
Hierarchical Cache / Bus Architecture
for Shared Memory Multiprocessors

Andrew W. Wilson Jr.

Encore Computer Corporation
257 Cedar Hill St., Marlborough, MA. 01701

Abstract

A new, large scale multiprocessor architecture is
presented in this paper. The architecture consists of hierarchies
of shared buses and caches. Extended versions of shared bus
multicache coherency protocols are used to maintain coherency
among all caches in the system. After explaining the basic
operation of the strict hierarchical approach, a clustered system
is introduced which distributes the memory among groups of
processors. Results of simulations are presented which
demonstrate that the additional coherency protocol overhead
introduced by the clustered approach is small. The simulations
also show that a 128 processor multiprocessor can be
constructed using this architecture which will achieve a
substantial fraction of its peak performance. Finally, an analytic
model is used to explore systems too large to simulate (with
available hardware). The model indicates that a system of over
1000 usable MIPS can be constructed using high performance
microprocessors.

Introduction

Although the computation speeds of conventional
uniprocessors have increased dramatically since the first
vacuum tube computers, there is still a need for even faster
computing. Large computational problems such as weather
forecasting, fusion modeling, and aircraft simulation demand
substantial computing power, far in excess of what can
currently be supplied. While uniprocessor speed is improving
as device speeds increase, the achieved performance levels are
still inadequate. Thus researchers have been seeking alternative
architectures to solve these pressing problems.

Many of these proposed solutions involve the
construction of multiprocessors, systems which link a large
number of essentially Von Neumann machines together with a

The research described in this paper is sponsored by the
Defense Advanced Research Projects Agency (DOD), DARPA
contract N0039-86-C-0158. The views and conclusions
contained in this document are those of the author and should
not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

high performance network 2,3. Unlike multicomputers, which
have also been proposed, multiprocessors provide a shared
address space, allowing individual memory accesses to be used
for communication and synchronization. All multiprocessors
require an interconnection mechanism which physically
implements the shared address space. Numerous proposals for
such structures appear in the literature, covering a wide range
of performance, cost and reliability 1,5,8,14.

In a multiprocessor there are two sources of delay in
satisfying memory requests, the access time of the main
memory and the communication delays imposed by the
in terconnect ion network. If the bandwidth of the
interconnection network is inadequate, the communication
delays are greatly increased due to contention. Both the
bandwidth and access time limitations of interconnection
networks can be overcome by the use of private caches. By
properly selecting cache parameters, both the transfer ratios
(the ratio of memory requests passed on to main memory from
the cache to initial requests made of the cache), and effective
access times can be reduced 4. Transfer ratio minimization is
not the same as hit ratio maximization since some hit ratio
improvement techniques, (i.e. prefetch) actually increase the
transfer ratio.

While private caches can significantly improve system
performance, they introduce a stale data problem (often termed
the multicache coherency problem) due to the multiple copies of
main memory locations which may be present. It is necessary
to ensure that changes made to shared memory locations by any
one processor are visible to all other processors. One solution
is to use a central cache controller to arbitrate the use of shared
cache blocks 3,13 and thus prevent the persistence of obsolete
copies of memory locations. While the central controller
enforces multicache coherency, it constitutes a major system
bottleneck of its own, which makes it impractical for large
multiprocessor systems.

When a single shared bus is used for processor to
memory communication, each private cache is able to observe
the requests generated by other caches in the system. Thus the
use of a shared bus allows the possibility of distributed cache
coherency control algorithms. Recently, several proposals for
multicache coherency algorithms which utilize a common
shared bus have been published 6,7,10,11. In these systems
each cache monitors the transactions taking place on the shared
bus and modifies the state of its cached copies as necessary.
The important feature of the new multicache coherency
algorithms is that no central cache controller is required, rather
coherency control is distributed throughout the system.
Furthermore, the overhead due to the extra bus traffic required
for coherency control is negligible. Since there is only one
bus, the ultimate expandability of the system is limited.

© 1987 ACM 0084-7495/87/0600-0244500.75
244

Because the published multicache coherency algorithms
are limited in expandability by the need for a common shared
bus, it is desirable to extend the algorithms to multiple bus
architectures. This paper proposes one such extension which
allows a large architecture to be built. It consists of a hierarchy
of buses and caches which maintain multicache coherency
while partitioning memory requests among several buses. As
will be shown, the benefits of the shared bus, multicache
coherency algorithms are maintained, while much larger
systems are made possible.

Multicache Coherency Algorithms for Shared Buses

Before introducing the hierarchical approach for large
multiprocessor systems, a brief review of shared bus,
multicache coherency algorithms is in order. Such algorithms
attempt to keep all copies of shared memory locations identical,
at least to the extent that no transient differences are visible to
the processors. If a processor modifies its cache's copy of the
memory location, all other copies must be invalidated. With
non shared bus switching schemes the traffic due to
invalidation messages can become quite large. As will be seen,
shared buses provide these messages implicitly.

Write-Through

The simplest scheme for avoiding coherency problems
with a shared bus multiprocessor is to use write-through
caches. With a write-through cache, each time a private cache's
copy of a location is written to by its processor, that write is
passed on to main memory over the shared bus. As indicated in
the state diagram of Figure 1, each memory location has two
states: the valid state, which indicates that a copy resides in the
cache, and the invalid state, where the only copy is in main
memory. Transitions to the valid state occur every time a
location is accessed by the cache's associated processor.
Transitions from the valid state occur every time a cached
location is replaced by a different location, and every time a
write from another processor for the memory location is
observed on the backplane bus.

The transition to invalid when a bus write is observed for a
cached location is the mechanism by which cache coherency is
maintained. If any caches contain a copy of the memory
location being written to, they will invalidate it. If none of the
other caches ever actually use that location again, then the
coherency scheme produces no additional bus traffic. Of
course, one or more of the processors whose caches were
purged of copies of the location may request that location later
and extra main memory reads will result. Simulation
experiments reported later in this paper show that these extra
reads are infrequent and contribute very little extra bus traffic.

Processor Read
¢ ' - ~ ~ . . . ~ .~,,,...,,..~ Processor Write / Bus Write ~ _ / f "~ ~

i ~ ~ J ~ Replacemeaat'--""--- ~
Obse~'ed Bus Read

Figure 1: State Diagram for a Cache Location in a
Multiprocessor Utilizing Private Write-Through Caches

A second copy of each cache's tag store may be required
to prevent saturation of the private caches while monitoring bus
traffic. Because the caches are write-through, the amount of
traffic on the bus will never be less than the sum of all the
processor-generated memory writes, which typically comprise
15%-20% of memory requests. Write-through caching is
highly effective where limited parallelism (on the order of 20

medium speed processors) is required and is simple to
implement.

Write-deferred

Rather than pass all write requests on to main memory, a
cache can simply update its local copy and defer updating main
memory until later (such as when the modified location is
replaced by a new location). Uniprocessor designers have
found that write-deferred caches can significantly reduce the
amount of main memory traffic from that of write-through
caches. Current practical cache sizes produce reductions two to
four over write-through caches. It should be expected that two
to four times as many processors could be added to a shared
bus multiprocessor utilizing such caches. In a multiprocessor,
the necessity of coherency maintenance results in a more
complicated system with higher bus utilization rates than a pure
write-deferred system, but still much lower utilization per
processor than write-through.

There are presently several known variations of shared
bus oriented write-deferred caching algorithms which maintain
cache coherency 12. One of the first is the write-once scheme 7
which utilizes an initial write-through mode for recently
acquired copies to invalidate other caches in the event of a local
modification to the data. Figure 2 presents a diagram of the
state transitions which occur for a memory location with
respect to a cache. A given memory location is in the Invalid
state if it is not in the cache. When a main memory location is
initially accessed it enters the cache in either the Valid state (if a
read) or Reserved state (if a write). A location already in the
Valid state will enter the Reserved state if a processor write
access occurs. A processor write which causes a transition into
the Reserved state will be passed through the cache and onto
the shared bus. Subsequent processor writes to that location
will place it in the Dirty state, indicating that the cache's copy is
the only correct copy of the location.

~ ProcRead/BusRe.ad
B u ~ (n, r v ~ i o ' g 7" vatm ~ BusRe.~
or Wn~e ~ BusWrite ~ ~ ProcRead

- ¢ - - q ~ - - ~ , ~ . v ~ , ~ : 5 . ~ - - - - - - ~ 7 " ~

°r Inv" ilda~ Pr~cWrited ~ I Busl~ead/

_ t ~ / Pr°cWrited -/V~",,,. I
/ B u s W r i ~

Prod~ead I ~ E S E R V E ~ ProcWrite ~ DIRTY "~ ProcReaa o r ' , , , A ~ o~wr'-

Figure 2: State Diagram for a Cache Location in a System
Utilizing Goodman Write-Deferred Private Caches

Just as in write-through caching, all caches monitor the
bus for writes which might affect their own data and invalidate
it when such a write is seen. Thus, after sending the initial
write-through, a cache is guaranteed to have the only copy of a
memory location and can write at will to it without sending
further writes to the shared bus. However, the cache must
monitor the shared bus for any reads to memory locations
whose copy it has been modifying, for after such a read it will
no longer have an exclusive copy of that location. If only the
initial write-through write has occurred, then the only action
necessary is for the cache which had done the write to forget
that it had an exclusive copy of the memory location. If two or
more writes have been performed by the cache's associated
processor, then it will have the only correct copy and must
somehow update main memory before main memory responds
to the other cache's read request.

There are several variations on this basic protocol which

245

could be used to achieve cache coherency with write-deferred
caches. The initial write-through can be replaced with a special
read cycle, which returns the most recently modified copy of
the memory location, and invalidates all others 6. An additional
bus wire can be added which is asserted by any cache which
has a copy of the location when a read request is observed,
allowing the requesting cache to transition directly to the
Reserved state if no other cache reports having a copy-.

Extensions for Even Larger Systems

While a single high speed shared bus can support quite a
few processors when private write-deferred caches are used,
the bus eventually becomes a bottleneck. A method of
extending the above mentioned cache coherency schemes to
configurations of multiple shared buses will now be developed.
The method involves the use of a hierarchy of caches and
shared buses to interconnect multiple computer clusters.

Hierarchical Caches

The simplest way to extend shared bus based
multiprocessors is to recursively apply the private cache -

shared bus approach to additional levels of caching. As shown
in Figure 3, this produces a tree structure with the higher level
caches providing the links with the lower branches of the tree.
The higher level caches act as filters, reducing the amount of
traffic passed to the upper levels of the tree, and also extend the
coherency control between levels, allowing system wide
addressability. Since most of the processor speedup is achieved
by the bottom level caches, the higher level caches can be
implemented with slower, denser dynamic RAMs identical to
those used by the main memory modules. Average latency will
still be reduced, since higher level switching delays will be
avoided on hits. To gain maximum benefit from these caches,
they need to be large, an order of magnitude larger than the
sum of all the next lower level caches which feed into them.
But since they can be made with DRAMs, this will not be a
problem.

The second and higher levels of caches in the hierarchical
multiprocessor require some extensions to maintain system
wide multicache coherency. The most important is the
.provision that any memory locations for which there are copies
in the lower level caches will also have copies in the higher
level cache. As shown in the state diagram of Figure 4, this is
accomplished by sending invalidates to the lower level caches
whenever a location is removed from the higher level cache.
Because all copies of memory locations contained in the lower
level caches are also found in the higher level cache, the higher
level cache can serve as a multicache coherency monitor for all
of the lower level caches connected to it.

Figure 3: Hierarchical Multiprocessor with two or more Levels
of Private Caches and Shared Buses

RVEO L 1 B W - - - - - ~ DIRTY] L1BRor L I ~

KEY

L1BR: Ouster Bus Read L2BR: Global Bus Read
L1BW: Cluster Bus Write L2BW: Global Bus Write
L1BI: Clusmr Bus Inval L2BI: Global Bus lnval
LIBF: Cluster Bus Flush Purge: Repl~o.,-mentofcac, hcentty

Figure 4: State Diagram for a Second Level Cache Using the
Extended Goodman Multicache Coherency Algorithm

Figure 4 shows how the Goodman algorithm is extended
for higher level caches. Each cache location still has four
states, just as in the basic Goodman cache (see Figure 2).
However the cache will now send invalidation or flush requests
to the lower level caches when necessary to maintain
multicache coherency. An invalidation request is treated in the
same way as a bus write by the lower level cache, and a flush
request is treated in the same way as a bus read.

To understand how multicache coherency control is
achieved in a hierarchical shared bus multiprocessor using the
Goodman cache coherency protocol, consider the operation of
a two level structure when confronted with accesses to shared
data. As indicated in Figure 5, when processor P1 issues an
initial write to memory, the write access filters up through the
hierarchy of caches, appearing at each level on its associated
shared bus. For those portions of the system to which it, is
directly connected, invalidation proceeds just as described]'or
the single level case. Each cache (such as Mcl2 connected with
processor P2) which has a copy of the affected memory
location simply invalidates it. For those caches at higher levels
of the hierarchy, the existence of a particular memory location
implies that there may be copies of that location saved at levels
directly underneath the cache. The second level cache Mc22 in
the figure is an example of such a cache. When Mc22 detects
the write access from P1 on bus $20, it must not only
invalidate its own cache but send an invalidate request to the
lower level caches connected to it. This is readily accomplished
by placing an invalidate request on bus S12, which is
interpreted by caches Mcl6, Mcl7 and Mcl8 as a write
transaction for that memory location. These caches then
invalidate their own copies, if they exist, just as though the
invalidate request was a write from some other cache on their
shared bus. The final result is that only the first and second
level caches associated with the processor which generated tile
write (Mcl 1 and Mc20) have copies of the memory location.
Subsequent writes will stay in the first level cache, or filter up
to the second level cache if local sharing or context swapping
o c c u r s .

Other shared bus coherency protocols can be modified to
work in a hierarchical multiprocessor. For example, the
exclusive access read of the Synapse scheme can serve to
invalidate other cache copies in the same way as the Goodman
initial write. An additional benefit is that the exclusive read

246

$20

21

14

Figure 5: Operation of a Hierarchical Cache Structure when
Initial Write-Through Occurs

returns the very latest copy of the memory location, so that
read/modify/write operations automatically give correct results.

Once a cache location has obtained exclusive access to a
location, and has modified the contents of that location, another
processor may request access to the location. Since the location
will not reside in its cache, the read request will be broadcast
onto the shared bus. As with the single level scheme all caches
must monitor their shared buses for read requests from other
caches and make appropriate state changes if requests are made
for locations for which they have exclusive copies. In addition,
if their own state indicates that there might be a dirty copy in a
cache beneath them in the hierarchy, then they must send a
"flush" request down to it. These flush requests must
propagate down to lower levels of the hierarchy and cause the
lower level caches to modify their state, just as though an actual
read for that location had been seen on their shared buses.
Figure 6 indicates what can happen in a typical case. Assume
that caches Mcl 1 and Mc20 have exclusive access to a location
as a result of the write sequence from the previous example. If
processor P7 now wishes to read that location, the request will
propagate up through the hierarchy (there will be no copies in

any caches directly above P7 so the request will "miss" at each
level). When it reaches bus $20, cache Mc20 will detect the
need for relinquishing exclusive access and possibly flushing
out a dirty copy of the memory location. It will send a flush
request down to bus S10 where cache Mc l l will relinquish
exclusive access and send the modified copy of the memory
location back up the hierarchy. Depending on which flavor of
write-deferred scheme is used the data will either return first to
main memory or go directly to cache Mc22 and hence to cache
Mcl7 and processor P7. The copies in Mc20 and Mcl l will
remain, but will no longer be marked as exclusive.

An important point to note is that only those lower
branches that actually have copies of the affected memory
location are involved in the coherency traffic. The section
connected with Mc21 does not see any invalidates or flushes
and thus sees no additional traffic load on its buses. Thus cache
coherency is maintained throughout the system without a
significant increase in bus traffic, and lower level pieces of the
multiprocessor are isolated from each other as much as
possible. The combined effect of traffic isolation at the low
levels through multiple buses, traffic reduction at the higher
levels through hierarchical caches, and limitation of coherency
control to those sections where it is necessary results in a large
multiplication of bandwidth with full shared memory and
automatic coherency control.

F l u s h ' ~ ~ Flush

Wdte ~ s~o ~-~

FSSq

S20

21 Sll 22 S12

Figure 6: Handling of a Read Request
in the Presence of Dirty Data

The Cluster Concept

Distributing memory amongst the groups of processors
can significantly reduce global bus traffic and average latencies.
Remote requests for local memory are routed through the local
shared bus, using a special adapter board to provide coherency
control. This later concept will be referred to as the cluster
architecture, as each bottom level bus forms a complete
multiprocessor cluster with direct access to a bank of cluster
local memory.

There are several advantages to the cluster architecture. It
allows code and stacks to be kept local to a given cluster, thus
leaving the higher levels of the system for global traffic. Each
process can still be run on any of the local cluster's processors
with equal ease, thus gaining most of the automatic load
balancing advantages of a tightly coupled multiprocessor, but
can also be executed on a remote cluster when necessary.
Because of the local cache memories, even a process running
from a remote cluster will achieve close to maximum
performance.

The cluster architecture can also help with the
management of global, shared accesses as well. The iterative
nature of many scientific algorithms causes the global accesses
to exhibit poor cache behavior. But because the access patterns
are highly predictable, it is often the case that globals can be
partitioned to place them in the clusters where the greatest
frequency of use will be. Thus the cluster approach can take
advantage of large grain locality to overcome the poor cache
behavior of the global data resulting in shorter access latencies
and less global bus traffic than a straight hierarchical cache
scheme.

As seen in Figure 7, accesses to data stored in remote
clusters proceed in a fashion similar to that of a straight
hierarchical cache system. The Cluster Caches form the second
level of caches and provide the same filtering and coherency
control for remote references as the second level caches of the
hierarchical scheme. After reaching the top (Global) level of the
hierarchy, the requests will be routed down to the cluster which
contains the desired memory location, and will pass through
that cluster's shared bus. Since the private caches on the cluster
bus will also see this access, no special coherency actions are

necessary. For those accesses which go directly to memory in
the same cluster as the originating processor, additional
coherency control is required. To perform this a special adapter
card will be required to keep track of possible remote copies

247

__I__
J
:~2:
d _j

]

o • •

[
Global Nanobus

)

• • •

" - , , . i "
Cluster

Nanobuses

, ._ l_ , [,
, Mc2,

[- r - ' rq...r
¢ <

Key :

P Processor ~ Main Memory

McI Processor Private Cache S R Routing Switch

Mc2 Optional Cluster Cache

Figure 7: Multiprocessor Structure Composed of Shared Bus
Multiprocessor Clusters

and whether a remote copy has exclusive access or not. A
diagram of the states required for each location in the adapter
card is shown in Figure 8. If a local write is received, and the
adapter card determines that a remote copy might exist, then an
invalidate request is sent up the hierarchy to perform the
function that the write request would perform in a pure
hierarchy. If a local read is detected for a location for which the
existence of a remote exclusive use copy is recorded, then a
flush request must propagate up the hierarchy. With these
extensions, the cache coherency schemes developed for
hierarchical structures can be used to provide intercluster
coherency as well.

Local Write / Remote Invalidate

Figure 8: Cluster Adapter State Diagram for Extended
Goodman Caching Algorithm

Simulation Experiments

Simulations were done to analyze the performance of
medium and large scale, hierarchically clustered
multiprocessors. The simulation techniques employed are
described in detail in 15, and use statistics derived from address
traces of actual benchmark programs. Three different size
muhiprocessors were examined: a single cluster system with 16
processors and an eight cluster system with 128 processors.
The processors simulated are typical 1 MIPS, 32 Bit,
microprocessors. These simulations indicate that the
muhiprocessor architectures developed in this paper can
provide high performance parallel computation.

In performing this research, address traces of a number
of different benchmark programs were first collected (from a
V A X ~) . These traces were than statistically analyzed to
develop approximate stochastic models of the processor's
reference patterns. The stochastic models were then used to

drive the simulator. Comparisons with the original traces
indicate that the cache miss ratios tended to be overstated by up
to a factor of three. In other words, the stochastic models did
not capture all of the locality inherent in the original traces. On
the other hand, trace driven cache simulations often understate
miss ratios as compared to actual system measurements, so the
results of this study err on the conservative side.

The results of measurements taken with three different
benchmark programs are reported on here. One of the
programs is a parallel, iterative, asynchronous partial
differential equation (PDE) solver. The second is a parallel
implementation of the Quick Sort algorithm, while the third
benchmark program is the simulator itself. The goal of these
experiments was to measure the reductions in performance due
to hardware contention while ignoring algorithm inefficiencies.
Thus, in the case of the Quick Sort algorithm, only that phase
of the computation where all processors are engaged in sorting
operations was modeled, eliminating the logarithmic start up
phase.

Because the eight cluster multiprocessor architecture uses
large (1 Megabyte) cluster caches, the benchmarks must be
large. Hence the PDE traced was of the solution of a 30 by 480
element matrix, and the Simulator traced was of the simulation
of a 16 processor muhiprocessor. The PDE trace comprised
6.7 million memory references, while the Simulator trace
comprised 4 million.

It is necessary to pick benchmarks which address a
larger range of memory addresses than will fit in the cache.
Otherwise an unrealistically high hit ratio will result. With 16
processors, the PDE global data matrix requires almost 2
Mbytes of memory, twice what the cluster level cache holds.
Similarly, 16 processors executing the new Simulation
benchmark require nearly 6.5 Mbytes of memory. Thus both of
these benchmarks stress the entire multiprocessor architecture.

Single Cluster Results

A single cluster system was the first to be simulated,
using three address traces derived from benchmarks. Two
were true multiprocessor algorithms: a parallel Quick Sort and
partial differential equation (PDE) solver. They were simulated
both with and without the inclusion of coherency effects. The
simulated system consisted of 16 processors and eight memory
modules.

Benchmark Simulated Bus Memory

Time {sec) Speedup Util. Util.

PDE 5.190 15.75 13% 6%

Quick Sort 1.285 15.05 16% 8%

Simulator 3.210 15.85 24% 12%

Figure 9: Results for 16 Processor Multiprocessor Simulations

Figure 9 summarizes the results for the single cluster
systems. The percentage of bus and memory bandwidth
utilized by each configuration is included to indicate where
saturation is occurring. Note that with eight memory modules,
the total memory bandwidth is twice that of the bus, so the bus

utilization is twice that of the memory system utilization. In
spite of the bus' reduced bandwidth the bus never becomes a
bottle neck in these simulations, having at most a 24%
utilization factor.

In general, it is desirable to maintain low required bus
bandwidth. Contention for the shared bus causes dramatic
increases in access delays when bus utilization exceeds 80%,

248

due to queueing effects. Even at lower bus utilizations there are
small but measurable increases in effective access times. Thus,
the lower the bus utilization, the lower the additional delays due
to bus contention. Since write-deferred caching results in
significantly lower bus utilization, it is the caching protocol of
choice for high performance systems.

Benchmark Simulated Accesses
Time (s) per proc. Speedup

PDE W-D
1 proc. N/C 1.453 91942 1.00

16 proc. N/C 1.469 91942 15.83
16 proc. C 1.472 93769 15.79

QSort W-D
1 proc. N/C 1.209 74857 1.00

16 proc. N/C 1.216 74857 15.91
16 proc. C 1.285 160108 15.05

Figure 10: Effects of Cache Coherency on Multiprocessor
Performance

Two of the benchmarks are actual multiprocessor
algorithms with shared global data. As such they actively share
some regions of memory and require the services of the cache
coherency algorithms to prevent stale data. The effects of the
shared data on the performance of these two benchmarks can
be seen from the data presented in Figure 10. Bus traffic
increases almost 2%, but the amount of traffic increase is still
so small that the execution time is essentially unchanged. There
is a more pronounced effect with the Quick Sort benchmark,
with simulated execution times of the benchmark increasing by
five percent. Coherency caused invalidations contributed less
than 10% to the total memory accesses per processor, thus
producing a relatively small decrease in performance. This is a
significant finding, since it indicates that the necessity of
maintaining cache coherency will not prove to significantly
penalize performance. This means that system designers need
not worry about some inefficiency when actual data sharing
occurs, provided that there is no penalty associated with
exclusive access or read only sharing. Thus multi-cache
coherency algorithms should concentrate on minimizing impact
in the non-shared case, rather than the actively shared one.

Eight Cluster Results

Simulations of the large, eight cluster architecture were
performed. Since the Quick Sort benchmark was too small to
adequately test the large multiprocessor system, it was dropped
from the experiments. The large architecture was simulated
with both the PDE and Simulator benchmarks.

Benchmark Cluster Hit Ratio

PDE .5740
Simulator .6009

Figure 11: Cluster Cache Hit Ratios

Of particular interest is the hit ratios achieved with the
large cluster caches. Figure 11 shows the cluster cache hit
ratios achieved with the two benchmarks. Due to Virtual
memory limitations of the computer system on which these
simulations were done, only a 1 Megabyte cache rather than the
2 Megabyte cache anticipated was simulated. Also, as
mentioned earlier, the statistical methods used do not
adequately capture address stream's locality. The methods are
especially pessimistic where Global data is concerned, which is
the primary type of data seen at the cluster cache level. Thus the
hit ratios shown in Figure 11 are rather pessimistic.

As pointed out in the section describing the proposed
architecture, the cluster level caches must insure that all remote
memory locations for which one or more local caches have
copies must also exist in the cluster cache. They do this by
placing an invalidation request on the cluster bus for any
remote memory location copy which they are invalidating in
their own cache (for instance, because the copy is being
replaced by another). These invalidations could seriously
impair the performance of a hierarchical multiprocessor by
lowering local cache hit ratios if they occurred too frequently.
Figure 12 shows the number of cluster invalidates generated by
the cluster caches and indicates how the number of such
invalidations compares to the total amount of memory requests
produced by the local caches.

Benchmark Req Invals Ratio

PDE 8,278 4,291 52%

Simulator 9,569 2,549 27%

(All Amounts in Thousands)

Figure 12: Relative Frequency of Cluster Level Invalidation
Requests as Compared to Total Cluster Traffic

Figure 12 indicates that the cluster invalidations are a
relatively large percentage of the total cluster traffic. Though
this is partly due to the overstated cluster cache miss ratio, it is
also due to the large traffic reduction achieved by the local
caches. At first glance the large number of invalidation requests
would appear to have a significant impact on local hit ratios.
Since degradations in local hit ratios would significantly reduce
system performance, the large number of invalidations might
be a problem.

Benchmark Simulated Bus Utilization
Time (sec) SPeedup Local Global Serial

PDE 6.384 102.0 26% 61% 58%
Simulator 3.909 104.3 37% 66% 60%

Figure 13: Eight Cluster Muhiprocessor Results
(Single Global Bus)

On further analysis, the cluster invalidates are seen not to
be a problem. In the experiments only the shared globals are
subject to cluster level invalidations. Experiments have
shown 15 that shared globals already exhibit poor hit ratios.
The cluster invalidates will only produce poor local cache hit
ratios if the locations they are invalidating still reside in a local
cache and if the processors connected with the local caches
request the locations before they would have been replaced in
the normal course of operation. The low initial hit ratios make
the above sequence unlikely, so that any additional reduction in
hit ratios should be small. Since hit ratios are already poor for
shared globals, a small reduction in hit ratio will not
significantly reduce performance.

The 128 processor results are shown in Figure 13.
Measurements were taken of total simulated run time, cluster
bus utilization, global bus utilization, and serial link utilization.
Speedup is calculated as the time taken to execute a single
processor version of the benchmark divided by the time taken
to execute the 128 processor version and multiplied by the
number of processors (128).

Examining Figure 13 it is evident that good performance
is achieved under most circumstances. The simulations indicate
speedups of around 100 out of 128. The global bus is heavily
used, but is not saturating. Larger cluster level caches (with
better hit ratios) would improve the performance of both
systems.

249

There are some other possible architectural changes that
might improve perfomaance. Somewhat better speedups would
occur with dual global buses, but much of the reduction in
speedup is due to the increase in local bus traffic and not the
existence of the global bus. An architecture in which each
memory was dual ported and requests from remote clusters
could avoid the local cluster bus would noticeably improve
performance for write-through systems. However, the
additional complexity of two port memories, especially with
regard to cache coherency, would not be worth the additional
performance gain.

Analytic Modeling

The simulations reported on in the previous section
demonstrated that the proposed hierarchical multiprocessor
architecture can achieve good performance with over one
hundred processors. While sinmlations can provide more
detailed, and hence more accurate prediction of behavior than
analytic modeling, they require substantially more computing
resources. In this research, resource limitations restricted the
size of second level caches, as well as range of system
parameters that could be simulated. In order to rapidly explore
a larger design space, analytic models of the hierarchical
multiprocessor system were constructed.

Model Description

The analytical models start with assumptions about the
memory request rate of processors, then calculate the amount
of traffic on all links and busses. Based on the traffic
calculations, values for link and bus utilization are derived. A
simple queueing model calculates average queueing delay from
the utilization figures, which is then added to bus and link
transport delays to determine overall read request latency.
Finally, an estimate of the performance reduction due to the
Ultra Multi architecture is calculated.

Models were developed of private and shared cache
behavior, of Global Bus Watcher (GBW) and Check out Tag
Store (CTS) behavior, and of bus and link behavior. A model
of the traffic patterns of the CPU's and their response to the
delays encountered in memory accesses is included. Though
not all details of the system are modeled, an attempt has been
made to have the models produce pessimistic results where
ever approximations are encountered. A brief outline of the
equations used in the models will now be given.

The models begin with calculations of traffic flow at the
different levels of the architecture, based on offered processor
traffic and cache transfer ratios. The traffic flow calculations
are then used to determine bus and link utilization, and hence
bus and link access delays. Finally, total access delays for
cache read misses are calculated, and used to determine
effective processor speed.

Processor generated traffic is based on measured or
estimated memory accessing frequency for given speed
processors. The private cache hit and transfer ratios are
extrapolated from actual system measurements and simulations.
The rate of state change requests produced by GBWs and
CTSs is also modeled. These state change requests are added to
the total traffic on links and buses where they are placed.

Some of the requests generated by processors are
assumed to be for the cluster in which the processor is located,
and some for other clusters. The model takes a conservative

approach and assumes that memory locations accessed by the
processor are uniformly distributed throughout the system.
Thus, in an eight cluster system, 7/8ths of the requests would
be for other clusters. In reality, it may be possible to keep more
memory locations in the processor's cluster, significantly
reducing the fraction of non local requests.

Once the level of traffic at each link and bus has been
calculated, access delays can be determined. Access delays due
to links and buses are modeled as a transit delay plus a
queueing delay. Since the links are assumed to be high speed
serial connections, the transit time is mostly due to serialization
time, which is proportional to message length. The queuing
delay is calculated using the M/M/1 queuing delay formula and
the calculated link utilization. For buses, a commercial bus was
modeled, which has fixed transit delays and exhibits M/D/1
queuing properties.

Finally, the total effective access time as seen by
processors is calculated. This time is used to determine the
reduction in processor performance over an ideal, instant
response memory system.

Performance Predictions

Processor performance parameters from several present
and future microprocessors were used to analyze the Ultramax
architecture. The processors range in performance from 2
MIPS to 13 MIPS. Private cache sizes commensurate with the
technology level of the processor chips was assumed. Since
RAM densities have been keeping pace with microprocessor
improvements, it is expected larger caches sizes will be
available at the same time that the faster processors are
available. Figure 14 indicates some of the parameters used in
the analytic modeling.

Processor Speed Cache TYpe Cache Size Miss Ratio
2.0 MIPS Wrt-Thm 64 K .05
3.0 MIPS Wrt-Thru 256 K .025
5.0 MIPS Wrt-Back 256 K .025
7.5 MIPS Wrt-Back 1024 K .0125

13.0 MIPS Wrt-Back 1024 K .0125

Figure 14: Processor Parameters used in Modeling

The models have been used to analyze a number of
system parameters, such as line size and link bandwidth. Of
particular interest is the required cluster cache size. The cluster
caches are used both to hide the latency of the interconnection
network and to reduce global bus traffic to the point were a
single bus of similar bandwidth to that of the local buses can be
used. This implies that the cluster cache transfer ratio must be
about l/N, in a system with N clusters. The actual ratio
required is 1/(N-l), since any global bus traffic shows up twice
on the local buses. For a write-deferred cache with one of the
multicache coherency protocols, simulations have shown that
the miss ratio must be about 20% lower than the desired
transfer ratio.

For an eight cluster system, the required transfer ratio is
1F/th, which can easily be obtained with a miss ratio of 1/9. At
first glance, a miss ratio of 1/9 seems quite easy, since even 16
Kbyte caches can exceed that. However, the request stream that
misses the private caches contains considerably less locality
than a typical processor request stream. In fact, the intrinsic
performance of the cluster cache has to be about 9 times better
than that of the private cache to achieve a miss ratio of 1/9th.
This effect is illustrated in Figure 15, where relative system
performance (as a fraction of ideal performance) is plotted

250

against cluster cache intrinsic hit ratios for the five candidate
processors. The data of Figure 15 is for a ten cluster system.
The faster processors, which have larger private caches,
require substantially better intrinsic cluster cache performance
to achieve acceptable results.

 19o t 2M, [-~l=~ "~ 3 Mli~'~ \
5 MIPS ~

.06% .08%.1% .2% .4%.6%.8%1% 2%

Miss Ratio - Log Scale

Figure 15" System Performance vs. Cluster Cache Miss Ratio

The data from Figure 15 indicates that the cluster cache
should have an intrinsic miss ratio of less than .02 for the
slowest processor to .003 for the fastest. Extrapolations from
measured data for smaller caches indicates that the required
intrinsic cluster cache hit ratios can be achieved with a caches
ranging from around 8 Megabytes to 32 Megabytes in size.
Since the cluster caches can be made with dynamic RAMs,
such large cache sizes are technically feasible.

In Figure 16, the total performance for systems utilizing
the 13 MIPS processors is shown. Each curve represents a
different intrinsic cluster cache miss ratio. Even if the intrinsic
cluster cache miss ratio is only .004, a system of 1000 real
MIPS can be achieved.

3000

2000

1000

-t~ Ideal
0.1%

--- o.2~o . f ~ ' -

i i l i i i

0 2 4 6 8 10 12

Clusters

Figure 16: Total System MIPS vs. Number of Clusters

Conclusions

This paper has demonstrated the effectiveness of a
hierarchical multiprocessor architecture. The simulation results
obtained showed that the hierarchical multiprocessor computer
structure achieves good speedup with suitable parallel
algorithms. A simulated 128 processor system achieved a
speedup of 104 executing the Simulator benchmark, a

processor efficiency of 80%. Analytic models have predicted
processor efficiencies as high as 98% compared to single

From the results, the following conclusions can be
drawn about the multiprocessor architecture described in this
paper:

The use of hierarchical caches allows the expansion
of the cache coherency techniques beyond a single
cluster.

The degradation in performance due to multicache
coherency maintenance is small, even for very large
systems.

Hierarchical caching further reduces the global bus
bandwidth requirements and effective access time, in
most situations.

Because of the poorer hit ratios and cache transfer
ratios, the impact of shared global data on the global
shared bus may still be a problem with very large
systems.

The processors assumed in the simulation experiments
are rated at approximately one million instructions per second.
Extrapolating from the data for the PDE simulation shown in
Figure 13, it appears that the hierarchical cache and bus
structure simulated could support processors about three times
faster (3 MIPS), provided a second global bus was used. This
would result in a local bus utilization of 78%, a global bus
utilization of 90% for each bus, and a serial link utilization of
87%. These utilization numbers are significantly overstated,
since the simulated cluster cache was one eighth the size
feasible with current technology.

The analytical modeling indicates that very high
performance multiprocessors are possible. Using the 4 Mbit
dynamic RAMS (allowing construction of 64 Mbyte cluster
caches) and 13 MIPS processors that will soon be available, a
shared memory multiprocessor of well over 1000 MIPS will be
possible. Even including the effects of private and cluster cache
misses, memory access times, and intercluster network delays,
processor performance of 85% - 90% of optimum is
obtainable. Figure 17 shows one possible configuration of a
128 processor system using the cluster architecture.

Global Switch

Figure 17: Cluster Connected, 128 Processor,
Shared Memory Multiprocessor

251

References

[1]

[2]

Anderson, G.A., and Jensen, E.D., "Computer
Interconnection Structures: Taxonomy, Characteristics,
and Examples," Computing Surveys 7(4):197-213,
December, 1975.

Baer, J.L., "A Survey of Some Theoretical Aspects of
Muhiprocessing," Computing Surveys 5:31-80, March,
1973.

[3] Censier, L.M. and Feautrier, P., "A New Solution to
Coherence Problems in Muticache Systems," IEEE
Transactions on Computers (C-27), December, 1978.

[4] Dubois, Michael, and Briggs, F.A., "Effects of Cache
Coherency in Muhiprocessors," IEEE Transactions on
Computers C-31(11), November, 1982.

[5] Feng, T., "A Survey of Interconnection Networks,"
Computer 14(12):12-27, December, 1981.

[61 Frank, S.J., "A Tightly Coupled Muhiprocessor System
Speeds Memory-Access Times," Electronics 164-169,
January, 1984.

[71 Goodman, J.R., "Using Cache Memory to Reduce
Processor-Memory Traffic," in l Oth Annual Symposium
on Computer Architecture. 1983.

[8] Haynes, L.S., Lau, R.L., Siewiorek, D.P., and Mitzell,
D.W., "A Survey of Highly Parallel Computing,"
Computer 9-24, January, 1982.

[9] Papamarcos, M.S., and Patel, J.M., "A Low Overhead
Coherence Solution for Multiprocessors with Private
Cache memories," In The l l th Annual Symposium on
Computer Architecture. 1984.

[10] Pohm, A.V., and Agrawal, O.P.,
High-Speed Memory Systems,
Reston Publishing Company, Inc. 1983.

[11] Rudolph, L., and Segall, Z., "Dynamic Decentralized
Cache Schemes for MIMD Parallel Processors," In The
11th Annual Symposium on Computer Architecture.
1984.

[12] Sweazey, P. and Smith, A.J., "A Class of Compatible
Cache consistency Protocols and their Support by the
IEEE Futurebus," In The 13th Annual International
Symposium on Computer Architecture, pp. 414-423,
June 1986

[13] Tang, C.K., "Cache System Design in the Tightly
Coupled Muhiprocessor System," In National Computer
Conference, Proceedings, AFIPS, 1976.

[14] Thurber, K.J., "Interconnection Networks-A Survey and
Assessment," In National Computer Conference,
Proceedings, AFIPS, 1974.

[15] Wilson, A.W., Organization and Statistical Simulation of
Hierarchical Multiprocessors, PhD. Thesis, ECE
Department, Carnegie-Mellon University, Pittsburgh, PA,
August, 1985.

252

