
The BlackWidow High-Radix Clos Network

Steve Scott∗ Dennis Abts∗ John Kim† William J. Dally†

sscott@cray.com dabts@cray.com jjk12@stanford.edu dally@stanford.edu

∗Cray Inc. † Stanford University
Chippewa Falls, Wisconsin 54729 Computer Systems Laboratory

Stanford, California 94305

Abstract

This paper describes the radix-64 folded-Clos network of the
Cray BlackWidow scalable vector multiprocessor. We describe the
BlackWidow network which scales to 32K processors with a worst-
case diameter of seven hops, and the underlying high-radix router
microarchitecture and its implementation. By using a high-radix
router with many narrow channels we are able to take advantage
of the higher pin density and faster signaling rates available in
modern ASIC technology. The BlackWidow router is an 800 MHz
ASIC with 64 18.75Gb/s bidirectional ports for an aggregate off-
chip bandwidth of 2.4Tb/s. Each port consists of three 6.25Gb/s
differential signals in each direction. The router supports deter-
ministic and adaptive packet routing with separate buffering for
request and reply virtual channels. The router is organized hier-
archically [13] as an 8×8 array of tiles which simplifies arbitra-
tion by avoiding long wires in the arbiters. Each tile of the array
contains a router port, its associated buffering, and an 8×8 router
subswitch. The router ASIC is implemented in a 90nm CMOS stan-
dard cell ASIC technology and went from concept to tapeout in 17
months.

1 Introduction

The interconnection network plays a critical role in the cost
and performance of a scalable multiprocessor. It determines the
point-to-point and global bandwidth of the system, as well as the
latency for remote communication. Latency is particularly impor-
tant for shared-memory multiprocessors, in which memory access
and synchronization latencies can significantly impact application
scalability, and is becoming a greater concern as system sizes grow
and clock cycles shrink.

The Cray BlackWidow system is designed to run demanding
applications with high communication requirements. It provides a
globally shared memory with direct load/store access, and, unlike
conventional microprocessors, each processor in the BlackWidow
system can support thousands of outstanding global memory refer-
ences. The network must therefore provide very high global band-
width, while also providing low latency for efficient synchroniza-
tion and scalability.

Over the past 15 years the vast majority of interconnection net-
works have used low-radix topologies. Many mutiprocessors have

used a low-radix k-ary n-cube or torus topology [6] including the
SGI Origin2000 hypercube [14], the dual-bristled, sliced 2-D torus
of the Cray X1 [3], the 3-D torus of the Cray T3E [20] and Cray
XT3 [5], and the torus of the Alpha 21364 [18]. The Quadrics
switch [1] uses a radix-8 router, the Mellanox router [17] is radix-
24, and the highest radix available from Myrinet is radix-32 [19].
The IBM SP2 switch [22] is radix-8.

The BlackWidow network uses a high-radix folded Clos [2] or
fat-tree [15] topology with sidelinks. A low-radix fat-tree topol-
ogy was used in the the CM-5 [16], and this topology is also used
in many clusters, including the Cray XD1 [4]. The BlackWidow
topology extends this previous work by using a high-radix and
adding sidelinks to the topology.

During the past 15 years, the total bandwidth per router has
increased by nearly three orders of magnitude, due to a combina-
tion of higher pin density and faster signaling rates, while typi-
cal packet sizes have remained roughly constant. This increase in
router bandwidth relative to packet size motivates networks built
from many thin links rather than fewer fat links as in the recent
past[13]. Building a network using high-radix routers with many
narrow ports reduces the latency and cost of the resulting network.

The design of the YARC1 router and BlackWidow network
make several contributions to the field of interconnection network
design:

• The BlackWidow topology extends the folded-Clos topology
to include sidelinks, which allow the global network band-
width to be statically partitioned among the peer subtrees,
reducing the cost and the latency of the network.

• The YARC microarchitecture is adapted to the constraints
imposed by modern ASIC technology — abundant wiring
but limited buffers. The abundant wiring available in the
ASIC process enabled an 8× speedup in the column orga-
nization of the YARC switch, greatly simplifying global ar-
bitration. At the same time, wormhole flow control was used
internal to YARC because insufficient buffers were available
to support virtual cut-through flow control.

• YARC provides fault tolerance by using a unique routing ta-
ble structure to configure the network to avoid bad links and
nodes. YARC also provides link-level retry and automati-

1YARC stands for ’Yet Another Router Chip’, and is also Cray spelled
backwards.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

cally reconfigures to reduce channel width to avoid a faulty
bit or bits.

• YARC employs both an adaptive routing method and a deter-
ministic routing method based on address hashing to balance
load across network channels and routers.

This paper describes the BlackWidow (BW) multiprocessor
network and the microarchitecture of YARC, the high-radix router
chip used in the BW network. The rest of the paper is organized
as follows. An overview of the BlackWidow network and the
high-radix Clos topology is described in Section 2. We provide
an overview of the microarchitecture of the YARC router used in
the BlackWidow network in Section 3. In Section 4, the commu-
nication stack of the router is discussed and the routing within the
BlackWidow network is described in Section 5. The implemen-
tation of the YARC router is described in Section 6. We provide
some discussions in Section 7 on key design points of the Black-
Widow network and the YARC router, and present conclusion in
Section 8.

2 The BlackWidow Network

2.1 System Overview

The Cray BlackWidow multiprocessor is the follow-on to the
Cray X1. It is a distributed shared memory multiprocessor built
with high performance, high bandwidth custom processors. The
processors support latency hiding, addressing and synchronization
features that facilitate scaling to large system sizes. Each Black-
Widow processor is implemented on a single chip and includes a
4-way-dispatch scalar core, 8 vector pipes, two levels of cache and
a set of ports to the local memory system.

The system provides a shared memory with global load/store
access. It is globally cache coherent, but each processor only
caches data from memory within its four-processor node. This
provides natural support for SMP applications on a single node,
and hierarchical (e.g.: shmem or MPI on top of OpenMP) applica-
tions across the entire machine. Pure distributed memory applica-
tions (MPI, shmem, CAF, UPC) are of course also supported, and
expected to represent the bulk of the workload.

2.2 Topology and Packaging

The BlackWidow network uses YARC high-radix routers, each
of which has 64 ports that are three bits wide in each direction.
Each BW processor has four injection ports into the network (Fig-
ure 1), with each port connecting to a different network slice. Each
slice is a completely separate network with its own set of YARC
router chips. The discussion of the topology in this section focuses
on a single slice of the network.

The BlackWidow network scales up to 32K processors using
a variation on a folded-Clos or fat-tree network topology that can
be incrementally scaled. The BW system is packaged in mod-
ules, chassis, and cabinets. Each compute module contains eight
processors with four network ports each. A chassis holds eight
compute modules organized as two 32-processor rank 1 (R1) sub-
trees, and up to four R1 router modules (each of which provides
two network slices for one of the subtrees). Each R1 router module

Figure 1. The BlackWidow network building blocks are
32-processor local groups connected via two rank 1
router modules each with two YARC (Y) router chips.

contains two 64-port YARC router chips (Figure 1) providing 64
downlinks that are routed to the processor ports via a mid-plane,
and 64 uplinks (or sidelinks) that are routed to eight 96-pin cable
connectors that carry eight links each.2 Each cabinet holds two
chassis (128 processors) organized as four 32-processors R1 sub-
trees. Machines with up to 288 processors, nine R1 subtrees, can
be connected by directly cabling the R1 subtrees to one another us-
ing sidelinks as shown in 2(a) and 2(b) to create a rank 1.5 (R1.5)
network.

To scale beyond 288 processors, the uplink cables from each
R1 subtree are connected to rank 2 (R2) routers. A rank 2/3 router
module (Figure 2c) packages four YARC router chips on an R2/R3
module. The four radix-64 YARC chips on the R2/R3 module are
each split into two radix-32 virtual routers (see Section 7.4). Log-
ically, each R2/R3 module has eight radix-32 routers providing
256 network links on 32 cable connectors. Up to 16 R2/R3 router
modules are packaged into a stand-alone router cabinet.

Machines of up to 1024 processors can be constructed by con-
necting up to 32 32-processor R1 subtrees to R2 routers. Machines
of up to 4.5K processors can be constructed by connecting up to
9 512-processor R2 subtrees via side links. Up to 16K proces-
sors may be connected by a rank 3 (R3) network where up to 32
512-processor R2 subtrees are connected by R3 routers. In theory
networks up to 72K processors could be constructed by connect-
ing nine R3 subtrees via side links; however, the maximum-size
BW system is 32K processors.

The BW topology and packaging scheme enables very flexible
provisioning of network bandwidth. For instance, by only using

2Each network cable carries eight links to save cost and mitigate cable
bulk.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Figure 2. The BlackWidow network scales up to 32K pro-
cessors. Each rank 1 (R1) router module connects 32
BW processors and the rank 2/3 (R2/R3) modules con-
nect multiple R1 subtrees.

Figure 3. YARC router microarchitectural block diagram.
YARC is divided into a 8×8 array of tiles where each tile
contains an input queue, row buffers, column buffers,
and an 8×8 subswitch.

a single rank 1 router module (instead of two as shown in Fig-
ure 1), the port bandwidth of each processor is reduced in half —
halving both the cost of the network and its global bandwidth. An
additional bandwidth taper can be achieved by connecting only a
subset of the rank 1 to rank 2 network cables, reducing cabling
cost and R2 router cost at the expense of the bandwidth taper.

3 YARC Microarchitecture

The input-queued crossbar organization often used in low-radix
routers does not scale efficiently to high radices because the arbi-
tration logic and wiring complexity both grow quadratically with
the number of inputs. To overcome this complexity, we use a hier-
archical organization similar to that proposed by [13]. As shown
in Figure 3, YARC is organized as an 8×8 array of tiles. Each
tile contains all of the logic and buffering associated with one
input port and one output port. Each tile also contains an 8×8
switch and associated buffers. Each tile’s switch accepts inputs
from eight row buses that are driven by the input ports in its row,
and drives separate output channels to the eight output ports in
its column. Using a tile-based microarchitecture facilitates imple-
mentation, since each tile is identical and produces a very regular
structure for replication and physical implementation in silicon.

The YARC microarchitecture is best understood by following a
packet through the router. A packet arrives in the input buffer of a
tile. When the packet reaches the head of the buffer a routing deci-
sion is made to select the output column for the packet. The packet
is then driven onto the row bus associated with the input port and
buffered in a row buffer at the input of the 8×8 switch at the junc-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Figure 4. YARC pipeline diagram shows the tile divided into three blocks: input queue, subswitch, and column buffers.

tion of the packet’s input row and output column. At this point the
routing decision must be refined to select a particular output port
within the output column. The switch then routes the packet to
the column channel associated with the selected output port. The
column channel delivers the packet to an output buffer (associated
with the input row) at the output port multiplexer. Packets in the
per-input-row output buffers arbitrate for access to the output port
and, when granted access, are switched onto the output port via
the multiplexer.

There are three sets of buffers in YARC: input buffers, row
buffers, and column buffers. Each buffer is partitioned into two
virtual channels. One input buffer and 8 row buffers are associ-
ated with each input port. Thus, no arbitration is needed to allocate
these buffers — only flow control. Eight column buffers are asso-
ciated with each subswitch. Allocation of these column buffers
takes place at the same time the packet is switched.

Like the design of [13], output arbitration is performed in two
stages. The first stage of arbitration is done to gain access to the
output of the subswitch. A packet then competes with packets
from other tiles in the same column in the second stage of arbitra-
tion for access to the output port. Unlike the hierarchical cross-
bar in [13], the YARC router takes advantage of the abundant on-
chip wiring resources to run separate channels from each output of
each subswitch to the corresponding output port. This organiza-
tion places the column buffers in the output tiles rather than at the
output of the subswitches. Co-locating the eight column buffers
associated with a given output in a single tile simplifies global
output arbitration. With column buffers at the outputs of the sub-
switch, the requests/grants to/from the global arbiters would need
to be pipelined to account for wire delay which would complicate
the arbitration logic.

As shown in Figure 4, a packet traversing the YARC router
passes through 25 pipeline stages which results in a zero-load la-
tency of 31.25ns. To simplify implementation of YARC, each ma-
jor block: input queue, subswitch, and column buffers, was de-
signed with both input and output registers. This approach simpli-
fied system timing at the expense of latency. During the design,
additional pipeline stages were inserted to pipeline the wire delay
associated with the row busses and the column channels.

4 Communication Stack

This section describes the three layers of the communication
stack: network layer, data-link layer, and physical layer. We dis-
cuss the packet format, flow control across the network links, the
link control block (LCB) which implements the data-link layer,
and the serializer/deserializer (SerDes) at the physical layer.

4.1 Packet Format

The format of a packet within the BlackWidow network is
shown in Figure 5. Packets are divided into 24-bit phits for trans-
mission over internal YARC datapaths. These phits are further
serialized for transmission over 3-bit wide network channels. A
minimum packet contains 4 phits carrying 32 payload bits. Longer
packets are constructed by inserting additional payload phits (like
the third phit in the figure) before the tail phit. Two-bits of each
phit, as well as all of the tail phit are used by the data-link layer.

The head phit of the packet controls routing which will be de-
scribed in detail in Section 5. In addition to specifying the destina-
tion, this phit contains a v bit that specifies which virtual channel
to use, and three bits, h, a, and r, that control routing. If the r
bit is set, the packet will employ source routing. In this case, the
packet header will be accompanied by a routing vector that indi-
cates the path through the network as a list of ports to select the
output port at each hop. Source routed packets are used only for
maintenance operations such as reading and writing configuration
registers on the YARC. If the a bit is set, the packet will route
adaptively, otherwise it will route deterministically. If the h bit is
set, the deterministic routing algorithm employs the hash bits in
the second phit to select the output port.

4.2 Network Layer Flow Control

The allocation unit for flow control is a 24-bit phit — thus,
the phit is really the flit (flow control unit). The BlackWidow net-
work uses two virtual channels (VCs) [7], designated request (v=0)
and response (v=1) to avoid request-response deadlocks in the net-
work. Therefore, all buffer resources are allocated according to
the virtual channel bit in the head phit. Each input buffer is 256
phits and is sized to cover the round-trip latency across the net-
work channel. Virtual cut-through flow control [12] is used across
the network links.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Figure 5. Packet format of the BlackWidow network.

4.3 Data-link Layer Protocol

The YARC data-link layer protocol is implemented by the link
control block (LCB). The LCB receives phits from the router core
and injects them into the serializer logic where they are transmitted
over the physical medium. The primary function of the LCB is to
reliably transmit packets over the network links using a sliding
window go-back-N protocol. The send buffer storage and retry is
on a packet granularity.

The 24-bit phit uses 2-bits of sideband dedicated as a control
channel for the LCB to carry sequence numbers and status infor-
mation. The virtual channel acknowledgment status bits travel in
the LCB sideband. These VC acks are used to increment the per-
vc credit counters in the output port logic. The ok field in the EOP
phit indicates if the packet is healthy, encountered a transmission
error on the current link (transmit error), or was corrupted prior
to transmission (soft error). The YARC internal datapath uses the
CRC to detect soft errors in the pipeline data paths and static mem-
ories used for storage. Before transmitting a tail phit onto the net-
work link, the LCB will check the current CRC against the packet
contents to determine if a soft error has corrupted the packet. If
the packet is corrupted, it is marked as soft error, and a good CRC
is generated so that it is not detected by the receiver as a transmis-
sion error. The packet will continue to flow through the network
marked as a bad packet with a soft error and eventually be dis-
carded by the network interface at the destination processor.

The narrow links of a high-radix router cause a higher serializa-
tion latency to squeeze the packet over a link. For example, a 32B
cache-line write results in a packet with 19 phits (6 header, 12 data,
and 1 EOP). Consequently, the LCB passes phits up to the higher-
level logic speculatively, prior to verifying the packet CRC, which
avoids store-and-forward serialization latency at each hop. How-
ever, this early forwarding complicates various error conditions in
order to correctly handle a packet with a transmission error and
reclaim the space in the input queue at the receiver.

Because a packet with a transmission error is speculatively
passed up to the router core and may have already flowed to the
next router by the time the tail phit is processed, the LCB and input
queue must prevent corrupting the router state. The LCB detects
packet CRC errors and marks the packet as transmit error with a
corrected CRC before handing the end-of-packet (EOP) phit up to
the router core. The LCB also monitors the packet length of the re-
ceived data stream and clips any packets that exceed the maximum
packet length, which is programmed into an LCB configuration
register. When a packet is clipped, an EOP phit is appended to
the truncated packet and it is marked as transmit error. On ei-
ther error, the LCB will enter error recovery mode and await the
retransmission.

The input queue in the router must protect from overflow. If it
receives more phits than can be stored, the input queue logic will
adjust the tail pointer to excise the bad packet and discard further
phits from the LCB until the EOP phit is received. If a packet
marked transmit error is received at the input buffer, we want to
drop the packet and avoid sending any virtual channel acknowl-
edgments. The sender will eventually timeout and retransmit the
packet. If the bad packet has not yet flowed out of the input buffer,
it can simply be removed by setting the tail pointer of the queue to
the tail of the previous packet. Otherwise, if the packet has flowed
out of the input buffer, we let the packet go and decrement the
number of virtual channel acknowledgments to send by the size
of the bad packet. The transmit-side router core does not need to
know anything about recovering from bad packets. All effects of
the error are contained within the LCB and YARC input queueing
logic.

4.4 Serializer/Deserializer

The serializer/deserializer (SerDes) implements the physical
layer of the communication stack. YARC instantiates a high-speed
SerDes in which each lane consists of two complimentary signals
making a balanced differential pair.

The SerDes is organized as a macro which replicates multiple
lanes. For full duplex operation, we must instantiate the 8-lane
receiver as well as an 8-lane transmitter macro. YARC instantiates
48 8-lane SerDes macros, 24 8-lane transmit and 24 8-lane receive
macros, consuming ≈91.32 mm2 of the 289 mm2 die area, which
is almost 1/3 of the available silicon (Figure 6).

The SerDes supports two full-speed data rates: 5 Gbps or 6.25
Gbps. Each SerDes macro is capable of supporting full, half, and
quarter data rates using clock dividers in the PLL module. This
allows the following supported data rates: 6.25, 5.0, 3.125, 2.5,
1.5625, and 1.25 Gbps. We expect to be able to drive a 6 meter,
26 gauge cable at the full data rate of 6.25 Gbps, allowing for
adequate PCB foil at both ends.

Each port on YARC is three bits wide, for a total of 384 low
voltage differential signals coming off each router, 192 transmit
and 192 receive. Since the SerDes macro is 8 lanes wide and
each YARC port is only 3 lanes wide, a naive assignment of tiles
to SerDes would have 2 and 2/3 ports (8 lanes) for each SerDes
macro. Consequently, we must aggregate three SerDes macros
(24 lanes) to share across eight YARC tiles (also 24 lanes). This
grouping of eight tiles is called an octant (tiles belonging to the
same octant are shown in Figure 6a) and imposes the constraint
that each octant must operate at the same data rate.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

The SerDes has a 16/20 bit parallel interface which is managed
by the link control block (LCB). The positive and negative com-
ponents of each differential signal pair can be arbitrarily swapped
between the transmit/receive pair. In addition, each of the 3 lanes
which comprise the LCB port can be permuted or “swizzled.”
The LCB determines which are the positive and negative differ-
ential pairs during channel initialization, as well as which lanes
are “swizzled”. This degree of freedom simplifies the board-level
river routing of the channels and reduces the number of metal lay-
ers on a PCB for the router module.

5 Routing

Routing in the BlackWidow network is performed on variable
length packets. The first phit of a packet is the header, which
contains all the mandatory routing fields, and the last phit of a
packet is an end of packet (EOP) phit which contains the packet
checksum.

In a folded-Clos topology, packet routing is performed in two
stages: routing up to a common ancestor of the source and desti-
nation processors, and then routing down to the destination pro-
cessor. Up routing can use either adaptive or deterministic rout-
ing. Downrouting, however, is always deterministic, as there is
only a single path down the tree from any router to a destination
processor. The BlackWidow memory consistency model requires
that requests to the same address maintain ordering in the network.
Therefore, request packets always use deterministic routing. Re-
sponse packets do not require ordering, and so are routed adap-
tively.

Packet routing is algorithmic and distributed. At each hop in
the network, routing logic at the head of the input queue calculates
the output port for the local router. This is performed using rout-
ing registers and an eight-entry routing table. The routing logic is
replicated in each tile, allowing multiple virtual routers (see Sec-
tion 7.4) per physical router and providing the needed bandwidth
for parallel routing in all 64 tiles.

There are three types of links (routes):

uplinks from the injection port to a rank 1 router or a rank n
router to a rank n + 1 router,

sidelinks from a rank n router to a peer rank n router (only for
R1.5, R2.5 and R3.5 networks), and

downlinks from a rank n router to a rank n − 1 router or from a
rank 1 router to the destination processor.

En route from the source to the common ancestor, the packet will
take either an uplink or a sidelink depending on the class of the
network (e.g.: rank 2 or rank 2.5, respectively). Upon arrival
at the common ancestor, the router will begin routing the packet
down the fat tree toward its final destination using the downlinks.
The down route is accomplished by extracting a logical port num-
ber directly from the destination processor number. Each YARC
router chip in the BlackWidow network has 64 ports which have
both a physical number, and an arbitrary logical number. Sys-
tem software will perform network discovery when the system is
initialized and assign a logical port number to each physical port
number.

5.1 Up Routing

Each tile has a root detect configuration register that identifies
the subtree rooted at this router, using a 15-bit router location and
a 15-bit mask. As an example, the root detect register of a rank-1
router connected to destinations 96-127 would have a router loca-
tion of 0x0060 (96), and a mask of 0x001F (covering 32 destina-
tions). If the unmasked bits of the packet destination and the router
location match, then the destination processor is contained within
the router’s subtree, and the packet can begin traversing down-
ward. Otherwise the packet must continue to route up (or over if
sidelinks are used).

Routing up or over is accomplished using an eight-entry table,
where each entry contains a location and mask bits (like the root
detect register) identifying a subtree of the network. The packet
destination is associatively checked against the routing table en-
tries. The packet matches an entry if its destination is contained
within the subtree identified by that entry. The matching entry
then provides the set of uplinks/sidelinks that the packet may use
to reach its destination.

In a healthy network, only a single entry is required for up rout-
ing, matching the entire network, and identifying the full set of
available uplinks. In a system with faults, additional routing table
entries are used to provide alternative uplinks for affected regions
of the machine. If multiple entries match, then the entry with the
highest index is chosen. Thus, entry 0 could be set to match the
entire network, with a full uplink mask, and entry 1 could be set
to match the subtree rooted at the fault, using a constrained uplink
mask that avoids sending packets to a router that would encounter
the fault en route to any destination processors in that subtree.

A given network fault casts a shadow over some subtree of end-
points that can be reached going down from the fault. We only
need fault entries in the routing table for faults that do not cast
a shadow over the local router. A router can also ignore a fault
if it cannot be reached from this router (such as faults in another
network slice).

In a router with configured sidelinks, each peer subtree is given
its own routing table entry, which defines the set of sidelinks us-
able to route to that subtree. No additional routing entries are re-
quired for faults.

Packets in the BlackWidow network may adaptively route on
a per-packet basis. Each packet header (Figure 5) has an adapt
(a) bit that chooses the routing policy. If a=1 then the packet will
choose the output port adaptively during up or siderouting. The
routing table of the input port produces a 64-bit mask of allowable
ports. The column mask is formed by OR-ing together the eligible
ports within each column — the resultant 8-bit mask will have bit i
set if any of the eight output ports of column i are set in the output
port mask produced by the routing table. After constructing the set
of allowable columns, we choose the winner (the eventual output
column) based on the amount of space available in the row buffer
for each column. Ties are broken fairly using a matrix arbiter [9].
When the packet is sent across the row bus to the chosen column
it is accompanied by an 8-bit mask corresponding to the allowable
output rows within that column. This row mask is used by the 8x8
subswitch to select an exit row. The row selection at the subswitch
is guided by the space available in the column buffers at the out-
puts, the row with the most space available in the column buffers
is chosen.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Packets that are not marked as adaptive (a=0) are routed deter-
ministically based on the output of a hash function. To uniformly
spread the packets across the available uplinks, the hash function
does an XOR of the input port, destination processor, and optional
hash bits if the hash bit (h) is set in the packet header. The hash
value is then mapped onto the set of output links identified by the
routing table. The input port and destination processor are hashed
on to avoid non-uniformities in many-to-one traffic patterns. For
request packets, the hash bit is set, and a portion of the packet’s
address is included in the hash function to further spread the traf-
fic across the uplinks. In this way, we can load balance and still
guarantee in-order delivery of packets from source to destination
targeting a given address.

5.2 Down Routing

Once the packet reaches the common ancestor it will begin
routing down the subtree. The first step in routing down is to select
a logical downlink number. The down route configuration register
contains shift (s) and mask (m) values that are used by first right-
shifting the destination processor number by s bits and then mask-
ing the bottom m bits to produce the logical output port number for
the downlink. A rank 1 router, for example, would have s=0 and
m=00011111. The logical port number is converted to a physical
port number by a 64-entry port mapping table. The packet pro-
ceeds down the tree, shifting and masking the bits of destination
processor to determine the downlink at each level, until it reaches
the final egress port where it is sent to the processor’s network
interface.

6 ASIC Implementation

This section discusses the various implementation trade-offs
and challenges that were encountered during the development of
YARC. The design was implemented using standard-cell ASIC
technology from Texas Instruments. The ASIC development
spanned 17 months and involved a team of 11 developers: ar-
chitecture (2), RTL logic design (4), verification (2), RTL netlist
processing (1), electrical and mechanical packaging (2). The 17
month development pace was subdivided as:

• architecture and documentation ≈8%

• RTL logic design and verification ≈58%

• timing closure and netlist preparation ≈12%

• physical design and back-end netlist processing ≈22%

YARC is implemented in a 90nm CMOS standard-cell ASIC
process operating at 800 MHz. The silicon area is 289 mm2 (17
mm on an edge) using the Texas Instruments SR50LX (low power)
standard-cell ASIC library and a small number of cells from the
SR50 [23] cell library for relay latches on long global wires. The
SR50 ASIC technology from Texas Instruments has a maximum
gate density of 255k gates per mm2 (at 100% utilization) with a
330nm minimum metal pitch and 7 layers of copper (with low-K
dielectric) interconnect.

A summary of the logic gates and RAM cells used is shown
in Table 1. YARC has approximately 28.2M cells, which does not
include the SerDes macros, or test circuitry. Register cells make up

Table 1. YARC logic gate and SRAM usage.
Number of Logic Register SRAM

Block Name Instances cells cells cells

Tile 64 95,777 175,560 61,185
Config Registers 1 49,088 5,170 0
Logic Monitor 1 103,390 11,426 0
Startup 1 414 64 0
Clock Generator 1 1,112 24 0
Row control 8 6,145 988 0
Column control 8 4,860 810 0
Config control 1 5,600 896 0

TOTAL - 11.32M 12.98M 3.92M

about half of the overall area, at 12.98M cells, and SRAM memory
only 3.92M cells. Each SRAM macro requires a BIST (built-in
self test) collar and test circuitry. Thus, if a memory was relatively
small, less than 1Kbit, it was implemented as a group of latches,
rather than instantiated as a small SRAM macro with the relatively
large overhead for memory test circuits.

The tile is broken into four blocks: the link control block
(LCB), input buffers, 8×8 subswitch, and column buffers. The
input buffer block contains 122k cells (46% registers, 35% logic,
and 19% SRAM) which includes the routing table and routing
logic. A considerable amount of this logic is dedicated to handling
speculative data forwarding — the LCB passing data up from the
data-link layer prior to verifying the CRC — to handle error cases
due to transmission errors and soft errors. The 8×8 subswitch ac-
counts for 141k cells (54% registers, 25% logic, and 21% SRAM),
or approximately 1/3 of the logic in the tile. The subswitch con-
tains the row buffers and logic that performs the 8-to-1 arbitration
among the row buffers, and a 2-to-1 arbitration amongst the vir-
tual channels. The column buffer block which also performs the
same two-stage arbitration as the subswitch only accounts for 62k
cells (71% registers, and 29% logic). The column buffers are im-
plemented in latches, not SRAMs, so the bulk of the area in the
column buffers is dedicated to latches. The remaining 111k cells,
or 25% of the tile area, is consumed by the LCB.

The estimated power consumption when the chip is idle is 80W,
with an expected 87W peak dynamic power dissipation. This rel-
atively modest power dissipation allows conventional air cooling
to be used for the router cabinets. Figure 6 shows the ASIC chip
floorplan with tile (0,0) corresponding to port 0 in the upper-left
corner of the diagram. The SerDes macros occupy the perimeter
of the chip where they are physically close to the I/O pads. This
allows 12 SerDes macros (six 8-lane transmit and six 8-lane re-
ceive) to be abutted around each edge of the die (Figure 6) for a
total of 48 8-lane macros, or 384 serial lanes.

The network channels have a physical layer operating at 6.25
Gbaud providing a plesiochronous interface between the physical
layers on each router chip. Within the chip, there are several clock
domains. The core logic in the YARC tiles operates at the 800
MHz local clock (Lclk) frequency. The SerDes has a 311 MHz ex-
ternal input reference clock (REFCLK) and can operate in 16b20b
mode or 16-bit mode. The data clock (Dclk) rate depends on the
encoding – if 16b20b is used then the Dclk rate is 1/20th of the
6.25 GHz rate, or 311MHz. Otherwise, when configured for 16-bit
mode with frame-synchronous scrambling (FSS) used to balance
the transition density on the SerDes serial lanes, the Dclk rate is
1/16th the 6.25 GHz rate, or 390MHz.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

(a) YARC logical layout. (b) YARC floorplan.

Figure 6. (a) The logical layout of YARC showing an example of packet traversal through the router, and (b) the top-level ASIC
floorplan of its implementation.

7 Discussion

This section provides additional discussion around the key de-
sign points. We explore what the optimal radix would be given the
ASIC and packaging constraints. Then, we discuss why a folded-
Clos topology was chosen. Then, we turn to more detailed design
decisions of subswitch degree, fault tolerance, and network load
balancing.

7.1 Optimal Radix

The radix at which a network has minimum latency is largely
determined by the aspect ratio [13] of the network router. Aspect
ratio is given by: A = Btr log N

L
where B is the total bandwidth

of a router, tr is the per router delay, N is the size of the network,
and L is the length of a packet. Using the parameters of the Black
Widow Network,3 the aspect ratio is 1600, which gives an optimal
radix of 82.

While the optimal radix is 82, this is not a practical value. To
simplify implementation and routing, the radix must be a power
of 2. A radix that is not a power of 2 would require an integer
division and modulo operation to determine the output port from
a destination address. In the design of the BW router we consid-
ered radices of 64, and 128. Both of these values give network
latency within 2% of the optimal value. Although the higher radix
of 128 theoretically leads to lower cost [13], this theory assumes

3The parameters for the BlackWidow Network are B=2.4Tb/s,
tr=20ns, N=32K nodes, and L=312. The L value is averaged over the
different type of packets in the network, including read and write request
and response packets, and the tr and B are estimated values prior to the
actual implementation, based on the technology.

that port widths can be varied continuously. We selected a radix of
64 because it gives better performance with our pinout and integral
port-width constraints. Area constraints limited us to no more than
200 SerDes on the router chip. A radix-64 router using 3-bit wide
ports requires 192 SerDes, fitting nicely within this constraint. A
radix-128 router, on the other hand, is limited to 1-bit wide ports
requiring 128 SerDes. Such a router has only 2/3 the bandwidth of
the radix 64 router, resulting in significantly lower performance.

7.2 Long Links

BlackWidow systems with over 4K processors have cabinet-to-
cabinet spacing that requires network links longer than six meters,
the maximum length that can be driven reliably at full signaling
rate (6.25Gb/s). Such long links can be realized using optical sig-
naling or using electrical cables with in-line repeaters. However,
both of these alternatives carry a significant cost premium.

YARC’s support for variable signaling rate (see Section 4) and
flexible routing enable these long links to be realized using elec-
trical signaling over passive cables by using a reverse taper. By
reducing the signaling rate on the link, significantly longer electri-
cal cables can be driven. The reduced signaling rate can be offset
for by doubling the number of links provisioned at that level of the
network (a reverse taper) to preserve network bandwidth.

7.3 High-Radix Clos vs. Torus

We chose a high-radix folded-Clos topology for the Black-
Widow network because it offered both lower latency and lower
cost than alternatives such as a torus network while still provid-
ing 8.33 GB/s of global memory bandwidth. Table 2 compares the

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

zero-load latency of the two topologies, a folded-Clos and a 3-D
torus, as we vary the size of the network. In the comparison, we
assume both topologies were implemented based on the technol-
ogy available for the BlackWidow network. We assume uniform
random traffic to calculate the average hop count4. The port band-
width of the routers are held constant in the comparison. Thus,
with a torus network, the channels will be fatter, reducing the seri-
alization latency but the header latency is increased because of the
larger hop count.

NetworkSize 576 2304 9216 30720
Torus 0.144 0.210 0.326 0.484
Clos 0.078 0.091 0.104 0.116

Table 2. Zero-load latency (μs) comparison of two differ-
ent topologies. For the high-radix Clos network, radix-64
routers were used. For the 3-D torus, the configurations
used were identical to those of the Cray XT3. Uniform
random traffic was assumed in calculating the average
hop count of the network.

As shown in Table 2, for a small size network, there is a 2x
reduction in latency but as the size of the network increases, there
is an over 4x reduction in latency. With the lower hop count, the
high-radix Clos not only reduces latency but also reduces cost.
The network cost is approximately proportional to the total router
bandwidth and with the network bisection held constant, it is pro-
portional to the hop count. Thus, high-radix Clos network leads to
a lower latency and a lower cost network.

There are also several qualitative attributes of the high-radix
folded-Clos network which made it an attractive choice. Routing
in torus is more complex as turn rules [10] or virtual channels [8]
are needed to prevent deadlocks and complex routing algorithms
are needed to properly load balance across adversarial traffic pat-
tern [21]. Compared to a torus, the folded-Clos has very a straight-
forward routing algorithm. Because of the path diversity in the
topology, load balancing is achieved by selecting any one of the
common ancestors. The folded Clos is also cycle-free by design
so no additional virtual channels are needed to break deadlock. VC
allocation is often the critical path in the router implementation [9]
and with fewer VCs, the VC allocation is also simplified.

7.4 Virtual routers

The radix-64 YARC router can be divided into multiple virtual
routers with lower degree. For instance, a single YARC can serve
as two radix-32, four radix-16, or ten radix-6 virtual routers. Since
each tile has its own set of routing tables and keeps track of the set
of allowable exit ports, system software can partition the router
into multiple virtual routers by programming the routing tables
associated with each virtual router with a set of masks that restricts
output traffic to the ports of that virtual router. This flexibility
enables a YARC router to be used in systems where packaging
constraints require multiple lower radix routers. Virtual routers
can also be used to support multiple network slices in a single

4If worst-case traffic pattern is used, the latency for folded-Clos will not
change significantly but latency for a 3-D torus will increase significantly.

YARC chip. For example, a single YARC chip can be configured
as two radix-32 routers to provide a radix-32 first stage switch for
two of the four BW network slices as shown in Figure 2(c).

7.5 Flow Control Within YARC

YARC employs virtual cut-through flow control externally but
uses wormhole flow-control internally due to buffer size con-
straints. The 64 input buffers are each sized deep enough (256
phits) to account for a round-trip credit latency plus the length of
a maximum-length packet (19 phits). This enables us to perform
virtual cut-through flow control (with packet granularity) on exter-
nal links as discussed in Section 4.2. It was infeasible, however,
to size the 512 row buffers or 512 column buffers large enough to
account for credit latency plus maximum packet size. Thus using
wormhole flow control[6] (at flit=phit granularity) is performed
over both the row buses and the column channels to manage these
buffers. The row buffers are 16 phits deep and the column buffers
are 10 phits deep — large enough to cover the credit latency over
the global column lines. Here a maximum-length packet can block
traffic from the same input row to other outputs in the same column
(by leaving its tail in the row buffer).

7.6 Degree of the Subswitch

In a hierarchical high-radix router, a radix-k router is composed
of (k/p)2 p × p subswitches. The cost and performance of the
router depend on p. As p is reduced, the design approaches that of
a fully buffered crossbar and becomes prohibitively expensive but
provides higher performance [13]. As p is increased, the design
approaches an input-buffered crossbar and is inexpensive but has
poor performance.

To stress the hierarchical organization, we apply worst-case
traffic to the router in which all of the offered traffic “turns the
corner” at a single subswitch. With this approach, with an offered
load of λ, one subswitch in each row sees λp packets per cycle
while the other subswitches in the row are idle. In contrast, uni-
form random (UR) traffic does not stress the hierarchical organiza-
tion because it evenly distributes traffic across the k

p
subswitches

in a row with each subswitch seeing only λp
k

packets per cycle.
We wrote a simulator to evaluate the performance on worst-

case traffic for subswitches with degree p of 2, 4, 8, 16, and
32. Table 3 summarizes the sustained throughput on worst-case
traffic as a function of subswitch degree p. The 8, 16, and 32-
input subswitches perform almost identically with a throughput
of about 60% [11]. Since a p × p subswitch provides an inter-
nal speedup of k

p
, (8, 4 and 2 respectively for p=8, 16 and 32), a

sustained throughput of 60% provides more than sufficient per-
formance for uniform traffic. With the 8×8 subswitch used in
YARC, we can sustain approximately five times the average traf-
fic demand through our subswitch on uniform traffic, providing
plenty of headroom for non-uniform traffic patterns.

Although 8, 16, or 32 input subswitches provide nearly iden-
tical performance, higher degree subswitches give lower cost be-
cause the buffering required is O(k2

p
). However, we chose the

more expensive p = 8 configuration for YARC for two reasons.
First, the higher-degree subswitches required too much time to
perform the p-to-1 switch arbitration which is a timing critical

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Subswitch No. of Subswitches Sustained Buffer
Configuration Needed for Radix-64 Throughput Area

2x2 1024 75.0% 4096
4x4 256 65.6% 2048
8x8 64 61.8% 1024

16x16 16 60.1% 512
32x32 4 59.3% 256

Table 3. Evaluation of subswitch configurations.

path in the implementation. Early results showed that an 8-to-1
arbitration can be done within a single 800 MHz clock cycle. A
16- or 32-to-1 arbitration would require a longer clock cycle or
a pipelined arbiter. Second, a subswitch of size p = 8 resulted
in a modular design in which the number of ports was equal to
the number of subswitches. This enabled us to build a tile that
contained a single subswitch, a single input, and a single output.
A higher subswitch size would require each tile to have multiple
inputs/outputs, while a smaller subswitch size would require sev-
eral subswitches to share an input/output complicating the design
effort of the tiles.

7.7 Fault Tolerance

The high path diversity of a high-radix folded-Clos network
can be exploited to provide a degree of fault tolerance. The YARC
chip is designed to construct a network that provides graceful
degradation in the presence of the following faults:

• a failed network cable or connector,

• a faulty router (a YARC that stops responding), and

• a noisy high-speed serial lane that is causing excessive re-
tries.

In a fault-free network, only a single entry in the routing table
is necessary to specify the uplinks for the entire system. However,
higher-priority table entries can be used to override this master
entry to restrict routing to a set of destinations. If a fault occurs
at a particular node of the network, the routing tables can be set
so that traffic with destinations in the subtree beneath the fault do
not route to the fault or any ancestors of the fault. This is done by
creating an entry that matches this set of destinations that has an
uplink mask with the bits corresponding to the faulty node and/or
its ancestors cleared.

The sender-side of each YARC port maintains a forward
progress countdown timer for each virtual channel. If the forward
progress timer expires, it indicates that a packet has not flowed
in a long time and the router must prevent the error from propa-
gating throughout the network. A forward progress timeout may
happen if the attached BlackWidow processor stops accepting re-
quests causing the network to back pressure into the routers. Upon
detection of a forward progress timeout, an interrupt is raised to
the maintenance controller to inform the system software that a
node has stopped responding. The router will begin discarding
packets that are destined to port which incurred the timeout.

The link control block (LCB) handles the data-link layer of the
communication stack. It provides reliable packet delivery across
each network link using a sliding window go-back-N protocol. It
manages the interface between the higher-level core logic and the

lower-level SerDes interface (physical layer). The LCB counts the
number of retries on a per-lane basis as a figure of merit for that
serial channel. System software defines a threshold for the num-
ber of tolerable retries for any of the serial lanes within the 3-lane
port. If the LCB detects that the retry count exceeded the thresh-
old, it will automatically decommission the noisy lane and operate
in a degraded (2-bit wide or 1-bit wide) mode until the cable can
be checked and possibly replaced. This allows the application to
make forward progress in the presence of persistent retries on a
given network link.

If all the lanes in the link are inoperable and must be disabled,
the LCB will deassert the link active signal to the higher-level
logic which will cause a system-level interrupt to the maintenance
controller and cause the sending port to discard any packets des-
tined to the dead port. This prevents the single link failure from
cascading into the rest of the network.

A folded-Clos topology is cycle free and under normal operat-
ing conditions is deadlock-free. The router ensures the following
invariant: once a packet begins traversing downward, it remains
going downward until it reaches the destination. That is, packets
that arrived from an uplink must route to a downlink. This pre-
vents packets from being caught in a cycle containing uplinks and
downlinks. If the router is configured properly, this should never
happen. However, software and the programmers who create it are
fallible. This dynamic invariant should help reduce the debugging
time when investigating early-production routing software.

7.8 Network Load Balancing

Non-uniform traffic can cause local hot spots that significantly
increase contention in interconnection networks. To reduce this
network load imbalance, the BlackWidow network performs two
types of load balancing: hashing of deterministic routes to split
bulk transfers up over multiple paths; and adaptive routing. Sec-
tion 7.8.1 analyzes the ability of hashing to reduce network hot-
spots. Section 7.8.2 discusses the technique used to ensure diver-
sity in the hash function. Section 7.8.3 discusses how adaptive
routing is implemented over 64 ports.

7.8.1 Hot Spot Contention

To assess the potential contention from non-uniform traffic, we
analyzed random permutations among processors, in which each
processor is sending a block of data to one other random proces-
sor and receiving data from one other processor. We looked at
both torus and radix-64 fat-tree networks, calculating the average
worst-case link utilization for 10,000 random permutations. For
the torus, we assumed minimal, dimension order routing. For the
fat tree, we analyzed the effect of path diversity, varying the num-
ber of unique network paths taken by a single transfer from 1 up
to 32.

Table 4 shows the results, for networks up to 32K endpoints.
Link traffic is shown relative to injection port bandwidth. For the
torus, both the average link traffic and the average worst case link
traffic are shown. Average link traffic for global traffic in a bi-
directional, radix-k torus is simply k/8. Thus, contention starts to
degrade global bandwidth per endpoint for radices larger than 8.
We see that the average worst-case link traffic is an additional 4-5
times higher (the “degrade factor” shown in the table).

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Table 4. Simulation results of worst-case link utilization for 10,000 random permutations.

A conventional fat tree is also susceptible to hot spots. The av-
erage link traffic for global traffic in a fully configured fat tree is
equal to the injection bandwidth independent of size (that is, global
bandwidth per endpoint stays constant as system size is increased).
However, the average worst-case link traffic under random permu-
tations is up to 7.6 times higher than the injection bandwidth. As
the number of paths used by a transfer is increased, the averge
worst-case link traffic is reduced. Using a path diversity of 32
results in near uniform usage of all the links in the system, with
an average worst case of only 1.6 times the injection bandwidth
at 32K endpoints. The BlackWidow network is capable of using
all uplinks for deterministic traffic at each level, permitting up to
thousands of diverse paths for a single block transfer.

7.8.2 Diversity in the Hash Function

For deterministic routing, a packet’s uplink or sidelink is chosen at
each hop by computing a hash value and then performing a modulo
over the number of configured ports. The BW router calculates
exact modulos of 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28 or
32 ports, by factoring the divisor into a power-of-two component,
and an optional factor of 3, 5 or 7. Division by 3, 5 or 7 is easy
to compute via the binary equivalent of the “casting out nines”
technique for verifying long multiplication.

The hash function is an XOR of the input port, destination
number, and optional hash bits (included if the h bit is set in the
packet header). The BlackWidow request packets map the address
bits address[20:6] into the hash region of the packet header, pro-
viding high diversity across packets, yet preserving in-order deliv-
ery of request packets on a per-cacheline basis.

Only an 8-bit subset of the 15-bit optional hash bits are actu-
ally used by the hash function. Each tile has a configuration reg-
ister which indicates the bits to use. By only using a subset of the
optional hash bits, we can hash on different bits at different ranks
within the network. For example, the rank 1 routers might hash
using hash bits 0..7, rank 2 routers hash using bits 5..12, and rank
3 routers hash using bits 10..14. In this way, we prevent succes-
sive routers from hashing on the same bits as the packet moves up
the tree. A router with n uplinks will tend to “use up” the least
significant log2(n) hash bits it employs. A parent of that router
will see an incoming stream of packets with little or no diversity
in these bits, as they were used to select the parent. Therefore, the
parent should use a different set of the optional hash bits in order
to maximize the diversity in the hash function.

7.8.3 Adaptive Routing

Implementing an adaptive routing scheme in a high-radix router
is particularly challenging because of the large number of ports
involved in the adaptive decision. Ideally, we would look at the
congestion at all possible output ports (at most 32) and choose the
queue with the most free space. Unfortunately, this is unrealistic
in a 1.25 ns clock cycle. Instead, in keeping with the hierarchical
organization of the router, we break the adaptive decision into two
stages: choosing the output column, and choosing the output row
within that column.

We first choose the column, c, by comparing the congestion
of the row buffers in each of the c row buffers identified by bits
in the column mask. A full eight-way, four-bit comparison of row
buffer depths was too expensive. Instead we look only at the most-
significant bit of the row buffer depth, giving priority to buffers
that are less than half full. We then select the column based on a
round-robin arbitration, and route to the row buffers of the cross-
point tile. This algorithm ignores the number of eligible output
ports in each of the target columns, giving no preference to a col-
umn with more eligible outputs. However, columns with more
eligible outputs will tend to drain faster, leading to more space in
their subswitch row buffers.

In the second stage of the adaptive route, we choose the output
row based on the bits of the row mask which are set. The row mask
identifies the set of valid output ports within the chosen column.
We again must rely on imperfect information to choose the output
tile based on the depth of the column buffers in the r rows, where
r is the number of bits set in the row mask. We choose among
the rows by comparing two bits of the 4-bit column buffer depth
(which is at most 10). The most-significant bit indicates if the
column buffer is “almost full” (i.e. 8 or more phits in the buffer),
and the upper two-bits together indicate if the column buffer has
more than 4 phits but less than 8 phits — corresponding to “half
full.” Finally, if the upper two bits of the buffer size are zero,
then the column buffer is “almost empty.” The adaptive decision
will choose the column buffer based on its current state, giving
preference to those ports which are “almost empty” then those that
are “half full” and finally those buffers that are “almost full.”

8 Conclusion

YARC is a high-radix router used in the network of the Cray
BlackWidow multiprocessor. Using YARC routers, each with 64
3-bit wide ports, the BlackWidow scales up to 32K processors us-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

ing a folded-Clos topology with a worst-case diameter of seven
hops. Each YARC router has an aggregate bandwidth of 2.4Tb/s
and a 32K-processor BlackWidow system has a bisection band-
width of 2.5Pb/s.

YARC uses a hierarchical organization[13] to overcome the
quadratic scaling of conventional input-buffered routers. A two-
level hierarchy is organized as an 8×8 array of tiles. This orga-
nization simplifies arbitration with a minimal loss in performance.
The tiled organization also resulted in a modular design that could
be implemented in a short period of time.

The architecture of YARC is strongly influenced by the con-
straints of modern ASIC technology. YARC takes advantage of
abundant on-chip wiring to provide separate column buses from
each subswitch to each output port, greatly simplifying output ar-
bitration. To operate using limited on-chip buffering, YARC uses
wormhole flow control internally while using virtual-cut-through
flow control over external channels.

To reduce the cost and the latency of the network, BlackWidow
uses a folded-Clos network that is modified by adding sidelinks
that connect peer subtrees and statically partition the global net-
work bandwidth. We showed the benefits of high-radix Clos, com-
pared to the previous torus networks, in terms of fault tolerance,
bandwidth spreading, and simpler routing algorithm. Both adap-
tive and deterministic routing algorithms are implemented in the
network to provide load-balancing across the network and still
maintain ordering on memory requests. Deterministic routing is
performed using a robust hash function to obliviously balance load
while maintaining ordering on a cache line basis.

As more networks take advantage of high-radix routers, many
opportunities are open for further research on high-radix routers
and networks. High-radix Clos network can exploit high-radix
routers. However they are far from the lower bounds of achiev-
able cost and latency. Research on alternate topologies may dis-
cover more efficient organizations. The large number of possible
output ports on a high-radix router motivates the development of
new routing algorithms. Of particular interest are algorithms that
reduce the complexity of the routing decision - to avoid quadratic
scaling of the routing function. Research on router microarchitec-
ture and switch organization is also of interest. As wire delays be-
come more critical, organizations that exploit locality, for example
those based on a network-on-chip may provide reduced latency.

Acknowledgements

Many people contributed to the development of the YARC
router and BlackWidow network. Foremost, we would like to
thank Greg Hubbard, Roger Bethard and Kelly Marquardt for their
countless whiteboard discussions. We would also like to thank
the rest of the BW network team: Joe Kopnick, Jack Webber,
Boone Severson, Greg Faanes, Brad Smith, Doug Carlson, and
Paul Wildes. We also thank Amit Gupta for his helpful insights
in the preliminary stages of this paper. Finally, we would like to
thank three of the five referees for their detailed suggestions and
comments.

References

[1] J. Beecroft, D. Addison, F. Petrini, and M. McLaren.
Quadrics QsNet II: A Network for Supercomputing Appli-
cations. In Hot Chips 15, Stanford, CA, August 2003.

[2] C. Clos. A Study of Non-Blocking Switching Networks. The
Bell System technical Journal, 32(2):406–424, March 1953.

[3] Cray X1. http://www.cray.com/products/x1/.
[4] Cray XD1. http://www.cray.com/products/xd1/.
[5] Cray XT3. http://www.cray.com/products/xt3/.
[6] W. J. Dally. Performance Analysis of k-ary n-cube Inter-

connection Networks. IEEE Transactions on Computers,
39(6):775–785, 1990.

[7] W. J. Dally. Virtual-channel Flow Control. IEEE Trans-
actions on Parallel and Distributed Systems, 3(2):194–205,
1992.

[8] W. J. Dally and C. L. Seitz. Deadlock-free message rout-
ing in multiprocessor interconnection networks. IEEE Trans.
Comput., 36(5):547–553, 1987.

[9] W. J. Dally and B. Towles. Principles and Practices of In-
terconnection Networks. Morgan Kaufmann, San Francisco,
CA, 2004.

[10] C. J. Glass and L. M. Ni. The turn model for adaptive routing.
In ISCA ’92: Proceedings of the 19th annual international
symposium on Computer architecture, pages 278–287, 1992.

[11] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus
Output Queueing on a Space-division Packet Switch. IEEE
Transactions on Communications, COM-35(12):1347–1356,
1987.

[12] P. Kermani and L. Kleinrock. Virtual cut-through: A new
computer communication switching technique. Computer
Networks, 3:267–286, 1979.

[13] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchi-
tecture of a high-radix router. In ISCA ’05: Proceedings of
the 32nd Annual International Symposium on Computer Ar-
chitecture, pages 420–431, Madison, WI, USA, 2005. IEEE
Computer Society.

[14] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the 24th Annual Int’l
Symp. on Computer Architecture, pages 241–251, 1997.

[15] C. Leiserson. Fat-trees: Universal networks for hardware
efficient supercomputing. IEEE Transactions on Computer,
C-34(10):892–901, October 1985.

[16] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R.
Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C.
Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C. Wong-Chan,
S.-W. Yang, and R. Zak. The Network Architecture of the
Connection Machine CM-5. J. Parallel Distrib. Comput.,
33(2):145–158, 1996.

[17] Mellanox. http://www.mellanox.com.
[18] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb.

The Alpha 21364 network architecture. In Hot Chips 9,
pages 113–117, Stanford, CA, August 2001.

[19] Myrinet. http://www.myricom.com/myrinet/overview/.
[20] S. Scott and G. Thorson. The Cray T3E Network: Adaptive

Routing in a High Performance 3D Torus. In Hot Intercon-
nects 4, Stanford, CA, Aug. 1996.

[21] A. Singh. Load-Balanced Routing in Interconnection Net-
works. PhD thesis, Stanford University, 2005.

[22] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J.
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R.
Varker. The SP2 High-performance Switch. IBM Syst. J.,
34(2):185–204, 1995.

[23] Texas Instruments - SR50. http://www.ti.com/.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

