
Evaluating Advantages of Test Driven Development:
a Controlled Experiment with Professionals

Gerardo Canfora

Research Centre on Software
Technology (RCOST)

viale Traiano, 1
82100 Benevento, Italy

+390824305555
canfora@unisannio.it

Aniello Cimitile
Research Centre on Software

Technology (RCOST)
viale Traiano, 1

82100 Benevento, Italy
+390824305555

cimitile@unisannio.it

Felix Garcia
Alarcos Research Group, University

of Castilla-La-Mancha
Paseo de la Universidad, 4
13071 Ciudad Real, Spain

+34926295300
Felix.Garcia@uclm.es

Mario Piattini
Alarcos Research Group,

University of Castilla-La-Mancha
Paseo de la Universidad, 4
13071 Ciudad Real, Spain

+34926295300
Mario.Piattini@uclm.es

Corrado Aaron Visaggio
Research Centre on Software Technology (RCOST)

viale Traiano, 1
82100 Benevento, Italy

+390824305555
visaggio@unisannio.it

ABSTRACT
Test driven development (TDD) is gaining interest among
practitioners and researchers: it promises to increase the quality of
the code. Even if TDD is considered a development practice, it
relies on the use of unit testing. For this reason, it could be an
alternative to the testing after coding (TAC), which is the usual
approach to run and execute unit tests after having written the
code. We wondered which are the differences between the two
practices, from the standpoint of quality and productivity. In order
to answer our research question, we carried out an experiment in a
Spanish Software House. The results suggest that TDD improves
the unit testing but slows down the overall process.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures
,process metrics, product metrics

General Terms: Management, Measurement, Performance,
Design, Experimentation.

Keywords: Empirical Software Engineering, Test Driven
Development, Process Quality.

1. INTRODUCTION
TDD is a key practice of extreme programming (XP) [1]: it
prescribes that the code is developed or changed exclusively on

the basis of the unit test results. As a first step, the developer
defines the classes of the system together with the correspondent
class interfaces. Then, the developer composes the test suite for
each class: the test suite must include the assertions needed to
verify the behavior of all classes’ methods. Finally, the body of
each method is completed throughout an iterative process,
consisting of two activities: to execute the tests and, when some
of them fail, to change the code in order to remove the bugs,
which are supposed to be the cause of the failure. The process is
over when all the tests succeed.

The test suite is not only the container of the tests to be run, but it
becomes an essential component of the system, too: it is used as
(part of) design documentation, as it describes the dynamic
aspects of the system, by mapping the expected values returned
by each method with the ones passed as input. It entails the
following advantages:

• such documentation is embedded in the code, thus the
lifecycle of code and documentation should merge in
only one.

• it provides an unambiguous and immediate definition of
functional quality for the code: if the tests succeed, the
code is accepted as good.

• the access is fast: the developer just needs to execute the
suite in order to get the content of the documentation,
rather than browsing many sheets full of different
diagrams.

TDD is not intended to be a quality assurance technique, even if it
lets the developer make preliminary assessments of the code
while writing. TDD is considered as a practice of code
development rather than code testing, but the role of unit testing is
relevant for establishing the design strategy and the algorithms to
adopt. Consequently, when dealing with TDD, the issues

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISESE'06, September 21-22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/0009...$5.00.

364

concerning testing must be taken into account, as well as the ones
concerning coding. From this standpoint, TDD might be
considered as an alternative to TAC, the more traditional
approach to unit testing, consisting in writing and running the
tests after that the code is written. We believe that: (i) TDD is
more time consuming than TAC; but (ii) TDD improves the
quality of unit testing. On one hand, as the developer is forced to
continuously skip from test to code (and vice versa) until the tests
succeed, the iterative process of TDD seems to us more costly
than the traditional TAC. As a matter of fact, in TAC the two-
phases, coding and testing, are executed quite in a rigorous
sequence, except for the bug-fixing, which is usually very
localized and entails a very few iterations code-tests. On the other
hand, as the developer tends to obtain the greater information he
can from the results of testing in order to write correctly the code,
TDD facilitates the accuracy and the precision of test cases.

With the aim of verifying our conjecture, we have carried out an
experiment with the collaboration of professionals working in a
Spanish Software Company.

The research goal is stated as:

Analyze Test Driven Development and Test After Coding

With the purpose of comparing

With respect to performances of testing

From the point of view of the developers

In the context of a group of professionals.

The research goal consists of two research questions:

• R.1. Is TDD more productive than TAC from the
viewpoint of testing? In the case, the product is intended
as the set of test cases and correct code; the code is
considered correct if all the related tests succeed. Thus,
‘productivity’ is seen as the efficiency in producing test
cases and correct code.

• R.2. Can TDD improve the quality of unit testing? We
evaluate the differences between TDD and TAC in terms
of accuracy and precision of unit tests.

The paper proceeds as follows: section 2 illustrates the related
work; section 3 describes the experimental design; data are
analyzed in section 4; the limits of the experiment are discussed in
section 5; and, finally, section 6 draws the conclusions.

2. RELATED WORK
TDD is gaining a wide acceptance, thanks to the growing
popularity of XP. In the last few years, a number of empirical
studies investigated mainly quality and productivity achieved
with the test driven development.

George and Williams performed a set of structured experiments
[5] in which 24 pairs of professional programmers were involved.
One group developed a small JAVA program by applying TDD,
whereas the other (control) group used the waterfall lifecycle
model. The pairs using TDD produced a better quality code (18%
higher) than the pairs who did not use TDD, although the former
required 16% longer time. This study provided evidence that

TDD increases the level of tests passed and improves the quality
of the code.

Williams et al. carried out a case study in IBM [13]; the process
consisted of developing an automatic package of test cases once
the system was designed with UML. As a result, the code
developed by applying TDD had 40% fewer defects when
compared with the code of an experienced team using an ad-hoc
testing approach. Besides, TDD had a minimal impact on the
developer’s productivity.

Edwards proposes the use of TDD as a testing practice in a
classroom. TDD was evaluated with a pilot study in a computer
science undergraduate classroom [3]. Students who applied TDD,
produced code with 45% fewer defects than the students who did
not use TDD.

Müller and Hagner [9] describe an experiment aiming at
comparing TDD and TAC. The subjects were postgraduate
students who had to write the code of a graphical library. The
results indicated that there were no significant differences
between TDD and TAC in terms of reliability and productivity.
Geras et al. conducted a similar experiment with senior
undergraduate students [6]. It emerged that there was a very little
difference in productivity, but there were significant differences
regarding the failure frequency in favor of TDD. Pancur et al. also
investigated the differences between TDD and TAC [10],
throughout an experiment with senior students attending the same
class. Some of the students wrote the program code using TDD
and the rest of students applied TAC; in both cases an iterative
process was applied and automated support for logging the results
of test runs (frequency of test runs, passed and not passed test
cases) was in place. The differences between TAC and TDD were
reduced by using many iterations and testing tools in both the
processes.

Erdogmus and Morisio evaluated other relevant quality factors of
TDD [4]. They aimed at understanding if programmers using
TDD wrote more test cases than programmers who applied the
traditional TAC approach. In order to achieve this, an experiment
with undergraduate students was performed: subjects had to
develop a JAVA program, consisting of several small stories,
each one describing a concrete feature of the product. The
students were divided in two groups: the experiment group
applied TDD while the control group applied TAC. Both groups
performed an incremental process: they could add new features
and execute the corresponding regression tests for each increment.
As a result, students who used TDD wrote a greater number of
test cases and they tended to be more productive. However, this
did not result in a proportional improvement of quality.

Although a discrete number of studies concerns TDD, the
building of knowledge body around the practice is yet at an initial
stage. Therefore, it is necessary to confirm the obtained results by
comparing the different conclusions reached with the different
experiments, and by studying in depth other aspects of TDD.

So far, there is no work dealing with the TDD, if considered as
well as a process which merges together testing and code in a
unique practice. This work aims at providing an analysis on the
productivity and on the effectiveness of TDD. Controlled
experiments carried out in industrial settings, as well as the one

365

presented here, might be useful to reinforce the validity of the
findings.

3. THE EXPERIMENT
The experiment aimed at testing the following null hypotheses.

H01: there is no difference in the productivity between TDD and
TAC.

H02: there is no difference in quality of unit tests between TDD
and TAC.

H01 helps to answer the research question R.1, whereas H02 the
research question R.2.

Subjects

The experiment was carried out in the facilities of the Soluziona
Software Factory, a software house located in Ciudad Real, Spain.
The professional business of Soluziona Software consists of
software development and maintenance in the following areas:
gas, water and electricity management systems, economic
management of quality and environment, market simulators,
economic-financial management, corporative systems, public
health system, e-commerce, telecommunications, etc. 28
employees of the company took part to the experiment: they have
a BSc in Computer Science and a wide knowledge in software
programming and modeling (UML, databases, etc.).

Assignments

The subjects were required to realize a system, named
“TextAnalyzer”, in order to satisfy two different requirements in
two different runs, and precisely, one requirement per run. The
programming language was java, while ECLIPSE [14] and JUnit
[15] were chosen as development environments. For precision’s
sake, the subjects were required to write the code and the test
suites for the requirements.

Subjects received two forms that they had to fulfill, one for run, in
the following way:

• to indicate the requirement realized in each run together
with the practice performed (TDD or TAC).

• for each requirement, subjects had to list the
correspondent assertions they wrote in order to test the
methods of the JAVA classes, which satisfied such
requirement.

• for each assertion subjects had to write down

o the start time; and

o end time, which takes into account when the test is
overcome, i.e. when every bug is detected and the test is
passed without any failure.

Exemplar forms are showed in the appendix together with the two
assignments. All the experimental material was translated in
Spanish by the Spanish authors.

Rationale for sampling Population

The 28 subjects were selected among a set of professionals with
comparable skills: they had 5 years of experience in using java
and in computer programming. All the subjects had previously

participated in several software engineering projects and had at
least one year of experience as employee of the company. As the
subjects had no previous experience on TDD, we performed
training sessions before the experiment, as discussed in the
‘process’ sub-section.

Variables

The variables are described in Table 1.

Table 1. Variables used in the experiment

Variable Description Meaning

Hypothesis H01

MeanTPA

Mean Time per
Assertion. It is the
time required to write
and execute an
assertion in the test
suite. In both the
practices the time for
executing the
assertion includes also
changing the code for
fixing the bugs
emerged from the test.

It is assumed as an
indicator of the
productivity. The product
is considered as the test
cases and the corrected
code.

MeanTime It is the mean time for
writing and executing
a test suite.

TotalTime
It is the amount of
time spent by the
subject for realizing
the overall
assignment.

They are indicators of the
effort spent by subjects
when performing the
practices

Hypothesis H02

MeanAPM

Mean Assertion per
Method. It is the mean
number of assertions
written for a class’
method.

It is assumed as an
indicator of test cases’
accuracy. The more are
the assertions dedicate to
a method the more is
complete the test case for
that method.

AssertTot

Total Number of
Assertions. It is the
total amount of
assertions in the
project.

It is assumed as an
indicator of the precision
of test in the overall
project. The greater is the
number of assertions the
greater is the number of
aspects of the code which
are covered by the test.

366

The process

The experiment consisted of two runs; each run lasted five hours.
Every subject implemented both the assignments and performed
both the practices but in two different runs. The experimental
design is illustrated in Table 2.

For instance, among the n subjects, the subject Sj performed TDD
at the first run for implementing the A2’s requirements, and, the
A1’s requirements were developed at the second run, with the
TAC practice. Before the experiment, the subjects took part to a
training session, which included a seminary about test driven
development, and lab exercises in order to increase the familiarity
with the practice.

Table 1:The experimental design

 RUN I RUN II

Subjects Treatment Assignment Treatment Assignment

S1 TDD A1 TAC A2

S2 TAC A1 TDD A2

Sj TDD A2 TAC A1

Sn TAC A2 TDD A1

4. ANALYSIS OF DATA
Data presented in this section have been cleaned by outliers with
the aid of a tool, which performs statistical analyses. In order to
get suddenly an idea of the overall experiment’s results,
histograms were used. In the appendix, the data set is reported in
greater detail.

4.1 Descriptive Statistics
Figure 1 compares the mean values of the evaluated metrics,
whereas box plots of data set can be found in the appendix.

 Mean Values

0
20 40
60 80

100
120 140
160

MeamTPA MeanAPM AssertTot MeanTime Total Time

TAC
TDD

Figure 1: Comparing mean values of data sets.

It emerges that:

• TDD requires more time than TAC for the execution of
the tasks: TDD slows down the overall rhythm of the
work (see TotalTime metric) and also the mean
throughput of developers (see MeanTPA). This might be
due to the iterative nature of the TDD’s process. This
finding has not a negative connotation at all, as we

believe that the exceeding time is used to increase the
quality of code. Unfortunately, we cannot demonstrate it
here: quality’s aspects of the software are not observed,
since it is not the focus of the paper.

Standard Deviations

0
10
20
30
40
50
60
70
80
90

MeamTPA MeanAPM AssertTot MeanTime AmountTime

TDD
TAC

Figure 2: Comparing standard deviations of data sets.

• TDD fosters a greater accuracy (MeanAPM) and
precision (AssertTot) of testing. TDD leads the subjects
to analyze in depth the test cases for all the methods,
obtaining an overall improvement of the unit tests. We
observed that subjects designed accurately the use
scenarios of different methods, identifying completely
equivalence classes, selecting thoroughly the input in
order to detect the bugs. Conversely, when they apply
TAC, the test is faced with a kind of monolithic
approach, where the tests for all the methods are grouped
together in larger test cases; this drives the subjects to be
less precise when defining the assertions, and instead of
dividing the problem in many sub-problems and deal
with them separately, they tend to face the problem at
one time. As a consequence, developers are more prone
to neglect some aspects in the test cases: the quality of
unit testing is, sometime, seriously affected.

Figure 2 shows the standard deviation values of the data sets.
Standard deviation computes the dispersion around the central
value and it is an indicator of the variability of the sample’s data
set.

TDD is more predictable than TAC for the data sets of all the
metrics. Predictability is related to the opportunity to make good
estimations during the planning phase of software projects. This
could be a point in favor of TDD, as it could be a motivation to
adopt the practice in real contexts.

Such a property might be explained with the fact that TDD puts a
great emphasis on the unit testing: as each method must have the
correspondent unit test, all the subjects must produce roughly the
same number of test cases with a similar precision.

Conversely, in TAC the responsibility of the test cases quality is
left to the individual developer, since it is realized after that the
code is written. This entails that some developers spend more
time testing because they analyze the scenarios in greater detail,
whereas others prefer to stop at a certain point; hence the greater
repeatability of the TDD’s performances.

367

4.2 Testing of Hypotheses
Table 3 shows the results of hypotheses testing; Mann-Whitney
tests were used because the sample data set was not normally
distributed, and the p-level was fixed at 0.05.

Table 3. Testing of hypotheses

Testing Rank
Sum
(a)

Rank
Sum (b)

p-level Comment

Hypothesis H01

MeanTPA

TDD(a)-
TAC(b)

846.00 585.00 0.037374 There is evidence
that TDD requires
more time per
assertions than TAC

TotalTime

TDD(a)-
TAC(b)

885.00 546.000 0.005501 There is evidence
that TDD requires
an overall amount
of time longer than
TAC

MeanTime

TDD(a)-
TAC(b)

861.00 570.00 0.018412 There is evidence
that TDD requires
more time in
average than TAC

Hypothesis H02

AssertTot

TDD(a)-
TAC(b)

763.00 668.00 0.544772 There is no
evidence that TDD
produces more
assertions than TAC

MeanAPM

TDD(a)-
TAC(b)

755.50 675.50 0.633341 There is no
evidence that TDD
produces more
assertions per
method than TAC

The statistical test of hypotheses produced the following results:

• there is evidence that TDD requires more time than TAC.

• there is no evidence that TDD lets developers realize
more accurate and precise test cases than TAC.

4.3 Lessons Learned to improve the
experimental design
No particular matters occurred during the experiment nor subjects
complained for anything, thus we suppose that the experimental
design was good enough. However, two considerations must be
highlighted:

• it might be useful to enlarge the time window; TDD is
very time consuming, and hurry might drive the subjects
to do less than they wish. We believe that this explains
why we did not obtain empirical evidence on the quality
data sets.

• our impression is that the strongest difference between
the two practices may be perceived on the code: analysis
of the quality obtained is worth investigating.

5. THREATS OF VALIDITY
Threats to construct validity

The dependent variables aimed at capturing the productivity of
the evaluated practices. Since they were obtained from the data
collected by forms filled in by subjects, the measurement was
objective. In order to facilitate the accuracy of data, the subjects
were provided with an example of a fulfilled form and the process
was carefully explained during the prior training session. Besides,
in order to indicate correct times, all subjects used their own
computer system clocks.

Threats to Internal Validity

The following issues have been dealt with:

• Differences among subjects. Using a within-subjects
design, error variance due to differences among subjects
was reduced. The subjects were professionals with
experience in JAVA programming, familiar with the
ECLIPSE environment, and with the assignments.
Moreover, the subjects learnt TDD, TAC, and JUnit,
during the same (introductory) seminar before the
experiment.

• Learning effects. The subjects were required to deal with
only one assignment for each run and the assignments
were the as independent as possible, in order to cancel
the learning effects. There is no evidence that learning
effects occurred between the two runs, as Mann Whitney
tests show in Table 4.

• Fatigue effects. On average, the experiment lasted 13
hours (three hours for training session and five hours for
each run). However, this time was distributed into three
consecutive days: the first was dedicated to train the
subjects, while the second and the third ones were
dedicated to the first and second run, respectively. This
arrangement was chosen in order to reduce as much as
possible the fatigue effects. As a result, fatigue effects
did not appear. As a confirmation, some subjects asked
for a longer time to accomplish better the assignments.

• Persistence effects. In order to avoid persistence effects,
the experiment was run with subjects who had never
done a similar experiment.

• Subject motivation. Professionals showed a great interest
in taking part to a scientific experiment. They were
pleased to exercise TAC, TDD and JUnit which could
bring benefits to their daily work.

• Other factors. Plagiarism and influence among subjects
were controlled by supervising the runs. Regarding the
experimental package, each subject performed both the
practices, but in different runs; each assignment was
solved by the same number of subjects, and the two
practices were used equally to implement the

368

assignments. This reduced the possible threats related
with likely differences in the assignments. As Table 5
shows, there are no statistically significant differences
among the assignments. The Mann- Whitney test was
used and the p-level fixed at 0.05.

Table 4 . Comparison between the first and second run

Testing Rank
Sum (a)

Rank
Sum (b)

p-level

MeanTPA

I Run (a) -

II Run (b)

691.000 740.000 0.775584

TotalTime

I Run (a) -

II Run (b)

638.000 793.000 0.509

MeanTime

 I Run (a) -

II Run (b)

673.000 758.000 0.9715

AssertTot

I Run (a) -

II Run (b)

663.500 767.500 0.8376

MeanAPM

I Run (a) -

II Run (b)

691.000 740.000 0.7755

Table 5. Comparison between the first and the second

assignment

Testing
Rank

Sum (a)
Rank

Sum (b) p-level
MeanTPA

I Asgmt (a) -

II Asgmt (b)

755.000 676.000 0.154045

TotalTime

I Asgmt (a) -

II Asgmt (b)

758.000 672.500 0.136817

MeanTime

I Asgmt (a) -

II Asgmt (b)

721.500 709.500 0.407382

AssertTot

I Asgmt (a) -

II Asgmt (b)

659.500 771.500 0.622097

MeanAPM

I Asgmt (a) -

II Asgmt (b)

660.000 771.000 0.97124

Threats to External Validity

Three threats to external validity have been identified which
could limit the ability to generalize the research results to the
population under study [12].

• Material and tasks. In the experiment, the scope of the
assignments was not actually comparable to real projects
of the company, since the material and assignments were
designed considering the restrictions of time. Therefore
assignments more similar to industrial projects shall be
considered in future studies.

• Subjects. As the experiment has been performed by
professionals, generalization of the results was
facilitated.

• Environment. The experiment was performed in one of
the work rooms of the company and the tasks had to be
solved with ECLIPSE, JUnit and the computers used by
the professionals in their daily work. The overall settings
provided the subjects with a very realistic environment.

6. CONCLUSIONS
TDD is a practice which prescribes to write and change the code
of a class’ method only on the basis of the correspondent unit test’
results.

Although TDD is considered a ‘development practice’ rather than
a testing practice, it is actually twofold, because it includes both
coding and testing aspects in a tightly interleaved process. Since
TDD is a practice per se and it might be used also independently
from the other agile practices and in other kinds of software
processes, we wondered if and when TDD can be preferred to the
traditional TAC.

We believe that TDD is more time consuming than TAC, but
leads developer to design more precise and more accurate test
cases.

We carried out an experiment in order to verify our thesis, and
obtained the following results:

• there is statistical evidence that TDD requires more time than
TAC: this does not necessarily entail that TDD deteriorates
the productivity, as the quality of code could be improved.
As discussed previously, it is probably due to the iterative
process of TDD; the process of TAC is more linear and
requires a smaller number of feedbacks and reworks on code.

• there is not statistical evidence that TDD brings about more
accurate and precise unit tests than TAC, even if subjects
who used TDD outperformed those who use TAC, during all
the experimental runs. We are convinced that TDD increases
such quality aspects and that evidence might be obtained in a
longer experiment, where differences between the two
practices could be more evident.

• TDD lets a greater predictability of performances than TAC:
such a result might be helpful when estimating project’s
costs. This is due to the fact that the reworks on code in TAC
depends on the willing and care of the developer, thus the
time are more varying. In TDD the load of testing depends
on the class design, thus more predictable.

369

The most relevant limit of our experiment stands in its nature of
controlled experiment: the available time window and the tasks
were exemplar ones. In the real scenarios, tasks are more
complex. However, experiments in vitro are necessary for
exploring the research field before executing experiments on the
field, that is for:

• understanding the most relevant issues which deserve to be
investigated and which do not: we believe that code’s quality
might provide helpful insight.

• adjusting experimental design on the basis of the feedback
from the subjects and the matters arisen during the runs; by
enlarging the time window, we can obtain a greater evidence
of the difference between the practices.

A strength point is the collaboration of professionals, as it helped
to enforce the external validity.

As future steps, we are planning:

• to replicate the experiment in other environments, such as
universities and companies, in order to enforce the validity
of the results; our aim is to enlarge the observation time up
to six or 12 months, and

• to analyze the relationship with the intrinsic quality of the
code delivered, especially with regard to software
maintainability.

7. ACKNOWLEDGEMENTS
We would like to thank you managers of Soluziona for allowing
us to carry out the experiment and the engineers who took part to
it. This research has been partially supported by the projects:
FAMOSO, partially funded by Ministerio de Industria, Turismo y
Comercio, FIT-340000-2005-161 Plan Nacional de Investigacion
Cientifica, Desarrollo e Innovacion Tecnologica 2004-2007 and
“Fondo Europeo de Desarrollo Regional (FEDER)”, European
Union, and MECENAS (Junta de Comunidades de Castilla-La-
Mancha, Consejeria de Educacion y ciencia, PBI06-0024).

8. REFERENCES
[1] Beck, K. Extreme Programming explained: Embrace

change. Addison-Wesley: Reading, Massachusetts, 1999.
[2] Darcy, D.P., and Kemerer, C.F. OO Metrics in Practice.

IEEE Software 22, (November-December 2005), pp-17-19.
[3] Edwards, S. Using test-driven development in the classroom:

Providing students with automatic, concrete feedback on
performance. In Proc. of the Int’l Conference on Education
and Information Systems: Technologies and Applications
(EISTA’03), (Orlando, Florida, USA, 2003).

[4] Erdogmus, H. and Morisio, M. On the effectiveness of test-
first approach to programming. IEEE Transactions on
Software Engineering 31, (January 2005), pp. 1-12.

[5] George, B. and Williams, L. A structured experiment of test-
driven development. Information and Software Technology
46 (May 2004), pp.337–342.

[6] Geras, A., Smith, M. and Miller, J. A Prototype Empirical
Evaluation of Test Driven Development. In Proc. of the 10th

Inter’l Symposium on Software Metrics (METRICS’04),
(Sidney, Australia, 2004), IEEE CS Press, pp. 405-416.

[7] Grable, R., Jernigan, J., Pogue, C., and Divis, D. Metrics for
Small Projects: Experiences at the SED. IEEE Software 16,
(March-April 1999), pp. 21-29.

[8] Kitchenham, B., and Mendes, E. Software Productivity
Measurement Using Multiple Size Measurement. IEEE
Transaction on Software Engineering 30, (December 2004),
pp.1023-1035.

[9] Muller, M., and Hagner, O. Experiment about Test-first
programming. In Proc. of Empirical Assessment in Software
Engineering (EASE’02), (Keele, UK, 2002).

[10] Pankur M., Ciglaric M., Trampus M. and Vidmar T.
Towards empirical evaluation of test-driven development in
a university environment. In EUROCON 2003. Computer as
a Tool. The IEEE Region 8 , Volume: 2, (Ljublijana,
Slovenia, 2003), IEEE CS Press, pp.83, 86.

[11] Premraj, R., Kitchenham, B., Shepperd, M., and Forselius, P.
An Empirical Analysis of Software Productivity over Time.
In Proc. of the 11th IEEE Int’l Software Metrics Symposium
(METRICS ‘05), (Como, Italy, 2005), IEEE CS Press, pp.37.

[12] Sjoberg, D., Anda, B., Arisholm, E., Dyba, T., Jorgensen,
M., Karahasanovic, A., Koren, E. and Vokác, M. Conducting
Realistic Experiments in Software Engineering. In Proc. of
the 2002 Int’l Symposium on Empirical Software
Engineering (ISESE’02), (Nara, Japan, 2002), IEEE CS
Press, pp.17.

[13] Williams L., Maximilien, E., and Vouk, M. Test-driven
development as a defect-reduction practice. In Proc. of the
14th IEEE Int’l Symposium on Software Reliability
Engineering (ISSRE’03), (Denver, Colorado, USA, 2003),
IEEE CS Press, pp.34-48.

[14] The ECLIPSE IDE. Available in http://www.eclipse.org/
[15] The JUnit Testing Framework. Available in

http://www.junit.org.

9. APPENDIX
Table 6. Mean values

Indicator TAC TDD
MeanTPA 8.4895 14.18117
MeanAPM 2.768151 3.62927
AssertTot 14.76923 16.51852
MeanTime 17.45015 35.07586
TotalTime 85.03846 135.9231

Table 7. Standard deviations

Indicator TAC TDD
MeanTPA 6.32758 11.76298
MeanAPM 2.10803 3.393464
AssertTot 11.41012 11.99025
MeanTime 12.58014 36.6277
TotalTime 47.73886 84.73886

370

Assignation
To develop a system named “TextAnalyzer”, which must operate
with the following text:

“Todo pasa y todo queda, pero lo nuestro es pasar, pasar haciendo
caminos, caminos sobre el mar. Nunca perseguí la gloria, ni dejar
en la memoria de los hombres mi canción; yo amo los mundos
sutiles, ingrávidos y gentiles, como pompas de jabón. Me gusta
verlos pintarse de sol y grana, volar bajo el cielo azul, temblar
súbitamente y quebrarse... Nunca perseguí la gloria. Caminante, son
tus huellas el camino y nada más; caminante, no hay camino, se
hace camino al andar.”

Assignment 1

The program must calculate the frequency of the words in the text
(expressed in percentage), and the position of their first occurrences.
As a result, the program must display a list with the four most
frequent words and their first occurrence. An example of the output
of the program could be the following:

- The word “aldea” firstly appears in the 7th position and its
frequency is 40%.

- The word “camino” firstly appears in the 50th position and its
frequency is 25%.

- The word “todo” firstly appears in the 10th position and its
frequency is 5.4%.

- The word “llegada” firstly appears in the 20th position and its
frequency is 5%.

Once the former list has been displayed, the program must offer the
user the option of displaying the rest of words (ordered by
frequency), by showing the following message: “Do you want to
obtain the frequency (%) and the first occurrence of the rest of
words in the text (Y/N)?

Assignment 2

The program must calculate the maximum and minimum distance
(expressed in number of words) between two words indicated by
the user. For example, regarding the provided text, if the user
types the words: “caminante” and “camino”, the program must
display: “the minimum distance is 2 and the maximum distance is
14”. If one or both the words do not appear in the text the
program must return -2. If the two words indicated by the user are
the same word, the program must return -1.

Forms
Exemplar forms filled in follow.

Req

Kind of
Practice

Unit Test
Class

Number of
Assertions

Start
Time

End
Time

FinderTest 6 12.10 12.40 1 TDD

Occurrence
Calculator
Test

5 12.45 13.50

Req

Kind of
Practice

Unit Test
Class

Number of
Assertions

Start
Time

End
Time

MaxOccur
Calculator

Test

7 14.00 14.15 2 TAC

ListPublish
erTest

2 14.20 16.00

Box Plot (SpainResult 47v*114c)

 Median
 25%-75%
 Non-Outlier Range
 Outliers
 Extremestdd tac

Var33

-20

0

20

40

60

80

100

120

140

160

V
ar

39

MeanTime

TDD TAC

Figure 3. Box plots of meantime.

Box Plot (SpainResult 47v*114c)

 Median
 25%-75%
 Non-Outlier Range
 Outliers
 Extremestdd tac

Var33

-10

0

10

20

30

40

50

60

V
ar

36

TDD TAC

AssertTot Box Plot (SpainResult 47v*114c)

 Median
 25%-75%
 Non-Outlier Range
 Outliers
 Extremestdd tac

Var33

0

50

100

150

200

250

300

350

400

450

V
ar

38

TDD TAC

TimeTot

Figure 4. Box plots of asserttot and timetot.

Box Plot (SpainResult 47v*114c)

 Median
 25%-75%
 Non-Outlier Range
 Outlierstdd tac

Var33

-10

0

10

20

30

40

50

60

Va
r3

2

TDD TAC

MeanTPA Box Plot (SpainResult 47v*114c)

 Median
 25%-75%
 Non-Outlier Range
 Outlierstdd tac

Var33

0

2

4

6

8

10

12

14

V
ar

34

TDD TAC

MeanAPM

Figure 5. Box plots of meantpa and meanapm

371

