

 1

Abstract—A framework for designing a family of novel fast

CRC generation algorithms is presented. Our algorithms can
ideally read arbitrarily large amounts of data at a time, while
optimizing their memory requirement to meet the constraints of
specific computer architectures. In addition, our algorithms can
be implemented in software using commodity processors instead
of specialized parallel circuits. We use this framework to design
two efficient algorithms that run in the popular Intel IA32
processor architecture. First, a ‘slicing-by-4’ algorithm doubles
the performance of existing software-based, table-driven CRC
implementations based on the Sarwate [12] algorithm while using
a 4K cache footprint. Second, a ‘slicing-by-8’ algorithm triples
the performance of existing software-based CRC
implementations while using an 8K cache footprint. Whereas
well-known software- based CRC implementations compute the
current CRC value from a bit-stream reading 8 bits at a time,
our algorithms read 32 and 64 bits at a time respectively1.

I. INTRODUCTION
YCLIC redundancy codes (CRC) are used for detecting the
corruption of digital content during its production,

transmission, processing or storage. CRC algorithms treat
each bit stream as a binary polynomial and calculate the
remainder from the division of the stream with a standard
generator polynomial. The binary words corresponding to the
remainder are transmitted together with the bit stream. At the
receiver side CRC algorithms verify that the correct remainder
has been received. Long division is performed using modulo-2
arithmetic.

In this paper we investigate the implementation of CRC
generation algorithms in software. The reason why software-
based CRC generation is important is because many
commercial host, network and server chipsets which are in use
today do not include specialized CRC generation circuits. In
addition a number of recently proposed Internet protocols
(e.g., datacenter protocols such as MPA[4] or iSCSI[13])
require that data integrity checks are performed above the
transport layer using CRC at very high speeds (e.g., 10 Gbps).

To accelerate the CRC generation process, a number of
software-based algorithms have been proposed in the past [6-
12, 15, 16]. Among these algorithms the most commonly used
today is the algorithm proposed by Dilip V. Sarwate [12]. The
Sarwate algorithm reads 8 bits at a time from a stream and
calculates the stream’s CRC value by performing lookups on a
table of 256 32-bit entries. The Sarwate algorithm was

1 This is an extended version of a paper that appeared at the 10th IEEE
International Symposium on Computers and Communications (ISCC 2005) in
Cartagena, Spain, June, 2005.

designed at a time when most computer architectures allowed
XOR operations between 8 bit quantities. Since then,
computer architecture technology has progressed to the point
where arithmetic operations can be performed efficiently
between 32 or 64 bit quantities. In addition modern computer
architectures comprise large on-chip cache memory units
which can be accessed in a few clock cycle time and support
mechanisms for preventing pollution.

In this paper we argue that recent advances in computer
architecture technology and the need for efficient CRC
generation above the transport layer at very high speeds call
for re-examination of the mathematical principles behind
software-based CRC generation. Most existing CRC
generation algorithms are based on the assumption that the
amount of bits read at a time from a stream should be smaller
than the degree of the generator polynomial. In this paper we
relax this assumption and propose algorithms that can ideally
read arbitrarily large amounts of data at a time, while
optimizing their memory requirement to meet the constraints
of specific computer architectures.

We use our framework to design two efficient algorithms
that run in the popular Intel IA32 processor architecture. First,
we propose the design of a novel ‘slicing-by-4’ algorithm
which doubles the performance of existing CRC
implementations based on the Sarwate [12] algorithm. The
‘slicing-by-4’ algorithm uses a 4K cache footprint. Second,
we propose the design of a ‘slicing-by-8’ algorithm which
triples the performance of existing CRC implementations,
using an 8K cache footprint. Whereas well-known table-
driven CRC implementations compute the current CRC value
from a bit-stream reading 8 bits at a time, our algorithms read
32 and 64 bits at a time, respectively. To accelerate the long
division process, we apply the technique of parallel table
lookups first used in [3, 8] to the generation of CRC values
over long bit streams. Our algorithms avoid the memory
explosion problem associated with creating a table of 232 and
264 entries by expressing the current remainder from a long
division step as well as the next data bits read from the bit
stream as sums of smaller terms. In this way our algorithms
can compute the next remainder by performing parallel
lookups into smaller tables using as indexes the slices from
the previous remainder and data bits.

The paper is structured as follows: In section II we present
related work. In Section III we provide an overview of the
CRC generation process. In Section IV we present our
framework. In Section V we evaluate our algorithms whereas
in Section VI we provide some concluding remarks.

A Systematic Approach to Building High
Performance, Software-based, CRC Generators

Michael E. Kounavis and Frank L. Berry
Intel Research and Development, Hillsboro, OR, 97124, USA

C

 2

II. RELATED WORK
Efficient implementation of the CRC generation process has

been the subject of substantial amount of research [1,3,5,6-
12,14-16]. Software-based CRC generation has been
investigated in [6-12, 15, 16]. Among these algorithms the
tea-leaf reader algorithm introduced by Griffiths and Stones
[7] supports the generation of ‘CRC32’ codes using five 256-
byte table lookups, five XOR and four shift operations for
each byte of a bit stream. By CRC32 we mean a CRC
generation algorithm where the degree of the generator
polynomial is 32. Sarwate [12] optimized the teal leaf reader
algorithm reducing the cost of CRC32 generation to a single
table lookup, two XOR operations, a shift and an AND
operation per byte. The algorithm proposed by Sarwate uses a
single table of 256 32-bit entries. Feldmeier [6] motivated by
the fact that table-driven solutions are subject to cache
pollution presented a software technique that avoids the use of
lookup tables. In our work we do use lookup tables because
modern computer architectures support large cache units and
mechanisms for preventing the eviction of table entries from
these cache units. Our algorithms are distinguished from [4, 6-
12, 15, 16] by the fact they can ideally read large amounts of
data at a time.

The concept of parallel table lookups which we use in our
framework also appears in early CRC5 implementations [8]
and in the work done by Braun and Waldvogel [3] on
performing incremental CRC updates for IP over ATM
networks. The CRC5 implementations reported in [8] have
been used for validating the header fields of ATM packets and
cannot be easily used in long bit streams. The reason why is
because these CRC5 implementations associate each slice of a
stream with a separate table. As a result long bit streams
would need as many tables as the slices constituting each
stream. On the other hand, if the contribution of each slice to
the final CRC value is computed using the square and
multiply technique as in the work by Doering and Waldvogel
[5], the processing cost may be too high in software. Our work
is distinguished from [3, 8] in that our algorithms reuse the
same lookup tables in each iteration, thus keeping the memory
requirement of CRC generation at reasonable level.

Our algorithms bear some resemblance with a recent
scheme published by Joshi, Dubey and Kaplan [9]. Like our
algorithms the Joshi-Dubey-Kaplan scheme calculates the
remainders from multiple slices of a stream in parallel. The
Joshi-Dubey-Kaplan scheme has been designed to take
advantage of the 128-bit instruction set extensions to IBM’s
PowerPC architecture [9]. In our contrast our algorithms do
not make any assumptions about the instruction set used.
Moreover, the Joshi-Dubey-Kaplan scheme uses a single table
and hence requires more complex calculations for finding the
total remainder from the slices of streams than the algorithms
of our framework, as explained in Section V.

 Finally, references [1, 14] describe techniques for
designing a family of hardware-based CRC generators.
Reference [14] describes CRC generators which can perform
the long division on a bit-by-bit basis using parallel circuits.
The circuits of reference [14] split an input bit stream into

multiple constituent bit streams. The original stream is
reconstructed by interleaving the bits of the constituent bit
streams. Reference [14] describes how circuits can be
designed for processing these bit streams in parallel. In this
paper we also describe a systematic methodology for building
CRC generators, but our focus is on software
implementations.

III. THE CRC GENERATION PROCESS

A. Description
CRC algorithms augment bit streams with functions of the

content of the streams. In this way it is easier for CRC
algorithms to detect errors. To avoid self-failures the functions
used by CRC algorithms need to be as ‘close’ to 1:1 as
possible. CRC algorithms treat each bit stream as a binary
polynomial B(x) and calculate the remainder R(x) from the
division of B(x) with a standard ‘generator’ polynomial G(x).
The binary words corresponding to R(x) are transmitted
together with the bit stream associated with B(x). The length
of R(x) in bits is equal to the length of G(x) minus one. At the
receiver side CRC algorithms verify that R(x) is the correct
remainder. Long division is performed using modulo-2
arithmetic. Additions and subtractions in module-2 arithmetic
are ‘carry-less’. In this way additions and subtractions are
equal to the exclusive OR (XOR) logical operation. Table 1
shows how additions and subtractions are performed in
modulo-2 arithmetic.

0+0 = 0-0 = 0
0+1 = 0-1 = 1
1+0 = 1-0 = 1
1+1 = 1-1 = 0

Table 1: Modulo-2 Arithmetic

Figure 1: Long Division Using Modulo-2 Arithmetic

Figure 1 shows a long division example. In the example, the

divisor is equal to ‘11011’ whereas the dividend is equal to
‘1000111011000’. The long division process begins by
placing the 5 bits of the divisor below the 5 most significant
bits of the dividend. The next step in the long division process
is to find how many times the divisor ‘11011’ ‘goes’ into the 5
most significant bits of the dividend ‘10001’. In ordinary
arithmetic 11011 goes zero times into 10001 because the
second number is smaller than the first. In modulo-2
arithmetic, however, the number 11011 goes exactly one time
into 10001. To decide how many times a binary number goes

1 0 0 0 1 1 1 0 1 1 0 0 01 1 0 1 1
1 1 0 1 1

1 0 1 0 1
1 1 0 1 1

1 1 1 0 1
1 1 0 1 1

0 1 1 0 0

divisor dividend

 3

into another in modulo-2 arithmetic, a check is being made on
the most significant bits of the two numbers. If both are equal
to ‘1’ and the numbers have the same length, then the first
number goes exactly one time into the second number,
otherwise zero times. Next, the divisor 11011 is subtracted
from the most significant bits of the dividend 10001 by
performing an XOR logical operation. The next bit of the
dividend, which is ‘1’, is then marked and appended to the
remainder ‘1010’. The process is repeated until all the bits of
the dividend are marked. The remainder that results from such
long division process is often called CRC or CRC ‘checksum’
(although CRC is not literally a checksum).

Figure 2: Accelerating the Long Division Using Table
Lookups

B. Software Approaches
The purpose of software-based CRC generation algorithms

is to perform the long division quicker than the bit-by-bit
marking process described above. The long division process is
a compute-intensive operation because it requires in the worst
case one shift operation and one XOR logical operation for
every bit of a bit stream. One commonly used technique for
accelerating the long division process is to pre-compute the
current remainder that results from a group of bits and place
the result in a table. Before the beginning of the long division
process all possible remainders which result from groups of
bits are pre-computed and placed into a lookup table. In this
way, several long division steps can be replaced by a single
table lookup step.

The main idea behind this technique is shown in Figure 2.
In the example of Figure 2, the remainder ‘0110’, which is
formed in the third step of the long division process is a
function of the five most significant bits of the dividend
‘10001’ and the next two bits ‘11’. Since these bits are known,
the remainder 0110 can be calculated in advance. As a result,
3 long division steps can be replaced by a single table lookup.
Additional table lookups can further replace subsequent long
division steps. To avoid using large tables, table-driven CRC
acceleration algorithms typically read no more than 8 bits at a
time. 8-bit strides result in moderate CRC generation speeds
using commercial general purpose processors. For example,
we measured that the performance of the popular Sarwate [12]
algorithm is 7 clock cycles per byte when running on an Intel
‘Pentium® M’ processor.

C. The Sarwate Algorithm
In what follows we describe the algorithm proposed by

Dilip V. Sarwate, which is one of the fastest software-based,

table-driven CRC generation algorithms used today. The
Sarwate algorithm is shown in Figure 3. The length of the
CRC value generated by the algorithm of Figure 3 is 32 bits.
The Sarwate algorithm is more complicated than the
straightforward lookup process of Figure 2 because the
amount of bits read at a time (8) is smaller than the degree of
the generator polynomial.

Initially, the CRC value is set to a given number (i.e.,
INIT_VALUE in Figure 3) which depends on the standard
implemented (e.g., this number is 0xFFFFFFFF for CRC32c).
For every byte of an input stream the algorithm performs the
following steps: First, the algorithm performs an XOR
operation between the least significant byte of the current
CRC value and the byte from the stream which is read. The 8-
bit number which is produced by this XOR operation is used
as an index for accessing a 256 entry table. The value returned
from the table lookup is then XOR-ed with the 24 most
significant bits of the CRC value, shifted by 8 bit positions to
the right. The result from this last XOR operation is the CRC
value used in the next iteration of the algorithm’s main loop.
The iteration stops when all bits of the input stream have been
taken into account. The bits of the input stream are considered
to be reflected inside their respective bytes in the description
of Figure 3.

Figure 3: The Sarwate Algorithm

By performing an XOR operation between a new byte from

an input stream and the least significant byte of the current
CRC value, and by performing a table lookup, the Sarwate
algorithm determines how the current CRC value is modified
when a new byte from an input stream is taken into account.
The lookup table used by the Sarwate algorithm stores the
remainders from the division of all possible 8-bit numbers
shifted by 32 bits to the left with the generator polynomial.
Detailed justification and proof of correctness of the Sarwate
algorithm is beyond the scope of this paper. The reader can
learn more about the Sarwate algorithm in [12] and [16].

D. Toward New Schemes
The main disadvantage of the Sarwate algorithm and other

existing table-driven CRC algorithms is their memory
requirement when reading a large number of bits at a time. For
example, to achieve acceleration by reading 32 bits at a time,
table-driven algorithms require to store pre-computed
remainders in a table of 232 = 4G entries. In this paper we
suggest that the current remainder which is formed after the
execution of a group of long division steps as well as the next
data bits read from a stream can be expressed as sums of
smaller terms. In this way, new algorithms can be designed
that compute the next remainder by performing parallel
lookups into smaller tables using as indexes the slices
produced in the previous iteration. Our approach results in
algorithms that use reasonable cache footprints (i.e., 4K and
8K bytes) as opposed of 16G bytes while accelerating the
speed of CRC generation by a factor of 2-4, over the Sarwate

1 0 0 0 1 1 1 0 1 1 0 0 01 1 0 1 1
1 1 0 1 1

1 0 1 0 1
1 1 0 1 1

1 1 1 0 1
1 1 0 1 1

0 1 1 0 0

divisor dividend

current remainder

steps
replaced
by a table
lookup

crc = INIT_VALUE;
while(p_buf < p_end)

crc = table[(crc ^ *p_buf++) & 0x000000FF] ^ (crc >> 8);
return crc^FINAL_VALUE;

 4

algorithm. Our approach is generic and can be used in long
division strides of different sizes.

The main idea behind our approach is shown in Figure 4.
To calculate the remainder from the division of ‘1000111’
with ‘11011’ it is suffice to split the dividend 1000111 into
three ‘slices’, i.e., ‘10’, ‘001’ and ‘11’. The binary number
1000111 can be written as the sum of three terms. The first
term is equal to the slice ‘10’ shifted by 5 bit positions to the
left. The second term is equal to the slice ‘001’ shifted by 2 bit
positions to the left. Finally the third slice is equal to the slice
‘11’. The remainder from the division of 1000111 with 11011
can be found as the result of an XOR operation between the
remainders returned from the division of the three constituent
terms ‘1000000’, ‘00100’ and ‘11’ of ‘1000111’ with the
divisor ‘11011’. These remainders can be computed in
advance.

Figure 4: Remainder Slicing

IV. BUILDING HIGH PERFORMANCE CRC GENERATORS

A. Algorithmic Framework
In what follows we describe the algorithms of our

framework. The design of our algorithms is based on two
principles associated with modulo-2 arithmetic. The first
principle called ‘bit slicing’ principle is the one discussed
in the previous section and suggests that if a binary number
is sliced into two or more constituent terms the CRC value
associated with the binary number can be calculated as a
function of the CRC values of its constituent terms. The other
principle called ‘bit replacement’ principle suggests that
amounts of bits from bit streams can be replaced by
potentially much smaller in length binary numbers producing
the same CRC values. The first step of our algorithms
differs from all subsequent steps.

1) First Step
Let P be the initial p most significant (i.e., initially

transmitted) bits of an input bit stream B. Let l > p be the
length of B in bits. Let also g, g < l be the length of the
generator polynomial G(x) used in the generation of the
CRC value. We consider that the l-g+1 most significant bits
of the input stream B are the information bits which are being
encoded, whereas the g-1 least significant bits of B are equal
to zero as required by typical CRC generation algorithms. For
the binary numbers P and B we write:

]...[,]...[2121 lp bbbBbbbP == (1)

where b1 is the most significant bit of P and B.

The binary number P is sliced into m slices, which we
symbolize as P1, P2, ..., Pm, of lengths p1, p2, ..., pm such
that P = [P1:P2: ...:Pm] and p = ∑i pi for every i ∊[1, m].
As mentioned before, the binary number P is sliced in
order for our algorithms to be able to read potentially
large amount of data without having to access a lookup
table of 2p entries.

For each of the slices, a table lookup is performed.
Each lookup takes place using a separate table. For the
table lookups which take place during the first step, m
different tables T1, T2,…, Tm are used of sizes equal to

mppp 2,...,2,2 21 entries respectively. Each table Ti
contains the remainders from the long division of all
possible values of slice Pi shifted by an offset oi. The
divisor used is the generator polynomial. The offset oi
used in the calculation of the entries of table Ti is given
by Eq.2 below:

∑
+=

=
m

ij
ji po

1

 (2)

Let)1()1(
2

)1(
1 ,...,, mRRR be the values returned from the

table lookups during the first step.

GPR io
ii mod2)1(⋅= (3)

We define:

)1(

1

)1(
i

m

i
RR ⊕

=

= (4)

where by ‘⊕’ we mean the XOR logical operation.
Let also:

)1()1()1()1()1(2]:[QRQRS q ⊕⋅== (5)

where Q(1) is the set of the next q bits of the bit stream, which
are positioned after the initial p bits:

]...[21
)1(

qppp bbbQ +++= (6)

The value q, q>p is the amount of bits which are read
during all subsequent steps of the algorithms of our
framework.

The first step of the algorithms of our framework ends with
the derivation of the binary number S(1). In each subsequent
step k the algorithms operate on a binary number S(k-1)
produced during the previous step k-1.

2) Step k
In the beginning of step k, the binary number S(k-1)

produced at step k-1 is sliced into n slices, which we
symbolize as)1()1(

2
)1(

1 ,...,, −−− k
n

kk SSS , of slice lengths
s1, s2, ..., sn such that]:...::[)1()1(

2
)1(

1
)1(−−−− = k

n
kkk SSSS and

s = ∑i si for every i ∊[1, n]. The length of the binary
number S(k-1) is s bits and is the same for every
subsequent step k of the algorithmic framework.

For each of the slices a table lookup is performed. Each
lookup takes place using a separate table. Each step k, k>1
uses the same set of tables in order for the space

Main idea:

1000111 mod 11011 =

1000000 mod 11011 +

00100 mod 11011 +

11 mod 11011

indexes to 3 smaller tablesindexes to 3 smaller tables

 5

requirement of the algorithmic framework to be reduced.
The tables used in each step k, k>1 of the algorithmic
framework are not necessarily the same as the tables used
in the first step. The reason why our algorithmic
framework distinguishes between the first and all
subsequent steps is because the length of the input stream
l may not be a multiple of the number of bits which are
read at a time q. During the first step the number of bits
read p may be different than q and hence a different set of
tables may be needed.

We use n tables ''
2

'
1 ,...,, nTTT of sizes equal to

nsss 2,...,2,2 21 entries respectively. Each table '
iT contains

the remainders from the long division of all possible
values of slice)1(−k

iS shifted by an offset fi. The divisor
used is the generator polynomial. The offset fi used in the
calculation of the entries of the table '

iT is given by Eq. 7
below:

∑
+=

=
n

ij
ji sf

1

 (7)

Let)()(
2

)(
1 ,...,, k

n
kk RRR be the values returned from the

table lookups during step k.

GSR ifk
i

k
i mod2)1()(⋅= − (8)

The values returned from the table lookups are added in
modulo-2 arithmetic (i.e., XOR-ed) producing a new
binary number R(k):

)(

1

)(k
i

n

i

k RR ⊕
=

= (9)

Subsequently a new number S(k) is calculated from R(k)
and the next q bits of the bit stream:

)()()()()(2]:[kqkkkk QRQRS ⊕⋅== (10)

where Q(k) is the set of the next q bits of the bit stream which
are positioned after the initial p + (k-1)·q bits:

]...[2)1(1)1(
)(

qkpqkpqkp
k bbbQ ⋅++⋅−++⋅−+= (11)

The step k of our algorithmic framework ends with the
derivation of the binary number S(k). In subsequent iterations
of the algorithmic framework the same procedure of bit
number slicing and parallel table lookups is repeated until all
the bits of a bit stream are taken into account. The total
number of steps N which are required for the calculation of a
CRC value, assuming that p ≠ q, is equal to:

1+

=

q
lN (12)

In Section IV-B we prove that the value R(N) produced in the
last step of this algorithmic framework is the remainder from
the division of the input stream B with the generator
polynomial using modulo-2 arithmetic. In other words, R(N) is

the desired CRC value. In the last step of this algorithmic
framework no binary number S(N) needs to be derived since all
bits of an input stream have been taken into account. The last
step ends with the calculation of the binary number R(N) using
Eq. 9 for k = N.

B. Correctness
To prove the correctness of our algorithmic framework we

need to show that the value R(N) which is produced in the last
step of our framework is indeed the remainder from the
division of the input stream B with the generator polynomial
using modulo-2 arithmetic. This can be shown using the
following theorem:

Theorem 1: The value R(k) which is produced at step k of the
algorithmic framework is equal to the remainder from the
division of the most significant p + (k-1)·q bits of an input bit
stream with the generator polynomial:

GPR kk mod)()(= (13)

where ‘mod’ is the remainder operator in modulo-2 arithmetic,
G is the binary number corresponding to the generator
polynomial G(x) and:

]...[)1(21
)(

qkp
k bbbP ⋅−+= (14)

One can see that if Eq. 13 is true then the algorithmic
framework of Section IV-A does return the correct CRC value
since P(N) = B. To prove Theorem 1 we first show the
correctness of two useful lemmas:

Lemma 1 (bit replacement principle): Let’s assume that U1
and U2 are two binary numbers of lengths u1 and u2 in bits
respectively. Then the following is true:

GURGUU mod]:[mod]:[2121 = (15)

where:

GUR mod11 = (16)

Lemma 1 tells us that if we replace a number of consecutive
most significant bits of a bit stream with an appropriately
selected binary number we can still get the correct CRC value
after the division with the generator polynomial. More
specifically, the u1 most significant bits of the binary number
[U1 : U2] in Eq. 15 can be replaced by the remainder R1 from
the division of U1 with G.

Lemma 1 also indicates that arbitrarily large amounts of bits
from bit streams can be replaced by potentially much smaller
in length binary numbers when deriving the CRC value. It is
this bit replacement principle expressed in Lemma 1 which we
take advantage of in the design of our algorithmic framework
in order to read arbitrarily large amount of data at a time.

Proof of Lemma 1: Lemma 1 can be directly proven as
shown below. In the equations below the symbol Q1
represents the quotient associated with the division of number
U1 with G.

 6

GUUGUU u mod)2(mod]:[2121
2 ⊕⋅=

GURGQ uu mod)22(211
22 ⊕⋅⊕⋅⋅=

)mod]:[()mod2(211
2 GURGGQ u ⊕⋅⋅=

GUR mod]:[21=

where in the third step of the proof shown above we used the
distributive property of the mod function in module-2
arithmetic:

)mod()mod(mod)(GbGaGba ⊕=⊕ (17)

Apart from the bit replacement principle our framework
takes advantage of a ‘bit slicing’ principle expressed in
Lemma 2 below.

Lemma 2 (bit slicing principle): Let U1, U2, …, Un are n
binary numbers of lengths u1, u2, …, un respectively, where
n > 1. Then the following is true:

i

n

i
n RGUUU ⊕

=

=
1

21 mod]:...::[(18)

where GUR io
ii mod2⋅= and ∑

+=

=
n

ij
ji uo

1

Proof of Lemma 2: Lemma 2 can also be proven in a similar
manner as Lemma 1:

GUGUUU nii uuu
i

n

i
n mod)2(mod]:...::[...

1
21

21 +++

=

++⋅= ⊕

i

n

i

o
i

n

i
RGU i ⊕⊕

==

=⋅=
11

mod)2(

Lemma 2 tells us that if we slice a binary number into two
or more component terms the CRC value associated with the
binary number can be calculated as a function of the CRC
values of its component terms. The bit slicing principle is
applied in our framework in order to reduce the space
requirement of CRC generation algorithms.

Now that we have stated and proved lemmas 1 and 2 we can
prove Theorem 1.

Proof of Theorem 1: We prove theorem 1 by induction. Fist
we show that Eq. 13 holds for k =1. Then we show that if Eq.
13 holds for some value k = k*, it also holds for k = k*+1,
where k* ≤ N-1.

For k =1 Eq. 13 can be shown to be true using Lemma 2.

)mod2(
1

)1(

1

)1(GPRR io
i

m

i
i

m

i
⋅== ⊕⊕

==

GPGPPPlemmaby m modmod]:...::[)2()1(
21 ==

where oi is given by Eq. 2.
Next, assuming that Eq. 13 holds for k = k*, we can show

that Eq. 13 holds for k = k*+1 using both Lemmas 1 and 2:

)mod2()(

1

)1(

1

)1(***

GSRR ifk
i

n

i

k
i

n

i

k ⋅== ⊕⊕
=

+

=

+

GSSSlemmaby k
n

kk mod]:...::[)2()()(
2

)(
1

=

GQRGS kkk mod]:[mod)()()(***

==

GQPlemmaandassumptionby kk mod]:[)1()()(**

=

GP k mod)1(*+=

where fi is given by Eq. 7.

C. Space and Time Requirements
Our algorithmic framework requires N steps to execute,

where N is given by Eq. 12. In the first step, m slices are
created and m table lookups are performed. The creation of
each slice requires in the worst case one shift operation and
one AND logical operation. In addition, m-1 XOR operations
are required for the derivation of R(1). The total number of
operations required for the execution of the first step of our
framework including, shift, AND, XOR and table lookup
operations is:

14)1(−⋅= mO (19)

Since table lookups take place in parallel, one can count all
lookups as a single operation. In this case, the total number of
operations executed during the first step is:

mOh ⋅= 3)1((20)

Each subsequent step k of our framework requires the

creation of n slices and the execution of n parallel table
lookups. Thus, the total number of operations required by step
k is:

14)(−⋅= nO k (21)

Counting all table lookups as a single operation the total
number of operations becomes:

nO k
h ⋅= 3)((22)

From the values of O(1) and O(k) we can calculate the total
number of operations required for the execution of our
algorithmic framework.

∑
=

−⋅+−⋅⋅−==
N

i

i mnNOO
1

)()14()14()1((23)

The total number of operations, counting all table lookups
as one is:

∑
=

⋅+−⋅⋅==
N

i

i
hh mNnOO

1

)(3)1(3 (24)

The space required for storing the tables used by the first
step of our algorithmic framework expressed as number of
table entries is:

 7

∑
=

=
m

i

piE
1

)1(2 (25)

Similarly, the space required for storing the tables used by
every step k, k > 1of our algorithmic framework is:

∑
=

=
n

i

sk iE
1

)(2 (26)

All steps k, k>1 use the same tables. Hence, the total space
required for the execution of our algorithmic framework is:

∑∑
==

+=+=
n

i

s
m

i

pk iiEEE
11

)()1(22 (27)

We define the space reduction factor r characterizing our
algorithmic framework as the ratio between the space required
by the algorithms of our framework and the space required by
same the algorithms without using slicing (i.e., by algorithms
with the same p and q but with m = n = 1).

∑
+

∑

+
=

==

∑∑
==

n

i
i

m

i
i

ii

sp

n

i

s
m

i

p

r
11 22

22
11 (28)

Figure 5: The ‘Slicing-by-4’ Algorithm

D. The Slicing-by-4 and 8 Algorithms
We have used the algorithmic framework presented

above to accelerate the performance of CRC32c
implementations. CRC32c is data integrity standard
specified as part of many well known systems and such as
MPA[4] and iSCSI[13]. The length of the CRC value in
CRC32c is 32 bits whereas the length of the generator
polynomial is 33 bits. The generator polynomial used by
the CRC32c has coefficients equal to 0x11EDC6F41. The
initial CRC value used is 0xFFFFFFFF.

A ‘slicing-by-4’ algorithm is shown in Figure 5. The
slicing-by-4 algorithm reads 32 bits at a time. The length
of the input stream is considered to be multiple of 32. In
this case, p = q = 32 bits. The length of the value R(k)
which is produced by step k of this algorithm is 32 bits.
Since the algorithm reads 32 bits at a time, the length of
the value S(k) which is produced by step k of the algorithm
is 64 bits. During the first step of the algorithm, the first
32 bits of the input stream are not grouped into slices
(i.e., m = 1) since the number of bits read p is smaller
than the degree of the generator polynomial. Each value

S(k) produced by step k is split into n = 5 slices. The first 4
slices s1, s2, s3 and s4 have equal lengths, i.e., si = 8 bits
for every i ∊[1, 4]. The last slice s5 (i.e., the one
associated with zero offset) has length equal to 32 bits.

Because of the fact that slice s5 is associated with zero
offset and its length is equal to 32 bits, the remainder
from the division of s5 with the generator polynomial is s5
itself. Hence, no table lookup is required for slice s5. For
the slices s1, s2, s3 and s4, we use four lookup tables of
256 32-bit entries each. Our algorithm is called ‘slicing-
by-4’ because it performs 4 table lookups in parallel,
although the number of slices produced in each step is 5.
For the first step, we do not use lookup tables since the
total number of bits which are read (32) is smaller than
the degree of the generator polynomial. Hence, the
slicing-by-4 algorithm requires only four lookup tables to
execute. The total space requirement of the slicing-by-4
algorithm is 4K bytes.

Figure 5 illustrates an optimized implementation of the
slicing-by-4 algorithm in C. The names of the tables
follow the convention ‘table_offset’. The offset values
used for the generation of the tables are 56, 48, 40 and 32
bits, respectively. As in the description of the Sarwate
algorithm in Figure 3, the bits of the input stream are
considered to be reflected inside their respective bytes.

Figure 6: The ‘Slicing-by-8’ Algorithm

Another algorithm designed using our framework called
‘slicing-by-8’ reads 64 bytes at a time. The slicing-by-8
algorithm is shown in Figure 6. In the implementation of
Figure 6, p = 32 bits and q = 64 bits. The length of the
value R(k) which is produced by step k of this algorithm is
32 bits. Since the algorithm reads 64 bits at a time, the
length of the value S(k) which is produced by step k of the
algorithm is 96 bits. As in the slicing-by-4 algorithm, the
first 32 bits of the input stream are not grouped into slices
(i.e., m = 1). Each value S(k) produced by step k is split
into n = 9 slices. The first 8 slices have equal lengths, i.e.,
si = 8 bits for every i ∊[1, 8]. The last slice s9 has length
equal to 32 bits.

Because of the fact that slice s9 is associated with zero
offset and its length is equal to 32 bits, no table lookup is
required for this slice. For the slices s1-s8 we use eight
lookup tables of 256 32-bit entries each. As in the slicing-
by-4 algorithm, the first step does not involve table

crc = INIT_VALUE;
while(p_buf < p_end) {

crc ^= *(uint32_t *)p_buf;
term1 = table_56[crc & 0x000000FF] ^

table_48[(crc >> 8) & 0x000000FF];
term2 = crc >> 16;
crc = term1 ^

table_40[term2 & 0x000000FF] ^
table_32[(term2 >> 8) & 0x000000FF];

p_buf += 4;
}
return crc^FINAL_VALUE;

crc = INIT_VALUE;
while(p_buf < p_end) {

crc ^= *(uint32_t *)p_buf;
p_buf += 4;
term1 = table_88[crc & 0x000000FF] ^

table_80[(crc >> 8) & 0x000000FF];
term2 = crc >> 16;
crc = term1 ^

table_72[term2 & 0x000000FF] ^
table_64[(term2 >> 8) & 0x000000FF];

term1 = table_56[(*(uint32_t *)p_buf) & 0x000000FF] ^
table_48[((*(uint32_t *)p_buf) >> 8) & 0x000000FF];

term2 = (*(uint32_t *)p_buf) >> 16;
crc = crc ^

term1 ^
table_40[term2 & 0x000000FF] ^
table_32[(term2 >> 8) & 0x000000FF];

p_buf += 4;
}
return crc^FINAL_VALUE;

 8

lookups. The total space requirement of the slicing-by-8
algorithm is 8K bytes, which is two times the space
requirement of slicing-by-4. Figure 6 illustrates an
optimized implementation of the slicing-by-8 algorithm in C.
The offset values used for the generation of the tables are 88,
80, 72, 64, 56, 48, 40 and 32 bits respectively.

Figure 7: Assembly Implementation of the Sarwate
Algorithm

V. EVALUATION

A. Qualitative Evaluation
We observe that a trade-off exists between the number of

operations involved in the execution of a CRC generation
algorithm and the space requirement of the algorithm. From
Eq. 19-22 it is evident that the number of operations involved
in the execution of a CRC generation algorithm is minimized
when the number of slices used is equal to one, i.e., m = n =
1. On the other hand, when m = n = 1 the space reduction
factor r is maximized as indicated by Eq. 28. The maximum
value for r is 1.

The benefit from slicing comes from the fact that modern
processor architectures comprise large cache units. These
cache units are capable of storing moderate size tables (e.g.,

4KB and 8KB tables as required by the slicing-by-4 and
slicing-by-8 algorithms) but not sufficient for storing tables
associated with significantly larger strides (e.g., 16BG tables
associated with 32-bit strides). If tables are stored in an
external memory unit, the latency associated with accessing
these tables may be significantly higher than when tables are
stored in a cache unit. For example, a DRAM memory access
requires several hundreds of clock cycles to complete by a
Pentium® M processor, whereas an access to a first level
cache memory unit requires less than five clock cycles to
complete. The processing cost associated with slicing, which
is observed in Eq. 19-22, is typically insignificant when
compared to the cost of accessing off-chip memory units.

Figure 8: Assembly Implementation of the Slicing-by-4

Algorithm

Slicing is also important because it reduces the number of
operations performed for each byte of an input stream when
compared to other techniques used in the state of the art. For
example, the slicing-by-4 and slicing-by-8 algorithms are
faster than the Sarwate algorithm. This happens because the
Sarwate algorithm calculates updates on the CRC values of
streams on a byte-by-byte basis. In contrast, the slicing-by-4
and slicing-by-8 algorithms calculate updates on CRC values
reading 32 bit and 64 bit amounts at a time. To further
demonstrate this, we show the instructions required for
executing the Sarwate and slicing-by-4 algorithms over 32 bits
of data using Intel’s IA32 processor architecture. Instructions
are shown in Figures 7 and 8 respectively. For fair
comparison, the loop of the Sarwate algorithm is unrolled over
four iterations. The loop of the Sarwate algorithm consists of
35 IA32 instructions, whereas the loop of the slicing-by-4
algorithm consists of 16 instructions. For each byte of an input
stream the Sarwate algorithm performs the following: (i) an
XOR operation between a byte read and the least significant
byte of the current CRC value; (ii) a table lookup; (iii) a shift
operation on the current CRC value; and (iv) an XOR
operation between the shifted CRC value and the word read

mov ecx, p_buf
mov esi , buf_length
cmp esi , 0
jz SHORT end
add esi , ecx
or eax , - 1
push edi

top_of_loop :
xor edx , edx
mov dl, BYTE PTR [ecx]
xor edx , eax
and edx , 255
shr eax , 8
mov edi , DWORD PTR table[edx *4]
xor eax , edi
inc ecx
xor edx , edx
mov dl, BYTE PTR [ecx]
xor edx , eax
and edx , 255
shr eax , 8
mov edi , DWORD PTR table[edx *4]
xor eax , edi
inc ecx
xor edx , edx
mov dl, BYTE PTR [ecx]
xor edx , eax
and edx , 255
shr eax , 8
mov edi , DWORD PTR table[edx *4]
xor eax , edi
inc ecx
xor edx , edx
mov dl, BYTE PTR [ecx]
xor edx , eax
and edx , 255
shr eax , 8
mov edi , DWORD PTR table[edx *4]
xor eax , edi
inc ecx
cmp ecx , esi
jb SHORT top_of_loop
pop edi

end:
not eax

mov ecx, p_buf
mov edx, buf_length
cmp edx, 0
jz SHORT end
add edx, ecx
or eax, -1
push esi
push edi

top_of_loop:
xor eax, DWORD PTR [ecx]
add ecx, 4
movzx esi, al
mov edi, DWORD PTR table_o56[esi*4]
movzx esi, ah
xor edi, DWORD PTR table_o48[esi*4]
bswap eax
movzx esi, ah
xor edi, DWORD PTR table_o40[esi*4]
movzx esi, al
xor edi, DWORD PTR table_o32[esi*4]
mov eax, edi
cmp ecx, edx
jb SHORT top_of_loop
pop edi
pop esi

end:
not eax

 9

from the table. In contrast, for every byte of an input stream
the slicing-by-4-algorithm performs only a table lookup and
an XOR operation. This is the reason why the slicing-by-4
algorithm is faster than the Sarwate algorithm. Since the
Sarwate algorithm requires 35 instructions to execute over 32
bits and the slicing-by-4 algorithm requires 16 instructions
only, one can expect that the slicing-by-4 algorithm is
approximately 2.2 times faster than the Sarwate algorithm
provided that data are placed in a cache memory unit.
Similarly, we observe that the slicing-by-8 algorithm requires
27 instructions to execute over 64 bits. As a result, one can
expect that the slicing-by-8 algorithm is approximately 2.6
times faster than the Sarwate algorithm provided that data are
placed in a cache memory unit.

minimum

processing
cost

(cycles/byte)

average
processing

cost for warm
data and

warm tables
(cycles/byte)

average
processing

cost for cold
data and

warm tables
(cycles/byte)

Sarwate 6.10 6.66 6.67
Joshi-Dubey-Kaplan 5.18 5.65 5.67

Slicing-by-4 2.75 3.29 3.31
Slicing-by-8 2.19 2.39 2.41

Table 2: Minimum and average processing costs

We observe that our slicing-by-4 and slicing-by-8
implementations do not suffer from cache pollution
significantly. By ‘cache pollution’ we mean the undesired and
uncontrolled eviction of application data structures from cache
memory. In the case of CRC generation algorithms, cache
pollution is caused by the fact that packets are fetched into
cache units at very high speeds. The extent of cache pollution
depends on the size and quantity of the source buffers over
which CRC algorithms operate. We argue that the impact of
cache pollution on the performance of CRC generation
algorithms is not significant because on-chip cache memory
units are typically large, capable of storing many packet
buffers simultaneously. In addition, current processors employ
a number of custom solutions for avoiding cache pollution.
For example, cache lines can be set to an ‘invalid’ state after
they are being used. In this way, the next packets fetched from
memory can be placed in the same cache lines as the previous
packets without causing undesired evictions. The impact of
cache pollution on the performance of the slicing-by-4 and
slicing-by-8 algorithms is quantified in the next section.

The implementations of the slicing-by-4 and slicing-by-8
algorithms presented in this paper can be further optimized by
performing table lookups in parallel as opposed to
sequentially using different general purpose registers in each
lookup. Another way to accelerate the slicing-by-4 and
slicing-by-8 algorithms is by employing multiple processing
units for parallel packet processing. The algorithms of our
framework can ideally read arbitrarily large amounts of data at
a time and also create an arbitrary number of slices in each
step of their execution. As a result, the slices produced in each
step of the execution of these algorithms can be processed by
different processors. The speed of CRC generation algorithms
is multiplied by the number of processors used, in this case.
The detailed description and evaluation of parallelized CRC

generation algorithms, however, is beyond the scope of this
paper.

B. Quantitative Evaluation
1) Minimum and Average Processing Costs

We compare the performance of the slicing-by-4 and slicing-
by-8 algorithms with the state of the art. The minimum and
average processing costs associated with the Sarwate [12],
Joshi-Dubey-Kaplan [9], slicing-by-4 and slicing-by-8
algorithms are shown in Table 2. By ‘minimum’ cost we mean
the processing cost of these algorithms when packets and
tables are placed in the fastest cache memory unit and no other
activities such as operating system interruptions occur. The
minimum processing cost is independent of the values of
packet sizes. The minimum cost values presented in Table 2
reflect the performance of CRC algorithms under ideal
operating conditions. By ‘average’ cost we mean the average
processing cost of algorithms when algorithms run under more
realistic operating conditions. By ‘realistic operating
conditions’ we mean conditions when operating system
interruptions or other system activities can occur during the
generation of CRC values. Each cost number presented in the
third and fourth column of Table 2 represents an average
value measured over 200 experiments. In these experiments,
values for the size, content, and initial address alignment of
packets are chosen by a pseudo-random number generator.
Our pseudo-random number generator implements the
uniform probability distribution. The processor used for
producing the results of Table 2 is a ‘Dothan’ Pentium® M
processor. This processor includes a 32KB first level (L1)
cache unit and a 2MB second level (L2) cache unit. In what
follows we use the term ‘warm’ to refer to any memory entry
placed in a cache memory unit. Similarly, we use the term
‘cold’ to refer to any memory entry stored in an external
memory unit.

Table 2 shows that the slicing-by-8 algorithm is the fastest
among the four algorithms compared. The minimum cost of
slicing-by-8 is 2.19 cycles per byte, which is 2.79 times
smaller than the cost of the Sarwate algorithm and 2.37 times
smaller than the cost of the Joshi-Dubey-Kaplan algorithm.
We also observe that the minimum processing cost of the
slicing-by-4 algorithm is similar to the cost of slicing-by-8 and
equal to 2.75 cycles per byte. Slicing-by-4 is 2.22 times faster
than the Sarwate algorithm and 1.88 times faster than the
Joshi-Dubey-Kaplan algorithm.

We observe that the averaging processing costs of the
algorithms of Table 2 are higher than their minimum costs.
For example, the minimum cost of the slicing-by-8 algorithm
is 2.19 cycles per byte, whereas its average processing cost
when data and tables are initially warm is 2.39 cycles per byte.
The difference in the cost values observed is due to operating
system interruptions or other activities which evict memory
entries from the cache memory. However, the impact of cache
pollution on the performance of the algorithms of Table 2 is
not significant as discussed above.

Another observation we make is that the average processing
cost of the algorithms of Table 2 is higher when packets are
initially cold. For example we observe that the cost of the
slicing-by-8 algorithm 2.41 cycles per byte when packets are

 10

initially cold whereas the same cost value is 2.39 cycles per
byte when packets are initially warm. The reason why such
difference is not significant is because a large part of the
content of packets is prefetched into the cache memory by the
processor. As a result only a few cache misses typically occur
during the CRC generation process. These cache misses
usually occur during the beginning of CRC generation
process. The larger the size of a packet buffer is the smaller
increase in the processing cost of CRC generation is likely to
be observed.

Performance of CRC Generation Algorithms

0

2

4

6

8

10

12

14

64 66 70 78 94 126 190 318 574 1086 2110 4158 8254

Buffer Size (bytes)

Processing Cost
(cycles/byte)

Sarwate
Joshi-Dubey-Kaplan
Slicing-by-4
Slicing-by-8

 (a) initial state: cold data, cold tables

Performance of CRC Generation Algorithms

0

2

4

6

8

10

12

64 66 70 78 94 126 190 318 574 1086 2110 4158 8254

Buffer Size (bytes)

Processing Cost
(cycles/byte)

Sarwate
Joshi-Dubey-Kaplan
Slicing-by-4
Slicing-by-8

(b) initial state: cold data, warm tables

Figure 9: The impact of warming the tables on the
performance of CRC generation algorithms

The implementation of the Joshi-Dubey-Kaplan algorithm
which we use in our experiments is different from the one
described in reference [9] in that our implementation does not
take advantage of the instruction set of IBM’s PowerPC
architecture. Comparing algorithm implementations is difficult
since the performance of implementations varies depending on
how implementations are optimized. In this paper we report
how our scheme compares with the state of the art for the sake
of qualitative comparison only. The reason why the slicing-
by-4 and slicing-by-8 algorithms perform better than the

Joshi-Dubey-Kaplan algorithm is because the latter uses a
single table only. As a result, the values returned from each
table lookup need to be XOR-ed with each other at different
offsets creating a ‘CRC tail’ every time the algorithm’s main
loop is executed. In contrast, the slicing-by-4 and slicing-by-8
algorithms use different tables. In this way, the slicing-by-4
and slicing-by-8 algorithms reduce the number of operations
needed for producing the final CRC value and avoid the
creation of CRC tails.

Performance of CRC Generation Algorithms

0

1

2

3

4

5

6

7

8

9

10

64 66 70 78 94 126 190 318 574 1086 2110 4158 8254
Buffer Size (bytes)

Processing Cost
(cycles/byte)

Sarwate
Joshi-Dubey-Kaplan
Slicing-by-4
Slicing-by-8

initial state: warm data, cold tables

Perofrmance of CRC Generation Algorithms

0

1

2

3

4

5

6

7

8

64 66 70 78 94 126 190 318 574 1086 2110 4158 8254
Buffer Size (bytes)

Processing Cost
(cycles/byte)

Sarwate
Joshi-Dubey-Kaplan
Slicing-by-4
Slicing-by-8

initial state: warm data, warm tables

Figure 10: The impact of warming the data on the
performance of CRC generation algorithms

2) Impact of warming the tables
In Figure 9 we study the impact of warming the tables on

the performance of CRC generation algorithms. Figures 9a
and 9b show the processing cost of the algorithms of Table 2
for different packet sizes when tables are initially cold and
warm. Each point in the plots of Figures 9a and 9b represents
an average value from 200 experiments. Figure 9 shows that it
is important for lookup tables to be placed in some cache
memory unit. This is true especially when packet sizes are
small. For small packet sizes (e.g., between 64 bytes and 574

 11

bytes) we observe significant difference in the performance of
CRC generation algorithms which is as high as 7 cycles per
byte for the slicing-by-8 algorithm. Such difference is
explained by the fact that the latency associated with
accessing table entries is significant (e.g., a few hundred clock
cycles) when tables are stored in an external memory unit. For
large packet sizes, the impact of the initial state of tables is not
that high because after some bytes are processed most table
entries can be accessed locally.

3) Impact of warming the data

In Figure 10 we study the impact of warming the data on
the performance of CRC generation algorithms. Figures 10a
and 10b show the processing cost of the algorithms of Table 2
for different packet sizes when data is warm and tables are
initially cold and warm. Figure 10 demonstrates the fact that
the processing cost of CRC generation algorithms is smaller
when data is initially warm than when data is cold as
expected. However the impact of the warming the data is not
as significant as the impact of warming the tables on the
performance of CRC generation algorithms. For example the
performance of the slicing-by-8 algorithm is increased only by
2 cycles per byte when data is initially cold and tables are
warm. The reason why is because data entries are accessed
sequentially, and hence data access patterns can be
‘recognized’ by the hardware prefetchers of processors. In
contrast table entries are accessed in a random manner.

VI. CONCLUDING REMARKS
We presented a framework for designing a family of novel

fast CRC generation algorithms. Our algorithms can ideally
read arbitrarily large amounts of data at a time, while
optimizing their memory requirement to meet the constraints
of specific computer architectures. In addition, our algorithms
can be implemented in software using commodity processors
instead of specialized parallel circuits. We used this
framework to design two efficient algorithms that run in the
popular Intel IA32 processor architecture outperforming the
popular Sarwate algorithm by factors almost equal to 2 and 3.

The most significant contribution of our work is that our
algorithms can ideally read arbitrarily large amounts of data at
a time and also create an arbitrary number of slices in each
step of their execution. As a result, the slices produced in each
step of the execution of these algorithms can be processed by
different processors. In this case, the speed of CRC generation
algorithms is multiplied by the number of processors used and
may potentially become arbitrarily large, limited only by the
bus speed, the cache footprint and the number of processors
used. Further investigation on the design and performance of
such parallel algorithms will be the subject of future work.

REFERENCES
[1] G. Albertengo and R. Sisto, “Parallel CRC Generation”, IEEE

Micro, October 1990.
[2] “Architectural Specifications for RDMA over TCP/IP”, RDMA

Consortium Web Site, available at
http://www.rdmaconsortium.org

[3] F. Braun and M. Waldvoger, “Fast Incremental CRC Updates
for IP over ATM Networks”, High Performance Switching and
Routing (HPSR), 2001.

[4] P. Culley, U. Elzur, R. Recio, S. Bailey and J. Carrier, “Marker
MPU Aligned Framing for TCP Specification”, Work in
Progress, Internet Draft, July 2004, expires January, 2005.

[5] A. Doering and M. Waldvogel, “Fast and flexible CRC
calculation”, Electronics Letters, January 2004.

[6] D. Feldmeier, “Fast Software Implementation of Error
Correcting Codes”, IEEE Transactions on Networking,
December, 1995.

[7] G. Griffiths and G. C. Stones, “The Tea-leaf Reader Algorithm:
An Efficient Implementation of CRC-16 and CRC-32”,
Communications of the ACM, Vol. 30, No. 7, pp. 617-620, Jualy
1987.

[8] C. M. Heard, “AAL2 CPS-PH HEC calculations using table
lookups”, ftp://ftp.vvnet.com/aal2_hec/crc5.c

[9] S. M. Joshi, P. K. Dubey and M. A. Kaplan, “A New Parallel
Algorithm for CRC Generation”, proceedings of the
International Conference on Communications, 2000.

[10] M. C. Nielson, “Method for High Speed CRC computation”,
IBM Technical Disclosure Bulletin, Vol. 27, No. 6, pp. 3572-
3576, November 1984.

[11] T. V. Ramabadran and S. V. Gaitonde, “A Tutorial on CRC
Computations”, IEEE Micro, Vol. 8, No. 4, pp. 62-75, August
1988.

[12] D. V. Sarwate, “Computation of Cyclic Redundancy Checks via
Table Lookup”, Communications of the ACM, Vol. 31, No 8,
pp.1008-1013, August 1988.

[13] J. Satran, K. Methm C. Sapuntzakis, M. Chadalapaka and E.
Zeidner, “Internet Small Computer Systems Interface (iSCSI)”,
Request for Comments, RFC 3720, April 2004.

[14] M. D. Shieh, M. H. Sheu, C. H. Chen and H. F. Lo, “A
systematic Approach for Parallel CRC Computations”, Journal
of Information Science and Engineering, Vol. 17, pp. 445-461,
2001

[15] A. Perez, “Byte-wise CRC Calculations”, IEEE Micro, Vol. 3,
No. 3, pp. 40-50, June 1983.

[16] R. N. Williams, “A Painless Guide to CRC Error Detection
Algorithms”, Technical Report, available at:
http://www.ross.net/crc, August 1993.

Copyright © 2005 Intel Corporation. All Rights Reserved.
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE. The information in this
document is furnished for informational use only, and Intel
Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear herein or in any
software that may be provided in association with this
document. Intel Corporation disclaims all liability, including
liability for infringement of any proprietary rights, relating to
use of information herein.

