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Abstract—A framework for designing a family of novel fast 

CRC generation algorithms is presented. Our algorithms can 
ideally read arbitrarily large amounts of data at a time, while 
optimizing their memory requirement to meet the constraints of 
specific computer architectures. In addition, our algorithms can 
be implemented in software using commodity processors instead 
of specialized parallel circuits. We use this framework to design 
two efficient algorithms that run in the popular Intel IA32 
processor architecture. First, a ‘slicing-by-4’ algorithm doubles 
the performance of existing software-based, table-driven CRC 
implementations based on the Sarwate [12] algorithm while using 
a 4K cache footprint. Second, a ‘slicing-by-8’ algorithm triples 
the performance of existing software-based CRC 
implementations while using an 8K cache footprint. Whereas 
well-known software- based CRC implementations compute the 
current CRC value from a bit-stream reading 8 bits at a time, 
our algorithms read 32 and 64 bits at a time respectively1.   
 

I. INTRODUCTION 
YCLIC redundancy codes (CRC) are used for detecting the 
corruption of digital content during its production, 

transmission, processing or storage. CRC algorithms treat 
each bit stream as a binary polynomial and calculate the 
remainder from the division of the stream with a standard 
generator polynomial. The binary words corresponding to the 
remainder are transmitted together with the bit stream. At the 
receiver side CRC algorithms verify that the correct remainder 
has been received. Long division is performed using modulo-2 
arithmetic. 

In this paper we investigate the implementation of CRC 
generation algorithms in software. The reason why software-
based CRC generation is important is because many 
commercial host, network and server chipsets which are in use 
today do not include specialized CRC generation circuits. In 
addition a number of recently proposed Internet protocols 
(e.g., datacenter protocols such as MPA[4] or iSCSI[13]) 
require that data integrity checks are performed above the 
transport layer using CRC at very high speeds (e.g., 10 Gbps).   

To accelerate the CRC generation process, a number of 
software-based algorithms have been proposed in the past [6-
12, 15, 16]. Among these algorithms the most commonly used 
today is the algorithm proposed by Dilip V. Sarwate [12]. The 
Sarwate algorithm reads 8 bits at a time from a stream and 
calculates the stream’s CRC value by performing lookups on a 
table of 256 32-bit entries. The Sarwate algorithm was 
 

1 This is an extended version of a paper that appeared at the 10th IEEE 
International Symposium on Computers and Communications (ISCC 2005) in 
Cartagena, Spain, June, 2005.  

designed at a time when most computer architectures allowed 
XOR operations between 8 bit quantities. Since then, 
computer architecture technology has progressed to the point 
where arithmetic operations can be performed efficiently 
between 32 or 64 bit quantities. In addition modern computer 
architectures comprise large on-chip cache memory units 
which can be accessed in a few clock cycle time and support 
mechanisms for preventing pollution. 

In this paper we argue that recent advances in computer 
architecture technology and the need for efficient CRC 
generation above the transport layer at very high speeds call 
for re-examination of the mathematical principles behind 
software-based CRC generation. Most existing CRC 
generation algorithms are based on the assumption that the 
amount of bits read at a time from a stream should be smaller 
than the degree of the generator polynomial.  In this paper we 
relax this assumption and propose algorithms that can ideally 
read arbitrarily large amounts of data at a time, while 
optimizing their memory requirement to meet the constraints 
of specific computer architectures.  

We use our framework to design two efficient algorithms 
that run in the popular Intel IA32 processor architecture. First, 
we propose the design of a novel ‘slicing-by-4’ algorithm 
which doubles the performance of existing CRC 
implementations based on the Sarwate [12] algorithm. The 
‘slicing-by-4’ algorithm uses a 4K cache footprint. Second, 
we propose the design of a ‘slicing-by-8’ algorithm which 
triples the performance of existing CRC implementations, 
using an 8K cache footprint. Whereas well-known table-
driven CRC implementations compute the current CRC value 
from a bit-stream reading 8 bits at a time, our algorithms read 
32 and 64 bits at a time, respectively. To accelerate the long 
division process, we apply the technique of parallel table 
lookups first used in [3, 8] to the generation of CRC values 
over long bit streams. Our algorithms avoid the memory 
explosion problem associated with creating a table of 232 and 
264 entries by expressing the current remainder from a long 
division step as well as the next data bits read from the bit 
stream as sums of smaller terms. In this way our algorithms 
can compute the next remainder by performing parallel 
lookups into smaller tables using as indexes the slices from 
the previous remainder and data bits.   

The paper is structured as follows: In section II we present 
related work. In Section III we provide an overview of the 
CRC generation process. In Section IV we present our 
framework. In Section V we evaluate our algorithms whereas 
in Section VI we provide some concluding remarks.  
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II. RELATED WORK 
Efficient implementation of the CRC generation process has 

been the subject of substantial amount of research [1,3,5,6-
12,14-16]. Software-based CRC generation has been 
investigated in [6-12, 15, 16]. Among these algorithms the 
tea-leaf reader algorithm introduced by Griffiths and Stones 
[7] supports the generation of ‘CRC32’ codes using five 256-
byte table lookups, five XOR and four shift operations for 
each byte of a bit stream. By CRC32 we mean a CRC 
generation algorithm where the degree of the generator 
polynomial is 32. Sarwate [12] optimized the teal leaf reader 
algorithm reducing the cost of CRC32 generation to a single 
table lookup, two XOR operations, a shift and an AND 
operation per byte. The algorithm proposed by Sarwate uses a 
single table of 256 32-bit entries. Feldmeier [6] motivated by 
the fact that table-driven solutions are subject to cache 
pollution presented a software technique that avoids the use of 
lookup tables. In our work we do use lookup tables because 
modern computer architectures support large cache units and 
mechanisms for preventing the eviction of table entries from 
these cache units. Our algorithms are distinguished from [4, 6-
12, 15, 16] by the fact they can ideally read large amounts of 
data at a time.  

The concept of parallel table lookups which we use in our 
framework also appears in early CRC5 implementations [8] 
and in the work done by Braun and Waldvogel [3] on 
performing incremental CRC updates for IP over ATM 
networks. The CRC5 implementations reported in [8] have 
been used for validating the header fields of ATM packets and 
cannot be easily used in long bit streams. The reason why is 
because these CRC5 implementations associate each slice of a 
stream with a separate table. As a result long bit streams 
would need as many tables as the slices constituting each 
stream.  On the other hand, if the contribution of each slice to 
the final CRC value is computed using the square and 
multiply technique as in the work by Doering and Waldvogel 
[5], the processing cost may be too high in software. Our work 
is distinguished from [3, 8] in that our algorithms reuse the 
same lookup tables in each iteration, thus keeping the memory 
requirement of CRC generation at reasonable level.    

Our algorithms bear some resemblance with a recent 
scheme published by Joshi, Dubey and Kaplan [9]. Like our 
algorithms the Joshi-Dubey-Kaplan scheme calculates the 
remainders from multiple slices of a stream in parallel. The 
Joshi-Dubey-Kaplan scheme has been designed to take 
advantage of the 128-bit instruction set extensions to IBM’s 
PowerPC architecture [9]. In our contrast our algorithms do 
not make any assumptions about the instruction set used. 
Moreover, the Joshi-Dubey-Kaplan scheme uses a single table 
and hence requires more complex calculations for finding the 
total remainder from the slices of streams than the algorithms 
of our framework, as explained in Section V.  

 Finally, references [1, 14] describe techniques for 
designing a family of hardware-based CRC generators. 
Reference [14] describes CRC generators which can perform 
the long division on a bit-by-bit basis using parallel circuits. 
The circuits of reference [14] split an input bit stream into 

multiple constituent bit streams. The original stream is 
reconstructed by interleaving the bits of the constituent bit 
streams. Reference [14] describes how circuits can be 
designed for processing these bit streams in parallel. In this 
paper we also describe a systematic methodology for building 
CRC generators, but our focus is on software 
implementations.  

III. THE CRC GENERATION PROCESS 

A. Description 
CRC algorithms augment bit streams with functions of the 

content of the streams. In this way it is easier for CRC 
algorithms to detect errors. To avoid self-failures the functions 
used by CRC algorithms need to be as ‘close’ to 1:1 as 
possible. CRC algorithms treat each bit stream as a binary 
polynomial B(x) and calculate the remainder R(x) from the 
division of B(x) with a standard ‘generator’ polynomial G(x). 
The binary words corresponding to R(x) are transmitted 
together with the bit stream associated with B(x). The length 
of R(x) in bits is equal to the length of G(x) minus one. At the 
receiver side CRC algorithms verify that R(x) is the correct 
remainder. Long division is performed using modulo-2 
arithmetic. Additions and subtractions in module-2 arithmetic 
are ‘carry-less’. In this way additions and subtractions are 
equal to the exclusive OR (XOR) logical operation. Table 1 
shows how additions and subtractions are performed in 
modulo-2 arithmetic.   
 

0+0 = 0-0 = 0 
0+1 = 0-1 = 1 
1+0 = 1-0 = 1 
1+1 = 1-1 = 0 

 
Table 1: Modulo-2 Arithmetic 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Long Division Using Modulo-2 Arithmetic 

 
Figure 1 shows a long division example. In the example, the 

divisor is equal to ‘11011’ whereas the dividend is equal to 
‘1000111011000’. The long division process begins by 
placing the 5 bits of the divisor below the 5 most significant 
bits of the dividend. The next step in the long division process 
is to find how many times the divisor ‘11011’ ‘goes’ into the 5 
most significant bits of the dividend ‘10001’. In ordinary 
arithmetic 11011 goes zero times into 10001 because the 
second number is smaller than the first. In modulo-2 
arithmetic, however, the number 11011 goes exactly one time 
into 10001. To decide how many times a binary number goes 

1 0 0 0 1 1 1 0 1 1 0 0 01 1 0 1 1
1 1 0 1 1 

1 0 1 0 1 
1 1 0 1 1 

1 1 1 0 1 
1 1 0 1 1 

0 1 1 0 0 

divisor dividend 
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into another in modulo-2 arithmetic, a check is being made on 
the most significant bits of the two numbers. If both are equal 
to ‘1’ and the numbers have the same length, then the first 
number goes exactly one time into the second number, 
otherwise zero times. Next, the divisor 11011 is subtracted 
from the most significant bits of the dividend 10001 by 
performing an XOR logical operation. The next bit of the 
dividend, which is ‘1’, is then marked and appended to the 
remainder ‘1010’. The process is repeated until all the bits of 
the dividend are marked. The remainder that results from such 
long division process is often called CRC or CRC ‘checksum’ 
(although CRC is not literally a checksum). 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Accelerating the Long Division Using Table 
Lookups 

B. Software Approaches  
The purpose of software-based CRC generation algorithms 

is to perform the long division quicker than the bit-by-bit 
marking process described above. The long division process is 
a compute-intensive operation because it requires in the worst 
case one shift operation and one XOR logical operation for 
every bit of a bit stream. One commonly used technique for 
accelerating the long division process is to pre-compute the 
current remainder that results from a group of bits and place 
the result in a table. Before the beginning of the long division 
process all possible remainders which result from groups of 
bits are pre-computed and placed into a lookup table. In this 
way, several long division steps can be replaced by a single 
table lookup step.  

The main idea behind this technique is shown in Figure 2. 
In the example of Figure 2, the remainder ‘0110’, which is 
formed in the third step of the long division process is a 
function of the five most significant bits of the dividend 
‘10001’ and the next two bits ‘11’. Since these bits are known, 
the remainder 0110 can be calculated in advance. As a result, 
3 long division steps can be replaced by a single table lookup. 
Additional table lookups can further replace subsequent long 
division steps. To avoid using large tables, table-driven CRC 
acceleration algorithms typically read no more than 8 bits at a 
time. 8-bit strides result in moderate CRC generation speeds 
using commercial general purpose processors. For example, 
we measured that the performance of the popular Sarwate [12] 
algorithm is 7 clock cycles per byte when running on an Intel 
‘Pentium® M’ processor. 

C. The Sarwate Algorithm 
In what follows we describe the algorithm proposed by 

Dilip V. Sarwate, which is one of the fastest software-based, 

table-driven CRC generation algorithms used today. The 
Sarwate algorithm is shown in Figure 3. The length of the 
CRC value generated by the algorithm of Figure 3 is 32 bits. 
The Sarwate algorithm is more complicated than the 
straightforward lookup process of Figure 2 because the 
amount of bits read at a time (8) is smaller than the degree of 
the generator polynomial.  

Initially, the CRC value is set to a given number (i.e., 
INIT_VALUE in Figure 3) which depends on the standard 
implemented (e.g., this number is 0xFFFFFFFF for CRC32c). 
For every byte of an input stream the algorithm performs the 
following steps: First, the algorithm performs an XOR 
operation between the least significant byte of the current 
CRC value and the byte from the stream which is read. The 8-
bit number which is produced by this XOR operation is used 
as an index for accessing a 256 entry table. The value returned 
from the table lookup is then XOR-ed with the 24 most 
significant bits of the CRC value, shifted by 8 bit positions to 
the right. The result from this last XOR operation is the CRC 
value used in the next iteration of the algorithm’s main loop. 
The iteration stops when all bits of the input stream have been 
taken into account. The bits of the input stream are considered 
to be reflected inside their respective bytes in the description 
of Figure 3.  

 
 

 
 
 

 
Figure 3: The Sarwate Algorithm 

 
By performing an XOR operation between a new byte from 

an input stream and the least significant byte of the current 
CRC value, and by performing a table lookup, the Sarwate 
algorithm determines how the current CRC value is modified 
when a new byte from an input stream is taken into account. 
The lookup table used by the Sarwate algorithm stores the 
remainders from the division of all possible 8-bit numbers 
shifted by 32 bits to the left with the generator polynomial. 
Detailed justification and proof of correctness of the Sarwate 
algorithm is beyond the scope of this paper. The reader can 
learn more about the Sarwate algorithm in [12] and [16].  

D. Toward New Schemes 
The main disadvantage of the Sarwate algorithm and other 

existing table-driven CRC algorithms is their memory 
requirement when reading a large number of bits at a time. For 
example, to achieve acceleration by reading 32 bits at a time, 
table-driven algorithms require to store pre-computed 
remainders in a table of 232 = 4G entries. In this paper we 
suggest that the current remainder which is formed after the 
execution of a group of long division steps as well as the next 
data bits read from a stream can be expressed as sums of 
smaller terms. In this way, new algorithms can be designed  
that compute the next remainder by performing parallel 
lookups into smaller tables using as indexes the slices 
produced in the previous iteration. Our approach results in 
algorithms that use reasonable cache footprints (i.e., 4K and 
8K bytes) as opposed of 16G bytes while accelerating the 
speed of CRC generation by a factor of 2-4, over the Sarwate 

1 0 0 0 1 1 1 0 1 1 0 0 01 1 0 1 1 
1 1 0 1 1 

1 0 1 0 1 
1 1 0 1 1 

1 1 1 0 1 
1 1 0 1 1 

0 1 1 0 0 

divisor dividend 

current remainder 

steps 
replaced 
by a table 
lookup 

crc = INIT_VALUE;
while(p_buf < p_end )

crc = table[(crc ^ *p_buf++) & 0x000000FF] ^ (crc >> 8);
return crc^FINAL_VALUE;
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algorithm. Our approach is generic and can be used in long 
division strides of different sizes.  

The main idea behind our approach is shown in Figure 4.  
To calculate the remainder from the division of ‘1000111’ 
with ‘11011’ it is suffice to split the dividend 1000111 into 
three ‘slices’, i.e., ‘10’, ‘001’ and ‘11’. The binary number 
1000111 can be written as the sum of three terms. The first 
term is equal to the slice ‘10’ shifted by 5 bit positions to the 
left. The second term is equal to the slice ‘001’ shifted by 2 bit 
positions to the left. Finally the third slice is equal to the slice 
‘11’. The remainder from the division of 1000111 with 11011 
can be found as the result of an XOR operation between the 
remainders returned from the division of the three constituent 
terms  ‘1000000’, ‘00100’ and ‘11’ of ‘1000111’ with the 
divisor ‘11011’. These remainders can be computed in 
advance. 

 
 

 
 
 
 
 
 
 

 
 

Figure 4: Remainder Slicing 

IV. BUILDING HIGH PERFORMANCE CRC GENERATORS 

A. Algorithmic Framework 
In what follows we describe the algorithms of our 

framework. The design of our algorithms is based on two 
principles associated with modulo-2 arithmetic. The first 
principle called ‘bit slicing’ principle is the one discussed 
in the previous section and suggests that if a binary number 
is sliced into two or more constituent terms the CRC value 
associated with the binary number can be calculated as a 
function of the CRC values of its constituent terms. The other 
principle called ‘bit replacement’ principle suggests that 
amounts of bits from bit streams can be replaced by 
potentially much smaller in length binary numbers producing 
the same CRC values. The first step of our algorithms 
differs from all subsequent steps.  
 

1) First Step 
Let P be the initial p most significant (i.e., initially 

transmitted) bits of an input bit stream B. Let l > p be the 
length of B in bits. Let also g,  g < l be the length of the 
generator polynomial G(x) used in the generation of the 
CRC value. We consider that the l-g+1 most significant bits 
of the input stream B are the information bits which are being 
encoded, whereas the  g-1 least significant bits of B are equal 
to zero as required by typical CRC generation algorithms. For 
the binary numbers P and B we write: 

]...[,]...[ 2121 lp bbbBbbbP ==   (1) 

where b1 is the most significant bit of P and B. 

The binary number P is sliced into m slices, which we 
symbolize as P1, P2, ..., Pm, of lengths  p1, p2, ..., pm such 
that P = [P1:P2: ...:Pm] and  p = ∑i pi for every i ∊[1, m]. 
As mentioned before, the binary number P is sliced in 
order for our algorithms to be able to read potentially 
large amount of data without having to access a lookup 
table of 2p entries.  

For each of the slices, a table lookup is performed. 
Each lookup takes place using a separate table. For the 
table lookups which take place during the first step, m 
different tables T1, T2,…, Tm are used of sizes equal to 

mppp 2,...,2,2 21  entries respectively. Each table Ti 
contains the remainders from the long division of all 
possible values of slice Pi shifted by an offset oi. The 
divisor used is the generator polynomial. The offset oi 
used in the calculation of the entries of table Ti is given 
by Eq.2 below: 

∑
+=

=
m

ij
ji po

1

  (2) 

Let )1()1(
2

)1(
1 ,...,, mRRR  be the values returned from the 

table lookups during the first step.  

GPR io
ii mod2)1( ⋅=   (3) 

We define: 

)1(

1

)1(
i

m

i
RR ⊕

=

=   (4) 

where by ‘⊕’ we mean the XOR logical operation.  
Let also: 

)1()1()1()1()1( 2]:[ QRQRS q ⊕⋅==   (5) 

where Q(1) is the set of the next q bits of the bit stream, which 
are positioned after the initial p bits:  

]...[ 21
)1(

qppp bbbQ +++=   (6) 

The value q, q>p is the amount of bits which are read 
during all subsequent steps of the algorithms of our 
framework.  

The first step of the algorithms of our framework ends with 
the derivation of the binary number S(1). In each subsequent 
step k the algorithms operate on a binary number S(k-1) 
produced during the previous step k-1. 
 

2) Step k  
In the beginning of step k, the binary number S(k-1) 

produced at step k-1 is sliced into n slices, which we 
symbolize as )1()1(

2
)1(

1 ,...,, −−− k
n

kk SSS , of slice lengths      
s1, s2, ..., sn such that ]:...::[ )1()1(

2
)1(

1
)1( −−−− = k

n
kkk SSSS  and  

s = ∑i si for every i ∊[1, n]. The length of the binary 
number S(k-1)  is s bits and is the same for every 
subsequent step k of the algorithmic framework.  

For each of the slices a table lookup is performed. Each 
lookup takes place using a separate table. Each step k, k>1 
uses the same set of tables in order for the space 

Main idea:

1000111 mod  11011 =

1000000 mod  11011 +

00100 mod  11011 + 

11  mod  11011

indexes to 3 smaller tablesindexes to 3 smaller tables
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requirement of the algorithmic framework to be reduced. 
The tables used in each step k, k>1 of the algorithmic 
framework are not necessarily the same as the tables used 
in the first step. The reason why our algorithmic 
framework distinguishes between the first and all 
subsequent steps is because the length of the input stream 
l may not be a multiple of the number of bits which are 
read at a time q. During the first step the number of bits 
read p may be different than q and hence a different set of 
tables may be needed.  

We use n tables ''
2

'
1 ,...,, nTTT  of sizes equal to 

nsss 2,...,2,2 21  entries respectively. Each table '
iT  contains 

the remainders from the long division of all possible 
values of slice )1( −k

iS  shifted by an offset fi. The divisor 
used is the generator polynomial. The offset fi used in the 
calculation of the entries of the table '

iT  is given by Eq. 7 
below: 

∑
+=

=
n

ij
ji sf

1

  (7) 

Let )()(
2

)(
1 ,...,, k

n
kk RRR  be the values returned from the 

table lookups during step k.  

GSR ifk
i

k
i mod2)1()( ⋅= −   (8) 

The values returned from the table lookups are added in 
modulo-2 arithmetic (i.e., XOR-ed) producing a new 
binary number R(k):   

)(

1

)( k
i

n

i

k RR ⊕
=

=   (9) 

Subsequently a new number S(k) is calculated from R(k) 
and the next q bits of the bit stream:  

)()()()()( 2]:[ kqkkkk QRQRS ⊕⋅==   (10) 

where Q(k) is the set of the next q bits of the bit stream which 
are positioned after the initial p + (k-1)·q bits:  

]...[ 2)1(1)1(
)(

qkpqkpqkp
k bbbQ ⋅++⋅−++⋅−+=   (11) 

The step k of our algorithmic framework ends with the 
derivation of the binary number S(k). In subsequent iterations 
of the algorithmic framework the same procedure of bit 
number slicing and parallel table lookups is repeated until all 
the bits of a bit stream are taken into account. The total 
number of steps N which are required for the calculation of a 
CRC value, assuming that p  ≠  q, is equal to: 

1+







=

q
lN   (12) 

In Section IV-B we prove that the value R(N) produced in the 
last step of this algorithmic framework is the remainder from 
the division of the input stream B with the generator 
polynomial using modulo-2 arithmetic. In other words, R(N) is 

the desired CRC value. In the last step of this algorithmic 
framework no binary number S(N) needs to be derived since all 
bits of an input stream have been taken into account. The last 
step ends with the calculation of the binary number R(N) using 
Eq. 9 for k = N. 

B. Correctness 
To prove the correctness of our algorithmic framework we 

need to show that the value R(N) which is produced in the last 
step of our framework is indeed the remainder from the 
division of the input stream B with the generator polynomial 
using modulo-2 arithmetic. This can be shown using the 
following theorem: 

Theorem 1: The value R(k) which is produced at step k of the 
algorithmic framework is equal to the remainder from the 
division of the most significant p + (k-1)·q bits of an input bit 
stream with the generator polynomial: 

GPR kk mod)()( =   (13) 

where ‘mod’ is the remainder operator in modulo-2 arithmetic, 
G is the binary number corresponding to the generator 
polynomial G(x) and: 

]...[ )1(21
)(

qkp
k bbbP ⋅−+=   (14) 

One can see that if Eq. 13 is true then the algorithmic 
framework of Section IV-A does return the correct CRC value 
since P(N) = B. To prove Theorem 1 we first show the 
correctness of two useful lemmas: 

Lemma 1 (bit replacement principle): Let’s assume that U1 
and U2 are two binary numbers of lengths u1 and u2 in bits 
respectively. Then the following is true: 

GURGUU mod]:[mod]:[ 2121 =   (15) 

where:  

GUR mod11 =   (16) 

Lemma 1 tells us that if we replace a number of consecutive 
most significant bits of a bit stream with an appropriately 
selected binary number we can still get the correct CRC value 
after the division with the generator polynomial. More 
specifically, the u1 most significant bits of the binary number 
[U1 : U2] in Eq. 15 can be replaced by the remainder R1 from 
the division of U1 with G.  

Lemma 1 also indicates that arbitrarily large amounts of bits 
from bit streams can be replaced by potentially much smaller 
in length binary numbers when deriving the CRC value. It is 
this bit replacement principle expressed in Lemma 1 which we 
take advantage of in the design of our algorithmic framework 
in order to read arbitrarily large amount of data at a time. 

Proof of Lemma 1:  Lemma 1 can be directly proven as 
shown below. In the equations below the symbol Q1 
represents the quotient associated with the division of number 
U1 with G. 
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GUUGUU u mod)2(mod]:[ 2121
2 ⊕⋅=    

GURGQ uu mod)22( 211
22 ⊕⋅⊕⋅⋅=    

)mod]:[()mod2( 211
2 GURGGQ u ⊕⋅⋅=    

GUR mod]:[ 21=    

where in the third step of the proof shown above we used the 
distributive property of the mod function in module-2 
arithmetic: 

)mod()mod(mod)( GbGaGba ⊕=⊕   (17) 

Apart from the bit replacement principle our framework 
takes advantage of a ‘bit slicing’ principle expressed in 
Lemma 2 below.  

Lemma 2 (bit slicing principle): Let U1, U2, …, Un are n 
binary numbers of lengths u1, u2, …, un respectively, where     
n > 1. Then the following is true: 

i

n

i
n RGUUU ⊕

=

=
1

21 mod]:...::[   (18) 

where  GUR io
ii mod2⋅=   and ∑

+=

=
n

ij
ji uo

1

 

Proof of Lemma 2: Lemma 2 can also be proven in a similar 
manner as Lemma 1: 

GUGUUU nii uuu
i

n

i
n mod)2(mod]:...::[ ...

1
21

21 +++

=

++⋅= ⊕   

i

n

i

o
i

n

i
RGU i ⊕⊕

==

=⋅=
11

mod)2(   

Lemma 2 tells us that if we slice a binary number into two 
or more component terms the CRC value associated with the 
binary number can be calculated as a function of the CRC 
values of its component terms. The bit slicing principle is 
applied in our framework in order to reduce the space 
requirement of CRC generation algorithms.  

Now that we have stated and proved lemmas 1 and 2 we can 
prove Theorem 1.  

Proof of Theorem 1: We prove theorem 1 by induction. Fist 
we show that Eq. 13 holds for k =1. Then we show that if Eq. 
13 holds for some value k = k*, it also holds for k = k*+1, 
where k* ≤  N-1.  

For k =1 Eq. 13 can be shown to be true using Lemma 2. 

)mod2(
1

)1(

1

)1( GPRR io
i

m

i
i

m

i
⋅== ⊕⊕

==

  

GPGPPPlemmaby m modmod]:...::[)2( )1(
21 ==   

where oi is given by Eq. 2.  
Next, assuming that Eq. 13 holds for k = k*, we can show 

that Eq. 13 holds for k = k*+1 using both Lemmas 1 and 2:  

)mod2( )(

1

)1(

1

)1( ***
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where fi is given by Eq. 7.  

C. Space and Time Requirements 
Our algorithmic framework requires N steps to execute, 

where N is given by Eq. 12. In the first step, m slices are 
created and m table lookups are performed. The creation of 
each slice requires in the worst case one shift operation and 
one AND logical operation. In addition, m-1 XOR operations 
are required for the derivation of R(1). The total number of 
operations required for the execution of the first step of our 
framework including, shift, AND, XOR and table lookup 
operations is: 

14)1( −⋅= mO   (19) 

Since table lookups take place in parallel, one can count all 
lookups as a single operation. In this case, the total number of 
operations executed during the first step is: 

mOh ⋅= 3)1(   (20) 

 
Each subsequent step k of our framework requires the 

creation of n slices and the execution of n parallel table 
lookups. Thus, the total number of operations required by step 
k is:   

14)( −⋅= nO k   (21) 

Counting all table lookups as a single operation the total 
number of operations becomes:  

nO k
h ⋅= 3)(   (22) 

From the values of O(1) and O(k) we can calculate the total 
number of operations required for the execution of our 
algorithmic framework.  

∑
=

−⋅+−⋅⋅−==
N

i

i mnNOO
1

)( )14()14()1(   (23) 

The total number of operations, counting all table lookups 
as one is: 

∑
=

⋅+−⋅⋅==
N

i

i
hh mNnOO

1

)( 3)1(3   (24) 

The space required for storing the tables used by the first 
step of our algorithmic framework expressed as number of 
table entries is: 
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Similarly, the space required for storing the tables used by 
every step k, k > 1of our algorithmic framework is: 

∑
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=
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i
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All steps k, k>1 use the same tables. Hence, the total space 
required for the execution of our algorithmic framework is: 
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We define the space reduction factor r characterizing our 
algorithmic framework as the ratio between the space required 
by the algorithms of our framework and the space required by 
same the algorithms without using slicing (i.e., by algorithms 
with the same p and q but with m = n = 1). 
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Figure 5: The ‘Slicing-by-4’ Algorithm 

 

D. The Slicing-by-4 and 8 Algorithms 
We have used the algorithmic framework presented 

above to accelerate the performance of CRC32c 
implementations. CRC32c is data integrity standard 
specified as part of many well known systems and such as 
MPA[4] and iSCSI[13]. The length of the CRC value in 
CRC32c is 32 bits whereas the length of the generator 
polynomial is 33 bits. The generator polynomial used by 
the CRC32c has coefficients equal to 0x11EDC6F41. The 
initial CRC value used is 0xFFFFFFFF. 

A ‘slicing-by-4’ algorithm is shown in Figure 5. The 
slicing-by-4 algorithm reads 32 bits at a time. The length 
of the input stream is considered to be multiple of 32. In 
this case, p = q = 32 bits. The length of the value R(k) 
which is produced by step k of this algorithm is 32 bits. 
Since the algorithm reads 32 bits at a time, the length of 
the value S(k) which is produced by step k of the algorithm 
is 64 bits.  During the first step of the algorithm, the first 
32 bits of the input stream are not grouped into slices 
(i.e., m = 1) since the number of bits read p is smaller 
than the degree of the generator polynomial. Each value 

S(k) produced by step k is split into n = 5 slices. The first 4 
slices s1, s2, s3 and s4 have equal lengths, i.e.,  si = 8 bits 
for every i ∊[1, 4]. The last slice s5 (i.e., the one 
associated with zero offset) has length equal to 32 bits.  

Because of the fact that slice s5 is associated with zero 
offset and its length is equal to 32 bits, the remainder 
from the division of s5 with the generator polynomial is s5 
itself. Hence, no table lookup is required for slice s5.  For 
the slices s1, s2, s3 and s4, we use four lookup tables of 
256 32-bit entries each. Our algorithm is called ‘slicing-
by-4’ because it performs 4 table lookups in parallel, 
although the number of slices produced in each step is 5. 
For the first step, we do not use lookup tables since the 
total number of bits which are read (32) is smaller than 
the degree of the generator polynomial. Hence, the 
slicing-by-4 algorithm requires only four lookup tables to 
execute. The total space requirement of the slicing-by-4 
algorithm is 4K bytes.    

Figure 5 illustrates an optimized implementation of the 
slicing-by-4 algorithm in C. The names of the tables 
follow the convention ‘table_offset’. The offset values 
used for the generation of the tables are 56, 48, 40 and 32 
bits, respectively. As in the description of the Sarwate 
algorithm in Figure 3, the bits of the input stream are 
considered to be reflected inside their respective bytes.  

 
   
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: The ‘Slicing-by-8’ Algorithm 

Another algorithm designed using our framework called 
‘slicing-by-8’ reads 64 bytes at a time. The slicing-by-8 
algorithm is shown in Figure 6. In the implementation of 
Figure 6, p = 32 bits and q = 64 bits. The length of the 
value R(k) which is produced by step k of this algorithm is 
32 bits. Since the algorithm reads 64 bits at a time, the 
length of the value S(k) which is produced by step k of the 
algorithm is 96 bits.  As in the slicing-by-4 algorithm, the 
first 32 bits of the input stream are not grouped into slices 
(i.e., m = 1). Each value S(k) produced by step k is split 
into n = 9 slices. The first 8 slices have equal lengths, i.e., 
si = 8 bits for every i ∊[1, 8]. The last slice s9 has length 
equal to 32 bits.  

Because of the fact that slice s9 is associated with zero 
offset and its length is equal to 32 bits, no table lookup is 
required for this slice.  For the slices s1-s8 we use eight 
lookup tables of 256 32-bit entries each. As in the slicing-
by-4 algorithm, the first step does not involve table 

crc = INIT_VALUE;
while(p_buf < p_end ) {

crc ^= *(uint32_t *)p_buf;
term1 = table_56[crc & 0x000000FF] ^ 

table_48[(crc >> 8) & 0x000000FF]; 
term2 = crc >> 16;
crc = term1 ^

table_40[term2 & 0x000000FF] ^
table_32[(term2 >> 8) & 0x000000FF];

p_buf += 4;
}
return crc^FINAL_VALUE;

crc = INIT_VALUE;
while(p_buf < p_end ) {

crc ^= *(uint32_t *)p_buf;
p_buf += 4;
term1 = table_88[crc & 0x000000FF] ^

table_80[(crc >> 8) & 0x000000FF];
term2 = crc >> 16;
crc = term1 ^

table_72[term2 & 0x000000FF] ^ 
table_64[(term2 >> 8) & 0x000000FF];

term1 = table_56[(*(uint32_t *)p_buf) & 0x000000FF] ^
table_48[((*(uint32_t *)p_buf) >> 8) & 0x000000FF];

term2 = (*(uint32_t *)p_buf) >> 16;
crc = crc ^ 

term1 ^
table_40[term2  & 0x000000FF] ^
table_32[(term2 >> 8) & 0x000000FF];

p_buf += 4;
}
return crc^FINAL_VALUE;
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lookups. The total space requirement of the slicing-by-8 
algorithm is 8K bytes, which is two times the space 
requirement of slicing-by-4. Figure 6 illustrates an 
optimized implementation of the slicing-by-8 algorithm in C. 
The offset values used for the generation of the tables are 88, 
80, 72, 64, 56, 48, 40 and 32 bits respectively.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Assembly Implementation of the Sarwate 
Algorithm 

 

V. EVALUATION 

A. Qualitative Evaluation 
We observe that a trade-off exists between the number of 

operations involved in the execution of a CRC generation 
algorithm and the space requirement of the algorithm. From 
Eq. 19-22 it is evident that the number of operations involved 
in the execution of a CRC generation algorithm is minimized 
when  the number of slices used is equal to one, i.e., m = n = 
1. On the other hand, when m = n = 1 the space reduction 
factor r is maximized as indicated by Eq. 28. The maximum 
value for r is 1.  

The benefit from slicing comes from the fact that modern 
processor architectures comprise large cache units. These 
cache units are capable of storing moderate size tables (e.g., 

4KB and 8KB tables as required by the slicing-by-4 and 
slicing-by-8 algorithms) but not sufficient for storing tables 
associated with significantly larger strides (e.g., 16BG tables 
associated with 32-bit strides). If tables are stored in an 
external memory unit, the latency associated with accessing 
these tables may be significantly higher than when tables are 
stored in a cache unit. For example, a DRAM memory access 
requires several hundreds of clock cycles to complete by a 
Pentium® M processor, whereas an access to a first level 
cache memory unit requires less than five clock cycles to 
complete.  The processing cost associated with slicing, which 
is observed in Eq. 19-22, is typically insignificant when 
compared to the cost of accessing off-chip memory units. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Assembly Implementation of the Slicing-by-4 

Algorithm 
 

Slicing is also important because it reduces the number of 
operations performed for each byte of an input stream when 
compared to other techniques used in the state of the art. For 
example, the slicing-by-4 and slicing-by-8 algorithms are 
faster than the Sarwate algorithm. This happens because the 
Sarwate algorithm calculates updates on the CRC values of 
streams on a byte-by-byte basis. In contrast, the slicing-by-4 
and slicing-by-8 algorithms calculate updates on CRC values 
reading 32 bit and 64 bit amounts at a time. To further 
demonstrate this, we show the instructions required for 
executing the Sarwate and slicing-by-4 algorithms over 32 bits 
of data using Intel’s IA32 processor architecture. Instructions 
are shown in Figures 7 and 8 respectively. For fair 
comparison, the loop of the Sarwate algorithm is unrolled over 
four iterations. The loop of the Sarwate algorithm consists of 
35 IA32 instructions, whereas the loop of the slicing-by-4 
algorithm consists of 16 instructions. For each byte of an input 
stream the Sarwate algorithm performs the following: (i) an 
XOR operation between a byte read and the least significant 
byte of the current CRC value; (ii) a table lookup; (iii) a shift 
operation on the current CRC value; and (iv) an XOR 
operation between the shifted CRC value and the word read 

mov ecx, p_buf 
mov esi , buf_length 
cmp esi , 0 
jz SHORT end 
add esi , ecx 
or eax , - 1 
push edi 

top_of_loop : 
xor edx , edx 
mov dl, BYTE PTR [ ecx ] 
xor edx , eax 
and edx , 255 
shr eax , 8 
mov edi , DWORD PTR table[edx *4]
xor eax , edi 
inc ecx 
xor edx , edx 
mov dl, BYTE PTR [ ecx ] 
xor edx , eax 
and edx , 255 
shr eax , 8 
mov edi , DWORD PTR table[edx *4]
xor eax , edi 
inc ecx 
xor edx , edx 
mov dl, BYTE PTR [ ecx ] 
xor edx , eax 
and edx , 255 
shr eax , 8 
mov edi , DWORD PTR table[edx *4]
xor eax , edi 
inc ecx 
xor edx , edx 
mov dl, BYTE PTR [ ecx ] 
xor edx , eax 
and edx , 255 
shr eax , 8 
mov edi , DWORD PTR table[edx *4]
xor eax , edi 
inc ecx 
cmp ecx , esi 
jb SHORT top_of_loop 
pop edi 

end: 
not eax 

mov ecx, p_buf 
mov edx, buf_length 
cmp edx, 0 
jz SHORT end 
add edx, ecx 
or eax, -1 
push esi
push edi

top_of_loop:
xor eax, DWORD PTR [ ecx ] 
add ecx, 4 
movzx esi, al 
mov edi, DWORD PTR table_o56[esi*4]
movzx esi, ah 
xor edi, DWORD PTR table_o48[esi*4]
bswap eax
movzx esi, ah 
xor edi, DWORD PTR table_o40[esi*4]
movzx esi, al 
xor edi, DWORD PTR table_o32[esi*4]
mov eax, edi 
cmp ecx, edx 
jb SHORT top_of_loop 
pop edi
pop esi

end:
not eax
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from the table. In contrast, for every byte of an input stream 
the slicing-by-4-algorithm performs only a table lookup and 
an XOR operation. This is the reason why the slicing-by-4 
algorithm is faster than the Sarwate algorithm. Since the 
Sarwate algorithm requires 35 instructions to execute over 32 
bits and the slicing-by-4 algorithm requires 16 instructions 
only, one can expect that the slicing-by-4 algorithm is 
approximately 2.2 times faster than the Sarwate algorithm 
provided that data are placed in a cache memory unit. 
Similarly, we observe that the slicing-by-8 algorithm requires 
27 instructions to execute over 64 bits. As a result, one can 
expect that the slicing-by-8 algorithm is approximately 2.6 
times faster than the Sarwate algorithm provided that data are 
placed in a cache memory unit. 

 
minimum 

processing 
cost 

(cycles/byte) 

average 
processing 

cost for warm 
data and 

warm tables 
(cycles/byte) 

average 
processing 

cost  for cold 
data and 

warm tables 
(cycles/byte) 

Sarwate 6.10 6.66 6.67 
Joshi-Dubey-Kaplan 5.18 5.65 5.67 

Slicing-by-4 2.75 3.29 3.31 
Slicing-by-8 2.19 2.39 2.41 

 
Table 2: Minimum and average processing costs   

We observe that our slicing-by-4 and slicing-by-8 
implementations do not suffer from cache pollution 
significantly. By ‘cache pollution’ we mean the undesired and 
uncontrolled eviction of application data structures from cache 
memory. In the case of CRC generation algorithms, cache 
pollution is caused by the fact that packets are fetched into 
cache units at very high speeds. The extent of cache pollution 
depends on the size and quantity of the source buffers over 
which CRC algorithms operate. We argue that the impact of 
cache pollution on the performance of CRC generation 
algorithms is not significant because on-chip cache memory 
units are typically large, capable of storing many packet 
buffers simultaneously. In addition, current processors employ 
a number of custom solutions for avoiding cache pollution. 
For example, cache lines can be set to an ‘invalid’ state after 
they are being used. In this way, the next packets fetched from 
memory can be placed in the same cache lines as the previous 
packets without causing undesired evictions. The impact of 
cache pollution on the performance of the slicing-by-4 and 
slicing-by-8 algorithms is quantified in the next section.  

The implementations of the slicing-by-4 and slicing-by-8 
algorithms presented in this paper can be further optimized by 
performing table lookups in parallel as opposed to 
sequentially using different general purpose registers in each 
lookup. Another way to accelerate the slicing-by-4 and 
slicing-by-8 algorithms is by employing multiple processing 
units for parallel packet processing. The algorithms of our 
framework can ideally read arbitrarily large amounts of data at 
a time and also create an arbitrary number of slices in each 
step of their execution. As a result, the slices produced in each 
step of the execution of these algorithms can be processed by 
different processors. The speed of CRC generation algorithms 
is multiplied by the number of processors used, in this case. 
The detailed description and evaluation of parallelized CRC 

generation algorithms, however, is beyond the scope of this 
paper.        

B. Quantitative Evaluation 
1) Minimum and Average Processing Costs 

We compare the performance of the slicing-by-4 and slicing-
by-8 algorithms with the state of the art. The minimum and 
average processing costs associated with the Sarwate [12], 
Joshi-Dubey-Kaplan [9], slicing-by-4 and slicing-by-8 
algorithms are shown in Table 2. By ‘minimum’ cost we mean 
the processing cost of these algorithms when packets and 
tables are placed in the fastest cache memory unit and no other 
activities such as operating system interruptions occur. The 
minimum processing cost is independent of the values of 
packet sizes. The minimum cost values presented in Table 2 
reflect the performance of CRC algorithms under ideal 
operating conditions. By ‘average’ cost we mean the average 
processing cost of algorithms when algorithms run under more 
realistic operating conditions. By ‘realistic operating 
conditions’ we mean conditions when operating system 
interruptions or other system activities can occur during the 
generation of CRC values. Each cost number presented in the 
third and fourth column of Table 2 represents an average 
value measured over 200 experiments. In these experiments, 
values for the size, content, and initial address alignment of 
packets are chosen by a pseudo-random number generator. 
Our pseudo-random number generator implements the 
uniform probability distribution. The processor used for 
producing the results of Table 2 is a ‘Dothan’ Pentium® M 
processor. This processor includes a 32KB first level (L1) 
cache unit and a 2MB second level (L2) cache unit.  In what 
follows we use the term ‘warm’ to refer to any memory entry 
placed in a cache memory unit. Similarly, we use the term 
‘cold’ to refer to any memory entry stored in an external 
memory unit.     

Table 2 shows that the slicing-by-8 algorithm is the fastest 
among the four algorithms compared. The minimum cost of 
slicing-by-8 is 2.19 cycles per byte, which is 2.79 times 
smaller than the cost of the Sarwate algorithm and 2.37 times 
smaller than the cost of the Joshi-Dubey-Kaplan algorithm. 
We also observe that the minimum processing cost of the 
slicing-by-4 algorithm is similar to the cost of slicing-by-8 and 
equal to 2.75 cycles per byte. Slicing-by-4 is 2.22 times faster 
than the Sarwate algorithm and 1.88 times faster than the 
Joshi-Dubey-Kaplan algorithm.   

We observe that the averaging processing costs of the 
algorithms of Table 2 are higher than their minimum costs. 
For example, the minimum cost of the slicing-by-8 algorithm 
is 2.19 cycles per byte, whereas its average processing cost 
when data and tables are initially warm is 2.39 cycles per byte. 
The difference in the cost values observed is due to operating 
system interruptions or other activities which evict memory 
entries from the cache memory. However, the impact of cache 
pollution on the performance of the algorithms of Table 2 is 
not significant as discussed above. 

Another observation we make is that the average processing 
cost of the algorithms of Table 2 is higher when packets are 
initially cold. For example we observe that the cost of the 
slicing-by-8 algorithm 2.41 cycles per byte when packets are 
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initially cold whereas the same cost value is 2.39 cycles per 
byte when packets are initially warm. The reason why such 
difference is not significant is because a large part of the 
content of packets is prefetched into the cache memory by the 
processor. As a result only a few cache misses typically occur 
during the CRC generation process. These cache misses 
usually occur during the beginning of CRC generation 
process. The larger the size of a packet buffer is the smaller 
increase in the processing cost of CRC generation is likely to 
be observed.  

Performance of CRC Generation Algorithms
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(b) initial state: cold data, warm tables 

 

Figure 9: The impact of warming the tables on the 
performance of CRC generation algorithms 

The implementation of the Joshi-Dubey-Kaplan algorithm 
which we use in our experiments is different from the one 
described in reference [9] in that our implementation does not 
take advantage of the instruction set of IBM’s PowerPC 
architecture. Comparing algorithm implementations is difficult 
since the performance of implementations varies depending on 
how implementations are optimized. In this paper we report 
how our scheme compares with the state of the art for the sake 
of qualitative comparison only. The reason why the slicing-
by-4 and slicing-by-8 algorithms perform better than the 

Joshi-Dubey-Kaplan algorithm is because the latter uses a 
single table only. As a result, the values returned from each 
table lookup need to be XOR-ed with each other at different 
offsets creating a ‘CRC tail’ every time the algorithm’s main 
loop is executed. In contrast, the slicing-by-4 and slicing-by-8 
algorithms use different tables. In this way, the slicing-by-4 
and slicing-by-8 algorithms reduce the number of operations 
needed for producing the final CRC value and avoid the 
creation of CRC tails. 
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Figure 10: The impact of warming the data on the 
performance of CRC generation algorithms 

2) Impact of warming the tables 
In Figure 9 we study the impact of warming the tables on 

the performance of CRC generation algorithms. Figures 9a 
and 9b show the processing cost of the algorithms of Table 2 
for different packet sizes when tables are initially cold and 
warm. Each point in the plots of Figures 9a and 9b represents 
an average value from 200 experiments. Figure 9 shows that it 
is important for lookup tables to be placed in some cache 
memory unit. This is true especially when packet sizes are 
small. For small packet sizes (e.g., between 64 bytes and 574 
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bytes) we observe significant difference in the performance of 
CRC generation algorithms which is as high as 7 cycles per 
byte for the slicing-by-8 algorithm. Such difference is 
explained by the fact that the latency associated with 
accessing table entries is significant (e.g., a few hundred clock 
cycles) when tables are stored in an external memory unit. For 
large packet sizes, the impact of the initial state of tables is not 
that high because after some bytes are processed most table 
entries can be accessed locally.     

 
3) Impact of warming the data 

In Figure 10 we study the impact of warming the data on 
the performance of CRC generation algorithms. Figures 10a 
and 10b show the processing cost of the algorithms of Table 2 
for different packet sizes when data is warm and tables are 
initially cold and warm. Figure 10 demonstrates the fact that 
the processing cost of CRC generation algorithms is smaller 
when data is initially warm than when data is cold as 
expected. However the impact of the warming the data is not 
as significant as the impact of warming the tables on the 
performance of CRC generation algorithms. For example the 
performance of the slicing-by-8 algorithm is increased only by 
2 cycles per byte when data is initially cold and tables are 
warm. The reason why is because data entries are accessed 
sequentially, and hence data access patterns can be 
‘recognized’ by the hardware prefetchers of processors. In 
contrast table entries are accessed in a random manner.    

VI. CONCLUDING REMARKS 
We presented a framework for designing a family of novel 

fast CRC generation algorithms. Our algorithms can ideally 
read arbitrarily large amounts of data at a time, while 
optimizing their memory requirement to meet the constraints 
of specific computer architectures. In addition, our algorithms 
can be implemented in software using commodity processors 
instead of specialized parallel circuits. We used this 
framework to design two efficient algorithms that run in the 
popular Intel IA32 processor architecture outperforming the 
popular Sarwate algorithm by factors almost equal to 2 and 3.  

The most significant contribution of our work is that our 
algorithms can ideally read arbitrarily large amounts of data at 
a time and also create an arbitrary number of slices in each 
step of their execution. As a result, the slices produced in each 
step of the execution of these algorithms can be processed by 
different processors. In this case, the speed of CRC generation 
algorithms is multiplied by the number of processors used and 
may potentially become arbitrarily large, limited only by the 
bus speed, the cache footprint and the number of processors 
used.   Further investigation on the design and performance of 
such parallel algorithms will be the subject of future work.  
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