Probabilistic and Truth-Functional Many-Valued Logic Programming

Thomas Lukasiewicz

Institut fur Informatik,

Universiit Giel3en

Arndtstrale 2, D-35392 Giel3en, Germany

Abstract

We introduce probabilistic many-valued logic programs
in which the implication connective is interpreted as mate-
rial implication. We show that probabilistic many-valued
logic programming is computationally more complex than
classical logic programming. More precisely, some de-
duction problems that are P-complete for classical logic

programs are shown to be co-NP-complete for probabilis-
tic many-valued logic programs. We then focus on many-

valued logic programming ifPr; as an approximation of
probabilistic many-valued logic programming. Surpris-
ingly, many-valued logic programs Ir;, have both a prob-
abilistic semantics in probabilities over a set of possible
worlds and a truth-functional semantics in the finite-valued
tukasiewicz logics £&. Moreover, many-valued logic pro-
gramming inPr; has a model and fixpoint characterization,
a proof theory, and computational properties that are very
similar to those of classical logic programming.

1. Introduction

We start by presenting probabilistic many-valued logic
programs in which the implication connective is inter-
preted as material implication. We show that probabilistic
many-valued logic programming in this framework is com-
putationally more complex than classical logic program-

many-valued logic programs in Prhave both a proba-
bilistic semantics in probabilities over a set of possible
worlds and a truth-functional semantics in the finite-valued
tukasiewicz logics 4. That is, many-valued logic pro-
gramming in Pf lies in the intersection between probabilis-
tic logics and truth-functional many-valued logics.

The literature already contains quite extensive work on
probabilistic and on truth-functional many-valued logic pro-
gramming separately. However, to the best of our knowl-
edge, an integration of both has never been studied so far.

Probabilistic propositional logics and their various di-
alects are thoroughly studied in the literature (see, for ex-
ample, [18] and [5]). Their extensions to probabilistic first-
order logics can be classified into first-order logics in which
probabilities are defined over a set of possible worlds and
those in which probabilities are given over the domain (see,
for example, [8] and [2]). The first ones are suitable for
representing degrees of belief, while the latter are appropri-
ate for describing statistical knowledge. The same classi-
fication holds for probabilistic logic programming (see, for
example, [17], [14], and [16]).

Many approaches to truth-functional finite-valued logic
programming are restricted to three or four truth values (see,
for example, [10], [6], and [4]). Among these approaches,
the one closest in spirit to many-valued logic programming
in Pry is perhaps the three-valued one in [10].

Many-valued logic programming in Pris closely re-
lated to van Emden’s infinite-valued quantitative deduction

ming. More precisely, some deduction problems that are[19]. More precisely, it is an approximation of probabilis-
P-complete for classical logic programs are shown to be co-tic logic programming under the material implication, while

NP-complete for probabilistic many-valued logic programs

van Emden’s quantitative deduction can be understood as

(see also [15] and [14] for other work on the subtleties and an approximation of probabilistic logic programming under

the computational complexity of probabilistic deduction).
We then focus on many-valued logic programming in

Pr; as an approximation of probabilistic many-valued logic

programming. Crucially, many-valued logic programming

in Prs has a model and fixpoint characterization and a

proof theory that are very similar to those of classical logic

the conditional probability implication [14].

Moreover, many-valued logic programming inHs re-
lated to the work on generalized annotated logic program-
ming [9] and to signed formula logic programming [11].

Many-valued logic programming in Piitself was initi-
ated in [12], where we already presented a model and fix-

programming. Furthermore, special cases of many-valuedpoint characterization.

logic programming in Py have the same computational
complexity like their classical counterparts.
Surprisingly (and at first sight even paradoxically),

The rest of this paper is organized as follows. Section 2
deals with probabilistic many-valued logic programming.
In Section 3, we concentrate on many-valued logic pro-

gramming in Pf. Section 4 summarizes the main results.

This paper is an extract from a longer version [13], which

includes in full detail all the proofs missing here.

2. Many-valued logic programming in Pr,,

2.1. Technical preliminaries

We briefly summarize how classical first-order logics can

be given a probabilistie:-valued semantics with > 3

in which probabilities are defined over a set of possible
worlds. We basically follow the important work of Halpern

[8], which we adapt and restrict to thevalued setting.
Let TV = {0, L5, -2 1} with n > 3 denote the

1 n—1° """

set oftruth values Let ® be a first-order vocabulary that
contains a set of function symbols and a set of predicate

symbols (as usuatonstant symbolare function symbols
of arity zero; we sayb is function-fredf it does not contain
any function symbols of arity greater than zero). Bébe
a set ofobjectandtruth variables

We defineobject termdy induction as follows. An ob-
ject term is an object variable frod' or an expression of
the kind f (1, . ..,tx), wheref is a function symbol of ar-
ity £ > 0 from ® andt,, ..., t; are object terms. Aruth
termis a truth value fromT'V or a truth variable fromt’.
We defineformulasby induction as follows. Ip is a pred-
icate symbol of arityt > 0 from & andt,,...,t; are ob-
ject terms, them(¢, .. ., ;) is a formula (callecaton). If
F and@G are formulas, themF, (F A G), (F V G), and
(F + @) are formulas. IfF is a formula and: is an ob-
ject variable from¥, thenvz F' anddx F' are formulas. An
n-valued formulas an expressiotv(F') > t, whereF'is a
classical formula andis a truth term.

An interpretation] = (D, n) consists of a nonempty
setD, calleddomain and a mapping that assigns to each
function symbol from® a function of right arity overD
and to each predicate symbol froina predicate of right
arity over D. A variable assignment is a mapping that
assigns to each object variable frothan element fronD
and to each truth variable frod' a truth value fromT'V.
For an object variable: from X and an elemend from

e[|z, Ve Fiff [=,/ q Fforallde D.

e The truth of the remaining formulas ih undero is
defined by expressing, <, and3 in terms of—, A,
andV as usual.

A formula F' is truein I, or I is amodelof F', denoted
I |= F, iff Fistrue inI under all variable assignments

A probabilistic interpretation(Pr,-interpretatior) Pr
is a triple (D,Z,), whereD is a nonempty set (called
domain, 7 is a set of classical interpretations over
(which are callegbossible worldssuch thatr; (f) = 7;(f)
for all function symbolsf from & and all interpretations
(D,m;), (D, n;) € Z, andp is a mapping fron¥ to the set
of truth valuesTV such that allu(I) with I € Z sum up
to 1. Thetruth value Pr,(F) of a formulaF' in the Pr,-
interpretationPr under a variable assignmenmtis defined
as follows (we writePr(F') if F' is variable-free):

Pr,(F) = Z]ez, Te=,F u(I). 1)

An n-valued formulatv(F) > t is truein Pr undero iff
Pr,(F) > o(t). An n-valued formulaP is truein Pr, or
Pr is amodelof P, denotedPr |= P, iff P is true in Pr
under all variable assignmenis Pr is amodelof a set of
n-valued formulasP, denotedPr |= P, iff Pr is a model
of all n-valued formulas iP. P is satisfiableff a model of
P exists.P is alogical consequencef P, denotedP |= P,
iff each model ofP is also a model oP.

For ann-valued formulatv(F) > ¢ with a truth value
c from TV and a set ofi-valued formulasP, let ¢ denote
the set of all truth value®r, (F') in modelsPr of P under
variable assignments. It is easy to see that(F') > cis
a logical consequence @f iff ¢ < minec. Hence, we get
a natural notion of tightness for logical consequences: the
n-valued formulav(F') > ¢ is atight logical consequence
of P, denotedP =gt tv(F) > ¢, iff ¢ = mine.

A HerbrandPr,-interpretation(Z,) consists of a sef
of classical Herbrand interpretations odefthat is, subsets
of the Herbrand bas& B4 over®) and a mapping: from
Zto TV such that allu(I) with I € 7 sum up to 1.

Terms, formulas,n-valued formulas, and sets of-
valued formulas argroundiff they do not contain any vari-

D, we write o[z /d] to denote the variable assignment that ables. The notions of substitutions, ground substitutions,
is identical too except that it assigng to z (for a truth instances of formulas, and ground instances of formulas are
variablez from A and a truth value from T'V, the notation ~ defined as usual. The last two are assumed to be canonically
o|z/c] has an analogous meaning). The variable assignmenextended ta:-valued formulas. Finally, we also adopt the

o is by induction extended to all object and truth terms by usual conventions to eliminate parentheses.

o(ty,)) for all
object termsf (1, .. ., t;) ando(c) = ¢ for all truth values
c from TV. Thetruth of formulasF in I unders, denoted
I =, F,is inductively defined as follows:

o I =0 pltr, .. te) iff (0(t1),...,0(tr)) € 7(p).
o] =, —Fiffnotl |=, F.
ol =, (FAQG)Iff I =, Fandl =, G.

2.2. Many-valued logic programs

We now introduce probabilistic many-valued logic pro-
grams. We start by defining many-valued program clauses,
which are special many-valued formulas.

An n-valued program clausés an n-valued formula
tv(HV =By V---V-By)>c, whereH, By, ..., By with

k >0 are atoms and is a truth value fromT'V. It is ab- [13]. Furthermore, ground many-valued formulas are log-
breviated by(H « Bjy,...,By)[c,1]. Note that all object ically entailed in Pg-interpretations iff they are logically
variables in am-valued program clause are implicitly uni- entailed in Herbrand Rrinterpretations [13].

versally quantified. Am-valued logic progran® is a finite In the sequel, we usprobabilistic many-valued logic
set ofn-valued program clauses. We ug@und(P) to de- programmingas a synonym for the problem of deciding
note the set of all ground instances of clauseBin whetherYes is the correct answer for a given ground many-

Many-valued program clauses can be classified into factsvalued query to a many-valued logic program.
and rules:factsare of the kind(H «)[c, 1], while rules
have the form(H « By, ..., Bg)[c,1] with k > 0. They 2.3. Computational complexity
can also be divided into logical and purely many-valued
program clausestogical program clauses are of the kind We now analyze the computational complexity of two
(H + By,...,By)[1,1], while purely many-valuednes decidable special cases of probabilistic many-valued logic
have the fom{H + By,...,Bi)[e, 1] with e < 1. programming. The first one is a generalization of proposi-
Next, we introduce many-valued queries, answer substi-tional logic programming, while the second one generalizes
tutions, and answers. An-valued queryto ann-valued the decision problem that defines the data complexity of dat-

logic program P is an expressiord(A4y,..., 4;)[t, 1], alog. These two special cases are of special interest, since
where Ay, ..., A; with I > 1 are atoms and is a truth their classical counterparts have the nice property that they
term. Anmn-valued query iobject-groundiff it does not are P-complete (see, for example, [3] for a survey).

contain any object variables. Given anvalued query Crucially, the P-completeness does not carry over to the

Q. = 3(A1,..., 4)[c, 1] with ¢ € TV, we are interested two probabilistic many-valued generalizations:

in its correct answer substitutiong/hich are substitutions .

such tha® |= tv((4, A---A A;)8) > ¢ and tha¥ acts only Theorem 2.2 a) The problem of deciding whethéfes
on variables inQ.. Thecorrect answerfor . is Yesifa IS the correct answer for a groundi-valued query
correct answer substitution exists aNd otherwise. Given (41, - Ai)[c, 1] to a groundn-valued logic programP
ann-valued quen@, = 3(Ay,..., Az, 1] withz € X, is co-NP-complete. b) Leb be function-free. LeP be
we are interested in itight answer substitutionsvhich are 2 fixedn-valued logic program and lef” be a varying fi-
substitution® such thaP =gne tv((A; A- - -AA)6) > 26, nite set of ground logical facts. L&t U F con_t§|n all con-
thatd acts only on variables if),, and thatzf is a truth stant symbols fron®. The problem of deciding whether

value from TV. Note that such-valued queries), al- Yes is the correct answer _for a ground-valued query
ways have a tight answer substitution. 3(A4s,..., A)le, 1 to P U Fis co-NP-complete.

Example 2.1 Letn = 101 and let then-valued logic pro- Hence, restricted deduction problems that are computa-
gramP contain the following rules and fact®(S, and7 tionally tractable for classical logic programs are presum-
are object variabled, a, b, ando are constants): ably intractable for many-valued logic programs. Thus, any
attempt towards efficient probabilistic many-valued logic
(re(R,S) < ro(R,S))[.7,1] programming should be guided by looking for efficient
(re(R,S) < ro(R,S), so(R,S))[.9,1] special-case, average-case, or approximation techniques.
(re(R,S) < ro(R,S), ad(R, S))[1,1] _ o
(re(R,S) « re(R,T), re(T, S))[1,1] 3. Many-valued logic programming in Pr},
(ro(h,a) <)[1,1], (ad(h,a) <)[1,1] : :
(ro(a,) «)[1,1], (ad(a, b) «)[.8,1] 3.1. Pr:-interpretations
(ro(b, 0) <)[1,1], (so(b, 0) «)[1,1] Probabilistic many-valued logic programming as intro-

duced in Section 2.2 has a well-defined probabilistic se-
mantics. However, its increased computational complexity
compared to classical logic programming is quite discour-
aging for a broad use in practice, especially for a possible
application in large knowledge-base systems.

Then, some many-valued queries &e(h, 0))[.99,1],
A(re(h,U))[.8,1],and3I(re(h, 0))[X, 1], whereU is an ob-
ject variable andX is a truth variable. The correct answer
for 3(re(h, 0))[.99, 1] to P is No, whereas the correct an-
swer for3(re(h,U))[.8,1] to P is Yes (all the correct an- T . - .
swer substitutions foB(re(h, U))[.8,1] to P are given by This increase in complexity seems to be mainly due to

{U/a} and{U/b}). Finally, the unique tight answer substi- the probabilistic semantics in its full generality. In fact,
tution for3(re(h, 0))[X, 1] ,toP is given by{ X/.7} we now provide a truth-functional approach to many-valued
’ ’ o logic programming that approximates our probabilistic one

Like classical logic programs, many-valued logic pro- and that is less computationally complex. The main idea is
grams have the nice property that they are always satisfiablego focus on a special kind d@fr,,-interpretations:

A Pry-interpretationis a Pr,-interpretationPr with

Pr,(A A B) = min(Pr,(A), Pr,(B)) (2)
for all variable assignmentsand all atomsA and B.
Interestingly, (2) is equivalently expressed as follows.

Theorem 3.1 Let Pr = (D, Z, u) be aPr,-interpretation.

It holds Pr,(A A B) = min(Pr,(A), Pr,(B)) for all
variable assignments and all atomsA and B iff all the
interpretations! € 7 with u(I) > 0 can be written in a
sequencéD,m),..., (D,) such that for all predicate
symbolg from @: 71 (p) 2 m2(p) 2 -+ 2 mi(p).

A Pr;-modelof a set ofn-valued formulasP is aPr}; -
interpretation that is a model ¢?. The set ofn-valued
formulasP is satisfiable inPr; iff a Pr);-model of P exists.
Then-valued formulaP is alogical consequence iRir}, of
P iff each Pr};-model of P is also a model of”. Then-

valued formulav(F') > cis atight logical consequence in

Pr} of P iff cis the minimum of all truth value®r, (F') in
Pr}-modelsPr of P under variable assignments

We next show that for logical combinations of certain
formulas, the truth value ii?r) -interpretations under vari-
able assignments is defined like the truth value ip t
interpretations under variable assignments.

Lemma 3.3 Let Pr = (D,Z,u) be aPr}-interpretation
and leto be a variable assignment. For all object variables
x € X, all formulasF, and all formulasi and H that are
built without the logical connectivesand«:

Pro(=F) = 1- Pr,(F) ®3)
Pro(GAH) = min(Pr,(G), Pr,(H)) 4)
Pro(GV H) = max(Pr,(G), Pr,(H)) (5)

Pr,(G <+ H) = min(1, Pr,(G) — Pr,(H) + 1) (6)
Pr,(Vz G) = min{Pr,,,q(G)|d € D} (7)
Pr,(32G) = max{Pr,,,q(G)|d € D}. (8)

This means thaPr};- and t,-interpretations give the
same truth value to all formulas built without the logical
connectives~ and +, and to all logical combinations of
these formulas (thus, also to classical program clauses):

The next theorem shows that tight logical consequencesTheorem 3.4 Let Pr be aPr* *_interpretation, letL be an
in Prj, approximate logical and tight logical consequences y -|nterpretat|on and letr be a variable assignment. If

in Prn In particular, for many-valued logic prograr®sand
formulasF, this theorem shows th& =gt tv(F) > 0in
Pr;, immediately entail$ [=ggnt tv(F) > 0in Pry,.

Theorem 3.2 LetF be a set ofi-valued formulas, leF be
aformula, and let € TV. If F |=ight tv(F) > cin Pry,
then all truth valuesi € TV with F = tv(F) > dinPr,
are contained inf0,...,c} C TV.

3.2. Comparison with L, -interpretations

We now focus on the relationship betweery; -interpre-
tations and interpretations in,t. We first define t,-inter-
pretations and the truth value of classical formulas ji £
interpretations under variable assignments.

An t . -interpretation L = (D, =) consists of a non-
empty domainD and a mappingr that assigns to eadh
ary function symbol fromb a mapping fromD* to D and
to eachk-ary predicate symbol fror® a mapping fromD*
to the set of truth value§'V. Thetruth valueL,(F') of a
formula F' in the L,-interpretation under a variable as-
signmentr is inductively defined by:

¢ L(pltr, ... 1)) = (D)o (), ..o (te)).

o L,(-F) = 1—L,(F).
L,(FAG) = min(L,(F), L,(G)).
L,(FVG) = max(L,(F), L, (G))
¢ L,(F+ G) = min(l,L,(F) — L,(G) + 1).
¢ L,(Vz F) = min{L,[,/q)(F)|d € D}.
¢ L,(32 F) = max{L,[,/q(F)|d € D}.

Pry(A) = L,(A) for all atomsA, thenPr,(G) = L,(G),
Pr,(=G) = L,(=G), and Pr,(G < H) = L,(G < H)
for all formulasG and H built without— and +.

Note that there also exist formulas with different truth
values inPr} -interpretations and in -interpretations:

Theorem 3.5 There arePr};-interpretationsPr, £, -inter-
pretationsL, variable assignments, and formulasz with
Pry(A)=L,(A) for allatomsA and Pr, (G) # L, (G).

This last theorem is not surprising, sinee; -interpreta-
tions still satisfy the axioms of probability. That By}, -in-
terpretations always give the same truth value to formulas
that are logically equivalent in the classical sensg-irter-
pretations, in contrast, do not have this property.

3.3. Many-valued logic programs

We keep the definitions of many-valued program clauses
and many-valued programs from Section 2.2. In particu-
lar, the semantics of many-valued program clauserjp
interpretations is already given by the semantics of many-
valued formulas in By-interpretations. The truth of many-
valued program clauses P} -interpretations is then addi-
tionally characterized as follows.

Lemma 3.6 For all Pr}-interpretationsPr = (D,Z,),
all variable assignmentsr, and all n-valued program
clause§H + By,...,B)[c, 1]:
(H < By,...,By)[c,1]is true in Pr undero iff
Pr,(H) > ¢— 1+ min(Pr,(By),...,Pr,(By)).

Given ann-valued quen®. = 3(Ay, ..., A;)lc, 1] with
¢ € TV, we are interested in itsorrect answer substi-
tutions in Pr};, which are substitution8 such thatP =
tv(410 A -+ A Aj6) > cin Pr), and that§ acts only on
variables inQ.. Thecorrect answer inPr} for Q. is Yes
if a correct answer substitution iPr);, exists andNo other-
wise. Given am-valued quen@, = 3(A4,..., 4)[z, 1]
with z € X, we are interested in itsght answer substitu-
tions in Pry,, which are substitution8 such thatP |=gnt
tv(A10 A -+ A Af) > z6 in Pr}, thatf acts only on vari-
ables in@., and thatf is a truth value fromrI'V'.

Example 3.7 Letn = 101 and letP be then-valued logic
program from Example 2.1. The correct answePi}, for
then-valued quenA(re(h, 0))[.99,1] to P is No, whereas
the correct answer iRt} for 3(re(h,U))[.8,1] to P is Yes
(note that all the correct answer substitutionsPirf; for
A(re(h,U))[.8,1] to P are given by{U/a}, {U/b}, and
{U/o0}). Finally, the unique tight answer substitutiortie],
for 3(re(h, 0))[X, 1] to P is given by{ X/.8} .

Note that many-valued logic programs are always satisfi-
able inPr} [13]. Moreover, ground many-valued formulas
are logically entailed iPr}; -interpretations iff they are log-
ically entailed in Herbran#r}; -interpretations [13].

In the sequel, we useany-valued logic programming in
Pr} as a synonym for the problem of deciding whethes
is the correct answer iRr); for a given ground many-valued
guery to a many-valued logic program.

3.4. Model and fixpoint semantics

We briefly discuss the model and fixpoint semantics of
many-valued logic programs iPr); [12]. In the sequel, let
P be ann-valued logic program.

We focus on Herbrandr};-interpretations, which we
identify with fuzzy sets. In detail, each HerbraRd}; -inter-
pretation(Z, u1) is identified with the fuzzy sef: HBg —
TV, where I[A], for all A € HBg, is the sum of all
u(I)with I € 7 andI = A. We subsequently use bold
symbols to denote such fuzzy sets. The fuzzy @etsd
HByg are defined by[A] = 0 and HBg[A] = 1 for all
A € HBg. Finally, we define the intersection, the union,
and the subset relation for fuzzy sétg andS, as usual by
SiNS, = min(Sl,Sg), SiuUS,; = maX(Sl,Sg), and
S1 C S, iff S; =8NS, respectively.

We define the immediate consequence operatsras
follows. ForallI C HBg andH € HBg:

Tp(I)[H]
(H(—Bl,..

max({c — 1 4+ min(I[By],...,
., Bi)[c, 1] € ground(P)} U {0}).

Note that we definenin(I[B1],...,I[Bg]) = 1fork = 0.
For all I C HBg, we defineT'ptw(I) as the union
of all Tp11(I) with I < w, whereT»10(I) = I and

Tpt(I+1)(I) = Tp(TptI(I))foralll < w. Finally, we
abbreviatel'pt (@) by T'p1 a.

The model and fixpoint semantics of many-valued logic
programs inPr}; is now expressed as follows.

Theorem 3.8

({I|IC HBs, I =P} = ifp(Tp) = Tptw.

Thus, tight answer substitutions for object-ground many-
valued queries can be characterized as follows.
Theorem 3.9 Let P be ann-valued logic program and let
(A4, ..., Az, 1] be an object-groundh-valued query
with z € X. The tight answer substitution iRr) for
(A4, ..., Az, 1] to P is given by{z/c}, wherec is the
minimum of alll'pt w[A;] with i € [1:1].

3.5. Proof theory

We now presenSLDPr} -resolution for many-valued
logic programs irPr};, which is an extension of the classical
SLD-resolution (see, for example, [1]). In the sequel, many-
valued fact§ A «)[c, 1] are abbreviated byA)[c, 1].

A subgoal listis a finite list(A;)[a1,1] ... (Am)[am, 1]
of n-valued facts(A;)[a1,1],. .., (Am)[am, 1] such that
ai, ..., aym > 0andm > 0. A substitutiond is applied
to a subgoal list by replacing each contained atépby
A;6. Forn-valued program clausd® and P, we sayP;
is avariantof P, iff P; is an instance of’, and P is an
instance ofP;. The notions of unifiers and most general
unifiers (mgu) are defined as usual.

The subgoal list{a(B1)[b,1]...(Bg)[b, 1]w)d is are-
solventof the subgoal listx(A)[a, 1]w and then-valued
program claus€ H«+ By, ..., By)[c, 1] with mgu 6 iff A
andH unify with mguf, a < ¢,andb =a — ¢ + 1.

Note that, for subgoal list&(A4)[a, 1]w and n-valued
program clauses(H+ By, ..., B)[c,1], the resolvent
(a(B1)[b,1]. .. (Bg)[b, 1]w)é is a subgoal list, sincé < a
<e¢<landb=a—c+1lentailsO <b<1.

An SLDPr}-derivation of a subgoal listR, from an
n-valued logic progran’P is a maximal sequence®,,
(Co,60), R1,(C4,61), ..., whereRy, Ry, ... isasequence
of subgoal lists,Cy, C1,... is a sequence of variants of
clauses fromP, andfy, 6, ... is a sequence of substitu-
tions such tha?; , is a resolvent of?; and C; with mgu
#; and such thaf’; does not have any variables in common
with Ry, Co, . .., R;—1. If asubgoal listR; is empty, then it
is the last one in a derivation. Such 8hDPr}, -derivation
is calledsuccessful

The presente8LDPr} -resolution is a sound and com-
plete technique for correct query answerindirf,. That is,
for n-valued logic program® andn-valued queries).
(A1, ..., A)e1] with ¢ > 0, the correct answer iffr);
for Q. to P is Yes iff a successfuSLDPr}; -derivation of
(A1)[e,1]... (A))[e, 1] from P exists. Moreover, each suc-
cessfulSLDPr} -derivation of(A4;)[c, 1] . .. (4;)[e, 1] from

P with the sequence of substitutioftg 6, . . ., 6; provides
a correct answer substitutionBiv}; for Q.. to P by the sub-
stitutionfy 6, . .. 6; restricted to the variables if}..

are very similar to those of classical logic programming.
Hence, it is well worth being studied more deeply.
Finally, this paper showed how presumably intractable

More precisely, the soundness and the completeness oprobabilistic deduction problems in artificial intelligence

SLDPr},-resolution is expressed as follows.

Theorem 3.10a) Let P be ann-valued logic program
and Q.=3(A44,...,4;)[c, 1] be ann-valued query with
¢>0. If there exists a successfLDPr -derivation of
(A1)[e, 1] ... (A7)]e, 1] from P with the sequence of substi-
tutions 6, 61, . .. ,6;, then the substitutiofyf; ...0; re-
stricted to the variables inQ. is a correct answer sub-
stitution in Pr};, for Q. to P. b) LetP be ann-valued
logic program and@. 3(A4y,...,A)]e1] be ann-
valued query withe > 0. If Yes is the correct answer in
Pry for Q. to P, then a successflLDPr] -derivation of
(A1)[c,1]. .. (A))[e, 1] from P exists.

3.6. Computational complexity

We now focus on the computational complexity of many-
valued logic programming if?r);. Like in Section 2.3, we

concentrate on the two decidable special cases that general-[g)
ize propositional logic programming and the decision prob-

lem that defines the data complexity of datalog. Crucially,

in contrast to the probabilistic many-valued generalizations,

the truth-functional ones are P-complete.

Theorem 3.11a) The optimization problem of computing
the tight answer substitution iPr};, for an object-grounah-
valued quenA(A4,, ..., 4;)[z,1], withz € X, to a ground
n-valued logic programP is P-complete. b) Let® be
function-free. LetP be a fixedn-valued logic program, let
F be avarying finite set of groundvalued facts. LePUF
contain all constant symbols fros. The optimization
problem of computing the tight answer substitutiorPir},
for an object-groundh-valued query3(A;, ..., 4;)[z, 1],
withz € X, toP U F is P-complete.

4. Summary and conclusion

We introduced probabilistic many-valued logic programs

in which the implication connective is interpreted as mate-

rial implication. We showed that probabilistic many-valued
logic programming is computationally more complex than

classical logic programming. We then focused on the ap-

proximation of probabilistic many-valued logic program-
ming by many-valued logic programming in’Pr In par-

ticular, we introduced a sound and complete proof theory [17]

for many-valued logic programming in Pr
Crucially, many-valued logic programs in’Phave both

a probabilistic semantics in probabilities over a set of pos-

sible worlds and a truth-functional semantics in the finite-
valued tukasiewicz logics 4. Furthermore, many-valued
logic programming irPr}, has a model and fixpoint charac-

terization, a proof theory, and computational properties that

can be tackled by efficient approximation techniques based
on truth-functional many-valued logics.

References

[1] K. R. Apt. Logic programming. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Scieneelume B,
chapter 10, pages 493-574. MIT Press, 1990.

F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From
statistical knowledge bases to degrees of beliéif. In-
tell., 87:75-143, 1996.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Coniple
ity and expressive power of logic programming. Rroc. of
the 12th Annual IEEE Conference on Computational Com-
plexity, pages 82—-101, 1997.

J. P. Delahaye and V. Thibau. Programming in three-vélue
logic. Theor. Comput. Sgi78:189-216, 1991.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for rea-
soning about probabilitiednf. Comput, 87:78-128, 1990.

M. Fitting. Bilattices and the semantics of logic progra
ming. J. Log. Program.11(1-2):91-116, 1991.

R. Hahnle and G. Escalada-Imaz. Deduction in manyealu
logics: a surveyMathware Soft CompuytV(2):69-97,1997.
[8] J.Y.Halpern. An analysis of first-order logics of prolilétp.
Artif. Intell., 46:311-350, 1990.

M. Kifer and V. S. Subrahmanian. Theory of generalized
annotated logic programming and its applicatiods.Log.
Program, 12(3-4):335-367, 1992.

J.-L. Lassez and M. J. Maher. Optimal fixedpoints of éogi
programs.Theor. Comput. Sgi39:15-25, 1985.

J. J. Lu. Logic programming with signs and annotatiohs.
Log. Comput.6(6):755-778, 1996.

T. Lukasiewicz. Many-valued first-order logics withga-
bilistic semantics. IfProc. of the Annual Conference of the
European Association for Computer Science Lo§#98.

T. Lukasiewicz. Probabilistic and truth-functionalany-
valued logic programming. Technical Report 9809, Institut
fur Informatik, Universitat Gie3en, 1998.

T. Lukasiewicz. Probabilistic logic programming. In
Proc. of the 13th Biennial European Conference on Artifi-
cial Intelligence pages 388-392. J. Wiley & Sons, 1998.

T. Lukasiewicz. Local probabilistic deduction fromxta
nomic and probabilistic knowledge-bases over conjunctive
events.Int. J. Approx. Reasonind.999. To appear.

[16] R. T. Ng. Semantics, consistency, and query processing
empirical deductive database$EEE Trans. Knowl. Data
Eng, 9(1):32-49, 1997.

R. T. Ng and V. S. Subrahmanian. A semantical frame-
work for supporting subjective and conditional probalekt

in deductive databases]. Autom. Reasoningl0(2):191—

(2]

(3]

[4]
[5]

[7]

9]

(10]
(11]

(12]

(13]

(14]

(15]

235, 1993.

[18] N. J. Nilsson. Probabilistic logicArtif. Intell., 28:71-88,
1986.

[19] M. H. van Emden. Quantitative deduction and its fixpoint

theory. J. Log. Program.3(1):37-53, 1986.

