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Abstract 

A new, large scale multiprocessor architecture is 
presented in this paper. The architecture consists of hierarchies 
of shared buses and caches. Extended versions of shared bus 
multicache coherency protocols are used to maintain coherency 
among all caches in the system. After explaining the basic 
operation of the strict hierarchical approach, a clustered system 
is introduced which distributes the memory among groups of 
processors. Results of simulations are presented which 
demonstrate that the additional coherency protocol overhead 
introduced by the clustered approach is small. The simulations 
also show that a 128 processor multiprocessor can be 
constructed using this architecture which will achieve a 
substantial fraction of its peak performance. Finally, an analytic 
model is used to explore systems too large to simulate (with 
available hardware). The model indicates that a system of over 
1000 usable MIPS can be constructed using high performance 
microprocessors. 

Introduction 

Although the computation speeds of conventional 
uniprocessors have increased dramatically since the first 
vacuum tube computers, there is still a need for even faster 
computing. Large computational problems such as weather 
forecasting, fusion modeling, and aircraft simulation demand 
substantial computing power, far in excess of what can 
currently be supplied. While uniprocessor speed is improving 
as device speeds increase, the achieved performance levels are 
still inadequate. Thus researchers have been seeking alternative 
architectures to solve these pressing problems. 

Many of  these proposed solutions involve the 
construction of multiprocessors, systems which link a large 
number of essentially Von Neumann machines together with a 
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high performance network 2,3. Unlike multicomputers, which 
have also been proposed, multiprocessors provide a shared 
address space, allowing individual memory accesses to be used 
for communication and synchronization. All multiprocessors 
require an interconnection mechanism which physically 
implements the shared address space. Numerous proposals for 
such structures appear in the literature, covering a wide range 
of performance, cost and reliability 1,5,8,14. 

In a multiprocessor there are two sources of delay in 
satisfying memory requests, the access time of the main 
memory and the communication delays imposed by the 
in terconnect ion network.  If  the bandwidth of  the 
interconnection network is inadequate, the communication 
delays are greatly increased due to contention. Both the 
bandwidth and access time limitations of interconnection 
networks can be overcome by the use of private caches. By 
properly selecting cache parameters, both the transfer ratios 
(the ratio of memory requests passed on to main memory from 
the cache to initial requests made of the cache), and effective 
access times can be reduced 4. Transfer ratio minimization is 
not the same as hit ratio maximization since some hit ratio 
improvement techniques, (i.e. prefetch) actually increase the 
transfer ratio. 

While private caches can significantly improve system 
performance, they introduce a stale data problem (often termed 
the multicache coherency problem) due to the multiple copies of 
main memory locations which may be present. It is necessary 
to ensure that changes made to shared memory locations by any 
one processor are visible to all other processors. One solution 
is to use a central cache controller to arbitrate the use of shared 
cache blocks 3,13 and thus prevent the persistence of obsolete 
copies of memory locations. While the central controller 
enforces multicache coherency, it constitutes a major system 
bottleneck of its own, which makes it impractical for large 
multiprocessor systems. 

When a single shared bus is used for processor to 
memory communication, each private cache is able to observe 
the requests generated by other caches in the system. Thus the 
use of a shared bus allows the possibility of distributed cache 
coherency control algorithms. Recently, several proposals for 
multicache coherency algorithms which utilize a common 
shared bus have been published 6,7,10,11. In these systems 
each cache monitors the transactions taking place on the shared 
bus and modifies the state of its cached copies as necessary. 
The important feature of the new multicache coherency 
algorithms is that no central cache controller is required, rather 
coherency control is distributed throughout the system. 
Furthermore, the overhead due to the extra bus traffic required 
for coherency control is negligible. Since there is only one 
bus, the ultimate expandability of the system is limited. 
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Because the published multicache coherency algorithms 
are limited in expandability by the need for a common shared 
bus, it is desirable to extend the algorithms to multiple bus 
architectures. This paper proposes one such extension which 
allows a large architecture to be built. It consists of a hierarchy 
of buses and caches which maintain multicache coherency 
while partitioning memory requests among several buses. As 
will be shown, the benefits of the shared bus, multicache 
coherency algorithms are maintained, while much larger 
systems are made possible. 

Multicache Coherency Algorithms for Shared Buses 

Before introducing the hierarchical approach for large 
multiprocessor systems, a brief review of shared bus, 
multicache coherency algorithms is in order. Such algorithms 
attempt to keep all copies of shared memory locations identical, 
at least to the extent that no transient differences are visible to 
the processors. If a processor modifies its cache's copy of the 
memory location, all other copies must be invalidated. With 
non shared bus switching schemes the traffic due to 
invalidation messages can become quite large. As will be seen, 
shared buses provide these messages implicitly. 

Write-Through 

The simplest scheme for avoiding coherency problems 
with a shared bus multiprocessor is to use write-through 
caches. With a write-through cache, each time a private cache's 
copy of a location is written to by its processor, that write is 
passed on to main memory over the shared bus. As indicated in 
the state diagram of Figure 1, each memory location has two 
states: the valid state, which indicates that a copy resides in the 
cache, and the invalid state, where the only copy is in main 
memory. Transitions to the valid state occur every time a 
location is accessed by the cache's associated processor. 
Transitions from the valid state occur every time a cached 
location is replaced by a different location, and every time a 
write from another processor for the memory location is 
observed on the backplane bus. 

The transition to invalid when a bus write is observed for a 
cached location is the mechanism by which cache coherency is 
maintained. If any caches contain a copy of the memory 
location being written to, they will invalidate it. If none of the 
other caches ever actually use that location again, then the 
coherency scheme produces no additional bus traffic. Of 
course, one or more of the processors whose caches were 
purged of copies of the location may request that location later 
and extra main memory reads will result. Simulation 
experiments reported later in this paper show that these extra 
reads are infrequent and contribute very little extra bus traffic. 

Processor Read 
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i ~ ~ J ~ Replacemeaat'--""--- ~ 
Obse~'ed Bus Read 

Figure 1: State Diagram for a Cache Location in a 
Multiprocessor Utilizing Private Write-Through Caches 

A second copy of each cache's tag store may be required 
to prevent saturation of the private caches while monitoring bus 
traffic. Because the caches are write-through, the amount of 
traffic on the bus will never be less than the sum of all the 
processor-generated memory writes, which typically comprise 
15%-20% of memory requests. Write-through caching is 
highly effective where limited parallelism (on the order of 20 

medium speed processors) is required and is simple to 
implement. 

Write-deferred 

Rather than pass all write requests on to main memory, a 
cache can simply update its local copy and defer updating main 
memory until later (such as when the modified location is 
replaced by a new location). Uniprocessor designers have 
found that write-deferred caches can significantly reduce the 
amount of main memory traffic from that of write-through 
caches. Current practical cache sizes produce reductions two to 
four over write-through caches. It should be expected that two 
to four times as many processors could be added to a shared 
bus multiprocessor utilizing such caches. In a multiprocessor, 
the necessity of coherency maintenance results in a more 
complicated system with higher bus utilization rates than a pure 
write-deferred system, but still much lower utilization per 
processor than write-through. 

There are presently several known variations of shared 
bus oriented write-deferred caching algorithms which maintain 
cache coherency 12. One of the first is the write-once scheme 7 
which utilizes an initial write-through mode for recently 
acquired copies to invalidate other caches in the event of a local 
modification to the data. Figure 2 presents a diagram of the 
state transitions which occur for a memory location with 
respect to a cache. A given memory location is in the Invalid 
state if it is not in the cache. When a main memory location is 
initially accessed it enters the cache in either the Valid state (if a 
read) or Reserved state (if a write). A location already in the 
Valid state will enter the Reserved state if a processor write 
access occurs. A processor write which causes a transition into 
the Reserved state will be passed through the cache and onto 
the shared bus. Subsequent processor writes to that location 
will place it in the Dirty state, indicating that the cache's copy is 
the only correct copy of the location. 
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Figure 2: State Diagram for a Cache Location in a System 
Utilizing Goodman Write-Deferred Private Caches 

Just as in write-through caching, all caches monitor the 
bus for writes which might affect their own data and invalidate 
it when such a write is seen. Thus, after sending the initial 
write-through, a cache is guaranteed to have the only copy of a 
memory location and can write at will to it without sending 
further writes to the shared bus. However, the cache must 
monitor the shared bus for any reads to memory locations 
whose copy it has been modifying, for after such a read it will 
no longer have an exclusive copy of that location. If only the 
initial write-through write has occurred, then the only action 
necessary is for the cache which had done the write to forget 
that it had an exclusive copy of the memory location. If two or 
more writes have been performed by the cache's associated 
processor, then it will have the only correct copy and must 
somehow update main memory before main memory responds 
to the other cache's read request. 

There are several variations on this basic protocol which 
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could be used to achieve cache coherency with write-deferred 
caches. The initial write-through can be replaced with a special 
read cycle, which returns the most recently modified copy of 
the memory location, and invalidates all others 6. An additional 
bus wire can be added which is asserted by any cache which 
has a copy of the location when a read request is observed, 
allowing the requesting cache to transition directly to the 
Reserved state if no other cache reports having a copy-. 

Extensions for Even Larger Systems 

While a single high speed shared bus can support quite a 
few processors when private write-deferred caches are used, 
the bus eventually becomes a bottleneck. A method of 
extending the above mentioned cache coherency schemes to 
configurations of multiple shared buses will now be developed. 
The method involves the use of a hierarchy of caches and 
shared buses to interconnect multiple computer clusters. 

Hierarchical Caches 

The simplest way to extend shared bus based 
multiprocessors is to recursively apply the private cache - 

shared bus approach to additional levels of caching. As shown 
in Figure 3, this produces a tree structure with the higher level 
caches providing the links with the lower branches of the tree. 
The higher level caches act as filters, reducing the amount of 
traffic passed to the upper levels of the tree, and also extend the 
coherency control between levels, allowing system wide 
addressability. Since most of the processor speedup is achieved 
by the bottom level caches, the higher level caches can be 
implemented with slower, denser dynamic RAMs identical to 
those used by the main memory modules. Average latency will 
still be reduced, since higher level switching delays will be 
avoided on hits. To gain maximum benefit from these caches, 
they need to be large, an order of magnitude larger than the 
sum of all the next lower level caches which feed into them. 
But since they can be made with DRAMs, this will not be a 
problem. 

The second and higher levels of caches in the hierarchical 
multiprocessor require some extensions to maintain system 
wide multicache coherency. The most important is the 
.provision that any memory locations for which there are copies 
in the lower level caches will also have copies in the higher 
level cache. As shown in the state diagram of Figure 4, this is 
accomplished by sending invalidates to the lower level caches 
whenever a location is removed from the higher level cache. 
Because all copies of memory locations contained in the lower 
level caches are also found in the higher level cache, the higher 
level cache can serve as a multicache coherency monitor for all 
of the lower level caches connected to it. 

Figure 3: Hierarchical Multiprocessor with two or more Levels 
of Private Caches and Shared Buses 
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Figure 4: State Diagram for a Second Level Cache Using the 
Extended Goodman Multicache Coherency Algorithm 

Figure 4 shows how the Goodman algorithm is extended 
for higher level caches. Each cache location still has four 
states, just as in the basic Goodman cache (see Figure 2). 
However the cache will now send invalidation or flush requests 
to the lower level caches when necessary to maintain 
multicache coherency. An invalidation request is treated in the 
same way as a bus write by the lower level cache, and a flush 
request is treated in the same way as a bus read. 

To understand how multicache coherency control is 
achieved in a hierarchical shared bus multiprocessor using the 
Goodman cache coherency protocol, consider the operation of 
a two level structure when confronted with accesses to shared 
data. As indicated in Figure 5, when processor P1 issues an 
initial write to memory, the write access filters up through the 
hierarchy of caches, appearing at each level on its associated 
shared bus. For those portions of the system to which it, is 
directly connected, invalidation proceeds just as described ]'or 
the single level case. Each cache (such as Mcl2 connected with 
processor P2) which has a copy of the affected memory 
location simply invalidates it. For those caches at higher levels 
of the hierarchy, the existence of a particular memory location 
implies that there may be copies of that location saved at levels 
directly underneath the cache. The second level cache Mc22 in 
the figure is an example of such a cache. When Mc22 detects 
the write access from P1 on bus $20, it must not only 
invalidate its own cache but send an invalidate request to the 
lower level caches connected to it. This is readily accomplished 
by placing an invalidate request on bus S12, which is 
interpreted by caches Mcl6, Mcl7 and Mcl8 as a write 
transaction for that memory location. These caches then 
invalidate their own copies, if they exist, just as though the 
invalidate request was a write from some other cache on their 
shared bus. The final result is that only the first and second 
level caches associated with the processor which generated tile 
write (Mcl 1 and Mc20) have copies of the memory location. 
Subsequent writes will stay in the first level cache, or filter up 
to the second level cache if local sharing or context swapping 
o c c u r s .  

Other shared bus coherency protocols can be modified to 
work in a hierarchical multiprocessor. For example, the 
exclusive access read of the Synapse scheme can serve to 
invalidate other cache copies in the same way as the Goodman 
initial write. An additional benefit is that the exclusive read 
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Figure 5: Operation of a Hierarchical Cache Structure when 
Initial Write-Through Occurs 

returns the very latest copy of the memory location, so that 
read/modify/write operations automatically give correct results. 

Once a cache location has obtained exclusive access to a 
location, and has modified the contents of that location, another 
processor may request access to the location. Since the location 
will not reside in its cache, the read request will be broadcast 
onto the shared bus. As with the single level scheme all caches 
must monitor their shared buses for read requests from other 
caches and make appropriate state changes if requests are made 
for locations for which they have exclusive copies. In addition, 
if their own state indicates that there might be a dirty copy in a 
cache beneath them in the hierarchy, then they must send a 
"flush" request down to it. These flush requests must 
propagate down to lower levels of the hierarchy and cause the 
lower level caches to modify their state, just as though an actual 
read for that location had been seen on their shared buses. 
Figure 6 indicates what can happen in a typical case. Assume 
that caches Mcl 1 and Mc20 have exclusive access to a location 
as a result of the write sequence from the previous example. If 
processor P7 now wishes to read that location, the request will 
propagate up through the hierarchy (there will be no copies in 

any caches directly above P7 so the request will "miss" at each 
level). When it reaches bus $20, cache Mc20 will detect the 
need for relinquishing exclusive access and possibly flushing 
out a dirty copy of the memory location. It will send a flush 
request down to bus S10 where cache Mc l l  will relinquish 
exclusive access and send the modified copy of the memory 
location back up the hierarchy. Depending on which flavor of 
write-deferred scheme is used the data will either return first to 
main memory or go directly to cache Mc22 and hence to cache 
Mcl7 and processor P7. The copies in Mc20 and Mcl l  will 
remain, but will no longer be marked as exclusive. 

An important point to note is that only those lower 
branches that actually have copies of the affected memory 
location are involved in the coherency traffic. The section 
connected with Mc21 does not see any invalidates or flushes 
and thus sees no additional traffic load on its buses. Thus cache 
coherency is maintained throughout the system without a 
significant increase in bus traffic, and lower level pieces of the 
multiprocessor are isolated from each other as much as 
possible. The combined effect of traffic isolation at the low 
levels through multiple buses, traffic reduction at the higher 
levels through hierarchical caches, and limitation of coherency 
control to those sections where it is necessary results in a large 
multiplication of bandwidth with full shared memory and 
automatic coherency control. 

F l u s h ' ~ ~  Flush 

Wdte ~ s~o ~-~ 

FSSq 

S20 

21 Sll 22 S12 

Figure 6: Handling of a Read Request 
in the Presence of Dirty Data 

The Cluster Concept 

Distributing memory amongst the groups of processors 
can significantly reduce global bus traffic and average latencies. 
Remote requests for local memory are routed through the local 
shared bus, using a special adapter board to provide coherency 
control. This later concept will be referred to as the cluster 
architecture, as each bottom level bus forms a complete 
multiprocessor cluster with direct access to a bank of cluster 
local memory. 

There are several advantages to the cluster architecture. It 
allows code and stacks to be kept local to a given cluster, thus 
leaving the higher levels of the system for global traffic. Each 
process can still be run on any of the local cluster's processors 
with equal ease, thus gaining most of the automatic load 
balancing advantages of a tightly coupled multiprocessor, but 
can also be executed on a remote cluster when necessary. 
Because of the local cache memories, even a process running 
from a remote cluster will achieve close to maximum 
performance. 

The cluster architecture can also help with the 
management of global, shared accesses as well. The iterative 
nature of many scientific algorithms causes the global accesses 
to exhibit poor cache behavior. But because the access patterns 
are highly predictable, it is often the case that globals can be 
partitioned to place them in the clusters where the greatest 
frequency of use will be. Thus the cluster approach can take 
advantage of large grain locality to overcome the poor cache 
behavior of the global data resulting in shorter access latencies 
and less global bus traffic than a straight hierarchical cache 
scheme. 

As seen in Figure 7, accesses to data stored in remote 
clusters proceed in a fashion similar to that of a straight 
hierarchical cache system. The Cluster Caches form the second 
level of caches and provide the same filtering and coherency 
control for remote references as the second level caches of the 
hierarchical scheme. After reaching the top (Global) level of the 
hierarchy, the requests will be routed down to the cluster which 
contains the desired memory location, and will pass through 
that cluster's shared bus. Since the private caches on the cluster 
bus will also see this access, no special coherency actions are 

necessary. For those accesses which go directly to memory in 
the same cluster as the originating processor, additional 
coherency control is required. To perform this a special adapter 
card will be required to keep track of possible remote copies 
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Figure 7: Multiprocessor Structure Composed of Shared Bus 
Multiprocessor Clusters 

and whether a remote copy has exclusive access or not. A 
diagram of the states required for each location in the adapter 
card is shown in Figure 8. If a local write is received, and the 
adapter card determines that a remote copy might exist, then an 
invalidate request is sent up the hierarchy to perform the 
function that the write request would perform in a pure 
hierarchy. If a local read is detected for a location for which the 
existence of a remote exclusive use copy is recorded, then a 
flush request must propagate up the hierarchy. With these 
extensions, the cache coherency schemes developed for 
hierarchical structures can be used to provide intercluster 
coherency as well. 

Local Write / Remote Invalidate 

Figure 8: Cluster Adapter State Diagram for Extended 
Goodman Caching Algorithm 

Simulation Experiments 

Simulations were done to analyze the performance of 
medium and large scale, hierarchically clustered 
multiprocessors. The simulation techniques employed are 
described in detail in 15, and use statistics derived from address 
traces of actual benchmark programs. Three different size 
muhiprocessors were examined: a single cluster system with 16 
processors and an eight cluster system with 128 processors. 
The processors simulated are typical 1 MIPS, 32 Bit, 
microprocessors. These simulations indicate that the 
muhiprocessor architectures developed in this paper can 
provide high performance parallel computation. 

In performing this research, address traces of a number 
of different benchmark programs were first collected (from a 
V A X ~ ) .  These traces were than statistically analyzed to 
develop approximate stochastic models of the processor's 
reference patterns. The stochastic models were then used to 

drive the simulator. Comparisons with the original traces 
indicate that the cache miss ratios tended to be overstated by up 
to a factor of three. In other words, the stochastic models did 
not capture all of the locality inherent in the original traces. On 
the other hand, trace driven cache simulations often understate 
miss ratios as compared to actual system measurements, so the 
results of this study err on the conservative side. 

The results of measurements taken with three different 
benchmark programs are reported on here. One of the 
programs is a parallel, iterative, asynchronous partial 
differential equation (PDE) solver. The second is a parallel 
implementation of the Quick Sort algorithm, while the third 
benchmark program is the simulator itself. The goal of these 
experiments was to measure the reductions in performance due 
to hardware contention while ignoring algorithm inefficiencies. 
Thus, in the case of the Quick Sort algorithm, only that phase 
of the computation where all processors are engaged in sorting 
operations was modeled, eliminating the logarithmic start up 
phase. 

Because the eight cluster multiprocessor architecture uses 
large (1 Megabyte) cluster caches, the benchmarks must be 
large. Hence the PDE traced was of the solution of a 30 by 480 
element matrix, and the Simulator traced was of the simulation 
of a 16 processor muhiprocessor. The PDE trace comprised 
6.7 million memory references, while the Simulator trace 
comprised 4 million. 

It is necessary to pick benchmarks which address a 
larger range of memory addresses than will fit in the cache. 
Otherwise an unrealistically high hit ratio will result. With 16 
processors, the PDE global data matrix requires almost 2 
Mbytes of memory, twice what the cluster level cache holds. 
Similarly, 16 processors executing the new Simulation 
benchmark require nearly 6.5 Mbytes of memory. Thus both of 
these benchmarks stress the entire multiprocessor architecture. 

Single Cluster Results 

A single cluster system was the first to be simulated, 
using three address traces derived from benchmarks. Two 
were true multiprocessor algorithms: a parallel Quick Sort and 
partial differential equation (PDE) solver. They were simulated 
both with and without the inclusion of coherency effects. The 
simulated system consisted of 16 processors and eight memory 
modules. 

Benchmark Simulated Bus Memory 

Time {sec) Speedup Util. Util. 

PDE 5.190 15.75 13% 6% 

Quick Sort 1.285 15.05 16% 8% 

Simulator 3.210 15.85 24% 12% 

Figure 9: Results for 16 Processor Multiprocessor Simulations 

Figure 9 summarizes the results for the single cluster 
systems. The percentage of bus and memory bandwidth 
utilized by each configuration is included to indicate where 
saturation is occurring. Note that with eight memory modules, 
the total memory bandwidth is twice that of the bus, so the bus 

utilization is twice that of the memory system utilization. In 
spite of the bus' reduced bandwidth the bus never becomes a 
bottle neck in these simulations, having at most a 24% 
utilization factor. 

In general, it is desirable to maintain low required bus 
bandwidth. Contention for the shared bus causes dramatic 
increases in access delays when bus utilization exceeds 80%, 
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due to queueing effects. Even at lower bus utilizations there are 
small but measurable increases in effective access times. Thus, 
the lower the bus utilization, the lower the additional delays due 
to bus contention. Since write-deferred caching results in 
significantly lower bus utilization, it is the caching protocol of 
choice for high performance systems. 

Benchmark Simulated Accesses 
Time (s) per proc. Speedup 

PDE W-D 
1 proc. N/C 1.453 91942 1.00 

16 proc. N/C 1.469 91942 15.83 
16 proc. C 1.472 93769 15.79 

QSort W-D 
1 proc. N/C 1.209 74857 1.00 

16 proc. N/C 1.216 74857 15.91 
16 proc. C 1.285 160108 15.05 

Figure 10: Effects of Cache Coherency on Multiprocessor 
Performance 

Two of the benchmarks are actual multiprocessor 
algorithms with shared global data. As such they actively share 
some regions of memory and require the services of the cache 
coherency algorithms to prevent stale data. The effects of the 
shared data on the performance of these two benchmarks can 
be seen from the data presented in Figure 10. Bus traffic 
increases almost 2%, but the amount of traffic increase is still 
so small that the execution time is essentially unchanged. There 
is a more pronounced effect with the Quick Sort benchmark, 
with simulated execution times of the benchmark increasing by 
five percent. Coherency caused invalidations contributed less 
than 10% to the total memory accesses per processor, thus 
producing a relatively small decrease in performance. This is a 
significant finding, since it indicates that the necessity of 
maintaining cache coherency will not prove to significantly 
penalize performance. This means that system designers need 
not worry about some inefficiency when actual data sharing 
occurs, provided that there is no penalty associated with 
exclusive access or read only sharing. Thus multi-cache 
coherency algorithms should concentrate on minimizing impact 
in the non-shared case, rather than the actively shared one. 

Eight Cluster Results 

Simulations of the large, eight cluster architecture were 
performed. Since the Quick Sort benchmark was too small to 
adequately test the large multiprocessor system, it was dropped 
from the experiments. The large architecture was simulated 
with both the PDE and Simulator benchmarks. 

Benchmark Cluster Hit Ratio 

PDE .5740 
Simulator .6009 

Figure 11: Cluster Cache Hit Ratios 

Of particular interest is the hit ratios achieved with the 
large cluster caches. Figure 11 shows the cluster cache hit 
ratios achieved with the two benchmarks. Due to Virtual 
memory limitations of the computer system on which these 
simulations were done, only a 1 Megabyte cache rather than the 
2 Megabyte cache anticipated was simulated. Also, as 
mentioned earlier, the statistical methods used do not 
adequately capture address stream's locality. The methods are 
especially pessimistic where Global data is concerned, which is 
the primary type of data seen at the cluster cache level. Thus the 
hit ratios shown in Figure 11 are rather pessimistic. 

As pointed out in the section describing the proposed 
architecture, the cluster level caches must insure that all remote 
memory locations for which one or more local caches have 
copies must also exist in the cluster cache. They do this by 
placing an invalidation request on the cluster bus for any 
remote memory location copy which they are invalidating in 
their own cache (for instance, because the copy is being 
replaced by another). These invalidations could seriously 
impair the performance of a hierarchical multiprocessor by 
lowering local cache hit ratios if they occurred too frequently. 
Figure 12 shows the number of cluster invalidates generated by 
the cluster caches and indicates how the number of such 
invalidations compares to the total amount of memory requests 
produced by the local caches. 

Benchmark Req Invals Ratio 

PDE 8,278 4,291 52% 

Simulator 9,569 2,549 27% 

(All Amounts in Thousands) 

Figure 12: Relative Frequency of Cluster Level Invalidation 
Requests as Compared to Total Cluster Traffic 

Figure 12 indicates that the cluster invalidations are a 
relatively large percentage of the total cluster traffic. Though 
this is partly due to the overstated cluster cache miss ratio, it is 
also due to the large traffic reduction achieved by the local 
caches. At first glance the large number of invalidation requests 
would appear to have a significant impact on local hit ratios. 
Since degradations in local hit ratios would significantly reduce 
system performance, the large number of invalidations might 
be a problem. 

Benchmark Simulated Bus Utilization 
Time (sec) SPeedup Local Global Serial 

PDE 6.384 102.0 26% 61% 58% 
Simulator 3.909 104.3 37% 66% 60% 

Figure 13: Eight Cluster Muhiprocessor Results 
(Single Global Bus) 

On further analysis, the cluster invalidates are seen not to 
be a problem. In the experiments only the shared globals are 
subject to cluster level invalidations. Experiments have 
shown 15 that shared globals already exhibit poor hit ratios. 
The cluster invalidates will only produce poor local cache hit 
ratios if the locations they are invalidating still reside in a local 
cache and if the processors connected with the local caches 
request the locations before they would have been replaced in 
the normal course of operation. The low initial hit ratios make 
the above sequence unlikely, so that any additional reduction in 
hit ratios should be small. Since hit ratios are already poor for 
shared globals, a small reduction in hit ratio will not 
significantly reduce performance. 

The 128 processor results are shown in Figure 13. 
Measurements were taken of total simulated run time, cluster 
bus utilization, global bus utilization, and serial link utilization. 
Speedup is calculated as the time taken to execute a single 
processor version of the benchmark divided by the time taken 
to execute the 128 processor version and multiplied by the 
number of processors (128). 

Examining Figure 13 it is evident that good performance 
is achieved under most circumstances. The simulations indicate 
speedups of around 100 out of 128. The global bus is heavily 
used, but is not saturating. Larger cluster level caches (with 
better hit ratios) would improve the performance of both 
systems. 
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There are some other possible architectural changes that 
might improve perfomaance. Somewhat better speedups would 
occur with dual global buses, but much of the reduction in 
speedup is due to the increase in local bus traffic and not the 
existence of the global bus. An architecture in which each 
memory was dual ported and requests from remote clusters 
could avoid the local cluster bus would noticeably improve 
performance for write-through systems. However, the 
additional complexity of two port memories, especially with 
regard to cache coherency, would not be worth the additional 
performance gain. 

Analytic Modeling 

The simulations reported on in the previous section 
demonstrated that the proposed hierarchical multiprocessor 
architecture can achieve good performance with over one 
hundred processors. While sinmlations can provide more 
detailed, and hence more accurate prediction of behavior than 
analytic modeling, they require substantially more computing 
resources. In this research, resource limitations restricted the 
size of second level caches, as well as range of system 
parameters that could be simulated. In order to rapidly explore 
a larger design space, analytic models of the hierarchical 
multiprocessor system were constructed. 

Model Description 

The analytical models start with assumptions about the 
memory request rate of processors, then calculate the amount 
of traffic on all links and busses. Based on the traffic 
calculations, values for link and bus utilization are derived. A 
simple queueing model calculates average queueing delay from 
the utilization figures, which is then added to bus and link 
transport delays to determine overall read request latency. 
Finally, an estimate of the performance reduction due to the 
Ultra Multi architecture is calculated. 

Models were developed of private and shared cache 
behavior, of Global Bus Watcher (GBW) and Check out Tag 
Store (CTS) behavior, and of bus and link behavior. A model 
of the traffic patterns of the CPU's and their response to the 
delays encountered in memory accesses is included. Though 
not all details of the system are modeled, an attempt has been 
made to have the models produce pessimistic results where 
ever approximations are encountered. A brief outline of the 
equations used in the models will now be given. 

The models begin with calculations of traffic flow at the 
different levels of the architecture, based on offered processor 
traffic and cache transfer ratios. The traffic flow calculations 
are then used to determine bus and link utilization, and hence 
bus and link access delays. Finally, total access delays for 
cache read misses are calculated, and used to determine 
effective processor speed. 

Processor generated traffic is based on measured or 
estimated memory accessing frequency for given speed 
processors. The private cache hit and transfer ratios are 
extrapolated from actual system measurements and simulations. 
The rate of state change requests produced by GBWs and 
CTSs is also modeled. These state change requests are added to 
the total traffic on links and buses where they are placed. 

Some of the requests generated by processors are 
assumed to be for the cluster in which the processor is located, 
and some for other clusters. The model takes a conservative 

approach and assumes that memory locations accessed by the 
processor are uniformly distributed throughout the system. 
Thus, in an eight cluster system, 7/8ths of the requests would 
be for other clusters. In reality, it may be possible to keep more 
memory locations in the processor's cluster, significantly 
reducing the fraction of non local requests. 

Once the level of traffic at each link and bus has been 
calculated, access delays can be determined. Access delays due 
to links and buses are modeled as a transit delay plus a 
queueing delay. Since the links are assumed to be high speed 
serial connections, the transit time is mostly due to serialization 
time, which is proportional to message length. The queuing 
delay is calculated using the M/M/1 queuing delay formula and 
the calculated link utilization. For buses, a commercial bus was 
modeled, which has fixed transit delays and exhibits M/D/1 
queuing properties. 

Finally, the total effective access time as seen by 
processors is calculated. This time is used to determine the 
reduction in processor performance over an ideal, instant 
response memory system. 

Performance Predictions 

Processor performance parameters from several present 
and future microprocessors were used to analyze the Ultramax 
architecture. The processors range in performance from 2 
MIPS to 13 MIPS. Private cache sizes commensurate with the 
technology level of the processor chips was assumed. Since 
RAM densities have been keeping pace with microprocessor 
improvements, it is expected larger caches sizes will be 
available at the same time that the faster processors are 
available. Figure 14 indicates some of the parameters used in 
the analytic modeling. 

Processor Speed Cache TYpe Cache Size Miss Ratio 
2.0 MIPS Wrt-Thm 64 K .05 
3.0 MIPS Wrt-Thru 256 K .025 
5.0 MIPS Wrt-Back 256 K .025 
7.5 MIPS Wrt-Back 1024 K .0125 

13.0 MIPS Wrt-Back 1024 K .0125 

Figure 14: Processor Parameters used in Modeling 

The models have been used to analyze a number of 
system parameters, such as line size and link bandwidth. Of 
particular interest is the required cluster cache size. The cluster 
caches are used both to hide the latency of the interconnection 
network and to reduce global bus traffic to the point were a 
single bus of similar bandwidth to that of the local buses can be 
used. This implies that the cluster cache transfer ratio must be 
about l/N, in a system with N clusters. The actual ratio 
required is 1/(N-l), since any global bus traffic shows up twice 
on the local buses. For a write-deferred cache with one of the 
multicache coherency protocols, simulations have shown that 
the miss ratio must be about 20% lower than the desired 
transfer ratio. 

For an eight cluster system, the required transfer ratio is 
1F/th, which can easily be obtained with a miss ratio of 1/9. At 
first glance, a miss ratio of 1/9 seems quite easy, since even 16 
Kbyte caches can exceed that. However, the request stream that 
misses the private caches contains considerably less locality 
than a typical processor request stream. In fact, the intrinsic 
performance of the cluster cache has to be about 9 times better 
than that of the private cache to achieve a miss ratio of 1/9th. 
This effect is illustrated in Figure 15, where relative system 
performance (as a fraction of ideal performance) is plotted 
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against cluster cache intrinsic hit ratios for the five candidate 
processors. The data of Figure 15 is for a ten cluster system. 
The faster processors, which have larger private caches, 
require substantially better intrinsic cluster cache performance 
to achieve acceptable results. 

 19o t 2M, [-~l=~ "~ 3 Mli~'~ \ 
5 MIPS ~ 

.06% .08%.1% .2% .4%.6%.8%1% 2% 

Miss Ratio - Log Scale 

Figure 15" System Performance vs. Cluster Cache Miss Ratio 

The data from Figure 15 indicates that the cluster cache 
should have an intrinsic miss ratio of less than .02 for the 
slowest processor to .003 for the fastest. Extrapolations from 
measured data for smaller caches indicates that the required 
intrinsic cluster cache hit ratios can be achieved with a caches 
ranging from around 8 Megabytes to 32 Megabytes in size. 
Since the cluster caches can be made with dynamic RAMs, 
such large cache sizes are technically feasible. 

In Figure 16, the total performance for systems utilizing 
the 13 MIPS processors is shown. Each curve represents a 
different intrinsic cluster cache miss ratio. Even if the intrinsic 
cluster cache miss ratio is only .004, a system of 1000 real 
MIPS can be achieved. 
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Figure 16: Total System MIPS vs. Number of Clusters 

Conclusions 

This paper has demonstrated the effectiveness of a 
hierarchical multiprocessor architecture. The simulation results 
obtained showed that the hierarchical multiprocessor computer 
structure achieves good speedup with suitable parallel 
algorithms. A simulated 128 processor system achieved a 
speedup of 104 executing the Simulator benchmark, a 

processor efficiency of 80%. Analytic models have predicted 
processor efficiencies as high as 98% compared to single 

From the results, the following conclusions can be 
drawn about the multiprocessor architecture described in this 
paper: 

The use of hierarchical caches allows the expansion 
of the cache coherency techniques beyond a single 
cluster. 

The degradation in performance due to multicache 
coherency maintenance is small, even for very large 
systems. 

Hierarchical caching further reduces the global bus 
bandwidth requirements and effective access time, in 
most situations. 

Because of the poorer hit ratios and cache transfer 
ratios, the impact of shared global data on the global 
shared bus may still be a problem with very large 
systems. 

The processors assumed in the simulation experiments 
are rated at approximately one million instructions per second. 
Extrapolating from the data for the PDE simulation shown in 
Figure 13, it appears that the hierarchical cache and bus 
structure simulated could support processors about three times 
faster (3 MIPS), provided a second global bus was used. This 
would result in a local bus utilization of 78%, a global bus 
utilization of 90% for each bus, and a serial link utilization of 
87%. These utilization numbers are significantly overstated, 
since the simulated cluster cache was one eighth the size 
feasible with current technology. 

The analytical modeling indicates that very high 
performance multiprocessors are possible. Using the 4 Mbit 
dynamic RAMS (allowing construction of 64 Mbyte cluster 
caches) and 13 MIPS processors that will soon be available, a 
shared memory multiprocessor of well over 1000 MIPS will be 
possible. Even including the effects of private and cluster cache 
misses, memory access times, and intercluster network delays, 
processor performance of  85% - 90% of  optimum is 
obtainable. Figure 17 shows one possible configuration of a 
128 processor system using the cluster architecture. 

Global Switch 

Figure 17: Cluster Connected, 128 Processor, 
Shared Memory Multiprocessor 
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