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I. INTRODUCTION 2. BACKGROUND 

A brief scan through the problem columns of vari- 
ous mathematical journals shows a continual outpouring 
of proposed problems involving what can be roughly de- 
scribed as “triangle inequalities”. A few examples will 
suffice to indicate the flavor of these perennial favorites: 

Let the sides of a triangle be a, b, c and let the 
angles be A, B, C. Let T and R be the inradius and 
circumradius, respectively. Let I( denote the area of 
the triangle and let s denote its semiperimeter. Then 

There has been much investigation into the area 
of using the computer to mechanically prove theorems 
in algebra and geometry. Recently, Chou [lo] has im- 
plemented a computer program that can prove large 
numbers of advanced geometry theorems. His method 
involves coordinatization of the problem and then prov- 
ing an equivalent algebraic formulation. Unfortunately, 
his algorithm does not handle inequalities. 

(Mavlo [ZO]) 

The types of inequalities we are interested in fall 
into the study of real closed fields. An inequality such 
as z2+y2+z2 1 zy+yz+z;l: can be formally represented 
in such a field by the formula 

(MitrinoviC [22]) sin’ 2A+sin2 2B+sin2 2C > 36($)4 

(Krishna [IS]) 

(Milosevic [21]) 

sin4 + + sin4 
4R2 - 8Rr i- 3r2 

4R2 ’ 

A perusal through the “bible” of such geometric 
inequalities, [5], unearths hundreds of such inequalities. 
It is interesting to note, that the proofs given in [5] for 
these inequalities are all different and use several differ- 
ent techniques many of which require ingenuity. 

It is the purpose of this note to make progress 
toward coming up with an effective systematic algo- 
rithm that one can use to prove all of the above inequal- 
ities as well as many others. We present a computer 
algorithm that, at this time, can prove many (although 
not all) such inequalities. 
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(w(vY)w)((~ 10) A (Y 2 0) A (z 1 0) * 

aT2+y2+z2 Lq/+yZ+Z”). 

The symbols such as V and 3 are known as quanti- 
fiers. In 1930, Tarski discovered a decision procedure 
for the formal theory of real closed fields, His method 
was first published in 1948 [31]. Tarski’s method in- 
volves successive elimination of quantifiers using Sturm 
sequences. This method can be used to automatically 
prove all the inequalities discussed in this paper as well 
as many problems in Euclidean geometry. Unfortu- 
nately, Tarski’s algorithm, although totally effective, is 
completely impractical given the state of the art of com- 
puters today. The same holds true for an improvement 
given by Seidenberg, [30]. 

Over the years, improved methods (such as using 
Grijbner bases) have been devised for effectively prov- 
ing results in the theory of real closed fields. Perhaps 
the best method is one devised by Collins [12] which 
employs cylindrical decomposition to eliminate quanti- 
fiers. See Davenport [13], section 3.2, for an exposition. 
Consult [ll] for a guide to the literature in this area. 

Even the method of cylindrical decomposition may 
be too slow for proving the types of inequalities we are 
interested in. That is because our triangle inequalities 
generally involve three quantifiers, and these methods 
attempt to eliminate one quantifier at a time. Each 
elimination step causes an expression explosion. In 
our case, the expressions involved are symmetric; so a 
method that removes one quantifier at a time is bound 
to be non-optimal. We will attempt below (in section 
5) to exploit the symmetry of the problem in proving 
these inequalities. 

Blundon and others ([4], [6], [27]) have attempted 
to devise an effective algorithm by first expressing the 
proposed inequality in terms of R, r, and s. It involves 
Blundon’s fundamental inequality: 

s2(18Rr - 9r2 - s2)2 2 (s2 - 12Rr - 3r2)3. 
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See chapter 1 of [23] for more details. 
Another important approach to solving triangle in- 

equalities is through the method of majorization. The 
algorithm described in this paper uses majorization only 
in the context of Muirhead’s Theorem. Many other ma- 
jorizations apply and can be used to prove many triangle 
inequalities quite quickly. The interested reader should 
consult [19]. However, I do not see yet how these more 
general algorithms can be used to produce an effective 
computer solution. 

3. NOTATION 

First we shall specify the class of inequalities that 
this algorithm will handle. 

Definition. A function, f(zl, 22,23,. . . ,z,), of n vari- 
ables is homogeneous of degree k if 

ml, tx2, . . . ) txn) = t”f(x1, Z‘J, . . . ) xn). 

Clearly, a polynomial in n variables is homogeneous 
of degree k if and only if each term has degree k. (The 
degree of a term is the sum of the exponents of the 
variables appearing in that term.) 
Definition. A function of n variables is symmetric if 
it’s value remains unchanged when any permutation is 
applied to the variables. 

For example, a function of 3 variables, f(z, y, z), is 
symmetric if 

f(x, Y, 4 = I%:, *, Y> = f(Y) 29 4 

= f(Y) z, 4 = f( 2,x, Y) = f(z, Y, x>. 

If a, b, and c are the sides of a triangle, then the 
class of functions that we will be concerned with are 
those functions that can be expressed as homogeneous 
symmetric polynomials in a, b, and c. 

If we do not restrict ourselves to homogeneous poly- 
nomials, then we are essentially dealing with the general 
case of arbitrary polynomial inequalities. For example, 
the inequality 

x2 + y2 + Tz2 + 3 12(x + y + z) 

is equivalent to the univariate polynomial inequality 

x2 + 1 1 2x. 

In general, homogeneity alone may not simplify the 
general problem. For example, suppose we come up 
with an algorithm that always works for symmetric (not 
necessarily homogeneous) inequalities. Then it should 
also work when there are just two variables, say t and 
y. Then we would have an algorithm for proving a sym- 
metric polynomial inequality of the form f(z, y) > 0. 
But letting y = tx, we would find that this leads us 
to a proof of a polynomial inequality in one variable, 
t. Conversely, starting with any univariate polynomial 
inequality, F(t) > 0, we may let t = z/y, multiply 
through by an appropriate power of y and get an equiv- 
alent symmetric polynomial inequality, f(z, y) > 0. 

The inequalities that we will be able to verify are 
of the form \ 

f(a, b, 4 k 0 

where the function f is a homogeneous symmetric poly- 
nomial in a, b, and c and the symbol “k” can be any of 
the arithmetic relations ‘I>“, “>“, “<“, “5”) or “=“. 

Convention. An inequality expressed with the variables 
zi or with the variables z, y, and I shall be understood 
to represent an inequality that is valid whenever the 
variables are non-negative. In other words, it is always 
to be understood that xi > 0 and x > 0, y 2 0, z 2 0. 
An inequality expressed v&h the vzables a, b, and c 
shall be understood to represent an inequality that is 
valid whenever the variables are non-negative and sat- 
isfy the triangle inequality. In other words, it is always 
to be understood that a, b, c 3 0, a + b > c, b + c 2 a, 
and c+a 1 b. 

Definition. If 

fi(t + Xi) = 2 qtn-i 
i=l i=O 

thenTp =7r(x1,x2,. . . , x,,) is called the rth elementary 
symmetric function of the xi. In other words, rr is the 
sum of the products, taken P at a time, of the xi. 

Notation. Following Hardy, Littlewood, and Polya [15], 
we shall use the notation 

C! fhx2,-4 

to denote the symmetric sum obtained from the spec- 
ified expression by adding together the n! expressions 
obtained from the specified one by applying all the per- 
inutations of (x1,22,, . . , xn), 

The standard sigma notation, 

with no expressions above or below the sigma symbol, 
shall represent the cyclic sum of the specified expres- 
sion. This is obtained by adding together the expres- 
sions obtained by successive applications of the cyclic 
permutation (xl, 2’2,. . . ,2,) - (22, x3,. . .,x,, xl). 

Thus, for example, in the case of 3 variables, x, yI 
and z, we have 

c x2y E x2y + y22 + z2x 

and 

c ! x2y E x2y + y2x + y2.z + 2y + 2x + X2& 

If 

f(x1, x2,. * . ,Gl) = fJx;i 

i=l 
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is a product of variables, then then 

~Ci[-Pij-4ij-rj] 2 0. 

is known as a simple symmetric sum. A simple symmet- 
ric sum may also be referred to as a symmetric term. 

Note that a simple symmetric sum of n variables 
always contains n! terms (counting multiplicities). In 
particular, when n = 3, the homogeneous symmetric 
sums involving the elementary symmetric polynomials 
are: 

X! x = 2(x + y + z>, 

c ! a/ = 2(xy + yt + 2x), 

and 

c ! xyz = 6xy,z. 

Notation. Let [rl,r2,..., r,J denote a vector of real 
numbers with the property that ri 2 r2 2 *. + 2 r, > 0. 
Such a vector is said to be in decreasing form. 

Note that the symmetric terms ! XQlxqs . . . xqn 
2 

and C! x:‘xp..+x? are identical if rl,ri,...,r,)% F 
a permutation of (ql, q2, . . . , q,,). We can therefore pick 
a canonical permutation, namely the one in which the 
exponents are non-increasing. We shall always do this 
in the future. In this manner, we can identify a sim- 
ple symmetric sum (of a product of n variables) with a 
decreasing n-tuple as follows: 

[rl,r2,---,rnl s c 
! x’;‘x’z . ..x f-l% 

n 

where ~1 > r2 > . . . > r, > 0. 
Sometimesin the literature, a factor of 5 is in- 

cluded with the summation sign. Since all our mequal- 
ities are homogeneous, we will omit such a numerical 
factor from our definition. This will have no affect on 
the resulting inequality. 

We note some properties of simple symmetric sums. 
Properties 1 and 2 are presented for the case n = 3 but 
are clearly true for arbitrary n. 

Property 1. If d is a real number and 

m 

Cci[pi,qi,ril 10 
i=l 

then m 

C ‘i[Pi + d, qi + d, ri + (II 1 0. 
i=l 

Proof. This follows by multiplying both sides of the in- 
equality by the positive term xdydzd. 0 
Property 2. If 

m 

~cibi,qi,ril 2 0 
i=l 

i=l 

Proof. This follows by letting x = l/X, y = l/Y, and 
P = l/Z. cl 
Property 3. If we have [pi,. . . ,pi] 5 Cpr,. . . ,pj] and 

M,.+.,qEl I [q1,...,qd then M,...,p~,q’l,...,dJ < 
bl,. ..,Pj,Ql,-..&I. 

For a proof, see Hardy, Littlewood and Pdlya fl5], 
page 63. 

4. MUIRHEAD’S THEOREM 

Deilnitlon. 
h72,. 

Let the vectors p = [pi, ~2, . . . , p,] and q = 
. . , qn] be two decreasing vectors of length n. We 

say that p is majotized by q (or that q majorizes p) and 
write p 4 q (or q + p) if 
(i pl+p2+.-.+Pn=q1+qz+...+qn and 
(ii 1 PI +p2 +. . .+Pk I q1+q2+** *+qk (1 < Ic < n). 

Mulrhead’s Theorem. Let p = [p~,pz, . . . ,pn] and q = 
hzz,... , q,,] be two decreasing vectors of real num- 
bers identified with their corresponding simple symmet- 
ric sums. Then p < q for all positive values of the xi if 
and only if p 4 q. Equality holds when and only when 
either p = q or all the Xi are equal. 

For a proof, see Hardy, Littlewood and Polya 1151, 
pp. 46-48 or [9], section 5.7. Muirhead [26] first proved 
this theorem in 1903 for the case where all the exponents 
are positive integers. See also [33] for a simple proof of 
this case. Inequalities that are a direct consequence 
of Muirhead’s Theorem will be referred to as Muirhead 
inequalities. 
Example. 
Prove: x2 + y2 + z2 > xy + yz + zx. 
Solution: C x2 = >E! x2 = $[2,0,0]. cxy = 
3X! xy = $[l,l,O]. But [2,0,0] t [l,l,O], so 

~[~,O,Ol 2 ~[1,1,01. 

5. A COMPUTER ALGORITHM 

In this section, we describe an algorithm (more 
technically a set of heuristics) for proving certain poly- 
nomial inequalities. We will also discuss cases where 
this “algorithm” fails. 

Algorithm P (for Symmetric Homogeneous Polynomial In- 
equalities). 

We are given a polynomial f (x1, x2,. . . ,x,) in n 
variables that is symmetric and homogeneous, for some 
fixed constant n. We wish to prove or disprove the 
inequality f (xl, x2, . . . , 2,) 2 0 for all positive values 
of the xi. 

Step 1: Expand out the polynomial as a sum of 
terms and collect together all formally positive terms 
on one side of the inequality and all the other terms on 
the other side. We are left with an inequality of the 
form f(q, x2,. . . ,x,) 1 g(xl,xs,. . . ,x,) where f and 
g are symmetric homogeneous polynomials. 
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Step 2: Express each side explicitly as a symmetric 
polynomial. Replace each symmetric term in each sym- 
metric polynomial by its associated vector. If one side 
of the inequality is now 0 (and this is the side to the 
right of the “2” operator), then the inequality is de- 
clared to be true because a sum of positive terms must 
be positive. Otherwise, proceed to step 3. 

Step 3: Use Muirhead’s Theorem to decide the 
truth or falsity of the resulting inequality. 

Unfortunately, step 3 is not effective. We shall see 
why in a moment. 
Example 1. 
Prove: (z + y)(y + z)(z + z) 1 8eyz. 
Solution by Algorithm P: Expanding out the left side 
and then bringing all zyz terms to the right gives 

x2y + zy2 + y22 + yz2 + Z2X + 2x2 2 Gtyz. 

Expressing this using our vector notation for simple 
symmetric sums, we get [2,1,0] 2 [l, 1, 11. This is now 
immediately seen to be true by Muirhead’s Theorem 
because [2,1,0] + [l, 1, l]. 
Example 2. 
Prove: (z + y + z)~ 1 z2 + y2 + z2, 
Solution by Algorithm P: When we expand and collect 
like terms, we find that we are left with 2zy+2yz+2zz 2 
0. Since the right side is 0 and the left side contains 
only non-negative terms, we can stop at this point and 
declare the inequality true. 
Example 3. 
Prove: (z + y + JZ)~ 2 273~~. 
Solution by Algorithm P: Expanding out and collecting 
like terms gives: 

x3 + Y3 + z3+3z2y + 3zy2 + 3y%+ 

3yz2 + 3z2z + 32x2 2 2lzyz. 

Expressing in terms of simple symmetric sums yields: 

~3,o,ol+@,Lol 2 7[U11 

which we note follows immediately by adding together 
two inequalities that come from Muirhead’s Theorem, 
namely 

[3,&O] L P, L13 
61% LO1 L f-W, l,lI. 

Example 4. 
Prove: xyr 1 (z + y - z)(y + z - x)(z + x - y). 
Attempted solution by Algorithm P: Expanding out and 
then collecting like terms together gives: 

When expressed as simple symmetric sums, we have 

At this point we are stuck, since this inequality does not 
follow from Muirhead’s Theorem nor does it follow from 
a sum of inequalities each determined by Muirhead’s 
Theorem. 

Thus we see why step 3 of Algorithm P is not to- 
tally effective. The reason is that we get an equiva- 
lent inequality each side of which is a sum of symmetric 
terms. Muirhead’s theorem only applies when there is 
one symmetric term on each side. In other words, the 
validity of a + b 2 c + d might follow because a % c and 
b >- d or it might follow because a + d and b % c or 
it might follow for some other reason that has nothing 
to do with Muirhead’s Theorem. Thus my algorithm is 
not effective. 

It would be nice if one could determine a necessary 
and sufficient condition for when a sum of symmetric 
terms was larger than another sum of symmetric terms. 
Unfortunately, no such necessary and sufficient condi- 
tion is known. One sufficient condition that occurs fre- 
quently is known as Schur’s Inequality. 
Schur’s Inequality. If p and d are positive real numbers, 
then 

[P + 24 0, 01-t b, 4 4 L 2[P + 4 4 01. 

Proof. Expanding out, we see that we wish to prove 

2 c xp+2d + 2 c xp ydzd 2 2 c .p+d(yd + Zd). 

This is equivalent to 

c xP(x2d + ydzd - xdyd - xdzd) >_ 0. 

Letting X = xd, Y = yd, Z = zd, we find that this is 
equivalent to 

cxyx - y)(x - z) > 0 
where A = p/d is positive. 

Since this expression is symmetric in x, y, and z, we 
may assume without loss of generality that x > y 2 z. 
The third term on the left is zx(z - z)(.z - y) which is 
clearly non-negative. Since xX 2 y’, we have for the 
sum of the first two terms: 

xcx(x - Y>(X - z> + YX(Y - Xc)(Y - 2) 

2 YYX - Y)(X - z> + YX(a: - Y& - Y) 

1 Y% - Y)C(X - z) + (z - Y)l 

= yyx - y)2 2 0. 

0 
The above proof is based on the one in Barnard 

and Child [3]. For another proof, see Mitrinovic [24], 
section 2.17. 
Theorem. If p and d are positive real numbers, then 
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(We will also refer to this as Schur’s Inequality.) 
Proof. Start with Schur’s inequality: 

By property 2 of simple symmetric sums, this is equiv- 
alent to: 

[-p - 2d, 0,0] + [-p, -d, -dj 2 2[--p - d, -d,O]. 

Now use property 1, adding p + 2d to each entry gives: 

[O,p+2d,p+2dl+[2d,p+d,p+dl 2 W,p+d,p+24. 

Now let 1: = d, y = p + d to get 

[0,x + Y, z + Yl + P? Yl Yl 1 2h Y, 2 + Yl 

which is equivalent to what we wanted to prove. q 
Most symmetric homogeneous inequalities seem to 

follow from a combination of Muirhead inequalities and 
Schur inequalities. Therefore, I coded step 3 of Algo- 
rithm P to look for both types of inequalities. For exam- 
ple, in example 4 above, Algorithm P would note that 
the inequality is true because of Schur’s Inequality. 

Sometimes an inequality requires application of 
both Schur’s Inequality and several Muirhead inequali- 
ties. 
Example 5. 
Prove: 3(x2y + y22 + z2x)(xy2 + yz2 + ZZ”) 2 zyz(a: + 
y + z)“. 
Solution by Algorithm P: After expanding out and col- 
lecting like terms, we express the result in terms of sim- 
ple symmetric sums to get 

2[4,1, l] + 3[3,3,0] + [2,2,2] 2 6[3,2,1]. 

This follows by adding up the following three inequali- 
ties: 

[3,3,01+ [2,2,21 L 2[3,2,11 

2[4,1,11 L 2[3,2,11 

2[3,3,01 2 2[3,2,11 

the first of which follows from Schur’s Inequality and 
the last two of which follow from Muirhead’s Theorem. 

We should also note at this time that we might get 
a large number of symmetric terms on each side. Even if 
the inequality is true purely by combining a sequence of 
Schur inequalities and Muirhead inequalities, it might 
be non-trivial to determine how to do this. I do this 
via a set of heuristics. Algorithm P goes through the 
following sequence of heuristics (in order). Each time 
that it finds one that applies, it subtracts the result 
from the inequality to be proved and then begins again 
with the first heuristic. The algorithm terminates when 
one side of the inequality has gone to 0. If this is the 
side to the right of the “2” sign, then the inequality is 
true. If it is the other side, then the truth or falsity of 
the proposed inequality has not been determined. The 
algorithm fails completely if none of the heuristics apply. 

The inequality is assumed to start out in the form 

i=l i=l 

where each & and t: denotes a symmetric term and the 
ci and c: are positive numeric constants. 

Heuristic 1: See if there is some term, ti, on the 
left that does not majorize any term on the right. If 
that is the case, then see if ti can be paired with some 
tj on the left, SO that ti + tj 2 2ti is true by Schur’s 
Inequality where tb occurs on the right. If so, subtract 
off c times this Schur inequality, ti + tj 2 2tk, where 
C = min(Ci, Cj, hk). 

Heuristic %: If there is only one term on the 
right, c’t’, then for each term, ti, on the left that ma- 
jorizes t’, subtract off the inequality cti 2 ct’ where 
c = min(c’, ci). Continue doing this until the right-hand 
side goes to 0. 

Heuristic 3: If there is a term on the right, t’, 

that is majorized by precisely one term, ti, on the 
left, then subtract off the inequality cti 1 ct’ where 
c = min(c’, ci). 

Heuristic 4: If there is a term on the left, ti) that 
majorizes precisely one term, ti, on the right, then sub- 
tract off the inequality cti > cti where c = min(ci, c:). 

Heuristic 5: If every term on the left majorizes ev- 
ery term on the right, then subtract off the inequality 
ctl 2 cti where c = min(cr,ci). 

Heuristic 6: If some term, ti, on the left majorizes 
some term, i!;, on the right then subtract off the in- 
equality cti 2 cti where c = min(ci, ci). 

6. EXAMPLES 

To test Algorithm P, I coded it up using Macsyma 
(on an Alliant FX/80) and fed it the following 27 exam- 
ples obtained from Hall and Knight [14] and Barnard 
and Child [3]. For each one, I list the resulting inequal- 
ity that was obtained and why it follows from one or 
more applications of Muirhead’s Theorem or Schur’s In- 
equality. Algorithm P automatically proved 26 out of 
the 27 examples. 
Theorem P. 

x2 + y2 1 2ty (1) 

x3y+xy3 5 x4+y4 (2) 

(z + Y>(Y + 4(~ + 4 L 8~~2 (3) 

4(z3 + y3) 2 (x + y)” (4 

(x + y + z)~ 2 272~~ (5) 

xyz 1 (x + y - z)(y + % - x)(z + x - y) (f-9 

(x3 + y3)2 5 (x2 + y2)3 (7) 

8(z3 + y3 + z3)2 2 9(x2 + yz)(y2 + zx)(z2 + xy) (8) 

4(5c5+y5+z5+w5) 1 (x3+y3+%3+w3)(x2+y2+%2+w2 

(9 
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(y+z+w)(z+w+“)(w+“+y)(z+Y+~) 18lWXYZ (10) 

(x2y + y2z + z2x)(xy2 + yz2 + zx2) 2 9x2y2z2 (11) 

6tyz 5 xy(x + y) + YZ(Y + z) + .=(z + x) (12) 

x2y2 + y2z2 + z2x2 2 xyz(x + y + z) (13) 

(x + y + z)” 1 (x + y - .r)(Y + z - x)(z + x - Y> (14) 

27(Z4 + y4 + z4) > (x + y + z)” (15) 

(x+y+z+W)(x3+y3+z3fW3) 1 (+2+Y2+z2+wl”~2 

I I ;c(z-y)(x-z)+y(y-z)(y-x)+z(z-X)+-Y) L 0 17 

x2(x - Y>(a: -z> + Y2(Y - Z>(Y - x> + Z”(Z - x)(2 - 1)(2&j 

2”(-- Y)(?:-z)+Y5(Y- z)(Y--)+z5(-9(2 -Y)(zgy 

9(x6+y6+z6) 2 (x3+y3+23)(x2+y2+z2)(x+y+t. 
PO 

16(~‘+ y3 + z3 + w”) 2 (z + y + t + w)~ 

(x+y-z)2+(y+z-x)2+(z+x-y)2 > xy+yz+zx 

z3+y3+z3+32yz 1 x2(y+z)+z2(++y)+y2(z+~) 

6xyz 5 x2(y + z) + y2(z + x) + Z”(X + y) 

x2(y+z)+y2(z+2)+t2(2+y) I 2(x3+y3+z3) 

3(x2y + y2z + 2x)(xy2 + yz2 + ZX”) 1 xyz(x + y + %)” 

(x7 + y7)3 5 (x3 + y3)7 [it; 

Computer Proof. 
(1) is equivalent to [2,0] > [l, l] which follows from 
Muirhead’s Theorem. 
(2) is equivalent to [4,0] 1 [3, l] which follows from 
Muirhead’s Theorem. 
(3) is equivalent to [2,1,0] 1 [l, 1, l] which follows from 
Muirhead’s Theorem. 
(4) is equivalent to [2,0] >_ [1, l] which follows from 
Muirhead’s Theorem. 
(5) is equivalent to [3,0,0] + 6[2,1,0] > 7[1,1, l] which 
follows from the majorizations 

[3,0,0] F- LW 

(6) is equivalent to [3,0,0] + [1, 1, l] 1 2[2,1,0] which 
follows from Schur’s Inequality. 
(7) is equivalent to 3[2,0] > [I, l] which follows from 
Muirhead’s Theorem. 
(8) is equivalent to 8[6,0,0] + 7[3,3,0] 2 9[4,1, l] + 
6[2,2,2] which algorithm P cannot prove yet automat- 
ically. The truth of this inequality follows from the in- 
equalities: 

w401+ w,21 2 2[4,2,01 

2[4,2,01 2 2[4,1,11 

7[6,0,01 5 7[4,L 11 

7[3,3,01 2 7[2,2,21. 

1 
9) is equivalent to [5,0,0,0] 2 [3,2,0,0] which follows 
rom Muirhead’s Theorem. 

(10)isequivalentto[3,1,0,0]+[2,2,0,0]+4[2,1,1,O]~ 
6[1,1,1, l] which follows from the majorizations 

[3,1,0,01 + P, 1’1’11. 

[vw01 I+ PJJdl 
4[2,1,1,01~44[1,1,1,11 

(11) is equivalent to [4,1, l] + [3,3,0] 2 2[2,2,2] which 
follows from the majorizations 

[4,1,11 F- [2,2,21 

[3,3,01 + [2,2,21. 

(12) isequivalent to [2,1,0] 2 [l, 1, l] which follows from 
Muirhead’s Theorem. 
(13) is equivalent to [2,2,0] 1 [2,1, l] which follows from 
Muirhead’s Theorem. 
(14) is equivalent to 2Cx3+2C! x2y+8xyz 2 0 which 
follows because a sum of positive terms is positive. 
(15) is equivalent to 13[4,0,0] > 4[3,1,0] + 3[2,2,0] + 
6[2,1, l] which follows from the majorizations 

4[4,0,01 + 4E3,L 01 

3[4,0,01 + 3[2,2,01 

6[4,0,0] s 6[2, 1, 11. 

(16) is equivalent to [3,1,0, O] 1 [2,2,0,0] which follows 
from Muirhead’s Theorem. 
(17) is equivalent to [3,0,0] + [l, 1, l] 1 2[2,1,0] which 
follows from Schur’s Inequality. 
(18) is equivalent to [4,0,0] + [2,1, l] 1 2[3,1,0] which 
follows from Schur’s Inequality. 
(19) is equivalent to [7,0,0] + [5,1, l] 2 2[6,1,0] which 
follows from Schur’s Inequality. 
(20) is equivalent to 4[6,0,0] 2 [5,1,0] + [4,2,0] + 
[3,3,0] + [3,2, l] which follows from the majorizations 

[6,0,01 + [5, hOI 

w401 + [4,2,01 

[6,0,01 + [3,3,01 

w~,o1~ [3,2,11. 

(21)isequivalentto5~3,0,0,O]~3~2,1,0,0]+2[1,1,1,0] 
which follows from the majorizations 

3[3,0,0,012- 3[2,~0,01 

2[3,0,0,0] F- Z[l,l,l,O]. 

(22) is equivalent to [2,0,0] 2 [l, 1, 0] which follows from 
Muirhead’s Theorem. 
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(23) is equivalent to [3,0,0] + [l, 1, l] > 2[2,1,0] which 
follows from Schur’s Inequality. 
(24) is equivalent to [2,1,0] 2 [l, 1, l] which follows from 
Muirhead’s Theorem. 
(25) is equivalent to [3,0,0] > [2,1,0] which follows from 
Muirhead’s Theorem. 
(26) is equivalent to 2[4,1, l] + 3[3,3,0] + [2,2,2] > 
6[3,2, l] which follows from the inequalities 

[3,3,01 + [2,2,21 L 2[3,2,11 

2[4,1,13 2 2[3,2,11 

2[3,3,01 2 2[3,2, il. 

(27) is equivalent to 7[14,0] + 7[12,2] + 14[11,3] + 
17[9,5] + 18[8,6] > 7[13, l] + 17[10,4] + 9[7,7] which 
follows from the m%jorizations 

7[14, O] + 7[13, l] 

7[12,2] + 7[10,4] 

10[11,3] t 10[10,4] 

4[11,3] % 4[7,7] 

5[9,5] > 5[7,7]. 

Unfortunately, not all symmetric homogeneous in- 
equalities follow from Muirhead’s Theorem and Schur’s 
Inequality alone. An example that fails is 

x4 + y4 + 24+3e2y2 + 3yY + 3.z2x2 2 

2t3(y + %) + 2y3(a +x) + 2%3(x + y) 

which can be expressed as 

[4,0,01+ 3[fG’,Ol 14[3,l,O]. 

This inequality is true because it is equivalent to 

(x - y)4 + (y - 2)4 + (2 - x)” 2 0. 

We summarize beiow additional work that has been 
done on inequalities consisting of a sum of symmetric 
terms. The following two theorems come from the work 
of Albada [l], Higby [28], and Bottema and Groenman 
[7]. I have translated their theorems into my notation. 
Theorem SH2. 
(Characterization of Symmetric Homogeneous Positive 
Inequalities of degree 2). 

A necessary and sufficient condition for 

is that 

a[2,0, O] + b[l, l,O] L: 0 

a>0 

a+blO. 

Proof. The inequality is equivalent to 

a(x2 + y2 + z2) + b(zy + yz + ~8) > 0. 

Necessity: 
z=l,y=z=O*a>O. 
x=y=z=l=+a+brO. 

Sufficiency: 

a[2,0,O],+b[l,l,O] = a([2,0,0]-[l,l,O])+(a+b)[l,l,O] 

which is non-negative by Muirhead’s Theorem. cl 
Theorem SH3. 
(Characterization of Symmetric Homogeneous Positive 
Inequalities of degree 3). 

A necessary and sufficient condition for 

a[3,0,0] + b[2,1,0] + c[l, 1, l] 1 0 

is that 
a>0 

2a+b20 

a+b+c>O. 

Proof. The inequality is equivalent to 

b(z2y + zy2 + y2z + yz2 + z2x + 2x2)+ 

2a(s3 + y3 + 2”) + 6czyz > 0. 

Necessity: 
z=l,y=z=OJa>O. 
x=o,y= z=1+2a+b>O. 
x=y=z =l+a+b+cLO. 

Sufficiency: 

a[3,0,0]+b[2,1,0]+c[l,l,l] = 

a(P,O, 01 - W,l, 01 + PI L11) 
+@a + ~>(P, LO1 - 11,1,11) 

+(a + b + c)[l, 1, I] 

which is non-negative by Schur’s Inequality and Muir- 
head’s Theorem. El 

For similar results of higher degree, consult chapter 
3 of [23]. 

Instead of expanding everything in terms of simple 
symmetric sums, it might be preferable to expand in 
terms of the elementary symmetric polynomials. 
Proposition. Any symmetric polynomial in the vari- 
ables ~1, 22,...,2, can be written uniquely as a 
polynomial in the elementary symmetric polynomials 
T&l, $2, * * * , xn). 

This was first proven by Gauss. His constructive 
proof can be found in Mostowski and Stark, [25], page 
354. A code fragment, employing Waring’s method, can 
be found in [13], page 14. 
Proposition. Let Ti = ri/(y) where pi denotes the ith el- 
ementary symmetric polynomial in 21, 22,. . . , x,. Then 
a necessary and sufficient condition that 

i=l i=l 
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when pi, qi 1 0 is that 

Pm + 2Pfn+1 + *. f (n - m + 1)~~ 2 

Qm + Gm+l + * * * + (n - m + l)q, 

for 1 5 m 5 n with equality when m = 1. 
For a proof, see Hardy, Littlewood and Polya [15], 

page 64. 
Open Question 1. Would it be better to use a method 
that was based on the representation involving elemen- 
tary symmetric polynomials instead of one based on 
symmetric terms? 

Algorithm R (for Symmetric Homogeneous Rational Func- 
tions). 

If each side of the proposed inequality is a ration- 
al function (quotient of two polynomials), then we can 
proceed as follows. If one side of the inequality has the 
form f/g where f and g are two polynomials, then g is 
a symmetric homogeneous polynomial. We can apply 
algorithm P to determine if g 2 0 or not. If g 2 0 is 
true, then multiply both sides of the inequality by g. If 
g 5 0 is true, then multiply both sides of the inequality 
by (-g). If neither g 2 0 nor g 5 0 is true (i.e. if g 
is not comparable to 0), then we are stymied and the 
algorithm fails. I have yet to find an example of this 
kind. 

We then do the same thing for the right-hand side 
of the inequality. We are left with a polynomial inequal- 
ity and we can now apply algorithm P. 

Example. 
Prove: l/z + l/y + l/z 2 9/(a: + y + z). 
Computer so~+“~z~; Rationally simplify the left-hand 
side to get Y g The denominator, zyz, is deter- cy.2 * 
mined to satisfy zyz 1 0 by algorithm P. The denomi- 
nator of the right-hand side is x + gr+ J and algorithm P 
easily shows that z + y + z > 0. We may thus multiply 
both sides of the inequality by zyz(z + y + r) to get the 
polynomial inequality 

c ! x2y + 3xyz 2 9xyz. 

We now apply algorithm P. Combining like terms gives 

c ! x2y 2 6zyt 

and this is equivalent to 

P, LO1 2 [I, I,11 

which follows from Muirhead’s Theorem. 
I tested algorithm R on the following 6 inequalities 

from Hall and Knight [14]. Algorithm R automatically 
proved all 6 of the inequalities. 

Theorem R. 

3 -5+Y+-L>- 
Y+z t+x x+y - 2 

(1 

(3) 

1 ! 1 1 
+ 

a:+y+z y+z+w 
+ 

z+w+x 
+ 

,1 > 
16/3 (4) 

w+x+y - x+y+z+w 

x2 + y2 -+ y2 + z2 z2 + x2 
x+Y 

-+- 
Y+z z+x 

>z+y+z (5) 

(x3 + Y3 + z3 + v3 + w3)(k + s + i + ; + A) (6) 
. , 

2 5(x2 + y2 + z2 + v2 + w”) 

Computer Proof. 
(1) is equivalent to [3,0,0] 2 [2, l,O] which follows from 
Muirhead’s Theorem. 
(2) is equivalent to [6,6,0] + [5,5,2] 2 2[6,5, l] which 
follows from Schur’s inequality. 
(3) is equivalent to [8,0,0] > [3,3,2] which follows from 
Muirhead’s Theorem. 
(4) is equivalent to [4,0,0,0] + 2[3,1,0,0] 2 [2,2,0,0] + 
[2,1,1,0] + [l, l,l, l] which follows from the majoriza- 
tions 

[3,I,O,Ol + [2, I’I’OI 

[3,1,0,01 + [l, 1,L 11. 

(5) is equivalent to [3,1,0] > [2,1, l] which follows from 
Muirhead’s Theorem. 
(6) is equivalent to [4,1,1,1,0] 1 [3,1,1,1, I] which fol- 
lows from Muirhead’s Theorem. 

It should be noted that there is a heuristic that 
speeds up Algorithm R a slight amount. If the de- 
nominators of the left and right-hand sides are Dr and 
&, then instead of multiplying both sides of the in- 
equality by DiDa, it suffices to multiply both sides by 
lcm(Dr ,02). This least common multiple can be found 
by the formula lcm(Dr , Dz) = DiDz/ gcd(Dr , Dz); and 
the greatest common divisor of the two polynomials can 
be found by standard computer algebra techniques (see 
[13], section 4.1.2). 

Open Question 2. Is there a completely effective method 
for proving all symmetric homogeneous inequalities? 

7. TRIANGLE INEQUALITIES 

The following result is well known ([27], [6], [28], 
[231). 
Theorem. 
(The Fundamental Correspondence between Positive 
Inequalities and Triangle Inequalities) 
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Let a, b, c be the sides of a triangle. Then the 
inequality f(a, b, c) 1 0 is equivalent to the inequality 
f(z:, y, z) 2 0 for all z, y, z > 0 where 

x=b+c-a 

Y =c+u-b. 

z=a+b-c 

Variables a, b, and c can be expressed in terms of x, y, 
and z via the equations: 

u=yfz 
2 

r+x 
b=2* 

x+Y c=- 
2 

Algorithm T (for Symmetric Homogeneous Triangle Inequal- 
ities). Given a proposed triangle inequality consisting 
of rational functions of a, b, and c, apply the substitu- 
tion a = (y + z)/2, b = (z + x)/2, and c = (X + y)/2. 
Then apply algorithm R. The inequality may also in- 
volve the semiperimeter, s, in which case the substitu- 
tion s = (a + b + c)/2 is made first. 
Example 1. 
Prove: S(s - u)(s - b) 
Solution: Letting s = a + b + c)/2 and changing a, b, c 
to 2, y, z gives 

Expanding out into symmetric sums yields 

6zy.z < x2y + xy2 + y% + yz2 + z2x + x22 

which is true by Muirhead’s Theorem because [l, 1, I] 4 
P, LOI. 
Example 2. 
Prove: 64s3 n(s - u) 2 27 fl u2. 
Solution: Letting s = (a + b + c)/2 and changing a, b, c’ 
to 2, y, z gives 

27 c x4y2+54 c x3y3 >_ lo c x~~z+ 

30 c x3y2z + 114 c x2y2z2 

which is equivalent to 

27 c! ~~~~$27 c! x3y3 > 5 c! x4yz+ 

30 C! x3y2z + 19 C! xsy222 

or 

27[4,2,0] + 27[3,3,0] 2 5[4,1,1] + 30[3,2, I] + 19[2,2,2] 

which is true because 

5[4,2,01 * 5[4,1,11 

22[4,2,0] k- 22[3,2, l] 

8[3,3,01 t- 8[3,2,11 

19[3,3, O] + 19[2,2,2] 

each of which follows from Muirhead’s Theorem. 
I tested Algorithm T on 23 examples from chapter 

1 of Bottema [5]. Algorithm T successfully proved all 
23 of the inequalities. 
Theorem Tl. 

(ca)’ < 4xab 

c a2 > g(s2 + $) 

8 n (s - u) < abc 

8abc< n(a+b) 

3n(u+ b) 5 8xa3 

2 (c a) (c a2) > 3(x a3 + 3abc) 

abc < c a”(s - a) 

ca”(s - u) 2 iabc 

xab(a+b) >48n(s-a) 

ca”(s - a) 5 ubcs 

ca”(s -a) 5 iabcxa3 

64s3 n (s - u) 5 27u2b2c2 

(f;c 5 c 5 
- 

c 
->9 1 
s-u - s 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14 

(15) 

(16) 

(17) 

(18) 

(19) 
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1<- ca2 
3 - (-Fa>2 

\u -, 

CQ2 1 
(Ca)” < 2 

(21) 

Ca2xb3c3 < 2xa5Ca3 (22) 

(xa)” 5 Szab(a + b) - 3abc (23) 

Computer Proof. 
(1) is equivalent to [2,0,0] 2 [l, 1,0] which follows from 
Muirhead’s Theorem. 
(2) is equivalent to 22y + 2yz + 2zs > 0 which is true 
because a sum of positive terms is positive. 
(3) is equivalent to 17[3,0,0] 2 4[2,1,0] + 13[1,1, l] 
which follows from the following majorizations: 

4[3,0,01 + 4[2,1,01 

13[3,0, O] + 13[1,1,1]. 

(4) is equivalent to [2,1,0] 2 [1, 1, l] which follows from 
Muirhead’s Theorem. 
(5) is equivalent to [3,0,0] 2 [2,1, O] which follows from 
Muirhead’s Theorem. 

4 
6) is equivalent to 5[3,0,0] + 3[2,1,0] 2 8[1,1, l] which 
allows from the following majorlzations: 

3[2,1,01 t 3[1,1,11 

5[3,0,0] F- 5[1,1,1]. 

(7) is equivalent to [3,0,0] + [l, 1, l] 2 2[2,1,0] which 
follows from Schur’s Inequality. 
(8) is equivalent to 82yz > 0 which follows since a sum 
of positive terms is positive. 
(9) is equivalent to [2,1,0] 2 [1, 1, 11 which follows from 
Muirhead’s Theorem. 
(10) is equivalent to [3,0,0] + 5r2,1,0] > 6[1,1, l] which 
follows from the following majorizations: 

[3,wI + P, 1Jl 

5[2,1,0] >- 5[1,1,1]. 

(11) is equivalent to [2,2,0] > [2,1, l] which follows from 
Muirhead’s Theorem. 
(12) is equivalent to 5[4,2,0] + 3[3,3,0] + 3[2,2,2] 2 
5[4,1,1] + 6[3,2, l] which follows from the folIowing ma- 
jorizations: 

3[3,3,01+3[2,2,212 6[3,2,1] 

5[4,2,0] F 5[4,1,1]. 

(13) is equivalent to 27[4,2,0] + 27[3,3,0] 2 5[4,1, l] + 
30[3,2,1] + 19[2,2,2] which follows from the following 
majorizations: 

WWI * 8[3,2,11 

22[4,2,0] s 22[3,2, l] 

5[4,2, O] + 5[4,1,1]. 

(14) is equivalent to [4,0,0] > [2,2,0] which follows from 
Muirhead’s Theorem. 
(15) is equivalent to [2,1,0] 2 [l, 1, l] which follows from 
Muirhead’s Theorem. 
(16) is equivalent to [3,0,0] + [2,1,0] > 2[1,1, l] which 
follows from the following majorizations: 

[3,&O] !- [L 1911 

P,W + PJJI. 
(17) is equivalent to 3 c! z2y+ 142~2 > 0 which follows 
since a sum of positive terms is positive. 
(18) is equivalent to (3,0,0] + [2,1,0] 2 2[1,1, l] which 
follows from the following majorizations: 

(19) is equivalent to 9 c! z2y+42zyz > 0 which follows 
since a sum of positive terms is positive. 
(20) is equivalent to [2,0,0] 1 fl, 1, 0] which follows from 
Muirhead’s Theorem. 
(21) is equivalent to 2sy + 2yz + 22~ > 0 which follows 
since a sum of positive terms is positive. 
(22) is equivalent to 6 c 2s + 24 C! x7y+ 68 C! zsy2 + 
28 C x6yz + 120 C! x5y3 + 36 C! x5y2z + 142 C x4y4 + 
20 c! x4y3z + 36 c z4y2z2 + 20 C z3ysz2 > 0 which 
follows since a sum of positive terms is positive. 
(23) is equivalent to [3,0,0] + [l, 1, l] 2 2[2,1,0] which 
follows from Schur’s Inequality. 

8. OTHER PARTS OF A TRIANGLE 

We can handle inequalities that reference other 
parts of a triangle (such as the area or the lengths of 
the medians) by expressing these parts in terms of a, b, 
and c. 

For this purpose, the following formulae ([32]) can 
be used: 

a+b+c 
s= n 

L 

I( = J/S(S - a)(s - b)(a - c) 

I< 
7-z - 

S 

abc 
R=41C. 

h 
2K 

a=- 
a 

1 
ma = - 2 d2b2 -t 2~2 - a2 

t, = 19[3,3, O] k- 19[2,2, a] 
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K 
P, = - 

s--a 

where s is the semiperimeter of the triangle, K is the 
area, P is the inradius, R is the circumradius, h, is the 
length of the altitude to side a, m, is the length of the 
median to side a, t, is the length of the bisector of angle 
A, and r. is the radius of the excircle relative to side a. 

One problem with these substitutions is that they 
introduce square roots into the inequality. Algorithm 
T requires that both sides of the inequality be rational 
functions of a, b, and c. To get around this problem, 
we can try to express everything in terms of a, b, c, and 
K, where K is the area of the triangle. Then we isolate 
K to one side of the inequality and square both sides. 
This gets rid of all the radicals. 
Algorithm K (for Symmetric Homogeneous Triangle Inequal- 
ities involving K). 

Step 1. Express all of the elements of the triangle 
in terms of a, b, c, and K. If the result is not a rational 
function of a, b, c, and K, then this algorithm can not 
handle the inequality. 

Step 2. Get rid of all denominators as in algorithm 
R. Each side of the inequality is now a polynomial in a, 
b, c, and K. 

Step 3. Remove all even powers of K by applying 
the substitution K2 = s(s - u)(s - b)(s - c). 

Step 4. Bring all terms involving K to one side 
of the inequality and bring all other terms to the other 
side. The inequality is now of the form pK 2-q where 
p and q are symmetric homogeneous polynonuals in a, 
b, and c. 

Step 5. Apply Algorithm T to determine if p and 
q are positive. If p 2 0 and q 2 0 are both true, then 
go to step 6. If p 5 0 and q 5 0 are both true, then 
rewrite the inequality as (-p)K < (-9) and go to step 
6. If neither of those two cases hold, then this algorithm 
fails. [Note that if p > 0 is not a true inequality, it is 
not necessarily true that p 5 0 is valid. It could happen 
that p is incomparable to 0. See Open Question 3 below 
for more details.] 

Step 6. Square both sides of the inequality to get 
an equivalent inequality. 

Step 7. Replace K2 by s(s - u)(s - b)(s - c). 
Step 8. Apply algorithm T to determine the valid- 

ity of this inequality. 
I tested algorithm K using the following 17 exam- 

ples from chapter 4 of Bottema [5]. The algorithm cor- 
rectly proved 13 out of these 17 inequalities automati- 
cally. 

Theorem T4. 
s2 >3K& (1) 

xab24Kd 

(2) 

(3) 

(4) 

(5) 

4Kfi+~(a-b)2 2 ca” (6) 

ca” <4K&+3r(a- b)2 (7) 

12K& f 2 c (a - b)2 5 (c ca) 2 (8) 

(CCL)’ 5 12K&+8x(a-b)2 (9) 

c a4 > 16K2 00) 

xa4> 16K2+4Kfi~(a-b)2+$ (x(a-b)2)2 

(11) 

c a2b2 > 16K2 - (12) 

4Kd_< y 
a (13) 

(abc)’ 1 (s)3 (14) 

&Cab- ;xa2)(3xab- $a”) 5 K2 (15) 

K2 < &cab- ;xa’)” (16) 

27 n(b” + c2 - a2)2 < (4106 (17) 

Details of the computer proof of these theorems 
can be obtained from the author. Algorithm K failed to 
prove inequalities (7), (9), (ll), and (17) automatically. 

Other elements of a triangle, such as r and R, can 
be expressed in terms of K. I tested Algorithm K using 
the following 36 examples from chapter 5 of Bottema 
[5]. The algorithm correctly proved 32 out of these 36 
inequalities automatically. The details are omitted. [In- 
equalities (3) and (25) were not proven due to a bug in 
the program and inequality (4) was keyed in wrong. Al- 
gorithm K could not prove inequality (S).] 
Theorem T5. 

2r 5 R (1) 

c a<3R& (2) 

ss2R+(36-4)~ (3) 

9r(4R + r) 2 3s2 (4 

3s2 _< (4R + r)” (5) 

6r(4R + r) 5 2s2 (6) 

2s2 5 2(2R+ T-)~ + R2 (7) 

2s2(2R - r) 5 R(4R + T=)~ (8) 

r(16R - 57.) 5 s2 (9) 

s2 5 4R2 + 4Rr + 3r2 (10) 

s2 > 27r2 (11) 
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2s2 2 27Rr 

36r2 5 Ca’ 

c a2 < 9R2 

24Rr - 12r2 5 ca2 

c a2 5 8R2 + 4r2 

36r2 < Cab 

c ab < 9R2 

4r(5R - r) 5 cab 

xabs4(R+r)2 

36r2 5 4r(5R - r) 

4r(5R - r) 5 cab 

4(R + r)” 5 9R2 

c a(s - a) 5 9Rr 

abc _< 8R2r + (126 - 16)Rr2 

8 
R<C; 

c ‘<$ 
a 

34 
2(R + r) SC; 

&c$ 

c is& 

8r(R - 2r) < c(a - b)2 

c(a - b)2 < 8R(R- 2r) 

abc 
4r2 < - 

-5 

abc < (Rfi)3 

5R-r>s& 

54Rr 5 3xab 

w-9 

(13) 

(14 

(15) 

(16) 

(17) 

(18) 

(1% 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

The altitudes of a triangle can easily be expressed 
in terms of K. I tested Algorithm K using the following 
14 examples from chapter 6 of Bottema [53. The algo- 
rithm correctly proved 11 out of these 14 inequalities 
automatically. 

Theorem T6. 

(1) 

(2) 

(3) 

c 
a2 

h; + hz ’ 2 (4) 

c h, > 9r 

c h, 5 3(R + r) 

c h, 5 2R+5r 

2r(5;- ‘) 2 c h, 

(5) 

(6) 

(7) 

(8) 

c 
h < 2(R+ ‘I2 

d- R (9) 

2 c h,hb 5 6Kd (10) 

6Kfi 5 27Rr (11) 

I-I h, > 27r3 02) 

c 
--.>3 1 
h, - 2r - r (13) 

c 
h,+r ,6 
h,-r- (14 

Details of the computer proof are omitted. Algo- 
rithm K failed to prove inequalities (5), (8), and (12) 
automatically. For example, inequality (5) is equivalent 
to 2[6,0,0]+[4,1,1]+5[3,3,0]+[2,2,2] > 4[5,1,0]+ 
3[4,2,0] + 2[3,2, l] which could not be handled. 

It should be noted that the following heuristic can 
speed up Algorithm K considerably: 

The GCD Heuristic. Given a proposed inequality of the 
form PI > P2, if g = gcd(Pr, P2) and if the inequality 
g 2 0 can be proven to be true by Algorithm K, then 
we can divide both sides of the proposed inequality by 
g to get an equivalent inequality. [If g < 0 is true, then 
we can divide both sides by (-g).] 

Note that after dividing both sides by g, negative 
terms may be introduced, so it is necessary to collect 
like terms again and move the terms around so that 
only positive terms occur on each side. 

In my computer program, I apply the GCD Heuris- 
tic after steps 2, 3, and 7 of Algorithm K. 
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Example. 
Prove: R 2 2r. 
Solution by Algorithm K: Letting T = 5 and R = s 
yields abc/$K 2 21(/s. The least common multiple 
of 4K and s is 4Ks and a recursive application of Al- 
gorithm K shows that 4Ks > 0. We can thus mul- 
tiply both sides of the inequaity by 4Ks to get the 
equivalent inequality abcs > 8K2. We now replace K2 
by s(s - a)(s - b)(s - c). After expanding out, mul- 
ti 

B 
lying both sides by 2 and collecting terms, we get 

a +b4+c4+azbc+b2ca+c2ab 2 2a2b2+2b2c2+2c2a2. 
Making the substitution u = (y + 2)/2, b = (z + x)/2, 
c = (x + YW, g ives, after multiplying both sides by 8 
and collectin 

t 
terms: z3y+~y3+y3z+ya3+z3z+zz3+ 

2x2y2 + 2y2z + 2.~~2~ 2 4x2yz+44y2zx+4z2xy. At this 
point, we can apply the GCD Heuristic, noting that the 
gcd of the left and right-hand sides is x + y + z. A quick 
check with Algorithm R shows that t + y + J > 0, so we 
can divide both sides of the inequality by z + y + z to 
get z2y + zy2 + y2z + yz2 + z22 + 2x2 - 2xy.z 2 4tyz. 
The point we wanted to illustrate is that now we have 
introduced a negative term on the left-hand side, so it 
is necessary to once a ain collect like terms. We do this 

5 and get z2y + xy2 + y z + yz2 + z2z + zr2 2 6zy.z. Ex- 
pressing this result in terms of symmetric terms gives 
[2,1,0] 1 [l, 1, l] which is immediately seen to be true 
by Muirhead’s Theorem since [2,1, O] + [l, 1, 11. 

Open Question 3. Is there a way to proceed when step 
5 of Algorithm K fails? 

For example, consider the inequality 

When we isolate K to one side, we find that it’s coef- 
ficient is 44 which is clearly positive. However, the 
other side of the equation is 6 C ab - 5 C a2 which is 
not comparable to 0. In other words, this expression is 
sometimes positive and sometimes negative. Thus we 
can not square both sides of 

to necessarily get an equivalent inequality. Hence we 
cannot get rid of the square root that will be introduced 
when we eliminate K. How else should we proceed then? 

Inequalities involving the medians (or the angle bi- 
sectors) typically introduce 3 square roots into the in- 
equality. If we could express everything in terms of one 
square root, then we could isolate this square root on 
one side of the inequality and then square both sides 
like we did for Ii’. Unfortunately, this can not be done. 

Theorem. There is no rational function, M, of a, b, and 
c such that each of rn,, ma, and m, can be expressed 
as rational functions of a, b, c, and a. 

Proof. Consider a 3-45 triangle. We have m, = $m 

and ma = a. But m is not a member of the field 
g(m). Therefore no such M exists. q 

9. TRIGONOMETRIC INEQUALITIES 

If the inequality contains trigonometric functions of 
linear combinations of the angles of the triangle, such 
as sin(3.4 + B), then we can proceed as follows. 

Step 1: Replace all occurrences of the functions 
cot, set, and csc by the appropriate functions of tan, 
cos, and sin using the formulae: 

sece 
1 

=- 
cos e 

1 
csce = - 

sin e 
1 

c0te = -. 
tan0 

Step 2. Use the standard formulae for the sine, 
cosine, and tangent of a sum of angles to reduce the 
trigonometric expressions to functions of just A, B, and 
C (or A/2, B/2, C/2 if half-angles occur). If submul- 
tiples of the angles (other than l/2) occur, then this 
algorithm will not handle the inequality. 

Step 3. Replace the trigonometric expressions by 
their corresponding expressions involving a, b, c, s, and 
K so that algorithm K can be applied. 

For this purpose, the following formulae ([32]) can 
be used: 

2K 
sin A = - 

bc 

COSA= b2+c2--a2 
2bc 

tanA = 
4K 

b2 + c2 - a2 

A 
tan 2 = 

K 

s(s - a) 

For a comprehensive treatment of the relationship 
between symmetric trigonometric expressions of the an- 
gles of a triangle, see Bager [2]. 

I tested algorithm K using the following 17 trigono- 
metric examples from chapter 2 of Bottema [5]. The 
algorithm correctly proved all 17 of these inequalities 
automatically. 

Theorem T2. 

c sinA 5 lfi (1) 

c 
9 

sin’ A < - 
-4 (2) 

CsinA > xsin2A (3) 
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c 
3 

cosA < - 
-2 

i 5 c cos2 A 

c cos2 A < 3 

c cosAcos B 5 ; 

I-I 
1 

cosA < - 

rI I & x:o: cosA C 2 (A - B) 

CcotA 2 6 

c cot2 A > 1 

c csc A > 2x4 

c csc2 A > 4 

1+lP-&//j 
HsinA 

2CcotA 2 CcscA 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Details of the computer proof are omitted. 
Another problem we have encountered when trying 

to prove triangle inequalities, is that not all expressions 
can be written as rational functions of a, b, c, and K. 
Theorem. The expressions C sin $ and C cos t can 
not be expressed as rational functions of a, b, c, and K. 

Proof. Consider a 3-4-5 triangle. We find that C sin 4 
and C cos 4 involve radicals. But o, b, c, and K are ra- 
tional; so these expressions cannot be rational functions 
of a, b, c, and K. 0 

A HEURISTIC FOR HANDLING MULTIPLE 
&&ARE ~00~s 

Cauciy’s Inequality. 

(gg2 5 (p) (g) * 

For a proof see [15], page 16. 
If we let yi = 1 in Cauchy’s inequality, we get: 

We may use this inequality to get rid of square root 
signs in certain inequalities. Note that for triangle in- 
equalities, n = 3. 
Square Root Heuristic. If an inequality is of the form 
C m 2 g(z), then apply the inequality 

CrnIJ~ 

to see if dm 5 g(z) or equivalently Et(Z) 5 
&7w2. 
Example 1. 
Prove: C &ZZ < 3i/3’-j;I. 
Solution: We note that by the square root heuristic 

c&TsJp. 

But it is known that 

CsinA < ia, 

so therefore 

~&i4&3& 

Example 2. 
Prove: C 6 5 $m. 
Solution: We note that by the square root heuristic 

&/aJ~. 

But our algorithm can prove that 

c ha I ;R, 

so therefore 

Ct/il;;< J~&+iZ. 

11. SUMMARY 

It should be noted that the way I coded Algorithm 
K, not only can it decide if an inequality is true, but 
if the inequality is true it will print out a proof of the 
inequality that a human can follow. 

I have tested Algorithm K against many inequali- 
ties from Bottema [5]. The following table summarizes 
the current state of success. 
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Note that only symmetric homogeneous triangle 
inequalities were selected for testing, and no inequal- 
ities involving medians, angle bisectors, exradii, or half- 
angles were chosen. Computing times (using an Alliant 
FX/80 with one processor) varied from 15 seconds to 3 
minutes, depending on the complexity of the inequality. 
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