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Abstract

Today’s commodity microprocessors require a low latency
memory system to achieve high sustained performance. The
conventional high-performance memory system provides fast
data access via a large secondary cache. But large secondary
caches can be expensive, particularly in large-scale parallel
systems with many processors (and thus many caches).

We evaluate a memory system design that can be both
cost-effective as well as provide better performance, partic-
ularly for scientific workloads: a single level of (on-chip)
cache backed up only by Jouppi’s stream buffers [10] and
a main memory. This memory system requires very little
hardware compared to a large secondary cache and doesn’t
require modifications to commodity processors. We use trace-
driven simulation of fifteen scientific applications from the
NAS and PERFECT suites in our evaluation. We present
two techniques to enhance the effectiveness of Jouppi’s orig-
inal stream buffers: filtering schemes to reduce their mem-
ory bandwidth requirement and a scheme that enables stream
buffers to prefetch data being accessed in large strides. Our
results show that, for the majority of our benchmarks, stream
buffers can attain hit rates that are comparable to typical hit
rates of secondary caches. Also, we find that as the data-set
size of the scientific workload increases the performance of
streams typically improves relative to secondary cache per-
formance, showing that streams are more scalable to large
data-set sizes.

1 Introduction

A key design question for any computer system is: what
kind of memory hierarchy should be provided? Conventional
high-performance workstations (circa 1993) contain a pro-
cessor with an on-chip cache augmented by an off-chip (sec-
ondary SRAM) cache of a megabyte or more. We consider
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Figure 1: Logical organization of a typical uniprocessor
This figure displays our default system assumptions. Stream buffers prefetch
data from main memory and make it available to the processor when a on-chip
cache miss occurs. Note the existence of a fast path to memory bypassing the
stream buffers; this is used when the data is not found in the stream buffers.

replacing the secondary cache with Jouppi’s stream buffers
[10]. Stream buffers require much less hardware to imple-
ment, yet we find that they can provide performance similar
to a large secondary cache for scientific codes. Some of the
cost saved by replacing the expensive secondary cache with
cheaper stream buffers can be applied towards implementing
more plentiful main memory bandwidth, and the resulting
system will likely have both significantly higher overall sys-
tem cost-efficiency and performance, particularly for typical
scientific codes that have regular access patterns. Memory
system efficiency is particularly critical within the context
of large-scale parallel machines (1K processors or more) be-
cause the costs of any inefficiencies are magnified by the scale
of the system. Gigabytes of SRAM are required to implement
the conventional workstation memory system design for each
processor in these systems; this is an exorbitant cost if the
caches are not being effectively used.

Stream buffers are FIFO prefetch buffers that prefetch
cache blocks. Figure 1 illustrates the logical organization
of a typical uniprocessor (or one of the processors in a large
parallel system). For our simulations, we assume a com-
modity microprocessor that is backed up only by streams and
a main memory. Streams prefetch cache blocks from the



main memory resulting in faster service of on-chip misses
than in a system with only on-chip caches and main memory.
Stream buffers will be most effective in systems with “suf-
ficient” main memory bandwidth since some extra memory
bandwidth is inevitably wasted by unnecessary prefetching,
though streams can still be effective in a wide range of sys-
tems when the system limits memory bandwidth wastage via
the filtering technique we introduce in this paper. Compared
to secondary caches, stream buffers require very little logic,
and we find that they scale better with larger scientific data
sets.

This study is particularly timely since stream buffers have
recently become commercially available. MacroTek [7] an-
nounced a memory controller chip for PowerPC based sys-
tems (a commodity microprocessor-based system) that in-
corporates stream buffers. The Macrotek implementation is
similar to the original streams implementation we consider,
except that it allows partitioned instruction and data streams.

We evaluate stream buffers for a large number of scien-
tific application codes (fifteen applications), and determine
the types of these programs that benefit most from streams.
We show that for the majority of our programs stream buffers
can reach good performance levels (hit ratio � 50%). We
also show how stream buffers could result in considerable
inefficient use of memory bandwidth and how this can be
improved by adding a filter. We present an implementation
to extend the original streams to handle the case of non-unit
stride memory accesses. We also compare stream buffer per-
formance to that of secondary caches, indicating the relatively
better scalability of streams to larger data set sizes.

The remainder of this paper is divided into eight sections.
The next section describes related work. In section 3, we
describe stream buffers. Section 4 describes the simulation
methodology and framework. Section 5 gives simulation
results for the performance of the original stream buffers,
Section 6 describes the technique to reduce the memory band-
width requirement of streams, Section 7 presents the scheme
for detecting non-unit strides, and finally Section 8 compares
streams to secondary caches for varying data set size. We
draw conclusions in Section 9.

2 Related work

Many interesting prefetching studies appear in the litera-
ture. Prefetching strategies can be broadly classified into
two groups: hardware based and software based.

Baer and Chen [1] proposed an on-chip scheme that de-
tects strides in program references using history buffers. A
hardware table (maintained as a cache), called the reference
prediction table, keeps currently active load/store instructions
and predicts future references. Fu and Patel [6] use the stride
information encoded in vector instructions to prefetch in vec-
tor processors. They also suggest a scheme [5] for scalar pro-
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Figure 2: Stream buffer
A stream buffer has one or more entries, where each entry consists of a
cache block of data, tag for the cache block and a valid bit. In addition, an
incrementer is used to generate prefetch addresses and a comparator is used
to match the miss address with the tag of the cache block at the head of the
buffer.

cessors that is similar to the Baer and Chen scheme. Another
similar scheme is suggested by Sklenar [13]. Note that all
of these hardware schemes make use of the program counter
(PC) of the load/store instruction to implement prefetching.
This is a significant disadvantage since it requires that com-
modity processors be modified to insert prefetch logic. Ram-
bus Inc. has developed a memory system [8] that consists
of a small (1 KB) prefetching secondary cache backed by
high bandwidth Rambus DRAMS. They find that for typical
corporate applications their cache achieves hit rates that are
comparable to that shown by conventional Pentium system
implementations with a 256 KB secondary cache and a 64-bit
interleaved DRAM memory. Smith [14] evaluated schemes
based on the one-block-lookahead (OBL) policy of prefetch-
ing block i + 1 whenever block i is referenced. So and
Rechtschaffen [16] suggest using a reference to a non-MRU
(most recently used) block to trigger prefetches. As an exten-
sion to OBL, Jouppi suggested stream buffers [10]. Jouppi
suggested using stream buffers on-chip to prefetch data at the
maximum bandwidth of the second level cache. Smith and
Hsu studied instruction cache prefetching in supercomputers
(e.g. [15]).

Several schemes for compiler prefetching of data have been
suggested. Porterfield et. al. [4] looked at prefetching array
references within inner loops and used a simple heuristic of
prefetching cache blocks a single loop iteration in advance.
Mowry, Lam and Gupta [12] present a compiler algorithm
to perform prefetch insertion. Their compiler takes into ac-
count data reuse to eliminate unnecessary prefetches. They
show that selective prefetching is better than indiscriminate
prefetching. While more flexible than hardware prefetching,
software prefetching has a few disadvantages. Prefetch in-
structions require extra cycles for their execution. Perhaps
even more importantly, they consume external or pin band-
width of the commodity processor chip. Also, software may
not be able to predict conflict or capacity cache misses, so
unnecessary prefetches may be executed while the data is
already in the cache.
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3 Stream buffers

Jouppi first proposed the notion of stream buffers or streams
[10]. They are FIFO prefetch buffers that prefetch consecu-
tive cache blocks starting at a given address. Each entry of a
stream buffer consists of a tag, an available bit, and a cache
block as shown in Figure 2. When a reference misses in
the on-chip cache, it allocates a stream and prefetches cache
blocks starting at the miss target. The adder generates the ad-
dress of the next cache block to be prefetched. When a cache
block returns from main memory, the stream buffer hardware
fills the tag and data fields of the entry and sets the available
bit.

While Jouppi considered stream buffer prefetching from a
large secondary cache into a primary cache, we instead con-
sider prefetching directly from the main memory into buffers
close to the processor chip.

Subsequent primary cache misses compare their address
against the head of the stream buffer. If the reference hits
in the stream buffer, the processor pulls the cache block into
the primary cache. Write-backs bypass the streams and on
their way to memory invalidate any stale copies that might
be present in the streams. Compared to second level caches,
stream buffers require little hardware. Each buffer needs a
comparator and an adder in addition to a small amount of
SRAM for the cache blocks. Also, the access time for stream
buffers can be smaller than that of second level caches as there
is no RAM lookup involved.

Since most programs access more than one array inside a
loop, one could potentially benefit by using more than one
stream in parallel. (as Jouppi also recognized [10]). Multi-
way streams help in prefetching multiple data streams con-
currently. The primary cache miss address is compared with
the head of each stream in parallel. If the reference hits in
one of the streams, the cache block is transferred to the pri-
mary cache; otherwise, the oldest stream is flushed and reset
to prefetch from the miss address. We assume that a least re-
cently used (LRU) replacement policy selects the stream to be
reallocated. We have found the required number of streams
to be sufficiently small (eight or less) that the parallel search
mentioned above should not cause any significant access time
increase.

Two important design parameters for stream buffers are the
number of streams and the depth of each stream. The number
of prefetched entries in each stream is called the depth of the
stream. The optimal depth depends largely on the character-
istics of the memory system that backs up the processor. A
stream should be deep enough so that it can cover the main
memory latency and supply data to the processor at its maxi-
mum rate. Since we wish to make as few assumptions about
the underlying memory system as possible, we will assume a
constant stream buffer depth of two. Henceforth, we will use
the words stream, stream buffer and buffer interchangeably.

4 Methodology

4.1 Benchmarks and simulation environment

We used trace driven simulation as our evaluation methodol-
ogy. We used Shade [17] to generate address traces of primary
cache misses. We fed these traces to a stream buffer simulator
which generates hit rate and other relevant statistics for the
program. We used time sampling [11] to reduce the size of
the trace files. We switched tracing on and off for 10,000
and 90,000 references, respectively, so that we sampled 10%
of the trace. We used fifteen scientific applications, listed in
Table 1 from the PERFECT [3] and NAS [2] suites, as our
benchmarks. These Fortran programs were first converted to
C using “f2c” and then compiled using “gcc” (version 2.4.3)
with the -O2 option. We traced complete program runs. The
number of instructions executed by each application varied
from a few hundred million to a few billion.

Simulations were done assuming 64K I + 64K D 4-way
set associative caches. The write policy of the data cache
is write-back and write-allocate. The caches use a random
replacement policy. We think this cache configuration is
representative of what future processors will have. Also,
the associativity minimized the effect of cache conflicts, so
that we could focus on stream buffers. (In a direct-mapped
cache, Jouppi’s victim buffers may also be needed.)

Table 1 shows the base performance of the benchmarks
used. The table shows that in general, for the input sizes we
used, the PERFECT codes show much lower primary cache
miss rates than the NAS codes. The low miss rates may be
partially explained by the small data set sizes selected for the
simulations to complete within a reasonable period of time.
At the same time, for four of the benchmarks we found larger
data set sizes improved stream buffer performance (as we
show in Table 4). It should be mentioned that we used the
benchmark codes “as is” and did not modify them to make
efficient use of stream buffers.

4.2 Performance metric

We use stream hit rate as our primary performance indicator.
There are a number of reasons for using stream hit rate rather
than metrics such as total execution time or effective CPI.
First, hit rates indicate the maximum benefit that streams
can provide. Second, there were no previous results (other
than Jouppi’s [10] original results) to indicate what kind of
stream buffer performance to expect for scientific workloads.
Consequently we thought it was important to study a wide
variety of benchmarks. Third, we did not want to make this
paper too specific to any particular memory system design
details. Also, we think that hit rate is an accurate metric
for the kind of target systems we have in mind; systems for
which memory bandwidth is “sufficiently” greater than the
load data requirements of the processor. (An example target
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Name Description Input Data Data MPI
Data Set Set Size(Mb) Miss Rate(%)

NAS
embar Embarassingly parallel n = 2

20 1.0 0.28 0.10
mgrid Multigrid kernel 32 X 32 X 32 grid 1.0 0.84 0.08
cgm Smallest eigen-value of 1400 X 1400 matrix, 2.9 3.33 1.43

a sparse matrix 78148 non-zero elements
fftpde 3-D pde solver using FFT 64 X 64 X 64 complex array 14.7 3.08 0.50
buk Integer sort 64K integers, maxkey = 2048 0.80 0.53 0.20
appsp Fluid dynamics 24 X 24 X 24 grid, 50 iterations 2.2 2.24 0.38
appbt Fluid dynamics 18 X 18 X 18 grid, 30 iterations 4.2 1.88 0.45
applu Fluid dynamics 18 X 18 X 18 grid, 50 iterations 5.4 1.26 0.18

PERFECT
spec77 Weather Simulation - 1.3 0.50 0.15
adm Air pollution 64 X 1 X 16 grid, 720 time steps 0.6 0.04 0.00
bdna Nucleic acid simulation 500 molecules, 20 counter ions 2.1 1.39 0.42
dyfesm Structural dynamics 4 elements, 1000 time steps 0.1 0.01 0.00
mdg Liquid water simulation 343 molecules, 100 time steps 0.2 0.03 0.01
qcd Quantum chromodynamics 12 X 12 X 12 X 12 lattice 9.2 0.16 0.06
trfd Quantum Mechanics - 8.0 0.05 0.00

Table 1: Benchmark Characteristics
This table describes the benchmarks used in this paper. The first eight programs are from the NAS suite. The rest were selected from the PERFECT suite. The
fourth column gives the data set size of the benchmark as returned by the Unix utility size. The fifth column gives the primary cache miss rate assuming 64KB,
4-way on-chip instruction and data caches. The final column shows the number of misses per instruction in percentage for the same cache configuration.

system is the Cray T3D, for which the available raw main
memory bandwidth is 600 MB/sec while the maximum off-
chip processor load bandwidth is 320 MB/sec.)

5 Performance of unit stride-only
streams

While it is simple enough to understand the usefulness of
streams for small kernels, it is an entirely different question
as to how well stream buffers will perform on larger exam-
ples that include real code. Figure 3 shows how hit rates
vary with the number of streams for our benchmarks. Hit
rates here are the fractions of on-chip misses that hit in the
streams. The stream buffers are unified (i.e. they prefetch
both instructions and data). Partitioning the streams into sep-
arate instruction and data streams was not beneficial since the
relatively large on-chip instruction cache resulted in very few
instruction misses.

From Figure 3 we can see that majority of the benchmarks
show hit rates in the 50-80% range. Also, hit rates plateau as
the number of streams is increased. The number of streams at
which the hit rate saturates is related to the number of unique
array references in the program loops of the benchmark. For
our benchmarks, seven to eight streams suffice. fftpde and
appsp from the NAS suite perform poorly as they have a
large number of non-unit stride references. Similarly, adm
and dyfesm show low hit rates since a high percentage of the
references made by these programs reference data via array

indirections (scatter/gather). Surprisingly cgm exhibits good
stream performance even though it is a sparse matrix program
that has a significant number of array indirections.

How good are hit rates in the 50% - 80% range? Values of
local hit rates for second level caches are in the 70% - 85%
range [9] for “typical” applications. Also, for scientific codes
this number may often be lower due to the lack of temporal
locality in these codes. Hence, the fact that streams achieve
comparable, though perhaps slightly lower, hit rates suggests
their use as a viable and cost-effective alternative to huge
second level caches. (We do more comparison with caches in
section 8.)

Compared to secondary caches, streams require more mem-
ory bandwidth. This is because the unnecessary prefetches
made by streams consume memory bandwidth. If NUP rep-
resents the number of useless prefetches, NC the number of
cache misses, and NS the number of stream misses then the
extra bandwidth (EB) can be quantified as follows:

EB = NUP=NC

= (NS � depth)=NC

= streammiss ratio � depth

By a stream miss we mean a cache miss that also misses in
the streams. Whenever a stream is re-allocated, it could have
up to depth prefetches that have to be flushed. Hence, the
total number of useless prefetches will be the product of the
number of stream allocations (this is equal to the number of
misses since a stream is allocated on every miss) and depth.
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Figure 3: Stream buffer performance of the benchmarks
This figure shows how the hit rate varies with the number of streams. Here hit rate is the fraction of on-chip misses that hit in the streams. Using multiple streams
helps in locking on to interleaved streams of data.

Benchmark Extra
Bandwidth

Required (%)

NAS
embar 8
cgm 30
mgrid 36
fftpde 158
is 48
appsp 134
appbt 62
applu 38

PERFECT
spec77 44
adm 150
bdna 68
dyfesm 108
mdg 76
qcd 74
trfd 96

Table 2: Extra Bandwidth consumed by ordinary streams
This figure shows the amount of memory bandwidth wasted by ordinary
streams as a percentage of the actual memory bandwidth required by the
program in the absence of streams. This wastage is due to the speculative
nature of the prefetching scheme.

Table 2 shows the extra bandwidth required by streams. From
the table it is clear that ordinary streams, depending on the
program, could waste a lot of memory bandwidth. This is
especially true for programs for which streams do not perform
well (low hit rates). For example, for trfd the extra bandwidth
required is as high as 96%. Since memory bandwidth is not
free it is desirable to reduce the amount of extra bandwidth
required by streams. Also, it would be nice if we could do this
with at most a slight reduction in hit rate. The next section
describes a technique for doing this.

6 Reducing the Memory Bandwidth
Requirements of Stream Buffers

To reduce wasted bandwidth we have to avoid useless
prefetches (i.e. we have to prefetch with greater accuracy
[16]). One way to avoid unnecessary prefetches is to allocate
a stream only when a particular reference shows promise of
belonging to a stream. The scheme we use to reduce memory
bandwidth wastage filters away isolated references and does
not present them to the stream buffers. This can be done using
the following allocation policy for streams - a stream is allo-
cated when there are misses (note that a miss here means the
reference missed both in the primary cache and the streams)
to consecutive cache blocks. For example, if there is a miss
on a reference to cache block i and then there is a miss on
reference to cache block i + 1, only then will a stream be
allocated for prefetching cache blocks i + 2, i + 3, and so on.
A reference is considered to be isolated if there is no reference
to the preceding cache block in the “recent” past.

enter into table

yes no

Cache block addr
(a + 1) Valid

.

.

.

stream

continue

match
in

table?
stream hit?

miss

yesno

Unit-stride filter

On-chip allocate

Figure 4: Filter mechanism

This policy can be implemented as follows: maintain a
list of the N most recent miss addresses in a history buffer,
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but store a + 1 for miss address a. For every primary cache
miss that also misses in the stream buffers, the miss address
is compared with the addresses stored in the history buffer.
If there is a hit, this means that there were two references
a and a + 1 and there is a good possibility that there will
be a reference to a + 2 and so on. In this case a stream is
allocated. However, if the miss address doesn’t match in the
history buffer, then a + 1 is stored in the history buffer. (Since
the history buffer is not infinite, the new entry might cause an
old entry to be replaced.)

We call this history buffer a filter. N is the number of entries
in the filter. It helps in filtering away isolated references. Our
experimental results suggest that a filter of eight to ten entries
is sufficient. Also, an entry in the filter need not be allocated
for the entire duration of a stream; it is freed as soon as the
stream is detected. Figure 4 illustrates the scheme.

The above scheme helps in two ways. It reduces the number
of unnecessary prefetches and it prevents active streams from
being disturbed. However, the total number of hits could be
reduced, since now we allocate a stream only after observing
the second reference of a stream of accesses.

We can calculate the extra memory bandwidth required
with a filter as we did when the filter was not present. For
a filter-based stream buffer, we allocate a stream only when
the miss address matches in the filter. Hence, in this case the
extra bandwidth (EB) required is

EB = NUP=NC

= (NS � filter hit ratio � depth)=NC

= streammiss ratio � filter hit ratio � depth

In this case a stream is allocated only when a reference misses
both in the primary cache and the streams and hits in the filter.
This explains the factor filter hit ratio in the number of
useless prefetches. The above expressions show that there
is a trade-off between filter hit rate (but perhaps not stream
buffer hit rate!) and the extra memory bandwidth required by
streams.

6.1 Hit rates for filter-based unit stride streams

We studied how a filter affects the performance of stream
buffers. We used ten streams for the experiments reported
in the rest of this paper. Figure 5 shows how hit rate and
EB, the extra bandwidth required, vary with the addition of a
filter. For most of the benchmarks the filter was very effective
in reducing EB; often the reduction is more than 50%. For
example, the trfd hit rate remains almost the same while EB
falls from 96% to 11%. In this case the filter is very successful
at eliminating isolated references. Similarly, for is, appsp and
cgm EB falls from 48% to 7%, 134% to 45%, and 30% to 13%
respectively with almost no reduction in hit rate. In the case
of fftpde the filter actually increased hit rate by preventing

Benchmark Length distribution (% hits)
1-5 6-10 11-15 16-20 >20

NAS
embar 1 0 0 0 99
mgrid 13 1 0 0 86
cgm 3 0 0 0 97
fftpde 41 0 0 0 59
is 4 2 1 0 93
appsp 5 0 11 0 84
appbt 63 0 0 0 37
applu 22 3 4 7 64

PERFECT
spec77 14 1 1 0 84
adm 73 12 5 1 9
bdna 36 17 8 5 33
dyfesm 50 17 7 1 25
mdg 32 9 7 6 46
qcd 50 6 1 0 43
trfd 7 2 1 0 90

Table 3: Distribution of stream lengths
This figure shows how the stream lengths are distributed. Note that this
distribution depends on the number of streams being used. We used ten
streams for these experiments.

active streams from being disturbed, and EB also fell from
158% to 37%. On the other hand, for appbt, hit rate drops
from 65% to 45% and EB falls only from 62% to 48%. This
indicates that the filter may not be optimal for all applications,
depending on the available memory bandwidth in relation to
the processor demands.

These variations in hit rates can be explained by looking at
how the stream lengths are distributed. By stream length, we
mean the number of references after which the regular pattern
of accesses is broken. Stream length distributions are shown
in Table 3. For most benchmarks stream lengths of less than
5 and greater than 20 constitute a major fraction of the hits.
The programs that have a large concentration of small stream
lengths show a greater reduction in hit rate when the filter is
used. This is obvious since the filter requires two references
for verifying a unit-stride pattern of accesses. For example,
in the case of appbt the fact that 63% of the hits are from
stream lengths of less than 5 explains why the filter reduces
the hit rate from 65% to 45%.

From the above results we conclude that a filter may often
be a good idea, since in most cases it reduces the memory
bandwidth requirement of streams for a small or negligible
performance hit. At the same time if the program’s memory
bandwidth requirement is not high and the memory system
is capable of supplying the extra bandwidth, the filter should
be deactivated, since the stream buffer hit rate typically falls
slightly with the filter.
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Figure 5: Performance of filter
This figure displays how the filter affects stream performance. The top graph shows the stream hit rate with and without the filter. The bottom graph represents
the extra bandwidth required in each case. For this data we used ten streams and a filter of sixteen entries.

7 Detecting non-unit strides

A closer look at the benchmarks revealed that some of them,
appsp, fftpde, and trfd contain significant percentages of large
non-unit stride memory accesses. Streams, as proposed by
Jouppi, are of little use in prefetching cache blocks being
accessed in large non-unit strides. In this section we show
ways to extend the original streams to detect non-unit strides.

Detecting non-unit strides off-chip is harder than detecting
them on-chip. Once off-chip the only information one has are
the physical addresses of the data references. For instance,
Baer and Chen [1] use the reference prediction table with an
entry for each load/store instruction for calculating strides.
But since off-chip logic almost always does not know the the
PC of the instruction that issued the reference, it is difficult to
maintain a similar table off-chip.

We instead extend the basic stream buffer structure for
prefetching cache blocks being accessed in non-unit stride. A
stride field is added to maintain the prefetch stride. Also, the
incrementer is replaced by a general adder (see Figure 2).

The basic idea behind our non-unit stride detection scheme
is to dynamically partition the physical address space and de-
tect strided references within each partition. Two references

are within the same partition if their addresses have the same
tag (higher order) bits. The processor (i.e. program) sets
the size of the tag by storing a mask in a memory-mapped
location. A history buffer, shown in Figure 6, is used to store
the tags of the currently active partitions. We call this history
buffer a non-unit stride filter. Also, we use a finite state ma-
chine (FSM) to detect the stride for references that fall within
the same partition. The FSM we use is depicted in Figure 7.
It verifies that the difference between the third and the second
address is the same as the difference between the second and
the first address. If so, the off-chip logic allocates a stream
and sets its stride. Partitioning helps in grouping references
to an array and analyzing them in isolation to detect strides.

The details of the non-unit stride detection scheme follow.
We partition each word address into two parts: czone or the
concentration zone, the size of which is set at run-time, and
the tag. Each entry of the non-unit stride filter, in addition
to the tag of the partition, has a few state bits, last address
and stride fields which are required to implement the stride
detecting FSM. At the end of three consecutive strided refer-
ences a stream is allocated and the entry in the filter is freed.
To minimize the effects this scheme has on the scheme for
detecting the common case of unit-strides we use the non-unit
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Figure 8: Performance of non-unit stride detecting scheme
This figure shows how the non-unit stride detection scheme performs. This data assumes ten streams and a non-unit stride filter, containing sixteen entries,
backing a similar sized unit-stride filter.
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Figure 6: Scheme for detecting non-unit strides

stride filter behind the unit-stride filter (i.e the non-unit stride
filter processes references that miss in the unit-stride filter).

We considered other schemes to detect non-unit strides.
One that showed similar performance is what we call the
minimum delta scheme. Here, we cache the last N miss
addresses and maintain them in a history buffer. When an
on-chip miss occurs and it misses in the streams, we find the
minimum distance (or delta) between the address and any of
the entries in the history buffer. The delta is then used as
a stride for the stream. The hardware requirements of this
scheme make it less attractive than the partition scheme.

7.1 Performance of non-unit stride detecting
scheme

Figure 8 shows how the partition scheme for detecting non-
unit stride streams performs. From the figure we can see that

INVALID META1 META2

last_addr = a
stride = a − last_addr
last_addr = a

stride != a−last_addr /
stride = a−last_addr
last_addr = a

 

stride == a−last_addr /
allocate stream

Figure 7: State Machine for detecting strides
This figure displays the finite state machine required to verify a non-unit
stride. The FSM is triggered by a on-chip miss. The state of the FSM
(stride, last addr) is stored in a filter entry. last addr stores the previous
miss address and stride stores the current guess for the stride. Note that some
of the transitions are conditional.

for fftpde, appsp and trfd, programs which have a significant
number of non-unit stride references, our scheme does well.
For example, for fftpde the hit rate increases from 26% to
71%. Similarly for appsp and trfd the hit rate improves from
33% to 65% and 50% to 65%, respectively. Gains in other
benchmarks are minor.

Figure 9 shows how hit rate varies with the size of the
czone. It indicates that for fftpde the size of the czone should
lie between 16 and 23 bits for the scheme to be effective.
However, for the other two benchmarks appsp and trfd, a large
value for the czone is sufficient to predict most of the non-
unit stride references. This shows that one has to be careful
in selecting the czone size; if the czone size is too small then
three consecutive strided references will not fall in the same
partition. On the other hand, if the czone is too large then
references from more than one stream may fall into the same
partition, and hence prevent stride detection. The optimal
size for the czone is (a little more than) twice the stride of the
references. Since the size of the czone depends on the stride

8



Benchmark Input size Stream hit-rate (%) Minm. L2 cache size
for same hit-rate

appsp 12 X 12 X 12 43 128 KB
24 X 24 X 24 65 1 MB

appbt 12 X 12 X 12 50 512 KB
24 X 24 X 24 52 2 MB

applu 12 X 12 X 12 62 1 MB
24 X 24 X 24 73 2 MB

cgm 1400 X 1400, 78148 85 1 MB
5600 X 5600, 98148 51 64 KB

mgrid 32 X 32 X 32 76 2 MB
64 X 64 X 64 88 4 MB

Table 4: Stream buffers versus secondary cache
This table shows how the performance of streams and secondary caches vary with the input size. We used ten streams, a unit-stride filter of sixteen entries backed
up by a non-unit stride filter of sixteen entries. For the secondary cache we considered associativities from one (direct-mapped) to four as well as block sizes of
64 and 128 bytes. Set Sampling [11] was used to determine the hit rate of secondary caches.
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Figure 9: Hit-rate sensitivity to czone size
This graph shows how stream hit rate varies with the size of the czone. Only
programs that contain significant percentage of non-unit stride references are
shown here. This data assumes ten streams.

and the array dimensions (in the case of multi-dimensional
array references), it is possible for the programmer or the
compiler to set it to a suitable value.

8 Comparison with second level caches

For five benchmarks, appsp, appbt, applu, cgm, and mgrid,
we compare how secondary cache performance and stream
buffer performance scale with the input size. In particular,
we determine the minimum size of the secondary cache re-
quired to obtain the same (local) hit rate as stream buffers.
For the secondary cache we considered associativities from
one (direct-mapped) to four as well as block sizes of 64 and
128 bytes. Our results, shown in Table 4, indicate that stream
buffers typically scale better than secondary caches. For ex-
ample, for applu, when the input size was increased, stream
hit rate improved from 62% to 73% while the minimum sec-

ondary cache size for achieving the same hit rate doubled
from 1MB to 2MB. For all the benchmarks except cgm there
was very little temporal reuse and the cache size that had ap-
proximately the same miss ratio as streams is proportional to
the data set size. This emphasizes that as the data set size for
scientific programs increases, it may be more cost-effective to
exploit the regular pattern in memory references rather than
to fit a large data set in a huge second level cache. The reason
for the anamolous behavior of cgm is that for the larger data
set the sparse matrix had a very irregular distribution of ele-
ments. This benchmark also shows where streams might not
perform well - programs that involve widely-scattered array
in-directions.

A caveat to the comparison of this section is that it isn’t en-
tirely fair to directly compare streams and caches via their hit
ratios since a stream buffer entry may have been prefetched
but the data hasn’t returned from memory yet. In our stream
results, we would call this a hit since the prefetch was correct,
but the performance of this case could possibly be more simi-
lar to a cache miss since the processor’s request for data must
wait until the streaming data returns from main memory. The
probability of this situation depends highly on the particular
memory system design. We feel that in many realistic system
designs the depth of the streams will be sufficient that most of
the time the stream data will immediately available, so the di-
rect comparison between hit rates is fair. We particularly feel
this is a balanced comparison since, depending on the system
design, stream buffer access time on hits may be lower than
the access time of a cache on hits because stream buffers do
not require a large RAM lookup.

9 Conclusions

In this paper we evaluated stream buffers for efficient memory
system design with scientific codes. We showed that stream
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buffers can achieve hit rates that are comparable to the (local)
hit rates of very large caches. We also presented schemes
for reducing the memory bandwidth requirement of stream
buffers. For the majority of the benchmarks we studied, a hit
rate of greater than 60% using only 30% extra main memory
bandwidth was achieved using ten streams. However, they
did not perform as well for benchmarks that had a large num-
ber of irregular accesses (e.g. array indirections). We also
extended streams to prefetch cache blocks being referenced in
non-unit strides. For programs that have significant percent-
age of non-unit stride references our scheme is successful in
detecting them. We found that as the data set size of the sci-
entific codes increase, streams typically performed relatively
better than large secondary caches. Hence, we conclude that
stream buffers are a viable implementation option for regular
scientific workloads and systems with “sufficient” memory
bandwidth. We also conclude that stream buffers can be more
economical than large secondary caches for scientific codes:
the cost savings of stream buffers over large caches can be
applied to increase the main memory bandwidth, resulting in
a system with better overall performance.
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