
Probabilistic and Truth-Functional Many-Valued Logic Programming

Thomas Lukasiewicz
Institut für Informatik, Universiẗat Gießen
Arndtstraße 2, D-35392 Gießen, Germany

Abstract

We introduce probabilistic many-valued logic programs
in which the implication connective is interpreted as mate-
rial implication. We show that probabilistic many-valued
logic programming is computationally more complex than
classical logic programming. More precisely, some de-
duction problems that are P-complete for classical logic
programs are shown to be co-NP-complete for probabilis-
tic many-valued logic programs. We then focus on many-
valued logic programming inPr?n as an approximation of
probabilistic many-valued logic programming. Surpris-
ingly, many-valued logic programs inPr?n have both a prob-
abilistic semantics in probabilities over a set of possible
worlds and a truth-functional semantics in the finite-valued
Łukasiewicz logics Łn. Moreover, many-valued logic pro-
gramming inPr?n has a model and fixpoint characterization,
a proof theory, and computational properties that are very
similar to those of classical logic programming.

1. Introduction

We start by presenting probabilistic many-valued logic
programs in which the implication connective is inter-
preted as material implication. We show that probabilistic
many-valued logic programming in this framework is com-
putationally more complex than classical logic program-
ming. More precisely, some deduction problems that are
P-complete for classical logic programs are shown to be co-
NP-complete for probabilistic many-valued logic programs
(see also [15] and [14] for other work on the subtleties and
the computational complexity of probabilistic deduction).

We then focus on many-valued logic programming in
Pr?n as an approximation of probabilistic many-valued logic
programming. Crucially, many-valued logic programming
in Pr?n has a model and fixpoint characterization and a
proof theory that are very similar to those of classical logic
programming. Furthermore, special cases of many-valued
logic programming in Pr?n have the same computational
complexity like their classical counterparts.

Surprisingly (and at first sight even paradoxically),

many-valued logic programs in Pr?n have both a proba-
bilistic semantics in probabilities over a set of possible
worlds and a truth-functional semantics in the finite-valued
Łukasiewicz logics Łn. That is, many-valued logic pro-
gramming in Pr?n lies in the intersection between probabilis-
tic logics and truth-functional many-valued logics.

The literature already contains quite extensive work on
probabilistic and on truth-functional many-valued logic pro-
gramming separately. However, to the best of our knowl-
edge, an integration of both has never been studied so far.

Probabilistic propositional logics and their various di-
alects are thoroughly studied in the literature (see, for ex-
ample, [18] and [5]). Their extensions to probabilistic first-
order logics can be classified into first-order logics in which
probabilities are defined over a set of possible worlds and
those in which probabilities are given over the domain (see,
for example, [8] and [2]). The first ones are suitable for
representing degrees of belief, while the latter are appropri-
ate for describing statistical knowledge. The same classi-
fication holds for probabilistic logic programming (see, for
example, [17], [14], and [16]).

Many approaches to truth-functional finite-valued logic
programming are restricted to three or four truth values (see,
for example, [10], [6], and [4]). Among these approaches,
the one closest in spirit to many-valued logic programming
in Pr?n is perhaps the three-valued one in [10].

Many-valued logic programming in Pr?n is closely re-
lated to van Emden’s infinite-valued quantitative deduction
[19]. More precisely, it is an approximation of probabilis-
tic logic programming under the material implication, while
van Emden’s quantitative deduction can be understood as
an approximation of probabilistic logic programming under
the conditional probability implication [14].

Moreover, many-valued logic programming in Pr?n is re-
lated to the work on generalized annotated logic program-
ming [9] and to signed formula logic programming [11].

Many-valued logic programming in Pr?n itself was initi-
ated in [12], where we already presented a model and fix-
point characterization.

The rest of this paper is organized as follows. Section 2
deals with probabilistic many-valued logic programming.
In Section 3, we concentrate on many-valued logic pro-

gramming in Pr?n. Section 4 summarizes the main results.
This paper is an extract from a longer version [13], which

includes in full detail all the proofs missing here.

2. Many-valued logic programming in Prn
2.1. Technical preliminaries

We briefly summarize how classical first-order logics can
be given a probabilisticn-valued semantics withn � 3
in which probabilities are defined over a set of possible
worlds. We basically follow the important work of Halpern
[8], which we adapt and restrict to then-valued setting.

LetTV = f0; 1n�1 ; 2n�1 ; : : : ; 1g with n � 3 denote the
set of truth values. Let � be a first-order vocabulary that
contains a set of function symbols and a set of predicate
symbols (as usual,constant symbolsare function symbols
of arity zero; we say� is function-freeif it does not contain
any function symbols of arity greater than zero). LetX be
a set ofobjectandtruth variables.

We defineobject termsby induction as follows. An ob-
ject term is an object variable fromX or an expression of
the kindf(t1; : : : ; tk), wheref is a function symbol of ar-
ity k � 0 from � andt1; : : : ; tk are object terms. Atruth
term is a truth value fromTV or a truth variable fromX .
We defineformulasby induction as follows. Ifp is a pred-
icate symbol of arityk � 0 from � andt1; : : : ; tk are ob-
ject terms, thenp(t1; : : : ; tk) is a formula (calledatom). IfF andG are formulas, then:F , (F ^ G), (F _ G), and(F G) are formulas. IfF is a formula andx is an ob-
ject variable fromX , then8xF and9xF are formulas. Ann-valued formulais an expressiontv(F) � t, whereF is a
classical formula andt is a truth term.

An interpretationI = (D; �) consists of a nonempty
setD, calleddomain, and a mapping� that assigns to each
function symbol from� a function of right arity overD
and to each predicate symbol from� a predicate of right
arity overD. A variable assignment� is a mapping that
assigns to each object variable fromX an element fromD
and to each truth variable fromX a truth value fromTV .
For an object variablex from X and an elementd fromD, we write�[x=d] to denote the variable assignment that
is identical to� except that it assignsd to x (for a truth
variablex fromX and a truth valuec fromTV , the notation�[x=c] has an analogous meaning). The variable assignment� is by induction extended to all object and truth terms by
defining�(f(t1; : : : ; tk)) = �(f)(�(t1); : : : ; �(tk)) for all
object termsf(t1; : : : ; tk) and�(c) = c for all truth valuesc fromTV . Thetruth of formulasF in I under�, denotedI j=� F , is inductively defined as follows:� I j=� p(t1; : : : ; tk) iff (�(t1); : : : ; �(tk)) 2 �(p).� I j=� :F iff not I j=� F .� I j=� (F ^G) iff I j=� F andI j=� G.

� I j=� 8xF iff I j=�[x=d] F for all d 2 D.� The truth of the remaining formulas inI under� is
defined by expressing_, , and9 in terms of:, ^,
and8 as usual.

A formula F is true in I , or I is a modelof F , denotedI j= F , iff F is true inI under all variable assignments�.
A probabilistic interpretation(Prn-interpretation) Pr

is a triple (D; I; �), whereD is a nonempty set (called
domain), I is a set of classical interpretations overD
(which are calledpossible worlds) such that�i(f) = �j(f)
for all function symbolsf from � and all interpretations(D; �i); (D; �j) 2 I, and� is a mapping fromI to the set
of truth valuesTV such that all�(I) with I 2 I sum up
to 1. Thetruth valuePr�(F) of a formulaF in the Prn-
interpretationPr under a variable assignment� is defined
as follows (we writePr(F) if F is variable-free):Pr�(F) = PI2I; I j=�F �(I) : (1)

An n-valued formulatv(F) � t is true in Pr under� iffPr�(F) � �(t) : An n-valued formulaP is true in Pr , orPr is a modelof P , denotedPr j= P , iff P is true inPr
under all variable assignments�. Pr is amodelof a set ofn-valued formulasP , denotedPr j= P , iff Pr is a model
of all n-valued formulas inP . P is satisfiableiff a model ofP exists.P is alogical consequenceof P , denotedP j= P ,
iff each model ofP is also a model ofP .

For ann-valued formulatv(F) � c with a truth valuec from TV and a set ofn-valued formulasP , let c denote
the set of all truth valuesPr�(F) in modelsPr of P under
variable assignments�. It is easy to see thattv(F) � c is
a logical consequence ofP iff c � min c. Hence, we get
a natural notion of tightness for logical consequences: then-valued formulatv(F) � c is a tight logical consequence
of P; denotedP j=tight tv(F) � c, iff c = min c.

A HerbrandPrn-interpretation(I; �) consists of a setI
of classical Herbrand interpretations over� (that is, subsets
of the Herbrand baseHB� over�) and a mapping� fromI toTV such that all�(I) with I 2 I sum up to 1.

Terms, formulas,n-valued formulas, and sets ofn-
valued formulas aregroundiff they do not contain any vari-
ables. The notions of substitutions, ground substitutions,
instances of formulas, and ground instances of formulas are
defined as usual. The last two are assumed to be canonically
extended ton-valued formulas. Finally, we also adopt the
usual conventions to eliminate parentheses.

2.2. Many-valued logic programs

We now introduce probabilistic many-valued logic pro-
grams. We start by defining many-valued program clauses,
which are special many-valued formulas.

An n-valued program clauseis an n-valued formulatv(H _ :B1 _ � � � _ :Bk)� c, whereH;B1; : : : ; Bk with

k� 0 are atoms andc is a truth value fromTV . It is ab-
breviated by(H B1; : : : ; Bk)[c; 1]. Note that all object
variables in ann-valued program clause are implicitly uni-
versally quantified. Ann-valued logic programP is a finite
set ofn-valued program clauses. We useground(P) to de-
note the set of all ground instances of clauses inP .

Many-valued program clauses can be classified into facts
and rules: facts are of the kind(H)[c; 1], while rules
have the form(H B1; : : : ; Bk)[c; 1] with k > 0. They
can also be divided into logical and purely many-valued
program clauses:logical program clauses are of the kind(H B1; : : : ; Bk)[1; 1], while purely many-valuedones
have the form(H B1; : : : ; Bk)[c; 1] with c < 1.

Next, we introduce many-valued queries, answer substi-
tutions, and answers. Ann-valued queryto ann-valued
logic program P is an expression9(A1; : : : ; Al)[t; 1],
whereA1; : : : ; Al with l � 1 are atoms andt is a truth
term. An n-valued query isobject-groundiff it does not
contain any object variables. Given ann-valued queryQc = 9(A1; : : : ; Al)[c; 1] with c 2 TV , we are interested
in its correct answer substitutions, which are substitutions�
such thatP j= tv((A1^� � �^Al)�) � c and that� acts only
on variables inQc. Thecorrect answerfor Qc is Yes if a
correct answer substitution exists andNo otherwise. Given
ann-valued queryQx = 9(A1; : : : ; Al)[x; 1] with x 2 X ,
we are interested in itstight answer substitutions, which are
substitutions� such thatP j=tight tv((A1^� � �^Al)�) � x�,
that � acts only on variables inQx, and thatx� is a truth
value fromTV . Note that suchn-valued queriesQx al-
ways have a tight answer substitution.

Example 2.1 Let n = 101 and let then-valued logic pro-
gramP contain the following rules and facts (R, S, andT
are object variables;h, a, b, ando are constants):(re(R;S) ro(R;S))[:7; 1](re(R;S) ro(R;S); so(R;S))[:9; 1](re(R;S) ro(R;S); ad(R;S))[1; 1](re(R;S) re(R; T); re(T; S))[1; 1](ro(h; a))[1; 1]; (ad(h; a))[1; 1](ro(a; b))[1; 1]; (ad(a; b))[:8; 1](ro(b; o))[1; 1]; (so(b; o))[1; 1]
Then, some many-valued queries are9(re(h; o))[:99; 1],9(re(h; U))[:8; 1], and9(re(h; o))[X; 1], whereU is an ob-
ject variable andX is a truth variable. The correct answer
for 9(re(h; o))[:99; 1] to P is No, whereas the correct an-
swer for9(re(h; U))[:8; 1] to P is Yes (all the correct an-
swer substitutions for9(re(h; U))[:8;1] to P are given byfU=ag andfU=bg). Finally, the unique tight answer substi-
tution for9(re(h; o))[X; 1] toP is given byfX=:7g :

Like classical logic programs, many-valued logic pro-
grams have the nice property that they are always satisfiable

[13]. Furthermore, ground many-valued formulas are log-
ically entailed in Prn-interpretations iff they are logically
entailed in Herbrand Prn-interpretations [13].

In the sequel, we useprobabilistic many-valued logic
programmingas a synonym for the problem of deciding
whetherYes is the correct answer for a given ground many-
valued query to a many-valued logic program.

2.3. Computational complexity

We now analyze the computational complexity of two
decidable special cases of probabilistic many-valued logic
programming. The first one is a generalization of proposi-
tional logic programming, while the second one generalizes
the decision problem that defines the data complexity of dat-
alog. These two special cases are of special interest, since
their classical counterparts have the nice property that they
are P-complete (see, for example, [3] for a survey).

Crucially, the P-completeness does not carry over to the
two probabilistic many-valued generalizations:

Theorem 2.2 a) The problem of deciding whetherYes
is the correct answer for a groundn-valued query9(A1; : : : ; Al)[c; 1] to a groundn-valued logic programP
is co-NP-complete. b) Let� be function-free. LetP be
a fixedn-valued logic program and letF be a varying fi-
nite set of ground logical facts. LetP [F contain all con-
stant symbols from�. The problem of deciding whetherYes is the correct answer for a groundn-valued query9(A1; : : : ; Al)[c; 1] toP [F is co-NP-complete.

Hence, restricted deduction problems that are computa-
tionally tractable for classical logic programs are presum-
ably intractable for many-valued logic programs. Thus, any
attempt towards efficient probabilistic many-valued logic
programming should be guided by looking for efficient
special-case, average-case, or approximation techniques.

3. Many-valued logic programming in Pr?n
3.1. Pr?n-interpretations

Probabilistic many-valued logic programming as intro-
duced in Section 2.2 has a well-defined probabilistic se-
mantics. However, its increased computational complexity
compared to classical logic programming is quite discour-
aging for a broad use in practice, especially for a possible
application in large knowledge-base systems.

This increase in complexity seems to be mainly due to
the probabilistic semantics in its full generality. In fact,
we now provide a truth-functional approach to many-valued
logic programming that approximates our probabilistic one
and that is less computationally complex. The main idea is
to focus on a special kind ofPrn-interpretations:

A Pr?n-interpretationis a Prn-interpretationPr withPr�(A ^ B) = min(Pr�(A);Pr�(B)) (2)

for all variable assignments� and all atomsA andB.
Interestingly, (2) is equivalently expressed as follows.

Theorem 3.1 LetPr = (D; I; �) be aPrn-interpretation.
It holdsPr�(A ^ B) = min(Pr�(A);Pr�(B)) for all

variable assignments� and all atomsA andB iff all the
interpretationsI 2 I with �(I) > 0 can be written in a
sequence(D; �1); : : : ; (D; �k) such that for all predicate
symbolsp from�: �1(p) � �2(p) � � � � � �k(p).

A Pr?n-modelof a set ofn-valued formulasP is aPr?n-
interpretation that is a model ofP . The set ofn-valued
formulasP is satisfiable inPr?n iff a Pr?n-model ofP exists.
Then-valued formulaP is a logical consequence inPr?n ofP iff eachPr?n-model ofP is also a model ofP . Then-
valued formulatv(F) � c is a tight logical consequence inPr?n of P iff c is the minimum of all truth valuesPr�(F) inPr?n-modelsPr of P under variable assignments�.

The next theorem shows that tight logical consequences
in Pr?n approximate logical and tight logical consequences
inPrn. In particular, for many-valued logic programsP and
formulasF , this theorem shows thatP j=tight tv(F) � 0 inPr?n immediately entailsP j=tight tv(F) � 0 in Prn.

Theorem 3.2 LetF be a set ofn-valued formulas, letF be
a formula, and letc 2 TV . If F j=tight tv(F) � c in Pr?n,
then all truth valuesd 2 TV with F j= tv(F) � d in Prn
are contained inf0; : : : ; cg � TV .

3.2. Comparison with Łn-interpretations

We now focus on the relationship betweenPr?n-interpre-
tations and interpretations in Łn. We first define Łn-inter-
pretations and the truth value of classical formulas in Łn-
interpretations under variable assignments.

An Łn-interpretationL = (D;�) consists of a non-
empty domainD and a mapping� that assigns to eachk-
ary function symbol from� a mapping fromDk to D and
to eachk-ary predicate symbol from� a mapping fromDk
to the set of truth valuesTV . The truth valueL�(F) of a
formulaF in the Łn-interpretationL under a variable as-
signment� is inductively defined by:� L�(p(t1; : : : ; tk)) = �(p)(�(t1); : : : ; �(tk)).� L�(:F) = 1� L�(F):� L�(F ^G) = min(L�(F); L�(G)).� L�(F _G) = max(L�(F); L�(G)).� L�(F G) = min(1; L�(F)� L�(G) + 1).� L�(8xF) = minfL�[x=d](F) j d 2 Dg.� L�(9xF) = maxfL�[x=d](F) j d 2 Dg.

We next show that for logical combinations of certain
formulas, the truth value inPr?n-interpretations under vari-
able assignments is defined like the truth value in Łn-
interpretations under variable assignments.

Lemma 3.3 Let Pr = (D; I; �) be aPr?n-interpretation
and let� be a variable assignment. For all object variablesx 2 X , all formulasF , and all formulasG andH that are
built without the logical connectives: and :Pr�(:F) = 1� Pr�(F) (3)Pr�(G ^H) = min(Pr�(G);Pr�(H)) (4)Pr�(G _H) = max(Pr�(G);Pr�(H)) (5)Pr�(G H) = min(1;Pr�(G)� Pr�(H) + 1) (6)Pr�(8xG) = minfPr�[x=d](G) j d 2 Dg (7)Pr�(9xG) = maxfPr�[x=d](G) j d 2 Dg : (8)

This means thatPr?n- and Łn-interpretations give the
same truth value to all formulas built without the logical
connectives: and , and to all logical combinations of
these formulas (thus, also to classical program clauses):

Theorem 3.4 Let Pr be aPr?n-interpretation, letL be an
Łn-interpretation, and let� be a variable assignment. IfPr�(A) = L�(A) for all atomsA, thenPr�(G) = L�(G),Pr�(:G) = L�(:G), andPr�(G H) = L�(G H)
for all formulasG andH built without: and .

Note that there also exist formulas with different truth
values inPr?n-interpretations and in Łn-interpretations:

Theorem 3.5 There arePr?n-interpretationsPr , Łn-inter-
pretationsL, variable assignments�, and formulasG withPr�(A)=L�(A) for all atomsA andPr�(G) 6=L�(G).

This last theorem is not surprising, sincePr?n-interpreta-
tions still satisfy the axioms of probability. That is,Pr?n-in-
terpretations always give the same truth value to formulas
that are logically equivalent in the classical sense. Łn-inter-
pretations, in contrast, do not have this property.

3.3. Many-valued logic programs

We keep the definitions of many-valued program clauses
and many-valued programs from Section 2.2. In particu-
lar, the semantics of many-valued program clauses inPr?n-
interpretations is already given by the semantics of many-
valued formulas in Prn-interpretations. The truth of many-
valued program clauses inPr?n-interpretations is then addi-
tionally characterized as follows.

Lemma 3.6 For all Pr?n-interpretationsPr = (D; I; �),
all variable assignments�, and all n-valued program
clauses(H B1; : : : ; Bk)[c; 1]:(H B1; : : : ; Bk)[c; 1] is true inPr under� iffPr�(H) � c� 1 +min(Pr�(B1); : : : ;Pr�(Bk)) :

Given ann-valued queryQc = 9(A1; : : : ; Al)[c; 1] withc 2 TV , we are interested in itscorrect answer substi-
tutions inPr?n, which are substitutions� such thatP j=tv(A1� ^ � � � ^ Al�) � c in Pr?n and that� acts only on
variables inQc. Thecorrect answer inPr?n for Qc is Yes
if a correct answer substitution inPr?n exists andNo other-
wise. Given ann-valued queryQx = 9(A1; : : : ; Al)[x; 1]
with x 2 X , we are interested in itstight answer substitu-
tions inPr?n, which are substitutions� such thatP j=tighttv(A1� ^ � � � ^ Al�) � x� in Pr?n, that� acts only on vari-
ables inQx, and thatx� is a truth value fromTV .

Example 3.7 Let n = 101 and letP be then-valued logic
program from Example 2.1. The correct answer inPr?n for
then-valued query9(re(h; o))[:99; 1] to P is No, whereas
the correct answer inPr?n for 9(re(h; U))[:8; 1] toP is Yes
(note that all the correct answer substitutions inPr?n for9(re(h; U))[:8;1] to P are given byfU=ag, fU=bg, andfU=og). Finally, the unique tight answer substitution inPr?n
for 9(re(h; o))[X; 1] toP is given byfX=:8g :

Note that many-valued logic programs are always satisfi-
able inPr?n [13]. Moreover, ground many-valued formulas
are logically entailed inPr?n-interpretations iff they are log-
ically entailed in HerbrandPr?n-interpretations [13].

In the sequel, we usemany-valued logic programming inPr?n as a synonym for the problem of deciding whetherYes
is the correct answer inPr?n for a given ground many-valued
query to a many-valued logic program.

3.4. Model and fixpoint semantics

We briefly discuss the model and fixpoint semantics of
many-valued logic programs inPr?n [12]. In the sequel, letP be ann-valued logic program.

We focus on HerbrandPr?n-interpretations, which we
identify with fuzzy sets. In detail, each HerbrandPr?n-inter-
pretation(I; �) is identified with the fuzzy setI : HB� !TV , whereI [A], for all A 2 HB�, is the sum of all�(I) with I 2 I andI j= A. We subsequently use bold
symbols to denote such fuzzy sets. The fuzzy sets; andHB� are defined by;[A] = 0 andHB�[A] = 1 for allA 2 HB�. Finally, we define the intersection, the union,
and the subset relation for fuzzy setsS1 andS2 as usual byS1 \ S2 = min(S1;S2), S1 [S2 = max(S1;S2), andS1 � S2 iff S1 = S1 \ S2, respectively.

We define the immediate consequence operatorTP as
follows. For allI �HB� andH 2 HB�:TP(I)[H] = max(fc� 1 +min(I [B1]; : : : ; I[Bk]) j(H B1; : : : ; Bk)[c; 1] 2 ground(P)g [f0g) :
Note that we definemin(I [B1]; : : : ; I[Bk]) = 1 for k = 0.

For all I � HB�, we defineTP"!(I) as the union
of all TP" l(I) with l < !, whereTP" 0(I) = I and

TP" (l+1)(I) = TP(TP" l(I)) for all l < !. Finally, we
abbreviateTP"�(;) byTP"�.

The model and fixpoint semantics of many-valued logic
programs inPr?n is now expressed as follows.

Theorem 3.8TfI j I �HB�; I j= Pg = lfp(TP) = TP"! :
Thus, tight answer substitutions for object-ground many-

valued queries can be characterized as follows.
Theorem 3.9 LetP be ann-valued logic program and let9(A1; : : : ; Al)[x; 1] be an object-groundn-valued query
with x 2 X . The tight answer substitution inPr?n for9(A1; : : : ; Al)[x; 1] to P is given byfx=cg, wherec is the
minimum of allTP"![Ai] with i 2 [1 : l].
3.5. Proof theory

We now presentSLDPr?n-resolution for many-valued
logic programs inPr?n, which is an extension of the classical
SLD-resolution (see, for example, [1]). In the sequel, many-
valued facts(A)[c; 1] are abbreviated by(A)[c; 1].

A subgoal listis a finite list(A1)[a1; 1] : : : (Am)[am; 1]
of n-valued facts(A1)[a1; 1]; : : : ; (Am)[am; 1] such thata1; : : : , am > 0 andm � 0. A substitution� is applied
to a subgoal list by replacing each contained atomAi byAi�. Forn-valued program clausesP1 andP2, we sayP1
is a variant of P2 iff P1 is an instance ofP2 andP2 is an
instance ofP1. The notions of unifiers and most general
unifiers (mgu) are defined as usual.

The subgoal list(�(B1)[b; 1] : : : (Bk)[b; 1]!)� is a re-
solventof the subgoal list�(A)[a; 1]! and then-valued
program clause(H B1; : : : ; Bk)[c; 1] with mgu � iff A
andH unify with mgu�, a � c, andb = a� c+ 1.

Note that, for subgoal lists�(A)[a; 1]! andn-valued
program clauses(H B1; : : : ; Bk)[c; 1], the resolvent(�(B1)[b; 1] : : : (Bk)[b; 1]!)� is a subgoal list, since0 < a� c � 1 andb = a� c+ 1 entails0 < b � 1.

An SLDPr?n-derivation of a subgoal listR0 from ann-valued logic programP is a maximal sequenceR0,(C0; �0);R1; (C1; �1); : : : , whereR0;R1; : : : is a sequence
of subgoal lists,C0; C1; : : : is a sequence of variants of
clauses fromP , and�0; �1; : : : is a sequence of substitu-
tions such thatRi+1 is a resolvent ofRi andCi with mgu�i and such thatCi does not have any variables in common
with R0; C0; : : : ;Ri�1. If a subgoal listRj is empty, then it
is the last one in a derivation. Such anSLDPr?n-derivation
is calledsuccessful.

The presentedSLDPr?n-resolution is a sound and com-
plete technique for correct query answering inPr?n. That is,
for n-valued logic programsP andn-valued queriesQc =9(A1; : : : ; Al)[c;1] with c > 0, the correct answer inPr?n
for Qc to P is Yes iff a successfulSLDPr?n-derivation of(A1)[c; 1] : : : (Al)[c; 1] fromP exists. Moreover, each suc-
cessfulSLDPr?n-derivation of(A1)[c; 1] : : : (Al)[c; 1] from

P with the sequence of substitutions�0; �1; : : : ; �j provides
a correct answer substitution inPr?n for Qc toP by the sub-
stitution�0�1 : : : �j restricted to the variables inQc.

More precisely, the soundness and the completeness ofSLDPr?n-resolution is expressed as follows.

Theorem 3.10 a) Let P be an n-valued logic program
and Qc= 9(A1; : : : ; Al)[c; 1] be ann-valued query withc> 0. If there exists a successfulSLDPr?n-derivation of(A1)[c; 1] : : : (Al)[c; 1] fromP with the sequence of substi-
tutions �0; �1; : : : ; �j , then the substitution�0�1 : : : �j re-
stricted to the variables inQc is a correct answer sub-
stitution in Pr?n for Qc to P . b) Let P be ann-valued
logic program andQc = 9(A1; : : : ; Al)[c;1] be an n-
valued query withc> 0. If Yes is the correct answer inPr?n for Qc to P , then a successfulSLDPr?n-derivation of(A1)[c; 1] : : : (Al)[c; 1] fromP exists.

3.6. Computational complexity
We now focus on the computational complexity of many-

valued logic programming inPr?n. Like in Section 2.3, we
concentrate on the two decidable special cases that general-
ize propositional logic programming and the decision prob-
lem that defines the data complexity of datalog. Crucially,
in contrast to the probabilistic many-valued generalizations,
the truth-functional ones are P-complete.

Theorem 3.11 a) The optimization problem of computing
the tight answer substitution inPr?n for an object-groundn-
valued query9(A1; : : : ; Al)[x; 1], with x 2 X , to a groundn-valued logic programP is P-complete. b) Let� be
function-free. LetP be a fixedn-valued logic program, letF be a varying finite set of groundn-valued facts. LetP[F
contain all constant symbols from�. The optimization
problem of computing the tight answer substitution inPr?n
for an object-groundn-valued query9(A1; : : : ; Al)[x; 1],
with x 2 X , toP [F is P-complete.

4. Summary and conclusion

We introduced probabilistic many-valued logic programs
in which the implication connective is interpreted as mate-
rial implication. We showed that probabilistic many-valued
logic programming is computationally more complex than
classical logic programming. We then focused on the ap-
proximation of probabilistic many-valued logic program-
ming by many-valued logic programming in Pr?n. In par-
ticular, we introduced a sound and complete proof theory
for many-valued logic programming in Pr?n.

Crucially, many-valued logic programs in Pr?n have both
a probabilistic semantics in probabilities over a set of pos-
sible worlds and a truth-functional semantics in the finite-
valued Łukasiewicz logics Łn. Furthermore, many-valued
logic programming inPr?n has a model and fixpoint charac-
terization, a proof theory, and computational properties that

are very similar to those of classical logic programming.
Hence, it is well worth being studied more deeply.

Finally, this paper showed how presumably intractable
probabilistic deduction problems in artificial intelligence
can be tackled by efficient approximation techniques based
on truth-functional many-valued logics.

References

[1] K. R. Apt. Logic programming. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B,
chapter 10, pages 493–574. MIT Press, 1990.

[2] F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From
statistical knowledge bases to degrees of beliefs.Artif. In-
tell., 87:75–143, 1996.

[3] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complex-
ity and expressive power of logic programming. InProc. of
the 12th Annual IEEE Conference on Computational Com-
plexity, pages 82–101, 1997.

[4] J. P. Delahaye and V. Thibau. Programming in three-valued
logic. Theor. Comput. Sci., 78:189–216, 1991.

[5] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for rea-
soning about probabilities.Inf. Comput., 87:78–128, 1990.

[6] M. Fitting. Bilattices and the semantics of logic program-
ming. J. Log. Program., 11(1–2):91–116, 1991.

[7] R. Hähnle and G. Escalada-Imaz. Deduction in many-valued
logics: a survey.Mathware Soft Comput., IV(2):69–97,1997.

[8] J. Y. Halpern. An analysis of first-order logics of probability.
Artif. Intell., 46:311–350, 1990.

[9] M. Kifer and V. S. Subrahmanian. Theory of generalized
annotated logic programming and its applications.J. Log.
Program., 12(3–4):335–367, 1992.

[10] J.-L. Lassez and M. J. Maher. Optimal fixedpoints of logic
programs.Theor. Comput. Sci., 39:15–25, 1985.

[11] J. J. Lu. Logic programming with signs and annotations.J.
Log. Comput., 6(6):755–778, 1996.

[12] T. Lukasiewicz. Many-valued first-order logics with proba-
bilistic semantics. InProc. of the Annual Conference of the
European Association for Computer Science Logic, 1998.

[13] T. Lukasiewicz. Probabilistic and truth-functional many-
valued logic programming. Technical Report 9809, Institut
für Informatik, Universität Gießen, 1998.

[14] T. Lukasiewicz. Probabilistic logic programming. In
Proc. of the 13th Biennial European Conference on Artifi-
cial Intelligence, pages 388–392. J. Wiley & Sons, 1998.

[15] T. Lukasiewicz. Local probabilistic deduction from taxo-
nomic and probabilistic knowledge-bases over conjunctive
events.Int. J. Approx. Reasoning, 1999. To appear.

[16] R. T. Ng. Semantics, consistency, and query processingof
empirical deductive databases.IEEE Trans. Knowl. Data
Eng., 9(1):32–49, 1997.

[17] R. T. Ng and V. S. Subrahmanian. A semantical frame-
work for supporting subjective and conditional probabilities
in deductive databases.J. Autom. Reasoning, 10(2):191–
235, 1993.

[18] N. J. Nilsson. Probabilistic logic.Artif. Intell., 28:71–88,
1986.

[19] M. H. van Emden. Quantitative deduction and its fixpoint
theory.J. Log. Program., 3(1):37–53, 1986.

