
Test-Driven Development as a Defect-Reduction Practice

Laurie Williams1, E. Michael Maximilien2, Mladen Vouk1
1North Carolina State University, Department of Computer Science

{williams, vouk}@csc.ncsu.edu
2IBM Corporation and North Carolina State University

maxim@us.ibm.com

Abstract

Test-driven development is a software development

practice that has been used sporadically for decades. With
this practice, test cases (preferably automated) are
incrementally written before production code is
implemented. Test-driven development has recently re-
emerged as a critical enabling practice of the Extreme
Programming software development methodology. We ran
a case study of this practice at IBM. In the process, a
thorough suite of automated test cases was produced. In
this case study, we found that the code developed using a
test-driven development practice showed, during functional
verification and regression tests, approximately 40% fewer
defects than a baseline prior product developed in a more
traditional fashion. The productivity of the team was not
impacted by the additional focus on producing automated
test cases. This test suite will aid in future enhancements
and maintenance of this code. The experiment and the
results are discussed in detail.

1. Introduction

 Test Driven Development (TDD) [4] is a software

development practice that has been used sporadically for
decades [13]; an early reference of its use is the NASA
Project Mercury in the early 1960’s [26]. The practice has
gained added visibility recently as a critical enabling
practice of Extreme Programming (XP) [1, 3, 24, 25]. With
TDD, before implementing production code, the developer
writes automated unit test cases for the new functionality
they are about to implement. After writing test cases, the
developers produce code to pass these test cases. The
process is essentially “opportunistic” in nature [8]. A
developer writes a few test cases, implements the code,

writes a few test cases, implements the code, and so on.
The work is kept within the developer’s intellectual bounds
because he or she is continuously making small design and
implementation decisions and increasing the functionality
at a manageable rate. New functionality is not considered
properly implemented unless these new (unit) test cases,
and every other unit test case written for the code base, run
properly.

In this paper, we examine the efficacy of the TDD
practice as a means for reducing defects in a software-
intensive system. We assessed the efficacy of the TDD
technique with an IBM software development group. The
group develops mission-critical software for its customers
in a domain that demands high availability, correctness, and
reliability. “Essential” money [7] and customer relations
are at risk for IBM’s customers if the software is not
available, correct, and reliable. “Discretionary” money [7]
and convenience are at risk for the recipients of the
computer-dependant service provided by the IBM product.
In our case study, we quantitatively examined the efficacy
of the TDD as it relates to defect density reduction before
a black-box functional verification test (FVT) run by an
external testing group after completion of production code.
We also comment on the use of the TDD practice in the
context of more robust design and in the context of the
role automated regression tests have in smoother code
integration.

Section 2 provides background on the TDD unit testing
techniques. Section 3 provides an overview of other TDD
studies. Section 4 presents details of our case study.
Section 5 presents the results of our analyses. Section 6
summarizes our findings. Finally, a detailed code example
appears in the appendix.

2. Test-Driven Development

Software development processes and methods have been

studied for decades. Despite that, we still do not have
reliable tools for ensuring that complicated software
systems intended for high-confidence tasks are free from
faults and operational failures. Faults1 may result from root

1 An error committed by a person becomes a fault in a
software artifact such as specification, design, code, etc.
This fault, unless caught, propagates as a defect in the

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2

causes that range from knowledge errors, to communication
errors, to incomplete analysis errors, to transcription errors.
Exacerbating the problem is the ever-growing expectations
of the end-users and the growth in the complexity of the
tasks. There are essentially three ways of dealing with
faults:

1. Fault-avoidance is achieved through appropriate
specification, design, implementation, and maintenance
activities intended to avoid faults in the first place. This
includes use of advanced software construction methods,
formal methods and re-use of reliable self-describing
software building blocks (objects), and active knowledge
domain support.

2. Fault-elimination is the analytical compensation for
errors committed during specification, design and
implementation. It manifests as verification, validation and
testing.

3. Fault-tolerance is the run-time compensation for any
residual problems, out-of-specification changes in the
operational environment [30], user errors, etc.

Absolute fault-avoidance may not be economical or
feasible. The next best thing is to eliminate faults as soon as
they occur, certainly before they propagate into the
operational phase of the system, e.g., [5]. Given the error-
proneness of humans, it is prudent to revisit software
artifacts one or more times to ensure that our understanding
of the issues, our designs, and our implementations are
mutually conformant and correct. Process feed-back and
feed-forward loops for problem detection and fault-
elimination [5, 10] are beneficial. These loops may be over
different releases of the product, over individual phases of a
single release, and/or over individual tasks. Reliable
implementation of very tight fault-elimination loops,
especially those that are not just reactive (i.e., that result
from a problem that needs to be corrected), but are also
proactive (forward error correction – preventive activities
and dynamic process improvement) are generally
associated with high Capability Maturity Model (CMM)
levels [31, 32]. Additionally, the earlier one finds an error,
the less expensive it is to fix [5, 18, 33].

This section provides an overview of the test-driven
development practice as a front-end, efficient fault
detection and elimination technique due to its tight
feedback loops. We also provide some information on
TDD scripts.

2.1 Overview
Given functional requirements, TDD software engineers

develop production code through rapid iterations of the
following:

executable code. When a defective piece of code is
executed, it puts the software/system into an error-state.
Finally, this error-state can become a visible anomaly or
failure when the program is executed. [21-23]

• Writing a small number of automated unit test
cases;

• Running the new unit test cases to ensure they fail
(since there is no code to run yet);

• Implementing code which should allow the new
unit test cases to pass;

• Re-running the new unit test cases to ensure they
now pass with the new code; and

• Periodically (e.g., once a day provided the code
base is small enough) re-running all the test cases in
the code base to ensure the new code does not cause
did not break any previously-running test cases.
This, of course, is regression testing.

This highly-iterative cycle is used to develop a piece of
new functionality (generally not more than one day’s
work). Since all of the test cases must successfully pass
before new code is added to the code base, there can be
some level of confidence that the new code did not
introduce a fault, or mask a fault in the current code base.
In the XP-implementation of the practice, TDD
encompasses both design and unit testing. In XP, software
engineers do not precede code implementation with any
formal designs. In fact, some believe that strict adherence
to TDD can help to minimize, if not eliminate, the need for
upfront design [14]. However, the TDD practice is flexible
and can be adapted to any process methodology, including
those that specify low-level (detailed) upfront design
phases. Many of the benefits that will be discussed in
section 2.3 can be realized in essentially any development
process by shifting from unit test development after
implementing to unit test development before
implementing with tight iterations [8, 19, 20, 31].

2.2 TDD Test Scripts
An important aspect of the TDD practice is the use of

tools and a framework for the creation of the object-
oriented unit tests. The defacto standard unit testing
framework is the xUnit2 framework, originally devised by
Beck and Gamma. In its Java incarnation, or JUnit, unit
test cases are added one per public class, usually with the
name <ClassName>TestCase. For each public method
of the class, there is at least one corresponding
test<Method> that tests the contract of that method.
Multiple test<Method>s are added when testing
different behavior of the method, for instance passing
incorrect parameter arguments to test negative paths. Prior
to the execution of each test<Method> a setUp
method is executed in the <ClassName>TestCase
class where the test fixtures are initialized, e.g. creating
instances of <ClassName> which are used to execute the
test methods on. At the end of the test<Method>
execution, a tearDown method is executed on the
<ClassName>TestCase class to reset the fixtures.

2 http://xprogramming.com/software.htm

3

TestCase classes are usually logically grouped into
TestSuite classes, which allows execution of the
TestCase classes in batches.

Example Java code with corresponding JUnit test scripts
can be found in the Appendix.

2.3 Suggested Benefits of TDD
Some possible benefits of TDD are:
Efficiency. The fine granularity of test-then-code cycle

gives continuous feedback to the developer. With TDD,
faults and/or defects are identified very early and quickly as
new code is added to the system, and the source of the
problem is more easily determined. We contend that the
efficiency of fault/defect removal and the corresponding
reduction in the debug time compensates for the additional
time spent writing and executing test cases. In net, TDD
does not have a detrimental effect on the productivity of the
software developer.

Test Assets. TDD entices programmers to write code
that is automatically testable, such as having
functions/methods returning a value which can be checked
against expected results. Benefits of automated testing,
such as TDD testing, include: (1) production of a more
reliable system, (2) improvement of the quality of the
testing effort, (3) reduction of the testing effort, and (4)
minimization of the schedule [9]. The automated unit test
cases written with TDD are valuable assets to the project.
Subsequently, when the code is enhanced or maintained,
running the automated unit tests may be used for the
identification of newly introduced defects, i.e., for
regression testing.

Reducing Defect Injection. Debugging and software
maintenance is often viewed as a low-cost activity in which
working code defect is “patched” to alter its properties, and
specifications and designs are neither examined nor
updated [16]. Unfortunately, such fixes and “small” code
changes may be nearly 40 times more error prone than new
development [17], and often new faults are injected during
the debugging and maintenance. The TDD test cases are a
high-granularity low-level regression test. By continuously
running these automated test cases, one can find out
whether a change breaks the existing system. The ease of
running the automated test cases after changes are made
should allow smooth integration of new functionality into
the code base and reduce the likelihood that fixes and
maintenance introduce new permanent defects.

3. Related Work

Recently, researchers have started to conduct studies on
the effectiveness of the TDD practice. Muller and Hagner
conducted a structured experiment comparing TDD with
traditional programming [29]. The experiment, conducted
with 19 graduate students, measured the effectiveness of
TDD in terms of (1) development time, (2) reliability, and
(3) understandability. The researcher divided the

experimental subjects into two groups, TDD and control;
each group solved the same task. The task was to complete
a program in which the specification was given along with
the necessary design and method declarations; the students
completed the body of the necessary methods. The
researchers set up the programming in this manner to
facilitate automated acceptance testing and reliability
analysis.

The TDD students wrote their test cases while the code
was written, as described above; the control group students
wrote automated test cases after completing the code. The
experiment occurred in four phases: (1) an initial
implementation phase (IP); (2) an evaluation phase in
which the researchers ran tests and provided feedback to
the students; (3) an acceptance test phase (AP) during
which the students fixed their identified IP defects; and (4)
post-experiment analysis. The researchers found no
difference between the groups in overall development time.
The TDD group had lower reliability after IP and higher
reliability after AP. Based on these results the researchers
concluded that writing programs in test-first manner neither
leads to quicker development nor provides an increase in
quality.

Another set of experiments were run with 24
professional programmers at three industrial locations [14,
15]. One group developed code using the TDD practice
while the other a waterfall-like approach. All programmers
practiced pair programming [34], whereby two
programmers worked at one computer, collaborating on the
same algorithm, code or test. The experiment participants
were provided the requirements for a short program to
automate the scoring of a bowling game [27]. When
comparing the groups, the researchers found the following:

TDD teams passed 18% more functional black box test
cases when compared with the control group teams.

The experiment results showed that TDD developers
took more time (16%) than control group developers.
However, the variance in the performance of the teams was
large and these results are only directional. Additionally,
the control group pairs did not generally write any
worthwhile automated test cases (though they were
instructed to do so), making the comparison uneven.

Qualitatively, this research also found the TDD
approach facilitates simpler design, and the lack of upfront
design is not a hindrance. However, transitioning to the
TDD mindset is difficult for some.

The results of both of these studies need to be viewed
within the limitations of the experiments conducted. In both
cases, the sample size was small, the students in the first
study and several of the professional programmers had
limited experience with TDD, and the results were blurred
by large variance. Further controlled studies on a larger
scale in industry and academia could strengthen or disprove
these findings.

4

4. Case Study
Experimentation in software engineering can be

difficult. Formal, controlled experiments, such as those
conducted with students or professionals, over relatively
short periods of time are often viewed as “research in the
small” [11]. These experiments may suffer from the
external validity limitations (or perceptions of such). On
the other hand, case studies can be viewed as “research in
the typical” [11]. Concerns with case studies involve the
internal validity of the research, or the degree of confidence
and generalization in a cause-effect relationship between
factors of interest and the observed results [6]. There is
also an apprehension with case studies of the ability to
make a valid comparison between the baseline and the new
treatment, since the same project is generally not replicated.
Finally, case studies often cannot yield statistically
significant results due to a small sample size. Nonetheless,
case studies can provide valuable information on a new
technology or practice. By performing multiple case
studies and recording the context variables of each case
study, researchers can build up knowledge through a family
of experiments [2] which examine the efficacy of a new
practice. We add to the knowledge about the TDD practice
by performing a case study. We studied efficacy of TDD
as a defect-reduction practice within an IBM development
group.

This IBM group has been developing device drivers for
over a decade. They have one legacy product which has
undergone seven releases since late 1998. This legacy
product was used as the baseline in our case study. In
2002, the group developed device drivers on a new
platform. In our case study, we compare the seventh
release on the legacy platform with the first release on the
new platform. Because of its longevity, the legacy system
handles more classes of devices on more platforms with
more vendors than the new system. Hence, while not a true
control group, the legacy software still can provide a
valuable relative insight into the performance of the TDD
methodology.
4.1 Context

All participating IBM software engineers on both
projects had a minimum of a bachelor’s degree in computer
science, electrical or computer engineering. A few had
master’s degrees. The seventh release legacy team
consisted of five collocated full-time employees with
significant experience in the programming language of
choice (Java and C++) and the domain. The new product
team was made up of nine full-time engineers, five in a US
location and four in Mexico. Additionally, some part-time
resources for project management and for system
performance analysis were allocated to the team. No one
on the new team knew TDD beforehand, and three were
somewhat unfamiliar with Java. All but two of the nine
full-time developers were novices to the targeted devices.
The domain knowledge of the developers had to be built

during the design and development phases. A comparison
of the two teams is summarized in Table 1. In general, we
think that the differences between the teams present
challenges that make the results we observed even more
interesting and difficult to achieve.

Table 1: Team and Product Comparison

 Legacy

7th Iteration
New
1st Release

Team Size
(Developers)

 5 9

Team Experience
(Language and
Domain)

Experienced Some
Inexperienced

Collocation Collocated Distributed
Code Size (KLOC)
New; Base; Total

6.6; 49.9; 56.5 64.6; 9.0; 73.6

Language Java/C++ Java
Unit Testing
Practice

Ad hoc TDD

Technical
Leadership

Shared resource Dedicated coach

4.2 Unit Testing Practices

The unit testing approach of the legacy group can be
classified as ad-hoc. A developer would code a prototype
of the important classes and then create a design via UML
class and sequence diagrams [12]. We define important
classes to be utility classes, classes which collaborate with
other classes, and classes that are expected to be reused.
This design was then followed by an implementation stage
that sometimes caused design changes, and thus some
iteration between the design and the coding phases. Unit
testing then followed as a post-coding activity. One of the
following unit test approaches was usually chosen:

a) After enough coding was done, an interactive tool
was created by the developer that permitted the execution
of the important classes.

b) Unit testing was executed using an interactive
scripting language or tool, such as jython3, which allows
manual interactive exercising of the classes by creating
objects and calling their methods.

c) Unit testing was done by the creation of independent
ad-hoc driver classes that tested specific important classes
or portions of the system which have clear external
interfaces.

In all cases, the unit test process was not too formal and
disciplined. More often than not, there were resource and
schedule limitations that constrained the number of test
cases developed and run. Most of the unit tests developed
were also not reused during the subsequent Functional

3 http://www.jython.org

5

Verification Test (FVT) phase, when a bug was found, or
when a new release of the software was developed.

With TDD, test cases were developed up front as a
means of reducing ambiguity and to validate the
requirements, which for this team was a full detail standard
specification. We found that such up-front testing drives a
good understanding of the requirements. It is important to
note that in XP projects, up-front testing proceeds without
any such “big design up front,” commonly referred to as
BDUF [3]. However in our system, the requirements were
stable, and we chose to do up-front design via UML class
and sequence diagrams. This may be a significant factor as
to why TDD appears to have performed exceptionally well
in this case study. This design activity was interspersed
with the up-front unit test creation. After creating a “spike”
[3] of the system by implementing an end-to-end service
for one device, each logical portion of the system was
layered and completely designed using UML class and
sequence diagrams.

For each important class, we enforced complete unit
testing. We define complete testing as ensuring that the
public interface and semantics (the behavior of the method
as defined in the specification) of each method were tested
utilizing the JUnit4 unit testing framework. Each design
document included a unit testing section that listed all
important classes and public methods that would be tested.
For each public class, we had an associated public test
class; for each public method in the class we had an
associated public test method in the corresponding unit test
class. (See example in the Appendix.) Our goal was to
cover 80 percent of the important classes by automated unit
testing. Some unit tests also contained methods that tested
particular variations of the behavior, e.g., the printer device
has an asynchronous printing capability and the regular
print methods behaved differently in synchronous and.
asynchronous modes.

To guarantee that all unit tests would be run by all
members of the team, we decided to set up an automated
build and test systems in both “new project” geographical
locations. Daily, these systems would extract all the code
from the library build and run all the unit tests. The
Apache ANT5 build tool was used. After each automated
build/test run cycle, an email was sent to all members of the
teams listing all the tests that successfully ran and any
errors found. This automated build and test served us as a
daily integration and validation for the team. At first this
build test was run multiple times a day in both locations.
Eventually, we decided to alternate the build between
locations and to only run the build tests once a day.

With both the legacy and new projects, when the
majority of the device driver code was implemented and
passed all theirs own unit tests and those in the code base,
the device drivers were sent to FVT. The external FVT

4 http://junit.org
5 Apache Software Foundation, http://www.apache.org/jakarta/ant

team (different from both development legacy and “new
project” teams) had written black box test cases based on
the functional system specification. More than half of the
FVT tests were automated in part (requiring human
intervention to declare pass/fail); the remaining tests were
split fairly evenly between fully automated and fully
manual.

Defects identified from running these test cases were
communicated to the code developers via a defect tracking
system. The bugs were then categorized by device. As
illustrated in Figure 1, bugs were assigned a severity code
based on the nature of the defect and on how many other
FVT tests the failure blocked. Once 100% FVT tests have
been attempted, all test cases are re-run by the FVT team in
a regression test. (This does not imply that the defects from
these attempted tests are all resolved.)

Figure 2 summarizes the development and test process
used by the “new project” team.

5. Results

 Every project in this IBM division, collects a variety of
metrics. Among other items, the process calls for tracking
of the testing progress and for predicting test
characteristics. For example, approximately quarter of the
way into the project (but before substantial amount of code
had been developed), the team predicted the productivity,
the number of new and changed lines of code in the project,
and the number of total defects that will be found during
the FVT. Historical, organization-specific models were
used to do that.

One of the most interesting findings was that the defect
rate (defects or faults per KLOC), i.e., observed fault
density, of the code entering FVT/regression test appeared
to be significantly better for the “new” system when
compared with the legacy system. This observation is
summarized in Figure 3. The new product appears to
exhibit approximately a 40% lower defect density.

6

Figure 1: Illustration of test case blocking severity

Figure 2: Summary of development and test process (UT = Unit Test)

7

De
fe

ct
s/

KL
O

C

Legacy
New

Figure 3: FVT/Regression Defect Density

The severity distribution of the defects (faults) was

essentially equal in the two cases. This is shown in Table 2.
Severity 1 defects are the most critical; Severity 4 defects
are non-critical.

Table 2: Defect Severity Distribution

 Legacy
7th Iteration

New
1st Iteration

Severity 1 3% 2%
Severity 2 25% 25%
Severity 3 70% 65%
Severity 4 2% 8%

To help understand the defect or fault density

differences, we turn to some testing issues – specifically to
the number of test-cases run. One thing to note is that if a
device was supported by both the legacy and the “new
product” code, the FVT test cases for that device were
identical. A “substitutability” requirement for the new
system was to “pass all the legacy system FVT tests”. An
identical FVT/regression exit criterion was used for both
projects. This criterion identifies the percentage of FVT
and regression test cases that must be attempted/passed and
the percentage of defects that may remain unresolved based
on the severity level.

However, it must be noted that in absolute terms, the
legacy product was tested using about twice as many test-
runs when compared with the “new product”. The reason is
device diversity. Specifically:

• The devices on the legacy product had to run on
two platforms (Windows and Linux). The “new
system” devices needed to work only on Linux.
(numberOfOS)

• The legacy product worked on more hardware
platforms than the “new product”. Test cases
needed to be re-run for each platform.
(numberOfSystemFamily)

• For each class of device (e.g. the printer class of
device), the legacy product supported more
brands/models of devices. As a result the same set
of tests was often run multiple times on various but

perhaps similar devices. (deviceClass,
numberModels,TCforDevice)

Also for each class of device there is a percentage of the

test cases that are only ran once because they were common
for all devices. Hence, the number of test cases needed for
a class of device could be reduced by this factor.
(commonTCFactor is used to account for this effect)

The total number of test cases (TC) run on each product
may be approximated by the following formula:

TC =

 stemFamilynumberOfSynumberOfOS

 *)**(

 ∗

∑
sdeviceClas

ctorcommonTCFaeTCforDeviclsnumberMode

Table 3 illustrates the results. Because the “new

product” was less expansive, only half of the effort was
needed for FVT, and only about half as many test-cases
were run. Yet, the testing uncovered about twice as many
defects per test case. Was the “new code” more defective or
were the TDD based test-cases more efficient?

For the legacy system, both the factor numberOfOS
and the factor numberOfSystemFamily were 2 or
more. In the new product both of these factors were 1.
Also more brands/models were supported by the legacy.
This means that significantly more test cases needed to be
run on the legacy code (requiring more FVT effort) than on
the “new project” code to meet the same FVT/regression
criteria. When test cases are repeated for multiple
hardware/software platforms, these test cases often execute
the same lines of code. This drives up the ratio of test cases
per LOC for the legacy product. Similarly, these multiple
executions drive down the ratio of defects to number of test
cases. Since most of the test cases ran without incident.
Re-running of these incident-free test cases on multiple
platforms decreases the legacy Test Cases per LOC ratio.

Table 3: Legacy vs. New Project Comparison

 Legacy
7th Iteration

New
1st Iteration

FVT Effort E 0.49E
Test Cases Run TC 0.48TC

Test Cases/Total LOC TCL

0.36TCL

Defects/Test Case DTC

1.8DTC

Defects/LOC DFL 0.61DFL

While the developers spend more time writing the test
cases, TDD reduces the time they spend in debugging. The
time previously spent on relatively unpredictable
debugging was traded off for controlled test creation and
execution. Other studies have found a slight decrease in

8

developer productivity when employing the TDD practice
[15, 28]. In our case, the productivity was roughly the
same in both cases.

While legacy product unit testing was an ad-hoc
process, primarily manually, the new project benefited
from automation of unit test-cases since they could be used
as part of the FVT regression test-suite. For the new
project, we entered test with 64.6 KLOC of new code and
34 KLOC of JUnit code. This is slightly more than 0.5
lines of test code for every line of implementation code.
Anecdotally, TDD results in at least this much test code,
often as much as 1:1 test/implementation code ratio.
Approximately 2390 automated unit test cases were
written. Additionally, over 100 automated JUnit
performance test cases were written. We also wrote
approximately 400 interactive tests. Eighty-six percent of
the tests were automated, exceeding our 80% target. The
interactive tests were rarely run; the automated tests ran
daily.

When FVT or regression testing revealed a defect,
developers augmented the TDD test suite by adding new
test to reveal the presence of the defect found. Additionally
running the extensive automated test suite after defect fixes
were implemented gave added confidence that the fix did
not introduce new defects.

We believe that the TDD practice aided us in producing
a product that more easily incorporated later changes. A
couple of devices (albeit, not overly complex devices) were
added to the product about two-thirds of the way through
the schedule without major perturbations.

In the past, we only integrated code into the “legacy”
product once we were close to FVT. In the TDD approach,
the daily integration certainly saved us from late integration
problems. The success (or failure) of the daily integration
served as the heartbeat of the project and minimized risk
because problems surfaced much earlier. In addition, the
developers are very positive about the TDD practice and
have continued its use.

6. Summary and Future Work

A development team in IBM transitioned from an ad-

hoc to a TDD unit testing practice. Through the
introduction of this practice a relatively inexperienced team
realized about 40% reduction in FVT detected defect
density of new/changed code when compared with an
experienced team who used an ad-hoc testing approach for
a similar product. They achieved this result with minimal
impact to developer productivity. Additionally, the suite of
automated unit test cases created via TDD became a
reusable and extendable asset that will continue to improve
quality over the lifetime of the software system. The test
suite will also be the basis for quality checks and will serve
as a quality contract between all members of the team.

Through the TDD practice, a significant suite of
regression test cases are created and the code is developed

in a “testable” manner. In our current research, we are
exploiting these characteristics of TDD-developed projects
to enable an extension of XP to encompass a measure of
reliability. We are enhancing the TDD practice to include
explicit estimation of the probability that the software
system performs according to its requirements based on a
specified usage profile. [35]

Acknowledgements

We would like to thank the Raleigh and Guadalajara

teams for an outstanding job executing this new process
and for their trust that this new process of up-front unit
testing would pay off. The results and actual execution of
the ideas came from their hard work. We especially
acknowledge Dale Heeks from the FVT team. We also
want to thank the IBM management teams for their
willingness to try a new approach to development without
prior data on whether this would be effective or not.
Finally, we would like to thank the NCSU software
engineering reading group for their helpful suggestions.

This work is supported in part by NSF Award 9901004
and the NC State Center for Advanced Computing and
Communication.

References

[1] Auer, K. and Miller, R., XP Applied. Reading,

Massachusetts: Addison Wesley, 2001.
[2] Basili, V. R., Shull, F., and Lanubile, F., "Building

Knowledge Through Families of Experiments," IEEE
Transactions on Software Engineering, vol. 25, pp.
456 - 473, 1999.

[3] Beck, K., Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley,
2000.

[4] Beck, K., Test Driven Development: By Example:
Addison Wesley, 2002.

[5] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[6] Campbell, D. T. and Stanley, J. C., Experimental and
Quasi-Experimental Design for Research. Boston:
Houghton Mifflin Co., 1963.

[7] Cockburn, A., Agile Software Development. Reading,
Massachusetts: Addison Wesley Longman, 2001.

[8] Curtis, B., "Three Problems Overcome with Behavioral
Models of the Software Development Process (Panel),"
Proceedings International Conference on Software
Engineering, Pittsburgh, PA, 1989.

[9] Dustin, E., Rashka, J., and Paul, J., Automated
Software Testing. Reading, Massachusetts: Addison
Wesley, 1999.

[10] Elmaghraby, S. E., Baxter, E. I., and Vouk, M. A., "An
Approach to the Modeling and Analysis of Software

9

Production Processes," Intl. Trans. Operational Res,
vol. 2, pp. 117-135, 1995.

[11] Fenton, N. E. and Pfleeger, S. L., Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole Pub
Co., 1998.

[12] Fowler, M., UML Distilled. Reading, Massachusetts:
Addison Wesley, 2000.

[13] Gelperin, D. and Hetzel, W., " Software Quality
Engineering," Proceedings Fourth International
Conference on Software Testing, Washington D.C.,
June 1987.

[14] George, B., "Analysis and Quantification of Test
Driven Development Approach," North Carolina State
MS Thesis, 2002.

[15] George, B. and Williams, L., "An Initial Investigation
of Test-Driven Development in Industry," Proceedings
ACM Symposium on Applied Computing, Melbourne,
FL, 2003.

[16] Hamlet, D. and Maybee, J., The Engineering of
Software. Boston: Addison Wesley, 2001.

[17] Humphrey, W. S., Managing the Software Process.
Reading, Massachusetts: Addison-Wesley, 1989.

[18] Humphrey, W. S., A Discipline for Software
Engineering. Reading, Massachusetts: Addison
Wesley Longman, Inc, 1995.

[19] IEEE, "ANSI/IEEE Standard 1008-1987, IEEE
Standard for Software Unit Testing," 1986.

[20] IEEE, "IEEE Std. 1012-1986, IEEE Standard Software
Verification and Validation Plans," 1986.

[21] IEEE, "IEEE Standard 982.1-1988, IEEE Standard
Dictionary of Measures to Produce Reliabile
Software," 1988.

[22] IEEE, "IEEE Standard 982.2-1988, IEEE Guide for the
Use of IEEE Standard Dictionary of Measures to
Produce Reliabile Software," 1988.

[23] IEEE, "IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology,"
1990.

[24] Jeffries, R., Anderson, A., and Hendrickson, C.,
Extreme Programming Installed. Upper Saddle River,
NJ: Addison Wesley, 2001.

[25] Jeffries, R. E., "Extreme Testing," in Software Testing
and Quality Engineering, vol. 1, 1999, pp. 22-27.

[26] Larman, C. and Basili, V., "A History of Iterative and
Incremental Development," IEEE Computer, to appear
June 2003.

[27] Martin, R. C. and Koss, R. S., "Engineer Notebook:
An Extreme Programming Episode,"
http://www.objectmentor.com/resources/articles/xpepis
ode.htm, 2001.

[28] Muller, M. M. and Hagner, O., "Experiment about
Test-first Programming," Proceedings Conference on
Empirical Assessment in Software Engineering
(EASE), 2002.

[29] Muller, M. M. and Hagner, O., "Experiment about
Test-first programming," Proceedings Empirical
Assessment In Software Engineering EASE '02, Keele,
April 2002.

[30] Musa, J. D., Software Reliability Engineering. New
York: McGraw-Hill, 1998.

[31] Paulk, M. C., Curtis, B., and Chrisis, M. B.,
"Capability Maturity Model for Software Version 1.1,"
Software Engineering Institute CMU/SEI-93-TR,
February 24, 1993 1993.

[32] Potok, T. and Vouk, M., "The Effects of the Business
Model on the Object-Oriented Software Development
Productivity," IBM Systems Journal, vol. 36, pp. 140-
161, 1997.

[33] Sommerville, I., Software Engineering, Sixth ed.
Harlow, England: Addison-Wesley, 2001.

[34] Williams, L. and Kessler, R., Pair Programming
Illuminated. Reading, Massachusetts: Addison Wesley,
2003.

[35] Williams, L., Wang, L., and Vouk, M., ""Good
Enough" Reliability for Extreme Programming,"
Proceedings Fast Abstract, International Symposium
on Software Reliability Engineering, Annapolis, MD,
2002.

10

Appendix A: Test-Driven Development/JUnit
Example

The vast majority of software engineers that practice

TDD utilize a test framework from the open source xUnit
family. See http://www.xprogramming.com/software.htm
where over 60 versions of the testing framework are
available for Java, C++, Ruby, Scheme, XML, and many
other languages. The testing framework was originally
authored by Kent Beck and Erich Gamma in Java; the Java
version has won the 2002 JavaOne “Best Java
Performance/Testing Tool” award. Software engineers
around the world have ported this framework to the other
languages. Much of the success of the tools can be
attributed to its ease of use and short learning curve. To
begin using the tool, a developer puts the downloaded code
for the testing classes/methods into his or her hierarchy and
CLASSPATH. Test case creation proceeds by writing test
methods that inherit from the testing classes.

In this section, we present some example Java/JUnit
TDD code scripts. The class diagram for the sample
application is shown below in Figure 4. In parallel to this
implementation code hierarchy, corresponding test classes
were created. These three test classes are called
DeviceFactoryTestCase, DeviceEventTestCase,
and LightBulbDeviceTestCase. Each of these
classes have setUp and tearDown methods. The
setUp method runs before each test method; the
tearDown method runs after each method. For example,
for the DeviceEventTestCase class, these methods are
as follows:

protected void setUp()
{
 deviceEvent = new DeviceEvent(this,
 DEFAULT_TYPE);
}

protected void tearDown()
{ deviceEvent = null; }

The setUp method creates and initializes an instance of
the DeviceEvent class. The tearDown method clears
the instance.

These same methods are more involved with the

LightBulbDeviceTestCase class:

protected void setUp() throws
 DeviceException

{
 deviceFactory = new DeviceFactory();

 lbd = deviceFactory.
 createLightBulbDevice();
 dl = this.new TestDL();
}

protected void tearDown() throws
DeviceException
{
 deviceFactory = null;

 try
 {
 lbd.close();
 lbd = null;
 }
 catch(DeviceException de)
 {
 //Don't care since this is thrown
 //if device was not opened
 }

 dl = null;
 deviceEvent = null;
}

Ideally, each method in the production code has at least

on corresponding test method. This correspondence is
illustrated with an in Table 4. In the left hand column of
the table is a production code method. A test method
written for this method is in the right hand column. (Notice
that often the test code is longer than the production code.)
The test cases are structured such that several types of
assert statements (for Java: assertEquals,
assertTrue, assertNull, assertNotNull)
are used to compare actual results to expected results. If
the assert returns false, the test case fails. If the tested
method throws exceptions then the test method declares
these exceptions in its signature. Since test methods will
generally verify the positive path for the method then any
thrown exception will fail the test. Negative path test
methods will not declare exceptions in their signatures
since for such test methods; exception will be expected and
thus caught.

Also, the JUnit setUp and tearDown methods can
also declare that they throw some exception, especially
when the test fixture could potentially cause an exception.
Any such occurrence will result in the failure of the test for
which the setUp or tearDown was executing.

The tool reports the % of test cases that pass and details
on the failing test cases. Many version of the tool have a
GUI interface. In the GUI interface, a bold green bar
across the interface indicates 100% test cases passed. A
red bar is displayed when even a single test case fails.

11

Figure 4: Class Diagram for Light Bulb Program

Implementation Method Test Method

Class: DeviceEvent

public int getType() { return type; }

Class: DeviceEventTestCase

public void testGetType()
{
deviceEvent = new DeviceEvent(this, 1);

assertTrue(deviceEvent.getType() == 1);
assertTrue(deviceEvent.getSource() == this
);
}

Class: DeviceFactory

public LightBulbDevice
createLightBulbDevice()
{
return new DefaultLightBulbDevice();
}

Class: DeviceFactoryTestCase

public void testCreateLightBulbDevice()
{
LightBulbDevice lb0 =
deviceFactory.createLightBulbDevice();
assertTrue(lb0 != null);

LightBulbDevice lb1 =
deviceFactory.createLightBulbDevice();
assertTrue(lb1 != null);

assertTrue(lb0 != lb1);
}

12

Implementation Method Test Method
Class: DeviceFactory

public void open(String name) throws
DeviceException
{
if(name == null)
 throw new DeviceException("Invalid
argument to open method");

if(opened)
 throw new DeviceException("Device
already opened");

openImp(name);
opened = true;
}

Class: LightBulbDeviceTestCase

public void testOpen_null() throws
DeviceException
{
try
{
 lbd.open(null);
 fail("Expected failure since name
is null");
}
 catch(DeviceException de) {}
}

Class: DeviceFactory

Same method as above

Class: LightBulbDeviceTestCase

public void testOpen_Multiple() throws
DeviceException
{
lbd.open("Light");
try
{
 lbd.open("Light2");
 fail("Should not be able to open
device twice");
}
 catch(DeviceException de) {}
}

Class: DeviceFactory

Same method as above plus:
public void setDeviceEnabled(boolean b)
throws DeviceException
{
if(!opened)
 throw new DeviceException("Cannot
enable or disable a closed device");

if(b)
 enableImp();
else
 disableImp();

enabled = b;
}
public void setOn(boolean b) throws
DeviceException
{
checkOpenedEnabled();
lightBulb.setOn(b);
}

Class: LightBulbDeviceTestCase

public void testIsOn() throws
DeviceException
{
lbd.open("Light");
lbd.setDeviceEnabled(true);

if(lbd.isOn())
{
 lbd.setOn(false);
 assertTrue(lbd.isOn() == false);
}
else
{
 lbd.setOn(true);
 assertTrue(lbd.isOn());

}

assertTrue(lbd.isOn() == lbd.isOn());
}

Table 4: Code Example

