantage is
that message passing costs are usually thousands of
CPU cycles, with the best implementation [29] still
requiring over 100 CPU cycles.

One solution to the problem of software overhead
is to add a separate processor on every node just
for message passing [20, 12, 11]. Examples of this
approach are the Intel Paragon and Meiko CS-2.
The basic idea is for the \compute" processor to
communicate with the \message" processor through
either mailboxes in shared memory or closely-coupled
datapaths. The compute and message processors can
then work in parallel, to overlap communication and
computation. In addition, the message processor
can poll the network device, eliminating interrupt
overhead. This approach, however, does not elim-
inate the overhead of the software protocol on the
message processor, which is still hundreds of CPU
instructions. In addition, the node is complex and
expensive to build.

Several projects have taken the approach of lower-
ing communication latency by bringing the network
all the way into the processor and mapping the
network interface FIFOs to special processor regis-
ters [5, 10, 6]. Writing and reading these registers
queues and dequeues data from the FIFOs respec-
tively. While this is e�cient for �ne-grain, low-
latency communication, it requires the use of a non-
standard CPU, and it does not support the protection
of multiple contexts in a multiprogramming environ-
ment.

The Connection Machine CM-5 implements user-
level communication through memory-mapped net-
work interface FIFOs [16]. Protection is provided
through the virtual memory system, which controls
access to these FIFOs. However, there are a limited
number of FIFOs so they must be shared within a
partition (subset of nodes), restricting the degree of
multiprogramming. Protection is provided between
separate partitions, but not between processes within
a partition. Since packet headers must be constructed
by applications, the message passing overhead is still
hundreds of CPU instructions.

Several shared memory architecture projects use

Page 10

the page-based, automatic-update approach to sup-
port shared memory. Examples include Memnet[9],
Merlin [19] and its successor SESAME [30], the Plus
system [4], and Galactica Net [15]. These systems do
not provide a mechanism for high-bandwidth, low-
overhead block data transfer.

Several parallel architectures use multiple threads
[20, 27, 2, 1] to overlap communication with com-
putation. These approaches require applications or
compilers to create multiple threads on each node,
and require the node CPU to switch thread contexts
very fast.

The idea of automatic-update data delivery in our
network interface is derived from the Pipelined RAM
network interface [17]. The PRAM network interface
allows physical memory mapping only for a small
amount of memory on the network interface board.

7 Conclusions

The SHRIMP project uses commodity components,
and a custom-designed network interface to build a
new multicomputer. Communication in SHRIMP
is based on remote virtual memory mapping. The
SHRIMP interface o�ers advantages of both
exibil-
ity and performance over traditional multicomputer
interfaces.

The communication abstraction o�ered by
SHRIMP has many advantages over the interfaces
o�ered by most other multicomputers. Separating
destination speci�cation from data movement allows
the common case of communication to execute en-
tirely at user-level, even in the presence of arbitrary
multicomputer scheduling policies.

The memory-mapped communication model is
more
exible than the traditional FIFO-based ap-
proach. FIFOs can easily be emulated using mem-
ory mappings, and memory mappings o�er a wealth
of additional possibilities, most notably automatic
replication of data structures to remote processes.
The tradeo� in the memory mapped communication
model is its property of connection-oriented commu-
nication. Certain programs may need to use the
same data bu�ers to communicate with more than
one node in the system. The remote virtual memory-
mapped communication model requires either using
extra bu�ering and copying, or changing mappings.
As a consequence of user-level communication,

SHRIMP does not impose any bu�er management
policy on applications. This
exibility allows appli-
cations, user-level libraries, or compilers to develop
their own, customized bu�ering strategies.
One interesting feature of the virtual memory-

mapped network interface is that it snoops the mem-
ory bus of the local node. Using a single-write
automatic-update mapping, this feature allows the
local CPU to see only the cache write latency and
to overlap its subsequent instruction executions with
network communication.
In this paper, we have presented limited experi-

mental results on a few message-passing primitives.
We are currently carrying out a more careful study to
compare the remote virtual memory-mapped commu-
nication model with other message passing models.
As mentioned in the paper, we are in the process of

prototyping our network interface for the Xpress Pen-
tium PC system and the Paragon routing backplane.
We expect to complete our �rst working hardware by
the second quarter of 1994.

Acknowledgements

We would like to thank Otto J. Anshus,
Douglas W. Clark, and Richard J. Lipton sincerely
for their numerous contributions to the SHRIMP
project and to this paper. This work was supported
by National Science Foundation Grant CCR-9020893,
ARPA and ONR under contracts N00014-91-J-4039,
and Intel Supercomputer Systems Division. Matthias
Blumrich and Richard Alpert were supported in part
by ARPA Fellowships in High Performance Com-
puting administered by the Institute for Advanced
Computer Studies, University of Maryland.

References

[1] Anant Agarwal, David Chaiken, Kirk Johnson,
David Kranz, John Kubiatowicz, Kiyoshi Kuri-
hara, Beng-Hong Lim, Gino Maa, and Dan Nuss-
baum. The MIT Alewife machine: A large-scale
distributed-memory multiprocessor. Technical Re-
port MIT/LCS/TM-454, Massachusetts Institute of
Technology, June 1991.

[2] Robert Alverson, David Callahan, Daniel Cum-
mings, Brian Koblenz, Allan Porter�eld, and Burton
Smith. The Tera computer system. In Proceedings of
International Conference on Supercomputing, pages
1{6, 1990.

[3] BCPR Services Inc. EISA Speci�cation, Version
3.12, 1992.

[4] Roberto Bisiani and Mosur Ravishankar. Plus: A
distributed shared-memory system. In Proceedings
of 17th International Symposium on Computer Ar-
chitecture, pages 115{124, May 1990.

[5] Shekhar Borkar, Robert Cohn, George Cox, Thomas
Gross, H.T.Kung, Monica Lam, Margie Levine,

Page 11

Brian Moore, Wire Moore, Craig Peterson, Jim Sus-
man, Jim Sutton, John Urbanski, and Jon Webb.
Supporting systolic and memory communication in
iwarp. In Proceedings of 17th International Sympo-
sium on Computer Architecture, pages 70{81, May
1990.

[6] William J. Dally, Roy Davison, J. A. Stuart Fiske,
Greg Fyler, John S. Keen, Richard A. Lethin,
Michael Noakes, and Peter R. Nuth. The message-
driven processor: A multicomputer processing node
with e�cient mechanisms. IEEE Micro, 12(2):23{39,
April 1992.

[7] William J. Dally and Charles L. Seitz. The torus
routing chip. Distributed Computing, 1:187{196,
1986.

[8] William J. Dally and Charles L. Seitz. Deadlock-free
message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, C-
36(5):547{553, May 1987.

[9] G. S. Delp, D. J. Farber, R. G. Minnich, J. M. Smith,
and M. C. Tam. Memory as a network abstraction.
IEEE Network, 5(4):34{41, July 1991.

[10] Dana S. Henry and Christopher F. Joerg. A tightly-
coupled processor-network interface. In Proceed-
ings of 5th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 111{122, October 1992.

[11] Mark Homewood and Moray McLaren. Meiko CS-2
interconnect elan { elite design. In Proceedings of
Hot Interconnects '93 Symposium, August 1993.

[12] Intel Corporation. Paragon XP/S Product Overview,
1991.

[13] Intel Corporation. Express Platforms Technical Prod-
uct Summary: System Overview, April 1993.

[14] Intel Corporation. Pentium Processor Data Book,
1993.

[15] Andrew W. Wilson Jr. Richard P. LaRowe Jr. and
Marc J. Teller. Hardware assist for distributed shared
memory. In Proceedings of 13th International Con-
ference on Distributed Computing Systems, pages
246{255, May 1993.

[16] Charles E. Leiserson, Zahi S. Abuhamdeh, David C.
Douglas, Carl R. Feynman, Mahesh N. Ganmukhi,
Je�rey V. Hill, Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St. Pierre, David S. Wells, Monica C.
Wong, Shaw-Wen Yang, and Robert Zak. The net-
work architecture of the connection machine CM-5.
In Proceedings of 4th ACM Symposium on Parallel
Algorithms and Architectures, pages 272{285, June
1992.

[17] Richard J. Lipton and Jonathan S. Sandberg.
PRAM: A scalable shared memory. Technical Re-
port CS-TR-180-88, Princeton University, Septem-
ber 1988.

[18] Richard J. Little�eld. Characterizing and tuning
communications performance for real applications.
In Proceedings of the First Intel DELTA Applications
Workshop, pages 179{190, February 1992. Pro-
ceedings also available as Caltech Technical Report
CCSF-14-92.

[19] Creve Maples. A high-performance, memory-based
interconnection system for multicomputer environ-
ments. In Proceedings of Supercomputing '90, pages
295{304, November 1990.

[20] R.S. Nikhil, G.M. Papadopoulos, and Arvind. *T:
A multithreaded massively parallel architecture. In
Proceedings of 19th International Symposium on
Computer Architecture, pages 156{167, May 1992.

[21] Steven Nugent. The iPSC/2 direct-connect commu-
nication technology. In Proceedings of 3rd Conference
on Hypercube Concurrent Computers and Applica-
tions, pages 51{60, January 1988.

[22] John Palmer. The NCUBE family of high-
performance parallel computer systems. In Pro-
ceedings of 3rd Conference on Hypercube Concurrent
Computers and Applications, pages 845{851, Jan-
uary 1988.

[23] PCI Special Interest Group. PCI Local Bus Speci�-
cation, Revision 2.0, April 1993.

[24] Paul Pierce. The NX/2 operating system. In Pro-
ceedings of 3rd Conference on Hypercube Concurrent
Computers and Applications, pages 384{390, Jan-
uary 1988.

[25] R.F. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management
for paged uniprocessor and multiprocessor architec-
ture. In Proceedings of 2nd International Conference
on Architectural Support for Programming Lanugages
and Operating Systems, pages 31{41, October 1987.

[26] Avtar Saini. An overview of the intel pentium proces-
sor. In Compcon Spring '93, pages 60{62, February
1993.

[27] Burton J. Smith. A pipelined, shared resource MIMD
computer. In Proceedings of International Confer-
ence on Parallel Processing, pages 6{8, 1978.

[28] Roger Traylor and Dave Dunning. Routing chip
set for Intel Paragon parallel supercomputer. In
Proceedings of Hot Chips '92 Symposium, August
1992.

[29] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: a mechanism for integrated communication
and computation. In Proceedings of 19th Interna-
tional Symposium on Computer Architecture, pages
256{266, May 1992.

[30] Larry D. Wittie, Gudjon Hermannsson, and Ai Li.
Eager sharing for e�cient massive parallelism. In
Proceedings of the 1992 International Conference on
Parallel Processing, pages 251{255, August 1992.

Page 12

