
Pattern{based Object{Oriented Parallel ProgrammingSteve MacDonald�1 Introduction and MotivationParallel programming o�ers substantial performance gains to those willing to take up the challenge. Byproperly using additional processors, either in a single multiprocessor machine or in a network of workstations,we can execute programs faster than they would execute sequentially. We can apply this bene�t to eitherreduce the execution time of a large program or run larger, more detailed problems in the same amount oftime.Unfortunately, this bene�t comes at a steep price. Parallel programming is a di�cult task, combiningthe complexities of sequential programming with additional issues. The programmer must now create andcoordinate the processes that are participating in the computation. Parallel activities must be properlysynchronized to ensure correct results. The user will also have to deal with any nondeterminism introducedby the concurrent activities, since the program may no longer execute in a consistent order each time it isrun. This last problem also hampers debugging since a program may only fail on speci�c orderings that canbe di�cult to reproduce.To combat this complexity, we need a set of tools that aid in the development of parallel programs. Onesuch tool is a parallel programming system (PPS). A PPS can be responsible for managing some of the addedcomplexity by providing a simple parallel programming model to the user that eases or removes some of theabove issues. It may further help the user by providing a complete toolset for debugging, executing, andtuning programs. This proposal discusses advances in the state{of{the{art in parallel programming systems.Recently, state{of{the{art PPSs have started to concentrate on template{based (or, as they are nowcalled, pattern{based [16]) parallel programming systems. By observing the progression of these systems, wecan clearly see the evolution of pattern{based computing technology. One of the �rst attempts, FrameWorks[39], allowed users to graphically specify the parallel structure of a procedural program in much the same waythey would solve a puzzle, by piecing together di�erent components. The programmingmodel of FrameWorkswas low{level and placed the burden of correctness on the user. This research led to Enterprise [35], a PPSthat provided a limited number of templates that could be composed in a structured way. The programmingmodel in Enterprise was at a much higher level, with many of the low{level details handled by a combination�Sections of this paperwill be published in the Proceedingsof the 1997 InternationalScienti�cComputing in Object{OrientedParallel Environments Conference (ISCOPE'97) [24]. 1



of compiler and run{time technology.In this progression, we can see more emphasis placed on the usability of the tools rather than raw per-formance gains [44]. Each successive system reduced the probability of introducing programmer errors.However, since performance considerations cannot be ignored, each successive system also supported in-cremental application tuning. A related performance issue is openness [40], where a user is able to accesslow{level features in the PPS and use them as necessary. These concerns led to a critical evaluation ofpattern{based systems that provides the motivation for the new system, CO2P3S1.In this proposal, we present the architecture and model for CO2P3S in which we address some of theshortcomings of the earlier systems. This architecture is the basis of current research in object{orientedparallel programming systems. The continuing goal is to produce usable parallel programming tools. The�rst shortcoming we address is the loose relationship between the user's code and the graphical speci�cationof the program structure. Enterprise improved on FrameWorks by verifying a correspondence between theparallel structure and the code at compile{time. However, we feel that forcing the user to write a programthat conforms to an existing diagram is redundant. If the structure of the application is already known,then the basic framework can be generated automatically. This reduces the amount of e�ort required towrite programs, while simultaneously reducing programmer errors even further. The CO2P3S architecturealso supports improved incremental tuning. The architecture is novel in that it provides several user{accessible layers of abstraction. At any given time during performance tuning, a programmer can work atthe appropriate level of abstraction, based on what is being tuned. This can range from modifying thebasic parallel pattern at the highest level, to modifying synchronization techniques at the middle layer, tomodifying which communication primitives are used at the lowest level. The goal of this work is an opensystem where the performance of an application is directly commensurate with programmer e�ort.This paper is organized as follows. Section 2 is an overview of other parallel programming systems.Section 3 presents the architecture for incremental tuning. Section 4 presents the CO2P3S model by usingan example application. Section 5 evaluates the CO2P3S system and the PPSs of Section 2 using establishedcriteria for pattern{based parallel programming systems. Section 6 is an overview of other related work inthe design pattern and parallel programming �elds and compares this work to the new project. Section 7proposes thesis research within the project. Some conclusions are presented in Section 8.2 Parallel Programming SystemsThis section provides an overview of the literature on parallel programming systems. This review emphasizesobject{oriented tools and systems since they are the main focus of the research. However, procedural systemsare also mentioned when they are applicable.We also describe some of the limitations of these systems. A more thorough description of the problems is1Correct Object{Oriented Pattern{based Parallel Programming System, pronounced \cops".2



delayed until Section 5.3, where we compare the systems using a set of characteristics of good pattern{basedparallel programming systems.2.1 Pattern{based Parallel Programming SystemsThis section surveys the relevant literature on pattern{based parallel programming systems. This is notintended to be a complete survey of all existing systems, but rather a cross{section of the major research inthe area.FrameWorks FrameWorks [39] is a template{based distributed programming system based on a set ofmodules communicating via remote procedure calls. A module is a set of procedures, including a specialentry procedure, written in a superset of a high level language (in this case, C). Variables cannot be sharedbetween modules. Each FrameWorks program must also include a main module that contains the main()procedure.The speci�cation for a module also includes three template components: an input template, an outputtemplate, and a body template. These three templates are used to create appropriate communication,scheduling, and synchronization code.The input and output templates de�ne how a module interacts with the other modules in a FrameWorksapplication, speci�cally how a module receives its input and sends its output to the other modules. Threeinput modules were de�ned:1. an initial template that does not receive input from any other modules,2. an in{pipeline template that receives input from any of its input modules and services the requests�rst{come{�rst{served, and3. an assimilator template that requires input from each of its input modules before it invokes its entryprocedure.There are three output templates as well:1. an out{pipeline template that can send its output to one of the (possibly many) output modules,2. a manager template that manages a �xed number of identical output modules, and3. a terminal template that does not send output to any other modules.Body templates are optional templates that de�ne the internal behaviour of a module. FrameWorksde�ned two body templates:1. an executive template that instructs the module to direct its input, output, and error streams to theuser's terminal, and 3



2. a contractor template that dynamically seeks out and uses idle workstations (called employees) forcompute{intensive applications.Modules communicate with other modules by explicitly invoking them with a new call statement.Invocations that do not return values are asynchronous. Otherwise, the calling modules suspends waitingfor results, which must be returned using a reply statement in the called module. The data exchangedby di�erent modules is speci�ed as a frame, which resembles a C structure except that it cannot containpointers. A module call uses one frame for the input parameters and one frame for any return values.FrameWorks su�ered from several limitations [40]. The system was not open since users cannot accessthe run{time facilities. Foremost, though, FrameWorks exhibits several usability{related problems. Therewere some non{intuitive constraints on the composition of the three templates for a module. The user's codeand the templates were tightly coupled; any changes in one had to be re
ected in the other. Finally, theuser was responsible for correctly packing data into the frames used for communication between modules.Enterprise Enterprise, the successor project to FrameWorks, is a parallel program development environ-ment with support for design, coding, compiling, executing, debugging, analyzing, and replaying parallelprograms [35, 20].The programmingmodel of Enterprise uses asynchronous procedure invocations synchronized with futures[19]. We can demonstrate this model with an example code segment:result = f(param1, param2, ..., paramN) ;/* Other code */a = result + b ;In the sequential execution of this code, the caller invokes the function f() with the supplied argumentsand waits for the function to return before resuming. In the Enterprise model, if the function f() wasannotated as a parallel call, the caller marshals the arguments into a message and sends them to the processresponsible for executing f(). The results are assigned futures for later synchronization. The caller thencontinues to execute, running its own code concurrently with the parallel call. This continues until the callertries to use the value of the future, forcing it to resolve itself. Now, if the parallel call has not completed,the caller blocks waiting for the results. If the results are already available, the caller continues executing.Since the generation and resolution of futures is implemented by the Enterprise compiler, the user writes(almost) normal C code.The futures model in Enterprise also takes into account parameters passed by reference (done throughpointers in C). However, to pass pointers, the user must also specify the number of elements to be passedand can optionally specify a direction to optimize the size of the messages between processes. This pointerdata cannot contain further pointers.Enterprise also has a meta{programming model that allows a user to specify the parallel structure of aprogram using a series of composable templates called assets. The meta{programming model is based on4



an analogy between parallel programming structures and the structures found in a business organization.Enterprise provides the following assets:Enterprise: This asset represents a complete program. Initially, the entire program consists of a singleindividual asset. Only a single copy of this asset exists in a program.Individual: This asset represents a worker in a parallel program. An individual contains no other assets. Anindividual has source code and the name of a procedure it is responsible for executing. The procedureis executed to completion when invoked. An individual can be replicated to provide multiple copies ofthe same asset. Further, an individual can be coerced to another asset type, replacing the individualwith another asset. An individual can be coerced into a line, department, or division.Line: This asset represents an assembly line. It contains a set of heterogeneous assets in a speci�ed order.Note that these assets need not be individuals. Each asset in the line can call the next asset, usuallypassing it some data to be re�ned at each stage of the line. The �rst asset in a line is a receptionist, whichis similar to an individual in that it executes its procedure to completion. Subsequent invocations of thepipeline only wait for the receptionist to �nish executing, not the entire line. A line can be replicated.Department: This asset provides a master/slave template. The department consists of a receptionist anda set of heterogeneous assets. Again, the assets need not be individuals. The receptionist is invokedand can in turn invoke any of the assets in the department. Subsequent invocations of the departmentmust wait for the receptionist to �nish executing. A department can be replicated.Division: This asset provides a recursive divide{and{conquer template. The division consists of a recep-tionist and a representative, which is similar to an individual and represents a leaf node in the recursion.Each asset in the division executes identical code. At non{leaf nodes, a recursive call is translated intoa remote call. At leaf nodes, all recursion is performed locally. The breadth and depth of a division canbe modi�ed through a combination of coercion and replication. A representative can be coerced into adivision, increasing the depth of the division. The divisions and representatives can also be replicatedto increase the breadth.Service: This asset represents any resource that must be shared among assets. It does not contain anyassets, but any asset in a program can call it. A wall clock is a good example of this kind of service.It is important to note that the meta{programming model can only build acyclic graphs where the 
ow ofcontrol is always down. This ensures that the communication implied by the asset graph cannot result in adeadlock.Once the user has speci�ed the asset graph and the code for the application, the Enterprise precompilertransforms the sequential code into a parallel program. The asset graph is used to determine the procedurecalls that must be transformed into remote calls. The invocation of the call is replaced with a call to another5



compiler{generated routine that marshals the arguments and sends a message to the remote process that willexecute that procedure. The compiler also detects the futures resulting from the call and ensures that theywill be resolved before their values are used. The actual communication and synchronization is performedin the run{time system.Enterprise improved on FrameWorks in several ways [40]. First, an asset speci�es the template completely,rather than in three parts as required by FrameWorks. Enterprise provided the user with more templates.The programming model was familiar, based on (almost) sequential C code. Enterprise decoupled thetemplates from the user code, allowing each to evolve more independently. Finally, there are more correctnessguarantees for Enterprise programs. The system handles the packing and unpacking of parameters, includingsome support for pointer data. Enterprise also guarantees that a program matches its meta{program atcompile time and that the meta{program is deadlock{free.However, Enterprise still has its limitations. The system is not open, as the run{time system was designedas a compiler target and provides a minimal interface. The most serious limitation is that users must rewritetheir code to take full advantage of the futures{based programming model. Any accesses to a future mustbe separated from the creation of that future. Achieving this separation may mean rewriting some basicsequential code, such as loops summing the results of a series of parallel calls.Tracs In contrast to the FrameWorks and Enterprise systems, the Tracs system [3] is aimed at moresophisticated users. Programs are represented as directed graphs where the nodes represent computationalunits called tasks and edges represent communication. Each task has input and output ports, where eachport has a message type associated with it. Tasks typically communicate by either sending messages acrossuni{directional channels or by using a remote procedure call mechanism to invoke services at another task.The user creates a program by specifying up to three components: message models, task models, andarchitecture models.The message models de�ne the message types for ports on a task. A message model is similar to a framein FrameWorks; each model is a structure containing all the necessary parameters. Unlike FrameWorks,though, the message models are automatically mapped onto the XDR data de�nition format, which allowspointer data and complex data types to be used. The user does not need to de�ne new message models foreach application; they can be saved to disk and recalled for later applications.The task models de�ne the nodes in the program graphs. Each task model de�nes a set of input ports,output ports, and services. Each service and port is associated with a message model and local name. Theinput and output ports de�ne the static structure of the task; one is needed for every external connection. Atask may de�ne services that are used to export speci�c functionality to any number of other tasks. A taskmodel also includes code to be executed by the task, which uses the local names to send message modelsthrough the supplied ports or invoke a service on another task. Like message models, task models can bekept and used in other applications. 6



Finally, the user speci�es the architecture model. This model speci�es the parallel structure of a programindependently of the actual tasks, ports, and services. These models represent the templates or patterns inthe Tracs system. An architecture model consists of a program graph with formal message and task models,akin to formal parameters in a procedure. The formal models de�ne names for each component but do notspecify an implementation. The user �lls in the parameters for the architecture model, supplying the namesof the actual message and task models. However, the graphs used in the architecture model are static; thesupplied patterns cannot be generalized and instantiated with some speci�ed parameters. For example, auser cannot create an architecture model that creates an n{stage pipeline where n is speci�ed when themodel is used. The user interface does compensate for this shortcoming by providing operations that allowrepetitive structures to be easily built. Again, like the previous models, architecture models can be loadedfrom other applications or from models supplied by Tracs.The programming model in Tracs is explicit message passing or service invocation. Messages are sentto a port rather than another task, where the port is referenced using the local name supplied in the taskmodel. These messages are uni{directional and can be either synchronous or asynchronous.The Tracs system provides a feature that allows a user to use sequential code. This feature may only beused with task models that de�ne any number of input ports and a single output port. The user de�nes aprocedure that has one argument for every input port. When data arrives on each input port, the procedureis invoked with the arguments set using the data from the ports. The return value of the procedure is sent tothe output port. This feature is implemented by using a wrapper procedure that reads data from each inputport, invokes the user{supplied sequential function, and sends the results to the output port. By modifyingthis wrapper code, it is also possible to de�ne other behaviours, such as a master/slave, pipeline element,and grid element.Finally, the Tracs system provides support for compiling, debugging, and replaying programs.The principle failing of Tracs is the intrusive programming model, which is a departure from thecall/return sequential model. This problem appears in both the explicit message{passing mode and se-quential code feature. Using the sequential code feature, the return value of a task does not return to thecaller but is a mechanism for sending data to another task. Also, the code does not invoke other tasks. Theuse of the message models for parameters is intrusive. Finally, Tracs also fails to make correctness guaranteesunless the behaviours in the sequential code option are used.Parsec The Parsec system [13] is a pattern{based system similar to Cole's algorithmic skeletons [11]and the pragmatic implementation machines of PIE [33]. The system provides virtual machines (calledskeleton{template{module objects or STMs) providing an abstract computer architecture that supportsdi�erent parallel programming templates, such as master/slave and task farms2. The virtual machines2These virtual machines are similar to the virtual machines for Smalltalk and Java in that they provide an abstraction ofthe hardware and software architecture of the target machine. However, unlike Smalltalk and Java, they do not interpret andexecute bytecode. 7



provide skeleton code for the supported template, which the user completes to implement an application.The virtual machines also require a set of parameters, some from the user and some derived from the topologyof the underlying hardware, to determine the full implementation of the template and its mapping to theparallel architecture.The parameters in Parsec are unique in that they are not all static values input from the user or derivedfrom the hardware, although these kinds of parameters are the most common and easiest to handle. Parsecallows parameters to be the output of a speci�ed external program. This program can be used to deter-mine dynamic performance tuning parameters of a system that may be di�erent for each execution of theapplication.Parsec also generalizes the structure of its patterns by allowing the user to supply parameters to specifyits shape and size. This features helps them achieve their goal of providing users with small developmentversions of their programs that can be easily scaled up to much larger production versions.In terms of the programming model of Parsec, the patterns represent programs as graphs. Each nodein the graph represents a process, which has associated ports which are bound to other ports via channels.The processes may be collected into modules, which may be hierarchically de�ned by subdividing a moduleinto groups of logically related modules. The processes communicate explicitly using typed messages sentto ports. These message types are used to guide the marshaling of messages, which is done invisibly usingXDR.Parsec fails to provide an open system, encapsulating the template in the virtual machine and keeping itfrom the user. Also, the explicit communication model and message types do not map well to a sequentialprogramming model.DPnDP DPnDP (Design Patterns and Distributed Processes) [42] represents programs as a combinationof design patterns and singleton nodes in a directed graph. Each node represents a computational modulethat contains message handlers that receive messages and invoke the appropriate module code. A modulemay be implemented using a design pattern. Furthermore, any singletons within the design pattern may bedesign patterns themselves. These nodes communicate explicitly through a set of ports.The design patterns in DPnDP handle pattern{speci�c creation, communication, and synchronization,but application{speci�c communication is left to the user. For instance, in a task farm, the pattern codehandles the distribution of work to the workers and the necessary synchronization, but the user must stillsend work and receive results in the master and slave code. Communication is performed through low{levelinterprocess communication primitives, which are mapped to a message{passing library such as PVM orMPI.Patterns in DPnDP only specify the generic structure, such as an n{stage pipeline. The user instantiatesthe pattern with a set of parameters indicating the correct size and structure. Unlike Parsec, though, theseparameters are static values input by the user. 8



The design patterns in DPnDP are used to generate code skeletons that the user augments withapplication{speci�c functionality by de�ning the message handlers. The skeleton code can be modi�edby the user, promoting openness. Openness is further enhanced by allowing the user to access the underly-ing communications library, which allows a program to use speci�c features of the library or allow outsideprograms to interact with DPnDP applications.One important aspect of the design patterns is that they cannot be distinguished from singleton modules.This feature allows any singleton to be replaced with a design pattern. DPnDP refers to this replacement ascomposition, which allows a program to be speci�ed as a graph of singletons and patterns. It is also possibleto re�ne patterns, modifying their behaviour while maintaining the overall structure and behaviour of thepattern. An example of re�nement is replicating a node in a pipeline.Another critical aspect of the design patterns in DPnDP is that they all present and implement identicalinterfaces. This uniformity forces the patterns to be context{insensitive.This uniformity also leads to an important contribution of DPnDP. Given the common interface, it ispossible for a user to create new design patterns and add them to the existing set. DPnDP provides aset of C++ classes that users can derive from to specify new patterns [41]. The user supplies methods tocreate the structural and behavioural parameters for the new pattern, specifying the kinds of nodes usedin the pattern, initializing all the design patterns used in the new pattern, and a �nal method to generatethe interconnection between the modules in the pattern based on the structural parameters. These fourmethods, combined with the remainder of the design pattern implementation classes, provide all the codegeneration and implementation aspects necessary to introduce new patterns into the pattern library. Theonly missing aspect is that the user interface does not recognize these new patterns, which can be correctedby placing this information in an external database.DPnDP has two main limitations. First, the programmermarshals the data sent between modules, leavingthe correctness of this important code to the user. Second, the explicit communication model is intrusive.This intrusiveness appears in the recursive divide{and{conquer pattern de�ned by DPnDP. To correctly usethis pattern, the user must specify a di�erent behaviour for each kind of node in the recursion: the rootnode, interior but non{root nodes, and leaves. This is counter{intuitive from a sequential programmingperspective, where we would expect each node to execute the same code. However, each of the three kindsof nodes have di�erent communication requirements. The root receives input from an external module andsends messages to its children. Interior nodes receive input from another interior node and sends messagesto its children, and the leaves receive input from another interior node but generate no further messages.The explicit communication model makes it necessary to make this distinction.2.2 Non Pattern{based Parallel Programming SystemsIn addition to the pattern{based parallel programming systems from the previous section, there are manysystems that provide a more visual but less structured approach to building parallel programs. Examples of9



this type of system are CODE [28], HeNCE [4], and VPE [29]. These systems typically represent programs asdirected graphs, with nodes representing computation and edges representing interaction or communication.HeNCE graphs show control dependencies, data dependencies, and name scoping. A HeNCE node canexecute only when all preceding nodes have �nished. Each node can only receive input when it startsexecuting and send output when it �nishes. CODE graphs show a modi�ed data
ow relationship. A usercan specify �ring rules for a node which may only require data on a subset of the incoming arcs3. LikeHeNCE, a node cannot communicate during its execution. VPE graphs are mainly intended for helpingprogrammers visualize the structure of their applications rather than strictly controlling program execution.VPE nodes explicitly communicate through asynchronous messages using ports de�ned in the graphicalinterface, eliminating the need for a node in the program graph for each message.These tools provide an easy way for the programmer to specify the parallel structure of a program. Thisguides the user when building the program. Also, it is possible for the run{time system of the tool to use thegraph to help with communication by type{checking messages. Most of these systems also provide graphicaluser interfaces to help with the development of programs, providing the opportunity to include support tools.Lastly, the visual nature of the programming model lends itself to graphical performance analysis tools suchas animation.The main problem with these tools compared to their pattern{based counterparts is a lack of correctnesswith respect to the proper use of the program graphs. This results from the lack of structure in the graphsused to represent the structure of the program; the graphs can indicate the intended communication in anapplication but do not verify that it is used correctly. We can see this in the Tracs system, which allows theuser to build patterns but makes no guarantees relating to their use. Another problem with these systemsis that most de�ne an intrusive programming model that does not follow the familiar sequential model.However, it is possible to use the properties of a visual language to verify properties of resulting applica-tions. Phred [5] describes the parallel structure of an application (the grammar of the Phred visual language)and accesses to shared repositories of data. The grammar and semantics of the visual model make it possibleto determine if a program is deterministic by showing that the tasks in the system do not have con
ictingaccesses to a repository. However, this analysis was developed speci�cally for the Phred grammar. It is notclear if this can be extended to more general task graphs.2.3 SummaryIn all of the systems described in the previous two sections, three issues were consistently raised: programcorrectness, the intrusiveness of the programming model, and system openness. These areas are crucial tocreating a usable parallel programming system. If a PPS can make some correctness guarantees, it relievesthe programmer of some of the burden of writing parallel programs. Further, the more the programming3In traditional data
ow systems, a node may execute only when data is available on all incoming arcs.10



Patterns Layer

Intermediate Code Layer

Native Code LayerFigure 1: The architecture of CO2P3S.model of a PPS strays from the sequential model, the more di�cult it will be for users to learn how touse the system e�ectively. Finally, an open system allows users more opportunity to modify and tune theirprograms for additional performance. Unfortunately, the systems presented in this section generally targetexperienced users. These systems may prove to be daunting to new parallel programmers. However, systemsthat target new programmers typically do not provide either the control or the performance levels requiredby more advanced users.With the CO2P3S system, we hope to improve the state{of{the{art in parallel programming systemresearch by reducing these limitations. This work can ease the transition into parallel programming fornovice users. However, we de�ne an open architecture with multiple abstractions to address the usabilityand performance concerns of intermediate and advanced parallel programmers. The result will be a novelsystem that can be used by a broad range of users.3 The Architecture of CO2P3SThe architecture of CO2P3S is shown in Figure 1. It consists of three layers: Patterns, IntermediateCode, and Native Code. These layers represent di�erent levels of abstraction, where the abstraction of eachlayer is implemented by the one underneath.Each layer is transformed during compilation to the layer underneath. At the pattern layer, the developerselects a pattern using a graphical tool. The PPS then generates a template for the parallel application andthe user is restricted to providing sequential application{speci�c code at particular locations in the generatedtemplate4. At the pattern level, the PPS guarantees the correctness of the generated program by usingconservative synchronization mechanisms that may not yield peak parallel performance.Unlike other systems, CO2P3S provides programmer access to the second layer so that the templatesthemselves can be edited. From this layer down, the programmer is responsible for the correctness of theresulting program. To make this task simpler, we provide a high{level parallel programming language thatis an extension of existing object{oriented languages such as Java and C++. This superset includes extra4For the remainder of this paper, a template refers to generated code.11



keywords to annotate parallel classes, specify concurrent activities and express synchronization requirements(using constructs such as asynchronous method invocation, threads, and futures). These keywords are speci�cto the current pattern.Finally, the third layer is the native programming language augmented with a library that provides theservices required by the �rst two layers. Users are given full access to all language features and library codewhich can be extended for their needs.Our architecture addresses the problems of non{intrusiveness, openness, and correctness. The system isnon{intrusive because the user writes sequential code to �ll out the templates. The pattern layer addressescorrectness even more rigourously than other systems by generating template code from the design patterns.Since, at the pattern layer, the generated code cannot be modi�ed by the user, we can strictly enforce thestructure of the program. Combined with a run{time library, this code can o�er a high{level model that freesthe user from the low{level details of parallel programming and guarantees the correctness of the parallelstructures.The subsequent layers of the system are intended to address the problem of openness by providingsuccessively more access to both the generated code and the run{time system. The intermediate layerprovides more control over the user program by providing access to the generated code of the �rst layer, butstill provides a high{level programming model for easier programming. The user can optimize the generatedcode, but is then responsible for its correctness. Finally, the last layer provides access to the completeprogramming system.The novelty in this approach lies in providing di�erent layers of abstraction for incremental tuning. Incontrast, most existing systems provide either no incremental re�nement or simply give the user access to theunderlying run{time system. We believe that providing intermediate levels of abstraction can provide severalbene�ts. First, by generating correct template code at the �rst level, we can ensure that a user has a workingparallel program before the tuning process begins. Second, it eases the tuning process by introducing therun{time system in smaller increments. These smaller increments provide better opportunities for novice orintermediate users to �nd a comfortable level of abstraction while still providing full access to the run{timesystem for experienced users. Lastly, it should always be possible to improve the performance of a programby using the abstraction of a lower level. If so, then the performance of an application should be moredirectly commensurate with programmer e�ort.4 The ModelIn this section, we more fully specify the model and demonstrate it using an example program. Our exampleshows some details of a generic mesh computation.The �rst layer speci�cation is shown in Figure 2. This layer consists of both a graphical representation ofthe pattern and the generated template code. The pattern itself has several parameters that must be given.12
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this.notDoneCondition()
this.prologue() ;

this.whilePrefix() ;

this.epilogue() ;

this.whileSuffix(leftState, rightState,
                         upState, downState) ;

public void meshMethod() 
{

     while(                                       ) {

          MeshState leftState = left.getState() ;
          MeshState rightState = right.getState() ;
          MeshState upState = up.getState() ;
          MeshState downState = down.getState() ;

     
     } /* while */

     this.setResult() ;
} /* meshMethod */

public void prologue()
{
} /* prologue */

public void epilogue()
{
} /* epilogue */

public void whilePrefix()
{
} /* whilePrefix */

public boolean notDoneCondition()
{
     return(false) ;
} /* notDoneCondition */

public void whileSuffix(MeshState leftState,
                                   MeshState rightState,
                                   MeshState upState,
                                   MeshState downState)
{
} /* whileSuffix */Figure 2: The �rst layer of CO2P3S. Shaded code is generated by the system and cannot be modi�ed.Italicized methods are null and must be implemented by the user. Skeleton implementations are shown onthe right.The parameters include the width and height of the mesh and its boundary conditions. The boundaryconditions are the most interesting of these parameters since they can a�ect the user code. The reason forthis can be seen in the accompanying code fragment. It shows the main loop in the evaluation of the mesh,with the shaded part representing the generated code and italicized code representing hook methods thatthe user must implement. In the hooks, the code uses all four mesh neighbours. However, if the mesh isnot fully toroidal5, then not all the neighbours will exist and the supplied code is not applicable. To correctthis, we allow the user to specify di�erent code for the di�erent special cases. In this paper, for simplicity,we will assume the mesh is fully toroidal.One critical feature of the �rst layer is that the generated code encapsulates the communication and onlyallows the user to operate on the data. This feature allows our PPS to make certain correctness guarantees,such as ensuring that each element of the mesh is referenced. The code in Figure 2 demonstrates thisproperty by getting the state from the mesh neighbours and communicating the results of the computation toa collector object responsible for collecting the results (encapsulated within setResult()). Another criticalaspect of this code is that we provide su�cient hooks for users to completely implement their programs.This requirement must be evaluated on a pattern{by{pattern basis. For the portion of the mesh in Figure 2,we provide �ve hooks. prologue() and epilogue() are executed before and after the mesh computationand can be used for any initialization and cleanup, such as implementing instrumentation. whilePrefix()and whileSuffix() are executed for every iteration of the mesh algorithm and can be used to preprocess5A mesh is fully toroidal when all neighbours of all elements are de�ned, usually by linking the �rst element of a row to thelast element of that row and similarly for columns. 13



barrier ;

public void meshMethod() 
{
     this.prologue() ;
     while (this.notDoneCondition()) {
          this.whilePrefix() ;
          MeshState leftState = left.getState() ;
          MeshState rightState = right.getState() ;
          MeshState upState = up.getState() ;
          MeshState downState = down.getState() ;

          this.whileSuffix(leftState, rightState,
                                  upState, downState) ;
     } /* while */
     this.epilogue() ;
     this.setResult() ;
} /* meshMethod */

public void whileSuffix(MeshState leftState, MeshState rightState,
                                   MeshState upState, MeshState downState)
{
     // Take the average myself and all four neighbours and gather
     // timing information from a timer started in whilePrefix().
     this.value = (this.value + leftState.getValue() +
                         rightState.getValue() + upState.getValue() +
                         downState.getValue()) / 5.0 ;
     this.stopTimer() ;
     this.gatherStatistics() ;
} /* whileSuffix */

Code

Figure 3: The second layer of CO2P3S. The italicized code is synchronization inserted by the transformationbetween layers.local data and perform the desired mesh operation. Finally, notDoneCondition() lets the user specify theterminating condition for an element of the mesh. The mesh stops executing when all the elements are�nished. The default implementation of these methods is given on the right hand side of Figure 2.Since the user hooks are given as methods that the user implements, it is possible to view the generatedcode as a template class like those in C++. The parameters for this template class are the hook methods.From the �rst layer code, we generate the intermediate code of the second layer shown in Figure 3. The�gure also contains an example of a method operating on data in the mesh, which would have been addedby the user at the �rst level. For the mesh, the keywords left, right, up, down are de�ned to refer to theneighbours. The keyword barrier is also required to de�ne the necessary synchronization for the mesh andis automatically inserted in the transformation of the mesh code from the �rst to the second layer. Other,more general keywords are also supported by CO2P3S.A feature of the generated code is that it is fully functional even if the user does not implement any ofthe hooks. In the mesh example, the default implementation for notDoneCondition() returns false so themesh immediately exits. The main body of the mesh, if it is invoked, will retrieve the state from each ofits neighbours and perform a null operation. By producing code that is capable of executing, we can verifythat our patterns are correct and that the user will start with a parallel program that does not contain anycommunication errors.The user can also edit the generated code at this level, which allows the structure of the mesh to beextended or modi�ed. For example, it is now possible to add new neighbours not de�ned in the originalmesh pattern. We can use this feature to de�ne an arbitrary stencil to be convolved over the mesh rather14



Code

this.getMeshThreadGroup().barrier() ;

this.getLeft()

this.getUp()
this.getDown()

this.getRight()

public void meshMethod() 
{
     this.prologue() ;
     while (this.notDoneCondition()) {
          this.whilePrefix() ;
          MeshState leftState =                     .getState() ;
          MeshState rightState =                       .getState() ;
          MeshState upState =                   .getState() ;
          MeshState downState =                       .getState() ;

          this.whileSuffix(leftState, rightState,
                                  upState, downState) ;
     } /* while */
     this.epilogue() ;
     this.setResult() ;
} /* meshMethod */Figure 4: The third layer of CO2P3S. The italicized code represents replaced keywords. The code for othermethods is accessible but not shown.than examining only the immediate neighbours.Finally, from the second layer code of Figure 3, we generate the native code given in Figure 4. Nativecode replaces the keywords introduced by the second layer with library calls implemented by our parallellibrary. This replacement may be as simple as replacing the keyword with an accessor, as with the referencesto the neighbours of the mesh. Others may be a little more complex, such as replacing the barrier keywordwith a call to the thread group holding the threads executing the mesh. Users are also free to use any librarycall or language feature available to them.5 Evaluating the ModelIn this section, we examine the 13 desirable characteristics of pattern{based PPSs described by Singh et al.and apply them to CO2P3S. Not all of the characteristics can be addressed at this time, as some requireseparate usability and performance studies that cannot be undertaken until our tool is fully implementedand mature enough for the user community. We �rst outline the characteristics and then evaluate CO2P3Swith respect to them. Finally, we evaluate the systems described in Section 2.1 using the same criteria.5.1 Basis for EvaluationThis section de�nes the characteristics of a good pattern{based parallel programming system. Like Singh etal., we break the characteristics into three categories. We also use their short names for the characteristics,which are given in parentheses.5.1.1 Structuring the ParallelismThese characteristics examine how users can structure the parallelism in their applications. There should beas few restrictions as possible. The ideal characteristics are:15



1. Separation of Speci�cation (Separation): It should be possible to specify the parallelism (design pat-tern) and application code separately, allowing each part of the speci�cation to evolve independently.2. Hierarchical Resolution of Parallelism (Hierarchy): This characteristic means that a design pattern canbe re�ned by embedding other patterns within it.3. Mutually Independent Patterns (Independence): Each pattern should be context insensitive so that itcan be used in conjunction with any other pattern.4. Extendible Repertoire of Patterns (Extendible): The user should be able to create additional designpatterns. These user{de�ned patterns should not be discernible from system{de�ned patterns.5. Large Collection of Useful Patterns (Utility): The system should have a large number of patterns thatencompass a broad range of application areas.6. Open Systems (Open): The user should be able to access low{level features of the programming system.5.1.2 ProgrammingThese characteristics are used to evaluate the style and structure of the application code written by the user.1. Program Correctness (Correctness): The PPS should be able to make correctness guarantees aboutthe user program. Common examples of such guarantees are absence of deadlock and deterministicexecution.2. Programming Language (Language): The system should use an existing, familiar programming lan-guage.3. Language Non{Intrusiveness (Non{Intrusiveness): The user should not have to program around limi-tations in the parallel programming model. For instance, a user should not have to avoid pointers toaccommodate a parallel programming system that uses a message{passing library in its implementa-tion.5.1.3 User SatisfactionThese characteristics focus on a combination of performance and usability concerns.1. Execution Performance (Performance): The system should provide the best possible performance,within the bounds of the provided patterns.2. Support Tools (Support): The system should provide a complete set of support tools, including design,coding, debugging, testing, and monitoring tools. Each of these tools should present a consistent modelto the user. 16



3. Tool Usability (Usability): The programming system should be easy to learn and use.4. Application Portability (Portability): Users should be able to port applications to several target archi-tectures. This characteristic does not imply that performance will be equal on each architecture.5.2 Evaluating CO2P3S5.2.1 Structuring the ParallelismCO2P3S addresses separation by expressing the parallelism diagrammatically and allowing application{speci�c code to be inserted into the pattern. In our case, the diagram is some form of collaboration diagram.Further, the CO2P3S approach of generating code that invokes user hooks provides more opportunity tore{use the hooks when the user changes the pattern. Since the hook code does not a�ect the communication
ow of the program (because the communication code is generated and cannot be edited by the user), there isa greater possibility that this code can be used in another pattern. It may not always be possible to do this,though, because the hook code may use keywords or take advantage of pattern{speci�c features. However,this feature does provide better separation between the design pattern and the user code than earlier e�orts.We can allow the parallelism in a program to be hierarchically speci�ed by allowing patterns to besubstituted for the sequential components in a program. This composition can be compared to the Compositedesign pattern [16]. It provides a structured way of building complex program elements.We can only address independence once the set of templates has been decided upon. Typically, thischaracteristic has been addressed by rigourously de�ning the inputs and outputs of each design pattern orby creating separate processes so that each pattern has only one input and one output. Either strategy isapplicable here.Currently, this research has not focused on how to provide a way of extending the set of existing patterns.There has been other work in this area, such as the DPnDP system [42]. We hope to use and continue thework started by this system.We have already discussed openness extensively earlier in this paper. We will not discuss it further.5.2.2 ProgrammingOne of our priorities with the CO2P3S system is to reduce the probability of programmer error. Our approachis to remove the burden of writing the code for the parallel structure of the application from the user; inour case by automatic template generation. The user can concentrate on the application{speci�c code forthe hook methods with the assurance that the underlying communication and synchronization structure isimplemented correctly. This correctness guarantee also simpli�es incremental tuning since the user startsthe process knowing that the program structure is correct. The user can also regenerate this initial, correctsolution at any time during tuning, if errors are introduced.17



Providing the correct implementation of the design patterns in our PPS also allows us to reason about thesemantics of the user program at the �rst layer of abstraction. For example, an object in a mesh computationshould probably reference all of its neighbours. This reasoning can only be done if the programmer cannotviolate the constraints of the selected design patterns by modifying the generated code.In examining the language characteristics, we should emphasize that the CO2P3S architecture is intendedto be independent of (object{oriented) language. As such, it should be possible to use the architecture for avariety of languages, satisfying the goal of using an existing, familiar programming language. The de�nitionof this characteristic also includes the ideal of preserving the semantics and syntax of this programminglanguage. We purposefully stray from this ideal, though, as we feel that preserving the semantics of a se-quential language unnecessarily limits the potential concurrency. As a small example, consider programminglanguages that support run{time exceptions. To fully preserve the sequential semantics, it is necessary toexecute every statement in order. However, concurrent execution could execute code that would not be exe-cuted in the event of an exception [45]. Without concurrent execution, computational parallelism is useless.A limited set of new keywords can provide a usable abstraction for parallel programming without greatlydisturbing the rest of the language. We feel that the bene�ts of a well{planned abstraction that is properlyintegrated into the language can outweigh the risks of modifying a programming language. Nevertheless, weare only proposing these modi�cations at the intermediate code layer of our PPS with the understandingthat at the native code layer, they will be translated to a standard programming language; in this case, Javaor C++.Finally, we anticipate that CO2P3S will fail to completely meet the non{intrusiveness characteristic. Asnoted by Singh et al., the only way to fully address this problem is to implement a compiler that automaticallygenerates a parallel program from sequential code (which also solves the language objective). Unfortunately,current compiler technology cannot create coarse{grained parallel programs. Nevertheless, at the �rst levelof CO2P3S, the user does write sequential code in a familiar object{oriented language.5.2.3 User SatisfactionWithout a fully implemented and mature system, most of the characteristics in this last category are impos-sible to evaluate. In particular, the support and usability objectives cannot be addressed. The performanceobjective is dealt with by our architecture for incremental tuning. Portability can be addressed by providingdi�erent implementations of the Native Code layer for di�erent architectures.5.3 Evaluating Other Parallel Programming SystemsWe apply the criteria to the systems described in Section 2.1, even though not all are template{based.However, only the criteria that apply to a given system are evaluated. Also, we only mention the criteriathat can be evaluated, based on public information about the systems, rather than speculating about them.We will concentrate on the �rst two criteria categories, leaving out the user satisfaction category. Most of18



the systems presented here have not performed detailed usability studies of their tools, making this objectivedi�cult to evaluate. Further, it is di�cult to evaluate and compare the performance of the di�erent systemsmainly due to the lack of a common benchmark suite and execution environment. We will mention thecapabilities of the given systems with respect to portability and support tools where available.5.3.1 FrameWorksFrameWorks fails to meet most of the criteria. First, since a module explicitly calls other modules, anychange in the templates must be mirrored in the code, violating the separation objective. Next, there weresome non{intuitive constraints on the composition of the three templates needed to fully specify a module,resulting in poor usability and making the templates context{sensitive. The blocking call statement wasa source of ine�ciency, decreasing performance. FrameWorks fails the extendible criteria since there is nofacility for adding new patterns to the system. It also fails the openness objective since users cannot accessthe run{time facilities. Finally, users have to rewrite portions of their sequential code to pack parametersinto frames, which can be di�cult if the original code relied on pointers. This limitation violates the non{intrusiveness objective. Combined with the call and reply statements, this limitation also violates thelanguage objective.FrameWorks does satisfy some of the criteria, though. The templates do exhibit some degree of indepen-dence, with the body template being independent of the input and output templates. Further, communicationand synchronization were performed by the run{time system, providing some correctness guarantees.5.3.2 EnterpriseEnterprise improved on FrameWorks in several ways, meeting more of the desired characteristics. First, anasset speci�es the template completely, rather than the three part speci�cation required by FrameWorks.This improved the usability of the system. Enterprise provided more templates for the user, increasing theutility of the system. The programming model uses (almost) sequential C code, satisfying the languageobjective. Further, the programming model removes the FrameWorks restriction of packing parameters intoframes that cannot include pointers, improving upon the non{intrusiveness objective. Next, the decision forexecuting a procedure locally or remotely is made based solely on the meta{programming model. Since themeta{programming model is not re
ected in the user code, the diagram and code can be modi�ed in a moreindependent manner, which satis�es the separation objective. Enterprise assets are combined hierarchicallythrough coercion, which meets the hierarchy criteria. Enterprise provides some correctness guarantees aboutthe user program, ensuring that a program matches its meta{program at compile time and ensuring thatthe communication cannot result in a deadlock. Finally, Enterprise provides improved performance throughits asynchronous procedure calls.However, Enterprise still su�ers from some limitations. It fails to meet the extendible criteria, providingno way of extending the set of templates available to the user. The programming model is still intrusive,19



since the programmer must remember to separate the invocation of a function from any accesses to theresults to ensure good performance. Lastly, it fails the openness objective; users must write their programsusing only the set of assets available, and cannot access the run{time system.5.3.3 TracsThe Tracs system fails to meet some of the criteria. The graph representing the application is not composedhierarchally. Tracs does not make any correctness guarantees unless the behaviours in the sequential codeoption are used. The largest limitation, though, is that Tracs fails to meet the non{intrusiveness and languageobjectives.Tracs meets most of the remaining criteria. It achieves separation by directing messages to ports ratherthan the destination module. The code for a task only needs to be changed if new ports or services areadded. The system is extendible, allowing a user to de�ne and reuse architecture models.5.3.4 ParsecParsec meets several of the criteria. First, it achieves separation by communicating through ports. Italso provides some correctness guarantees about the overall structure of an application through the use oftemplate code. Further, Parsec does not require changes to the chosen sequential language. Finally, it doescontain some hierarchical composition for the de�nition of modules, but it is not clear if this compositionalso applies to the templates themselves. As a result, it is also unclear if the templates are also contextinsensitive.Parsec fails with respect to several of the criteria. First, the system is not open, encapsulating the templatein the virtual machine and keeping it from the user. The system does not provide a means of extending theset of available templates, which requires the implementation of new virtual machines. Finally, the explicitcommunication and message types in the process code is intrusive. The explicit message passing code alsodetracts from correctness since the user is responsible for properly implementing this code.5.3.5 DPnDPDPnDP meets all of the criteria except for non{intrusiveness and, to some extent, correctness. Separationis achieved by communicating through ports. Composition meets the hierarchy objective. The patternsare independent by their uniformity. DPnDP provides a method for introducing user{de�ned patterns intothe system, meeting the extendibility criteria. The system is open. It further handles the pattern{speci�ccommunication, providing some correctness. Lastly, it uses an established language (C++) and does notmodify the syntax or semantics of the language.However, the explicit communication programming model violates non{intrusiveness. Further, the pro-grammer marshals the data sent between modules, leaving the correctness of this important aspect of anapplication to the user, which is a violation of correctness.20



6 Other Related WorkThis section describes other work related to this research in both the design pattern and parallel programming�elds.6.1 Design PatternsDesign patterns can be described as repositories of design experience, introduced to the object{orientedcommunity in the seminal work of Gamma et al. [16]. Patterns describe commonly occurring design problemsand provide the outline of a solution that can be implemented for a number of problem contexts. This �eldis based on the observation that good designers do not start new designs from �rst principles but rather useexperience with similar problems to guide them to a solution. Patterns are reuse at the design level.To exploit design reuse, patterns de�ne a vocabulary that designers can use to explain and documentthe structure of their programs. Documenting programs using patterns provides a concise description thatis easily understood by those who understand the vocabulary. Patterns also facilitate analysis of programsby explaining the consequences of using the pattern, clarifying the bene�ts and drawbacks of the resultingdesign. In a community 
uent in design patterns, it is possible to design at a level above individual objectsand classes, facilitating the creation of larger and more complex designs.To promote the exchange of patterns, a common description format has been created. The descriptionspeci�es the following (taken from [15]):Pattern Name A good, descriptive name for the pattern is essential if it is to be adopted into the commonvocabulary.Intent A description of the rationale behind the pattern and the design issues it addresses.Motivation A scenario that illustrates an example problem that the pattern can be used to solve.Applicability A description of the circumstances in which the pattern can be applied.Participants A description of the objects and classes that are used in the pattern and their responsibilities.Collaborations A description of the interaction between the objects and classes used in the pattern.Diagram A graphical representation of the structure of the collaborating objects.Consequences A discussion of the trade{o�s involved in using the pattern.Implementation A discussion of any issues that may be encountered during the implementation of thepattern.Examples Real{life examples of the use of the pattern, usually from at least two separate problem domains.21



See Also References to other related patterns, either patterns similar in structure and intent or patternsthat can be used in conjunction with the current one.However, patterns are not restricted to design reuse. They have been used as a teaching aid, demonstrat-ing the principles of good object{oriented design to students.Patterns can be classi�ed along two axes: purpose and scope. Purpose describes what a pattern does.The scope of a pattern may be creational, structural, or behavioural. Creational patterns describe ways ofcreating objects. Structural patterns describe how objects and classes can be organized to achieve designgoals. Behavioural patterns describe how objects and classes interact. The scope of a pattern indicates if thepattern is applied to objects or classes. Class{based patterns typically describe how inheritance relationshipscan be used, whereas object{based patterns describe the dynamic interactions between objects.The work of Gamma et al. concentrated on patterns for sequential object{oriented programming. How-ever, as concurrent and parallel programming enters the computing mainstream, new patterns are emergingto help programmers deal with synchronization, locking, and other programming di�culties in this area[38, 23].We can also see pattern{based programming tools beginning to emerge. Pattern{Lint [36] is a toolthat uses a combination of static and dynamic program information to verify that a program has correctlyimplemented a given design pattern. The intent is to ensure that a program follows its design since anydeviations can make future maintenance much more di�cult. The authors suggest the more proactive ideaof generating code from design speci�cations to accomplish this task, which forms part of the basis forour pattern layer. This code may also include run{time assertions to further enforce compliance with thespeci�ed design. We do not include such code since the purpose of our open architecture is to allow the userto modify the generated code and possibly its structure.A concrete example of code generation was implemented by Budinsky et al. [10]. The project provides aweb interface that allows the user to generate correct code for the patterns in [16]. This code is downloadedby the user and modi�ed for its exact purpose. In contrast, our approach does not allow the user to modifythe generated code immediately, but instead provides hook methods that the user implements.We should note that although the majority of work on design patterns has been done by the object{oriented community, patterns are not limited to this paradigm. The ideas are equally applicable to allprogramming paradigms. However, many of the current patterns take advantage of object{oriented featuressuch as inheritance and polymorphism which makes them di�cult to implement in non object{orientedlanguages.6.2 Parallel Programming Libraries and ToolsParallel programming systems are only one approach to writing parallel programs. This section discussesother approaches and the libraries and tools that implement them.22



6.2.1 Parallel Programming LanguagesThe language criteria suggests that template{based parallel programming systems should use an existingcommonly{used sequential programming language. However, new explicitly parallel programming languagesare a useful outlet for research in parallel processing. New languages provide more 
exibility for doing newresearch, allowing language developers to tailor the language to the abstractions they wish to provide. Thiscan be accomplished by including constructs that mirror the desired programming model and eliminatingconstructs that may cause problems. Unfortunately, new languages have several serious drawbacks. Theyimpose a steep learning curve on new users. More importantly, this approach prevents users from incorpo-rating existing code into their parallel applications. Finally, as with sequential languages, the correctness ofa program is the responsibility of the user.Obviously, some researchers have found that the bene�ts of a new language outweigh the costs. Withinthis �eld, we can see a variety of approaches to creating a new language and a variety of features andabstractions that are included. A good summary of concurrent object{oriented and object{based languagesand their features can be found in [31]. We can see a variety of approaches to all aspects of parallelismin these languages. Languages can be targeted to processes distributed over a network (Orca) or threadson a uni{ or multi{processor (�C++). Concurrency may be created through an explicit fork/join model(Orca) or asynchronous method calls on annotated objects (Mentat). The parallel elements in a languagemay communicate through explicit message passing (Scoop), shared memory abstractions (Orca), or methodinvocations (Mentat). The design of the languages also demonstrates some of the available approaches.Mentat is an extension of an existing language, C++. Orca is a completely new language. Finally, Ei�el//tries to preserve the syntax of Ei�el but modi�es the semantics of any class deriving from a special PROCESSclass.We have found one language, P3L, that tries to use patterns to provide correctness. We discuss thislanguage in some detail below.P3L P3L (the Pisa Parallel Programming Language) [1] is an explicitly parallel programming languagewith data
ow semantics and structured, typed communication. The language de�nes a set of patterns theuser can compose to create applications. The resulting program is executed by an abstract machine, similarto the virtual machines in Parsec. This abstract machine handles the low{level details of executing theprogram.P3L de�nes a set of patterns that are used to de�ne the parallel structure of the application. The usercan only specify the structure using these patterns; it is not possible to write programs that do not conformto the provided structures. The basic pattern is called a sequential construct, which is a sequential processcontaining code to execute. The code is an attached C++ code fragment speci�ed by the user. The remainingpatterns are common parallel design patterns, such as task farms, pipelines, and meshes. These patternsmay be composed in a hierarchical manner by replacing any sequential construct with a pattern.23



The overall programming model provided by the P3L language is based on data
ow semantics. Eachprocess reads input from a typed input stream and places its output onto a typed output stream. Bothstreams appear as lists of parameters to the code fragments.The most interesting aspect of this work is the compiler, which is responsible for generating the abstractmachine used to execute a P3L program. The compiler consists of three stages: the front end, the middleend, and the back end. The front end compiles the pattern in the program into an intermediate call graphcalled a construct tree, an internal representation of the parallel structure. This stage also compiles the C++code in the sequential constructs. The middle stage creates abstract process mapping structures based onthe construct tree and an analytic cost model. The cost model and mapping are machine{dependent. Thisstage may modify the structure of the program if the cost model indicates the parallelism is unnecessary orwasteful. Finally, the back end generates the �nal con�guration of the abstract machine, including the �nalmapping of processes to processors and instantiation of communication channels. The abstract machine itselfis responsible for mapping processes to processors, communication, and scheduling, removing these detailsfrom the user.The compiler also presents an opportunity for parallel programs developed in P3L to be portable acrossa number of hardware architectures by generating di�erent abstract machines. Further, the cost models canbe used to optimize the program for the given hardware, maintaining performance.P3L meets most of our criteria for evaluating template{based systems. It achieve separation of applica-tion code from the template since the code in the sequential constructs uses the input and output streamsfor communication, rather than explicitly referencing the other constructs. A program can be composedhierarchically. The supplied templates are independent of one another, and may be used in any combina-tion. The abstract machine does make some correctness guarantees, automatically performing scheduling,mapping, and communication. Lastly, the system does partially meet the language criteria by allowing theuser to write their application in C++.However, P3L does not meet the extendibility criteria. The user cannot add new patterns into thelanguage. The language does not meet the openness objective, as the user cannot access the abstractmachine. It also partially fails to meet the language criteria since the structure of the program is speci�edin a new, unfamiliar programming language and is further written as code fragments and not as a normalprogram. Finally, the new language and data
ow model are intrusive.6.2.2 Parallel Programming LibrariesA common approach to parallel programming is based on communication libraries such as MPI (MessagePassing Interface) [12], PVM (Parallel Virtual Machine) [43], and NMP (Network Multi{Processor) [25].These libraries provide basic message passing primitives that allow the user to explicitly send bytes betweendi�erent processes. The principle power of this approach is 
exibility; the user is free to implement anycommunication structure that is appropriate for the application. If the communication system supports24



a heterogeneous environment, the user may also take advantage of any special capabilities of the di�erentmachines.An alternative library{based approach uses a library to provide high{level parallel programming con-structs for the programmer. Some libraries, such as ABC++ [30], are written as higher{level constructs ontop of a message{passing library. ABC++ is based on active objects in a distributed system. Communi-cation is based on synchronous or asynchronous method invocations, the latter synchronized by explicitlycreated future objects. ABC++ also provides a distributed shared memory abstraction called parametricshared regions. The user is free to implement any parallel structure using this library.In contrast, PUL (Parallel Utilities Library) [8] is a set of libraries implementing di�erent parallel pro-gramming structures or supporting utilities. PUL is implemented on top of its own portable message passinglayer CHIMP. PUL includes libraries for implementing task farms (PUL{TF), decomposing meshes (PUL{RD) and then operating on them (PUL{SM), accessing �les (PUL{GF and PUL{PF), and group communi-cation (PUL{EM). PUL libraries, where applicable, provide two di�erent interfaces: skeletal and procedural.The skeletal interface is a template{based approach, with the user �lling in missing pieces of a skeleton thatencapsulates both communication and the structural code of the application. The procedural interface pro-vides a 
exible set of library primitives the user may use to express programs, hiding only the communicationbetween the di�erent application elements.In return for the 
exibility of the library{based approach, the user becomes solely responsible for thelow{level details and correctness of the program. Messages must be properly marshaled and unmarshaled,synchronization is explicit, and the user may be responsible for placing processes on the appropriate proces-sors. There are also serious design drawbacks. The parallel structure of the application is coded into theprogram, making it di�cult to modify. Finally, while the program may compile and execute on di�erenthardware, getting the best performance out of the existing structure will require some porting e�ort.Our pattern{based e�orts provide correctness and usability in exchange for a loss of 
exibility andperformance. We feel this tradeo� will be acceptable for a broad user base who will appreciate improvedperformance so long as the programming costs do not rise signi�cantly. However, the openness of our systemmay also address some of the concerns of high performance users, who can use the higher layers of oursystem to prototype their applications and use the generated code as a starting point to creating their ownprograms.6.2.3 Parallel Programming FrameworksAnother approach to parallel programming is frameworks, a concept similar to templates and that can berelated to design patterns. A framework is an extendible set of classes that implements the basic structure forsolving problems, usually in a speci�c domain [21]. This solution may or may not implement some templatesor patterns, although doing so provides a good way of describing how a user can interact and extend theframework. A user uses a framework by specifying a set of components or objects that the computational25



portion of the framework uses. If the desired components do not exist, a user extends the framework bysubclassing existing classes and overriding their behaviour, still taking advantage of structural code.Frameworks di�er from patterns by providing a solution for a narrow problem domain and by providingcode for that solution. Patterns, in contrast, describe generic solutions to problems that may be used acrossdi�erent problem domains. For instance, the Model{View{Controller (MVC) framework for graphical userinterfaces uses the Observer pattern to notify its components of any changes so that the display is alwaysup to date. However, the Observer pattern is more general and can be used for other problems.Frameworks di�er from templates by providing a variety of existing components that can be used toconstruct an application. For simple applications, a user may only have to create an instance of the frameworkwith these components rather than inserting any new code. Frameworks are also unlike templates in that theproblem domain is usually restricted whereas our templates provide a general structure for user programs.Frameworks are similar to templates by encapsulating the structure of the problem. This allows a frameworkto use an optimized implementation of its structure based on its execution environment.There are several examples of frameworks in the literature, including Khoros [22] and POOMA (ParallelObject{Oriented Methods and Applications) [34]. Both systems are frameworks that operate within a �xedproblem domain. Khoros de�nes operations for image processing and data visualization that are linkedtogether using a visual programming language that is similar to the graphical tools discussed in Section 2.2.POOMA provides a layered framework for data parallel computations for scienti�c problems and simulations,providing classes for �elds, vectors, matrices, and particles. A user may work at any given layer to extendthe functionality of the framework.Although useful for more restricted problem domains, frameworks cannot easily be applied to the moregeneral problem of writing parallel programs. User programs do not follow a standard interface, making itdi�cult to re{use the computational engine of a generic framework. We must either introduce a potentiallyintrusive interface that the user must follow or incur the costs of some form of re
ection to allow generalinteraction between classes6. Frameworks may be open, allowing a user to subclass the structural code tomodify it as appropriate. However, the user will also need to write more code to inform the framework ofthe new classes and make sure they are used. In contrast, our generated code allows a user to change thestructure directly rather than having to learn the structure of the framework.6.2.4 Parallelizing CompilersThe ideal solution to the problem of parallelizing programs would be a compiler that takes a sequentialprogram as input and generates an optimal parallel program while preserving the sequential semantics of theoriginal code. There have been some attempts to develop just such a compiler, such as SUIF [18], Parafrase{2[32], Paradigm [2], javar [6], and javab [7].6Re
ection in object{oriented languages is a mechanism that allows the internals of an object to be examined, and usuallyincludes a facility for invoking a method based on a name and signature.26



The principle weakness with parallelizing compilers is that a parallel version of an optimal sequentialalgorithm does not always represent an optimal parallel algorithm. The quicksort algorithm su�ers fromthis weakness. While quicksort is the best overall sequential sorting algorithm, the parallel version of thealgorithm is limited to a speedup of 5 to 67[37]. In contrast, parallel sorting by regular sampling [37] is muchmore scalable, uses available processors more e�ectively, and achieves better results.Another weakness of many parallelizing compilers is that they cannot detect coarse{grained parallelism.Many concentrate on loop parallelism, using data dependence analysis to �nd independent loop iterationsthat can be executed in parallel.Finally, some features in modern computer languages inhibit general compiler optimizations, includingthose used for parallelism. For instance, language features such as exceptions and dynamic method bindingin languages like Java and C++ cause problems for optimizing compilers [9]. The problems with exceptionsappear in the javar and javab projects, neither of which preserves sequential semantics with respect toexceptions. javar performs source code translation on Java code to parallelize loops regardless of anyexceptions that may be thrown. However, if the code within a parallel loop throws an exception, the usercannot make any assumptions about which loop iterations have completed because of the non{deterministicexecution of the loop. javab performs translations on Java bytecode and only parallelizes loops that canbe proven exception{free. Exception{free code is code that either contains no instructions that can throwexceptions or code where the conditions are such that the instructions that may thrown exceptions willexecute correctly (such as array accesses where the index can be statically shown to be within bounds).However, this guarantee does not extend to virtual machine failures (also modeled as exceptions) or anylinking exceptions encountered while executing the code.6.2.5 User{directed Parallelizing CompilersA slightly di�erent approach to the parallelizing compilers described in the previous section is an approach wewill call user{directed parallelizing compilers. The user inserts directives into the application code to instructthe compiler on how to parallelize the program. This approach is taken in High Performance FORTRAN[14] and Parallel Application Management System (PAMS) from Myrias [27]. In both cases, the user insertsdirectives that appear as comments in the code to indicate data distribution, parallel loops or pardos, andparallel blocks or cobegin/coend pairs. An alternative is interactive compilation, as demonstrated by thejavab tool. The tool will ask the user for help in recognizing exception{free code blocks if static analysis isinconclusive.By not specifying the parallelism in the application code, these systems take advantage of a user'sknowledge of the sequential language. Also, the speci�cation of the parallelism is separated from the programcode and can be modi�ed easily. Lastly, if the sequential semantics of the language are maintained, the7Speedup is de�ned as Ts(n)Tp(n) , where Ts(n) is the time taken to execute a program sequentially and Tp(n) is the time takento execute the same program in parallel. 27



program can be tested sequentially.The principle weakness with this approach is that the user is typically responsible for the correctness of theresulting application. The compiler may not verify that there are no dependencies in the speci�ed parallelism.Further, the systems are not open; the user can only use the directives to specify parallelism. Lastly, thisapproach is still parallelizing sequential code and su�ers from the problems identi�ed in Section 6.2.4.7 Proposed Research7.1 An Open Parallel Programming SystemThe description of the CO2P3S system leads to a clear avenue for research in the construction and veri�cationof the presented architecture.The programming bene�ts of an architecture that provides multiple user{accessible layers of abstractionis still an open question [17] that this work may help answer. This research will also advance the presentwork in pattern{based parallel programming systems by maintaining a high{level programming model whilepreserving the openness and extendibility found in some existing systems. These systems sacri�ced theprogramming model to achieve their other bene�ts; we feel this sacri�ce is unnecessary.We also need to �nd a way of presenting these abstractions to the user without sacri�cing the usabilityof the resulting system. It is crucial that the user be able to work with code at any layer in our system.It is also critical that the system is capable of providing acceptable performance at all levels. This researchcannot be considered a success if the resulting PPS cannot be used because it cannot provide users with anyperformance bene�ts. After all, improved performance is the primary reason for parallel processing.This research can be done by creating a prototype of the CO2P3S with a small number of templates.Further, the compiler transformations may be implemented as a preprocessor rather than creating a languagethat would require compiler support. If desired, a compiler for a new language can be implemented in thefuture. This language can use another high{level language as an intermediate language. The intermediatelanguage would serve as our native code layer.Another possible result of this research is a hierarchy of generalized patterns for parallel programming.We may �nd that some patterns can be related to others, either semantically or structurally. This kind ofhierarchy may be able to guide our implementation of CO2P3S as well as provide a clear organization ofparallel patterns for potential users of the system. Further, it may be possible to organize other patterns ina similar fashion, making it easier to relate patterns to one another and use them.We should emphasize that our solution is not necessarily a complete solution to parallel programming ingeneral. Rather, it will demonstrate that it is possible to provide an open environment that can integrateseveral di�erent abstractions for writing parallel programs.28



7.2 Pattern CompositionA more general question relates to what properties of a pattern{based program are preserved by composition.First, we need to de�ne exactly what is meant by composing two patterns and speci�cally how they interact.However, we can already infer some basic results from earlier work in pattern{based systems. For instance, weknow that the composition of deadlock{free patterns is not deadlock{free, a result provided by FrameWorks.However, results for the correctness of an algorithm or the correctness of synchronization are unclear.We would start this work by deriving results for a particular set of patterns. It may then be possible togeneralize the results.7.3 Explicitly Parallel Object{Oriented LanguagesOn the surface, adding concurrency to object{oriented languages appears to pose no serious di�culties. Theparadigm refers to sending messages to objects, rather than invoking methods, so it should be straightforwardto translate these lightweight messages into heavyweight communication. Unfortunately, synchronization ofobjects poses serious problems, the foremost being the inheritance anomaly [26]. The inheritance anomalynotes that if synchronization code appears as part of the methods in a class, it may be necessary to re{implement the functionality of some or all of these methods in any subclass that modi�es the synchronizationconstraints. Even if this rede�nition is unnecessary, a programmer still needs to understand enough aboutthe implementation of a superclass to know that such changes are not required.In the intermediate code layer of the proposed system, we will encounter this problem. The solution tothis problem remains an open question.8 ConclusionA survey of previous research into parallel programming was reviewed. This survey included tools directlyanalogous to the proposed CO2P3S system as well as other common techniques for writing parallel programs.Within the domain of our new project, three avenues of research were presented: creating an open pattern{based programming system with a high{level programmingmodel, composing patterns, and explicitly parallelobject{oriented programming language development. Each avenue provides open questions, and the proposedwork represents new work in parallel programming and design pattern research.Parallel programmers have been following the basic principles of design patterns for a long time. Al-though the object{oriented community has been the most visible group to embrace design patterns, parallelprogrammers were likely the �rst group to make extensive use of them. However, parallel programmershave tended to avoid object{oriented technology because the bene�ts come at the expense of performance,a trade{o� that has only recently come to be seen as appropriate. With the introduction of object{orientedlanguages and techniques into parallel programming, it is only natural to attempt to take advantage of the29
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