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Abstract 

 
  
Test-driven development is a software development 

practice that has been used sporadically for decades.  With 
this practice, test cases (preferably automated) are 
incrementally written before production code is 
implemented.  Test-driven development has recently re-
emerged as a critical enabling practice of the Extreme 
Programming software development methodology.  We ran 
a case study of this practice at IBM.  In the process, a 
thorough suite of automated test cases was produced. In 
this case study, we found that the code developed using a 
test-driven development practice showed, during functional 
verification and regression tests, approximately 40% fewer 
defects than a baseline prior product developed in a more 
traditional fashion. The productivity of the team was not 
impacted by the additional focus on producing automated 
test cases.  This test suite will aid in future enhancements 
and maintenance of this code. The experiment and the 
results are discussed in detail.  

 
1.  Introduction 

 
 Test Driven Development (TDD) [4] is a software 

development practice that has been used sporadically for 
decades [13]; an early reference of its use is the NASA 
Project Mercury in the early 1960’s [26].   The practice has 
gained added visibility recently as a critical enabling 
practice of Extreme Programming (XP) [1, 3, 24, 25]. With 
TDD, before implementing production code, the developer 
writes automated unit test cases for the new functionality 
they are about to implement. After writing test cases, the 
developers produce code to pass these test cases. The 
process is essentially “opportunistic” in nature [8]. A 
developer writes a few test cases, implements the code, 

writes a few test cases, implements the code, and so on.  
The work is kept within the developer’s intellectual bounds 
because he or she is continuously making small design and 
implementation decisions and increasing the functionality 
at a manageable rate.  New functionality is not considered 
properly implemented unless these new (unit) test cases, 
and every other unit test case written for the code base, run 
properly.  

In this paper, we examine the efficacy of the TDD 
practice as a means for reducing defects in a software-
intensive system. We assessed the efficacy of the TDD 
technique with an IBM software development group.     The 
group develops mission-critical software for its customers 
in a domain that demands high availability, correctness, and 
reliability.  “Essential” money [7] and customer relations 
are at risk for IBM’s customers if the software is not 
available, correct, and reliable.  “Discretionary” money [7] 
and convenience are at risk for the recipients of the 
computer-dependant service provided by the IBM product.  
In our case study, we quantitatively examined the efficacy 
of the TDD as it relates to defect density reduction before 
a black-box functional verification test (FVT) run by an 
external testing group after completion of production code.  
We also comment on the use of the TDD practice in the 
context of more robust design and in the context of the 
role automated regression tests have in smoother code 
integration. 

Section 2 provides background on the TDD unit testing 
techniques.  Section 3 provides an overview of other TDD 
studies.  Section 4 presents details of our case study.  
Section 5 presents the results of our analyses.  Section 6 
summarizes our findings.   Finally, a detailed code example 
appears in the appendix. 

 
2.  Test-Driven Development 

 
Software development processes and methods have been 

studied for decades. Despite that, we still do not have 
reliable tools for ensuring that complicated software 
systems intended for high-confidence tasks are free from 
faults and operational failures. Faults1 may result from root 
                                                           

1 An error committed by a person becomes a fault in a 
software artifact such as specification, design, code, etc. 
This fault, unless caught, propagates as a defect in the 
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causes that range from knowledge errors, to communication 
errors, to incomplete analysis errors, to transcription errors. 
Exacerbating the problem is the ever-growing expectations 
of the end-users and the growth in the complexity of the 
tasks. There are essentially three ways of dealing with 
faults: 

1. Fault-avoidance is achieved through appropriate 
specification, design, implementation, and maintenance 
activities intended to avoid faults in the first place. This 
includes use of advanced software construction methods, 
formal methods and re-use of reliable self-describing 
software building blocks (objects), and active knowledge 
domain support. 

2. Fault-elimination is the analytical compensation for 
errors committed during specification, design and 
implementation. It manifests as verification, validation and 
testing.  

3. Fault-tolerance is the run-time compensation for any 
residual problems, out-of-specification changes in the 
operational environment [30], user errors, etc.   

Absolute fault-avoidance may not be economical or 
feasible. The next best thing is to eliminate faults as soon as 
they occur, certainly before they propagate into the 
operational phase of the system, e.g., [5].   Given the error-
proneness of humans, it is prudent to revisit software 
artifacts one or more times to ensure that our understanding 
of the issues, our designs, and our implementations are 
mutually conformant and correct.  Process feed-back and 
feed-forward loops for problem detection and fault-
elimination [5, 10] are beneficial.  These loops may be over 
different releases of the product, over individual phases of a 
single release, and/or over individual tasks. Reliable 
implementation of very tight fault-elimination loops, 
especially those that are not just reactive (i.e., that result 
from a problem that needs to be corrected), but are also 
proactive (forward error correction – preventive activities 
and dynamic process improvement) are generally 
associated with high Capability Maturity Model (CMM) 
levels [31, 32].  Additionally, the earlier one finds an error, 
the less expensive it is to fix [5, 18, 33].   

This section provides an overview of the test-driven 
development practice as a front-end, efficient fault 
detection and elimination technique due to its tight 
feedback loops.  We also provide some information on 
TDD scripts. 

  
2.1  Overview 
Given functional requirements, TDD software engineers 

develop production code through rapid iterations of the 
following: 
                                                                                                 
executable code. When a defective piece of code is 
executed, it puts the software/system into an error-state. 
Finally, this error-state can become a visible anomaly or 
failure when the program is executed.  [21-23] 
 

• Writing a small number of automated unit test 
cases; 

• Running the new unit test cases to ensure they fail 
(since there is no code to run yet);  

• Implementing code which should allow the new 
unit test cases to pass;  

• Re-running the new unit test cases to ensure they 
now pass with the new code; and 

• Periodically (e.g., once a day  provided the code 
base is small enough) re-running all the test cases in 
the code base to ensure the new code does not cause 
did not break any previously-running test cases.  
This, of course, is regression testing. 

This highly-iterative cycle is used to develop a piece of 
new functionality (generally not more than one day’s 
work).  Since all of the test cases must successfully pass 
before new code is added to the code base, there can be 
some level of confidence that the new code did not 
introduce a fault, or mask a fault in the current code base. 
In the XP-implementation of the practice, TDD 
encompasses both design and unit testing.  In XP, software 
engineers do not precede code implementation with any 
formal designs.  In fact, some believe that strict adherence 
to TDD can help to minimize, if not eliminate, the need for 
upfront design [14].  However, the TDD practice is flexible 
and can be adapted to any process methodology, including 
those that specify low-level (detailed) upfront design 
phases.  Many of the benefits that will be discussed in 
section 2.3 can be realized in essentially any development 
process by shifting from unit test development after 
implementing to unit test development before 
implementing with tight iterations [8, 19, 20, 31].   

 
2.2 TDD Test Scripts 
An important aspect of the TDD practice is the use of 

tools and a framework for the creation of the object-
oriented unit tests.  The defacto standard unit testing 
framework is the xUnit2 framework, originally devised by 
Beck and Gamma.   In its Java incarnation, or JUnit, unit 
test cases are added one per public class, usually with the 
name <ClassName>TestCase.  For each public method 
of the class, there is at least one corresponding 
test<Method> that tests the contract of that method.  
Multiple test<Method>s are added when testing 
different behavior of the method, for instance passing 
incorrect parameter arguments to test negative paths.  Prior 
to the execution of each test<Method> a setUp 
method is executed in the <ClassName>TestCase 
class where the test fixtures are initialized, e.g. creating 
instances of <ClassName> which are used to execute the 
test methods on.  At the end of the test<Method> 
execution, a tearDown method is executed on the 
<ClassName>TestCase class to reset the fixtures.  
                                                           
2 http://xprogramming.com/software.htm 
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TestCase classes are usually logically grouped into 
TestSuite classes, which allows execution of the 
TestCase classes in batches. 

Example Java code with corresponding JUnit test scripts 
can be found in the Appendix. 

 
2.3 Suggested Benefits of TDD 
Some possible benefits of TDD are: 
Efficiency.  The fine granularity of test-then-code cycle 

gives continuous feedback to the developer.  With TDD, 
faults and/or defects are identified very early and quickly as 
new code is added to the system, and the source of the 
problem is more easily determined.  We contend that the 
efficiency of fault/defect removal and the corresponding 
reduction in the debug time compensates for the additional 
time spent writing and executing test cases.  In net, TDD 
does not have a detrimental effect on the productivity of the 
software developer. 

Test Assets.  TDD entices programmers to write code 
that is automatically testable, such as having 
functions/methods returning a value which can be checked 
against expected results.  Benefits of automated testing, 
such as TDD testing, include:  (1) production of a more 
reliable system, (2) improvement of the quality of the 
testing effort, (3) reduction of the testing effort, and (4) 
minimization of the schedule [9].   The automated unit test 
cases written with TDD are valuable assets to the project.  
Subsequently, when the code is enhanced or maintained, 
running the automated unit tests may be used for the 
identification of newly introduced defects, i.e., for 
regression testing.   

Reducing Defect Injection.  Debugging and software 
maintenance is often viewed as a low-cost activity in which 
working code defect is “patched” to alter its properties, and 
specifications and designs are neither examined nor 
updated [16].  Unfortunately, such fixes and “small” code 
changes may be nearly 40 times more error prone than new 
development [17], and often new faults are injected during 
the debugging and maintenance.  The TDD test cases are a 
high-granularity low-level regression test.  By continuously 
running these automated test cases, one can find out 
whether a change breaks the existing system.  The ease of 
running the automated test cases after changes are made 
should allow smooth integration of new functionality into 
the code base and reduce the likelihood that fixes and 
maintenance introduce new permanent defects.   

 
3.  Related Work 

Recently, researchers have started to conduct studies on 
the effectiveness of the TDD practice. Muller and Hagner  
conducted a structured experiment comparing TDD with 
traditional programming [29]. The experiment, conducted 
with 19 graduate students, measured the effectiveness of 
TDD in terms of (1) development time, (2) reliability, and 
(3) understandability. The researcher divided the 

experimental subjects into two groups, TDD and control; 
each group solved the same task. The task was to complete 
a program in which the specification was given along with 
the necessary design and method declarations; the students 
completed the body of the necessary methods. The 
researchers set up the programming in this manner to 
facilitate automated acceptance testing and reliability 
analysis.  

The TDD students wrote their test cases while the code 
was written, as described above; the control group students 
wrote automated test cases after completing the code. The 
experiment occurred in four phases:  (1) an initial 
implementation phase (IP); (2) an evaluation phase in 
which the researchers ran tests and provided feedback to 
the students; (3) an acceptance test phase (AP) during 
which the students fixed their identified IP defects; and (4) 
post-experiment analysis.  The researchers found no 
difference between the groups in overall development time.  
The TDD group had lower reliability after IP and higher 
reliability after AP.  Based on these results the researchers 
concluded that writing programs in test-first manner neither 
leads to quicker development nor provides an increase in 
quality.   

Another set of experiments were run with 24 
professional programmers at three industrial locations [14, 
15]. One group developed code using the TDD practice 
while the other a waterfall-like approach.  All programmers 
practiced pair programming [34], whereby two 
programmers worked at one computer, collaborating on the 
same algorithm, code or test.  The experiment participants 
were provided the requirements for a short program to 
automate the scoring of a bowling game [27].  When 
comparing the groups, the researchers found the following: 

TDD teams passed 18% more functional black box test 
cases when compared with the control group teams. 

The experiment results showed that TDD developers 
took more time (16%) than control group developers. 
However, the variance in the performance of the teams was 
large and these results are only directional. Additionally, 
the control group pairs did not generally write any 
worthwhile automated test cases (though they were 
instructed to do so), making the comparison uneven.  

Qualitatively, this research also found the TDD 
approach facilitates simpler design, and the lack of upfront 
design is not a hindrance. However, transitioning to the 
TDD mindset is difficult for some.  

The results of both of these studies need to be viewed 
within the limitations of the experiments conducted. In both 
cases, the sample size was small, the students in the first 
study and several of the professional programmers had 
limited experience with TDD, and the results were blurred 
by large variance.  Further controlled studies on a larger 
scale in industry and academia could strengthen or disprove 
these findings. 
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4.  Case Study 
Experimentation in software engineering can be 

difficult.  Formal, controlled experiments, such as those 
conducted with students or professionals, over relatively 
short periods of time are often viewed as “research in the 
small” [11].  These experiments may suffer from the 
external validity limitations (or perceptions of such).  On 
the other hand, case studies can be viewed as “research in 
the typical” [11].  Concerns with case studies involve the 
internal validity of the research, or the degree of confidence 
and generalization in a cause-effect relationship between 
factors of interest and the  observed results [6].  There is 
also an apprehension with case studies of the ability to 
make a valid comparison between the baseline and the new 
treatment, since the same project is generally not replicated.  
Finally, case studies often cannot yield statistically 
significant results due to a small sample size.  Nonetheless,  
case studies can provide valuable information on a new 
technology or practice.  By performing multiple case 
studies and recording the context variables of each case 
study, researchers can build up knowledge through a family 
of experiments [2] which examine the efficacy of a new 
practice.  We add to the knowledge about the TDD practice 
by performing a case study.  We studied efficacy of TDD 
as a defect-reduction practice within an IBM development 
group.   

This IBM group has been developing device drivers for 
over a decade.  They have one legacy product which has 
undergone seven releases since late 1998.  This legacy 
product was used as the baseline in our case study.  In 
2002, the group developed device drivers on a new 
platform.   In our case study, we compare the seventh 
release on the legacy platform with the first release on the 
new platform.  Because of its longevity, the legacy system 
handles more classes of devices on more platforms with 
more vendors than the new system. Hence, while not a true 
control group, the legacy software still can provide a 
valuable relative insight into the performance of the TDD 
methodology. 
4.1 Context 

All participating IBM software engineers on both 
projects had a minimum of a bachelor’s degree in computer 
science, electrical or computer engineering.  A few had 
master’s degrees.  The seventh release legacy team 
consisted of five collocated full-time employees with 
significant experience in the programming language of 
choice (Java and C++) and the domain.  The new product 
team was made up of nine full-time engineers, five in a US 
location and four in Mexico.  Additionally, some part-time 
resources for project management and for system 
performance analysis were allocated to the team.  No one 
on the new team knew TDD beforehand, and three were 
somewhat unfamiliar with Java.  All but two of the nine 
full-time developers were novices to the targeted devices.  
The domain knowledge of the developers had to be built 

during the design and development phases.  A comparison 
of the two teams is summarized in Table 1.  In general, we 
think that the differences between the teams present 
challenges that make the results we observed even more 
interesting and difficult to achieve.   

 
Table 1:  Team and Product Comparison 

 
 Legacy 

7th Iteration 
New 
1st Release 

Team Size 
(Developers) 

 5 9 

Team Experience 
(Language and 
Domain) 

Experienced Some 
Inexperienced 

Collocation Collocated Distributed 
Code Size (KLOC) 
New; Base; Total 

6.6; 49.9; 56.5 64.6; 9.0; 73.6 

Language Java/C++ Java 
Unit Testing 
Practice 

Ad hoc TDD 

Technical 
Leadership 

Shared resource Dedicated coach 

 
4.2 Unit Testing Practices 

The unit testing approach of the legacy group can be 
classified as ad-hoc.  A developer would code a prototype 
of the important classes and then create a design via UML 
class and sequence diagrams [12].  We define important 
classes to be utility classes, classes which collaborate with 
other classes, and classes that are expected to be reused.  
This design was then followed by an implementation stage 
that sometimes caused design changes, and thus some 
iteration between the design and the coding phases.  Unit 
testing then followed as a post-coding activity.  One of the 
following unit test approaches was usually chosen:   

a) After enough coding was done, an interactive tool 
was created by the developer that permitted the execution 
of the important classes. 

b) Unit testing was executed using an interactive 
scripting language or tool, such as jython3, which allows 
manual interactive exercising of the classes by creating 
objects and calling their methods. 

c) Unit testing was done by the creation of independent 
ad-hoc driver classes that tested specific important classes 
or portions of the system which have clear external 
interfaces. 

In all cases, the unit test process was not too formal and 
disciplined.  More often than not, there were resource and 
schedule limitations that constrained the number of test 
cases developed and run.  Most of the unit tests developed 
were also not reused during the subsequent Functional 

                                                           
3 http://www.jython.org 
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Verification Test (FVT) phase, when a bug was found, or 
when a new release of the software was developed. 

With TDD, test cases were developed up front as a 
means of reducing ambiguity and to validate the 
requirements, which for this team was a full detail standard 
specification.  We found that such up-front testing drives a 
good understanding of the requirements. It is important to 
note that in XP projects, up-front testing proceeds without 
any such “big design up front,” commonly referred to as 
BDUF [3].  However in our system, the requirements were 
stable, and we chose to do up-front design via UML class 
and sequence diagrams.  This may be a significant factor as 
to why TDD appears to have performed exceptionally well 
in this case study. This design activity was interspersed 
with the up-front unit test creation.  After creating a “spike” 
[3] of the system by implementing an end-to-end service 
for one device, each logical portion of the system was 
layered and completely designed using UML class and 
sequence diagrams.    

For each important class, we enforced complete unit 
testing.  We define complete testing as ensuring that the 
public interface and semantics (the behavior of the method 
as defined in the specification) of each method were tested 
utilizing the JUnit4 unit testing framework.  Each design 
document included a unit testing section that listed all 
important classes and public methods that would be tested.  
For each public class, we had an associated public test 
class; for each public method in the class we had an 
associated public test method in the corresponding unit test 
class.  (See example in the Appendix.)  Our goal was to 
cover 80 percent of the important classes by automated unit 
testing.  Some unit tests also contained methods that tested 
particular variations of the behavior, e.g., the printer device 
has an asynchronous printing capability and the regular 
print methods behaved differently in synchronous and. 
asynchronous modes. 

To guarantee that all unit tests would be run by all 
members of the team, we decided to set up an automated 
build and test systems in both “new project” geographical 
locations.  Daily, these systems would extract all the code 
from the library build and run all the unit tests.  The 
Apache ANT5 build tool was used.  After each automated 
build/test run cycle, an email was sent to all members of the 
teams listing all the tests that successfully ran and any 
errors found.  This automated build and test served us as a 
daily integration and validation for the team.  At first this 
build test was run multiple times a day in both locations.  
Eventually, we decided to alternate the build between 
locations and to only run the build tests once a day.   

With both the legacy and new projects, when the 
majority of the device driver code was implemented and 
passed all theirs own unit tests and those in the code base, 
the device drivers were sent to FVT.  The external FVT 

                                                           
4 http://junit.org 
5 Apache Software Foundation, http://www.apache.org/jakarta/ant 

team (different from both development legacy and “new 
project” teams) had written black box test cases based on 
the functional system specification.  More than half of the 
FVT tests were automated in part (requiring human 
intervention to declare pass/fail); the remaining tests were 
split fairly evenly between fully automated and fully 
manual.    

Defects identified from running these test cases were 
communicated to the code developers via a defect tracking 
system.  The bugs were then categorized by device.  As 
illustrated in Figure 1, bugs were assigned a severity code 
based on the nature of the defect and on how many other 
FVT tests the failure blocked.   Once 100% FVT tests have 
been attempted, all test cases are re-run by the FVT team in 
a regression test.  (This does not imply that the defects from 
these attempted tests are all resolved.)  

Figure 2 summarizes the development and test process 
used by the “new project” team.    

 
5.  Results  

 Every project in this IBM division, collects a variety of 
metrics. Among other items, the process calls for tracking 
of the testing progress and for predicting test 
characteristics.   For example, approximately quarter of the 
way into the project (but before substantial amount of code 
had been developed), the team predicted the productivity, 
the number of new and changed lines of code in the project, 
and the number of total defects that will be found during 
the FVT. Historical, organization-specific models were 
used to do that.   

One of the most interesting findings was that the defect 
rate (defects or faults per KLOC), i.e., observed fault 
density, of the code entering FVT/regression test appeared 
to be significantly better for the “new” system when 
compared with the legacy system. This observation is 
summarized in Figure 3.  The new product appears to 
exhibit approximately a 40% lower defect density.  
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Figure 1:  Illustration of test case blocking severity
  

 
 
 

Figure 2:  Summary of development and test process (UT = Unit Test) 
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Figure 3:  FVT/Regression Defect Density 

 
The severity distribution of the defects (faults) was 

essentially equal in the two cases. This is shown in Table 2.  
Severity 1 defects are the most critical; Severity 4 defects 
are non-critical.     

 
Table 2:  Defect Severity Distribution 

 Legacy 
7th Iteration 

New 
1st Iteration 

Severity 1  3%  2% 
Severity 2 25% 25% 
Severity 3 70% 65% 
Severity 4  2%  8% 

   
To help understand the defect or fault density 

differences, we turn to some testing issues – specifically to 
the number of test-cases run. One thing to note is that if a 
device was supported by both the legacy and the “new 
product” code, the FVT test cases for that device were 
identical.  A “substitutability” requirement for the new 
system was to “pass all the legacy system FVT tests”. An 
identical FVT/regression exit criterion was used for both 
projects.  This criterion identifies the percentage of FVT 
and regression test cases that must be attempted/passed and 
the percentage of defects that may remain unresolved based 
on the severity level.   

However, it must be noted that in absolute terms, the 
legacy product was tested using about twice as many test-
runs when compared with the “new product”. The reason is 
device diversity.  Specifically:   

• The devices on the legacy product had to run on 
two platforms (Windows and Linux).  The “new 
system” devices needed to work only on Linux.   
(numberOfOS) 

• The legacy product worked on more hardware 
platforms than the “new product”.  Test cases 
needed to be re-run for each platform.  
(numberOfSystemFamily) 

• For each class of device (e.g. the printer class of 
device), the legacy product supported more 
brands/models of devices.  As a result the same set 
of tests was often run multiple times on various but 

perhaps similar devices. (deviceClass, 
numberModels,TCforDevice)   

 
Also for each class of device there is a percentage of the 

test cases that are only ran once because they were common 
for all devices.  Hence, the number of test cases needed for 
a class of device could be reduced by this factor. 
(commonTCFactor is used to account for this effect)  

The total number of test cases (TC) run on each product 
may be approximated by the following formula: 

 
TC =  

 stemFamilynumberOfSynumberOfOS

 * )**(

 ∗ 

∑
sdeviceClas

ctorcommonTCFaeTCforDeviclsnumberMode

 
Table 3 illustrates the results.  Because the “new 

product” was less expansive, only half of the effort was 
needed for FVT, and only about half as many test-cases 
were run. Yet, the testing uncovered about twice as many 
defects per test case. Was the “new code” more defective or 
were the TDD based test-cases more efficient? 

For the legacy system, both the factor numberOfOS 
and the factor numberOfSystemFamily were 2 or 
more. In the new product both of these factors were 1.  
Also more brands/models were supported by the legacy. 
This means that significantly more test cases needed to be 
run on the legacy code (requiring more FVT effort) than on 
the “new project” code to meet the same FVT/regression 
criteria.  When test cases are repeated for multiple 
hardware/software platforms, these test cases often execute 
the same lines of code.  This drives up the ratio of test cases 
per LOC for the legacy product.  Similarly, these multiple 
executions drive down the ratio of defects to number of test 
cases.  Since most of the test cases ran without incident.  
Re-running of these incident-free test cases on multiple 
platforms decreases the legacy Test Cases per LOC ratio.         

 
Table 3:  Legacy vs. New Project Comparison   

 Legacy 
7th Iteration 

New 
1st Iteration 

FVT Effort  E 0.49E 
Test Cases Run TC 0.48TC 

 
Test Cases/Total LOC TCL 

 
0.36TCL 

Defects/Test Case DTC 
 

1.8DTC 
 

Defects/LOC DFL 0.61DFL 
 

While the developers spend more time writing the test 
cases, TDD reduces the time they spend in debugging.  The 
time previously spent on relatively unpredictable 
debugging was traded off for controlled test creation and 
execution. Other studies have found a slight decrease in 
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developer productivity when employing the TDD practice 
[15, 28].  In our case, the productivity was roughly the 
same in both cases. 

While legacy product unit testing was an ad-hoc 
process, primarily manually, the new project benefited 
from automation of unit test-cases since they could be used 
as part of the FVT regression test-suite.  For the new 
project, we entered test with 64.6 KLOC of new code and 
34 KLOC of JUnit code.  This is slightly more than 0.5 
lines of test code for every line of implementation code.  
Anecdotally, TDD results in at least this much test code, 
often as much as 1:1 test/implementation code ratio. 
Approximately 2390 automated unit test cases were 
written. Additionally, over 100 automated JUnit 
performance test cases were written.  We also wrote 
approximately 400 interactive tests.  Eighty-six percent of 
the tests were automated, exceeding our 80% target.  The 
interactive tests were rarely run; the automated tests ran 
daily.   

When FVT or regression testing revealed a defect, 
developers augmented the TDD test suite by adding new 
test to reveal the presence of the defect found.  Additionally 
running the extensive automated test suite after defect fixes 
were implemented gave added confidence that the fix did 
not introduce new defects.  

We believe that the TDD practice aided us in producing 
a product that more easily incorporated later changes.  A 
couple of devices (albeit, not overly complex devices) were 
added to the product about two-thirds of the way through 
the schedule without major perturbations. 

In the past, we only integrated code into the “legacy” 
product once we were close to FVT.  In the TDD approach, 
the daily integration certainly saved us from late integration 
problems.  The success (or failure) of the daily integration 
served as the heartbeat of the project and minimized risk 
because problems surfaced much earlier.   In addition, the 
developers are very positive about the TDD practice and 
have continued its use.   

 
6.  Summary and Future Work 

 
A development team in IBM transitioned from an ad-

hoc to a TDD unit testing practice. Through the 
introduction of this practice a relatively inexperienced team 
realized about 40% reduction in FVT detected defect 
density of new/changed code when compared with an 
experienced team who used an ad-hoc testing approach for 
a similar product.  They achieved this result with minimal 
impact to developer productivity.  Additionally, the suite of 
automated unit test cases created via TDD became a 
reusable and extendable asset that will continue to improve 
quality over the lifetime of the software system.  The test 
suite will also be the basis for quality checks and will serve 
as a quality contract between all members of the team.   

Through the TDD practice, a significant suite of 
regression test cases are created and the code is developed 

in a “testable” manner.  In our current research, we are 
exploiting these characteristics of TDD-developed projects 
to enable an extension of XP to encompass a measure of 
reliability.  We are enhancing the TDD practice to include 
explicit estimation of the probability that the software 
system performs according to its requirements based on a 
specified usage profile. [35]       
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Appendix A:  Test-Driven Development/JUnit 
Example 

 
The vast majority of software engineers that practice 

TDD utilize a test framework from the open source xUnit 
family.  See http://www.xprogramming.com/software.htm 
where over 60 versions of the testing framework are 
available for Java, C++, Ruby, Scheme, XML, and many 
other languages.  The testing framework was originally 
authored by Kent Beck and Erich Gamma in Java; the Java 
version has won the 2002 JavaOne “Best Java 
Performance/Testing Tool” award.  Software engineers 
around the world have ported this framework to the other 
languages.  Much of the success of the tools can be 
attributed to its ease of use and short learning curve.  To 
begin using the tool, a developer puts the downloaded code 
for the testing classes/methods into his or her hierarchy and 
CLASSPATH.  Test case creation proceeds by writing test 
methods that inherit from the testing classes.      

In this section, we present some example Java/JUnit 
TDD code scripts.  The class diagram for the sample 
application is shown below in Figure 4.  In parallel to this 
implementation code hierarchy, corresponding test classes 
were created.  These three test classes are called 
DeviceFactoryTestCase, DeviceEventTestCase, 
and LightBulbDeviceTestCase.  Each of these 
classes have setUp and tearDown methods.  The 
setUp method runs before each test method; the 
tearDown method runs after each method.  For example, 
for the DeviceEventTestCase class, these methods are 
as follows:    

 
protected void setUp() 
{ 
  deviceEvent = new DeviceEvent( this,        
  DEFAULT_TYPE);   
} 
  
protected void tearDown() 
{ deviceEvent = null; } 

 
The setUp method creates and initializes an instance of 
the DeviceEvent class.  The tearDown method clears 
the instance. 

   
These same methods are more involved with the 

LightBulbDeviceTestCase class: 
 

protected void setUp() throws      
                       DeviceException 
 
{ 
  deviceFactory = new DeviceFactory(); 

  lbd =  deviceFactory. 
       createLightBulbDevice(); 
  dl = this.new TestDL(); 
} 
  
protected void tearDown() throws  
DeviceException 
{ 
  deviceFactory = null; 
   
  try 
  { 
     lbd.close(); 
     lbd = null; 
  }  
  catch( DeviceException de )  
  { 
     //Don't care since this is thrown       
     //if device was not opened 
  } 
   
  dl = null; 
  deviceEvent = null; 
} 

 
Ideally, each method in the production code has at least 

on corresponding test method.  This correspondence is 
illustrated with an in Table 4.   In the left hand column of 
the table is a production code method.  A test method 
written for this method is in the right hand column.  (Notice 
that often the test code is longer than the production code.)  
The test cases are structured such that several types of 
assert statements (for Java:  assertEquals, 
assertTrue, assertNull, assertNotNull) 
are used to compare actual results to expected results.  If 
the assert returns false, the test case fails.  If the tested 
method throws exceptions then the test method declares 
these exceptions in its signature.  Since test methods will 
generally verify the positive path for the method then any 
thrown exception will fail the test.  Negative path test 
methods will not declare exceptions in their signatures 
since for such test methods; exception will be expected and 
thus caught.   

Also, the JUnit setUp and tearDown methods can 
also declare that they throw some exception, especially 
when the test fixture could potentially cause an exception.  
Any such occurrence will result in the failure of the test for 
which the setUp or tearDown was executing.   

The tool reports the % of test cases that pass and details 
on the failing test cases.  Many version of the tool have a 
GUI interface.  In the GUI interface, a bold green bar 
across the interface indicates 100% test cases passed.  A 
red bar is displayed when even a single test case fails.   
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Figure 4:  Class Diagram for Light Bulb Program 
 
Implementation Method Test Method 

Class: DeviceEvent 
  
public int getType() { return type; } 

Class: DeviceEventTestCase 
 
public void testGetType() 
{ 
deviceEvent = new DeviceEvent( this, 1 ); 
   
assertTrue( deviceEvent.getType() == 1 ); 
assertTrue( deviceEvent.getSource() == this 
); 
} 

Class: DeviceFactory 
 
public LightBulbDevice 
createLightBulbDevice() 
{ 
return new DefaultLightBulbDevice(); 
} 

Class: DeviceFactoryTestCase 
 
public void testCreateLightBulbDevice() 
{ 
LightBulbDevice lb0 = 
deviceFactory.createLightBulbDevice(); 
assertTrue( lb0 != null ); 
   
LightBulbDevice lb1 = 
deviceFactory.createLightBulbDevice(); 
assertTrue( lb1 != null ); 
   
assertTrue( lb0 != lb1 ); 
} 
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Implementation Method Test Method 
Class: DeviceFactory 
 
public void open( String name ) throws 
DeviceException 
{ 
if( name == null ) 
 throw new DeviceException( "Invalid 
argument to open method"); 
    
if( opened )  
 throw new DeviceException( "Device 
already opened" ); 
    
openImp( name ); 
opened = true; 
} 

Class: LightBulbDeviceTestCase 
 
public void testOpen_null() throws 
DeviceException 
{ 
try 
{ 
 lbd.open( null ); 
 fail( "Expected failure since name 
is null" ); 
} 
 catch( DeviceException de ) {} 
} 

Class: DeviceFactory 
 
Same method as above 

Class: LightBulbDeviceTestCase 
 
public void testOpen_Multiple() throws 
DeviceException 
{ 
lbd.open( "Light" );   
try 
{ 
 lbd.open( "Light2" ); 
 fail( "Should not be able to open 
device twice" ); 
} 
 catch( DeviceException de ) {} 
} 

Class: DeviceFactory 
 
Same method as above plus: 
public void setDeviceEnabled( boolean b ) 
throws DeviceException 
{ 
if( !opened ) 
 throw new DeviceException( "Cannot 
enable or disable a closed device" ); 
 
if( b ) 
 enableImp(); 
else 
 disableImp(); 
 
enabled = b; 
} 
public void setOn( boolean b ) throws 
DeviceException 
{ 
checkOpenedEnabled(); 
lightBulb.setOn( b ); 
} 

Class: LightBulbDeviceTestCase 
 
public void testIsOn() throws 
DeviceException 
{ 
lbd.open( "Light" ); 
lbd.setDeviceEnabled( true ); 
   
if( lbd.isOn() ) 
{ 
      lbd.setOn( false ); 
 assertTrue( lbd.isOn() == false ); 
} 
else 
{ 
 lbd.setOn( true ); 
 assertTrue( lbd.isOn() );  
  
} 
   
assertTrue( lbd.isOn() == lbd.isOn() ); 
} 

 
Table 4:  Code Example 


