
Symmetry Breaking in Anonymous Networks: Characterizations

Paolo Boldi
Shella Shammah
Sebastiano Vigna

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

Milano (Italy)

Bruno Codenotti∗

Istituto di Matematica
Computazionale del CNR

Pisa (Italy)

Peter Gemmelly
Sandia National Laboratories

Albuquerque NM (USA)

Janos Simonz
Department of Computer Science

The University of Chicago
Chicago IL (USA)

Abstract

We characterize exactly the cases in which it is possible
to elect a leader in an anonymous network of processors
by a deterministic algorithm, and we show that for every
network there is a weak election algorithm (i.e., if election
is impossible all processors detect this fact in a distributed
way).

1 Introduction

We consider the problem of electing a leader in an an-
onymous network of processors. More precisely our model
is that of a directed graph, with vertices corresponding to
processors, and arcs to communication links (we freely in-
terchange symmetric digraphs and undirected graphs). We
make no assumption on the structure of the network: self-
loops and parallel arcs are allowed. In particular, processors
areanonymous: they do not have unique identifiers.

We consider both synchronous and asynchronous pro-
cessor activation models, and models with and without
“port awareness” (local names for outgoing and/or for in-
coming arcs). We consider both unidirectional and bidirec-
tional links. Our models will be defined precisely in the
sequel.

It is well known that once a leader is found, many other

∗Partially supported by ESPRIT Basic Research Action, Project
9072 “GEPPCOM”.yPortions of this work were done while visiting IMC-CNR in Pisa,
partially supported by GNIM-CNR.zPortions of this work were done while visiting IMC-CNR in Pisa,
sponsored by a grant from CNR.

properties of the network can be computed easily. For ex-
ample, the leader can grow a breadth-first tree, count the
number of vertices in the network, assign unique identifiers
to them, etc. Conversely, if each processor has a unique
identifier, one can elect the processor with smallest (or
largest) identifier to be the leader. When dealing with ran-
domized algorithms, it is easy to verify thatO(logn) ran-
dom bits per processor will almost surely result in a unique
processor with minimum name in ann-processor network.

Leader election is a basicsymmetry breakingoperation
in distributed computing. Intuitively, it is possible to elect
a leader in networks with “built-in” asymmetry, and im-
possible to do so in “symmetric” networks. Our paper gives
a precise characterization of this intuition.

It turns out that the kind of asymmetry that can be detec-
ted in a distributed fashion depends on the particular model
of computation used. For example, the standard definitions
of asynchronous models (defined below) let us assume that
at any given time only one processor is active. This provides
enough asymmetry to ensure that a leader can be elected in
K2 (a single edge connecting two vertices, a very symmet-
ric graph) [1]. On the other hand, it is not hard to prove that
no synchronous algorithm can elect a leader in this graph.
Similarly,port awareness, the existence, at each vertex, of a
local numbering of the arcs incident at the vertex (their po-
sition in the adjacency list) may introduce some non obvi-
ous asymmetry. For example, the complete bipartite graph
K2,3 has nontrivial automorphisms, so we would expect that
no leader election is possible, at least by synchronous al-
gorithms. This is not the case: there is an easy algorithm to
elect a leader inany labelling of K2,3 (see Section 8).

A natural conjecture is that leader election is impossible
if and only if for any vertex the graph has an automorphism
that moves the vertex (respecting port labels if such labels

1

exist). The condition is clearly necessary, since if we start
all processors in the same state, the processors in an orbit of
the automorphism will remain in the same state: in particu-
lar, all processors (or none) will be elected. Unfortunately,
the converse does not hold: the following graph has a dis-
tinguished vertex that is not moved by any automorphism,
yet we can prove, using our characterizations, that no dis-
tributed algorithm can elect a leader in the graph.

These examples should suggest that the problem is in
fact interesting. While from a practical standpoint one may
argue that assigning unique identifiers to processors is a
simple task, and one can easily spare the relatively few bits
needed to do so, there are both theoretical and practical reas-
ons to study anonymous networks. In practice, it is unclear
how to assign unique identifiers in a distributed fashion, and
there may be reliability reasons to assume anonymity (iden-
tifiers may get lost, corrupted, etc.). Still, we do not claim
that our results are practical. Rather, we believe that dis-
tributed symmetry breaking is a worthwhile case study of
characterizing the extent to which local information can be
used to establish global properties in distributed computa-
tions.

2 History

The seminal paper in the area is due to Angluin [1]. She
defined the problem and used the notion ofcoveringfrom
topological graph theory to capture sufficient conditions for
impossibility of leader election on certain anonymous net-
works [1]. The model of computation used in the paper
is rather unorthodox, and is based on Milne and Milner’s
theory of communicating sequential processes [13], but the
proof works for all reasonable models of parallel computa-
tion, including the ones we use. She proves that if a network
G has the property that there is a smaller networkH and a
morphism ofG into H which is locally an isomorphism (in
which caseG is said to be acoveringof H), then there can-
not be a deterministic leader election algorithm inG. This
implies, for example, that it is impossible to elect a leader
in a cycle of composite length.

Unfortunately, Angluin’s condition is necessary, but not
sufficient. The need for sufficient conditions is illustrated
by the fact that until the appearance of the work of Burns
and Pachl [6] it was not clear that in rings of prime size itis

possible to elect a leader in the asynchronous model (in fact
with processors that are finite automata [10]).

Further developments are less well known. An interest-
ing paper by Johnson and Schneider [11] introduced port
labellings (as part of the tools the algorithm designer could
use, although this was not the formalism used in the pa-
per), defined “local views” that processors could obtain,
and observed that the Dining Philosophers Problemcould
be solved in some cases (for example whenn = 6).

Yamashita and Kameda [17], building on the paper
above, characterized the solvable instances of the leader
election problem in the case of synchronous networks of an-
onymous processors, by graph-theoretic terms. (The model
used in [17] is called asynchronous, but in fact all asyn-
chrony is in the communication mechanism, and corres-
ponds to a synchronous operation.)

In this paper we consider both synchronous and asyn-
chronous networks using a number of communication mod-
els. In two of the eighteen cases we study our results cor-
respond to the ones of [17] and [18].

Self-stabilization has been introduced by Dijkstra in his
classic 1974 paper [8], and since then has been viewed as
a convenient property of distributed computations. Sub-
sequently, there has been a considerable effort towards char-
acterizing network operations that admit self-stabilizing al-
gorithms (see, e.g., [16, 9]). In the case of leader election,
an algorithm is self-stabilizing if a leader is eventually elec-
ted, even though an adversary can set the initial configura-
tion of the network to an arbitrary state. Our leader election
algorithms can be made self-stabilizing, although in this ab-
stract we will only sketch the necessary ideas.

Our results, in a sense, go back to the roots of Angluin’s
original paper. We establish a very simple notion offibra-
tion of graphs (a topological notion weaker than covering)
based on the corresponding categorical definition, and we
show that the existence of certain fibrations characterizes
exactly the (im)possibility of election.

3 Graph-theoretical definitions

A (directed) (multi)graph Gis defined by a nonempty
set VG of vertices and a setAG of arcs, and by two func-
tionssG, tG : AG → VG which specify the source and the
target of each arc (we shall drop the subscript whenever no
confusion is possible). Aself-loopis an arc with the same
source and target. Asymmetric graphis a graph endowed
with a symmetry, i.e., a self-inverse bijection() : A → A
such thats(a) = t (a) andt (a) = s(a) for all arcsa ∈ A.
An (arc-)coloured graph(with set of coloursC) is a graph
endowed with a colouring functionγ : A → C . A symmet-
rically coloured graphis a symmetric graph coloured onC
and endowed with a self-inverse bijection() : C → C
such thatγ (a) = γ (a). A coloured graph isdeterministic
iff all arcs outgoing from a vertex have distinct colours.

2

4 The model

We consider a number of models, corresponding to the
choice of the model of activation (synchronous vs. asyn-
chronous) and to the way a processor interacts with its links.
In all models there is an underlying graph, where each arc
corresponds to a link between processors (parallel links and
self-loops are allowed).

In synchronous models we assume the existence of a
global clock. At each clock cycle, every processor ex-
ecutes one step of its computation. The step may depend on
the state of adjacent processors. (Although this model, in-
spired by cellular automata, is not very realistic for distrib-
uted systems, it can be easily simulated by an asynchronous
message-passing network [18].)

Our model of asynchronous distributed computation is
somewhat artificial: it is not inspired by actual practice, but
it is a model that has been the most extensively used in more
theoretical papers. It was suggested by Dijkstra, and it is
inspired in his formalism of “guarded commands”: it makes
possible to reason about distributed systems in exacty the
same way as one does about ordinary programs.

One assumes that at any moment there are severalen-
abled processorsthat could take a step, and acentral de-
mon[6] chooses one of them. As a result, the set of enabled
processors changes. The process is then repeated.

The technique essentially serializes a distributed com-
putation. Since speeds of processors are variable and un-
known, and, as we know from the work of Lamport, the no-
tion of time in a distributed system should be defined not as
a fixed global time, but as an order that is the consequence
of exchanges of messages, the definition seems good and
elegant. Since the selection of processor to be run is done
by an adversary, the intuition is that there is no possible ad-
vantage/knowledge to be gained by the serialization.

The model has been used in the classic papers of Dijkstra
on self-stabilization, the Burns-Pachl election algorithm for
prime size rings, and in most of the theoretical papers on
self-stabilization.

In fact, the adversary does break symmetry, choosing
only one processor to run. As a result, it is possible to elect a
leader inK2 in this model, while it is impossible to do so in
a synchronous model. Note that if we assume the model to
be asynchronous, and deal with continuous time, the prob-
ability that two events are exactly simultaneous will be 0, if
processors have random speeds. Thus, one can argue, that
the only behavior excluded by the model is a low probabil-
ity one.

We consider then several conditions for the links. Pro-
cessors may haveoutput port awareness, i.e., the arcs of the
graphG may have alocal output labelling. If the vertexv
has outdegreed, then it uses the numbers{1,2, . . . , d} for
the labelling, a distinct number for each outgoing arc.

We can think of this as the processors being aware of
which output port is associated with a given link; in the case

there is no output port awareness, processors can only trans-
mit by broadcast[18].

Analogously, processors may haveinput port awareness,
i.e., the arcs of the graphG may have alocal input labelling.
If the vertexv has indegreed, then it uses the numbers
{1,2, . . . , d} for the labelling. If there is no input port
awareness, the processors receive messages in amailbox
[18].

When designing our algorithms, we assume not to have
control of this local labelling: our algorithms must work
no matter how an adversary chooses to associate links with
numbers.

Depending on the graph being symmetric or not, and on
the combination of input and output port awareness, we ob-
tain eight models. A ninth model is given by(complete)
port awareness, in which case not only the graph is sym-
metric and has input/output port awareness, but also each
processor uses the same number for each pair of symmetric
input/output arcs (note that in general this does not happen
in a symmetric network with input and output port aware-
ness). We can think of this as the processors being aware of
which input and output arcs connect to the same neighbour.

Combining our nine communication models with the
possibility of synchronous or asynchronous activation we
obtain eighteen models.

We can describe compactly and uniformly all of our link
models as follows: the local labellings induce a standard
arc-colouring ofG on the setC = (N + {∗})2. Each of the
vertices adjacent to an arc contributes to the colouring with
a number, or with “∗” in the case of port non-awareness.
Namely, an arc labelled asα ∈ N + {∗} by its source pro-
cessor and byβ ∈ N + {∗} by its target processor will get
the colour〈α, β〉.

In the following picture, we show an example of a graph
with output (but no input) port awareness and of the related
coloured graph:

1

1 2

1 1

〈1, ∗〉〈1, ∗〉

〈2, ∗〉〈1, ∗〉
〈1, ∗〉

Here instead we show an undirected (i.e., symmetric) graph
with complete port awareness and the related coloured
graph:

1

1

3 1

2

1

〈1,2〉

〈2,1〉

〈1,1〉〈1,1〉

〈1,3〉

〈3,1〉

3

Formally, anetworkis a graph with a colouring induced
by a local labelling. Each processor (node) has state space
X and transition functionf : X × (C × X)⊕ → X, where
(C × X)⊕ is the set of multisets overC × X. All processors
start from the same initial state. At each step of computa-
tion, a processor computes its new state on the basis of the
(coloured) neighbourhood relation. Namely, if a processor
p in statex hask incoming arcs, with coloursc1, c2, . . . , ck
(not necessarily distinct) and sources given by processors
p1, p2, . . . , pk (which do not need to be distinct, or differ-
ent from p) in statex1, x2, . . . , xk, then the next state of
p is f (x, {〈c1, x1〉, 〈c2, x2〉, . . . , 〈ck, xk〉}). Theorbit of a
processor is the sequence of states ofX through which the
processor passes during the computation of the network.

5 The election problem

An anonymous election algorithmfor a class of networks
is a transition functionf inducing a computation in which
all processors eventually reach one of two distinguished
states denoting election and non-election, and exactly one
reaches the election state (note again that this must hap-
pen for all networks of the given class).f is supposed to
have the given states as fixed points (no matter which are
the states of the in-neighbours).

An anonymous weak election algorithmfor a class of
networks is a transition functionf inducing a computa-
tion in which all processors eventually reach one of three
distinguished states denoting election, non-election and im-
possibility of election. When all processors reach their final
states, exactly one of the following two statements holds:

• all processors are in the third state, and there is no an-
onymous election algorithm for the network on which
the weak election algorithm is running;

• all processors but one are in the non-election state, and
the remaining one is in the election state.

Previous literature has overlapped the election and the weak
election problem. The anonymous election problem is
known to be unsolvable in general since [1]; as a result, a
weaker problem was introduced (using, unfortunately, the
same name), in which a distributed detection of unsolv-
ability is allowed. There is however an important differ-
ence between our definition and the one given, for instance,
in [18]: our algorithms must detect impossibility of elec-
tion when election is impossiblefor the specific network
on which the algorithm is running, meaning that election
must be impossible with the given local labelling. In the
abovementioned reference, it is admissible for an algorithm
to give up even if election is possible on the actual labelling
chosen by the adversary, provided that the adversarycould
find a labelling making election impossible. On the con-
trary, we require our algorithm to exploit the mistakes of
the adversary, and to perform election whenever possible.

This fact makes the problem more difficult, and it will give
rise to some interesting pathologies described in Section 8.

Note that each processor may possess more or less in-
formation about the network it belongs to. Whenever we
say that election is possible given the knowledge of certain
data, we mean that there exists an algorithm which performs
election on all networks satisfying the constraints.

6 Graph fibrations

The fundamental idea behind this paper is that pro-
cessors which are connected by the same colours to pro-
cessors behaving in the same way (with respect to the col-
ours) will behave alike. This idea, which was first form-
alized in [11], and was used subsequently in [17, 18], is
exactly captured by the notion offibration, which origin-
ated from homotopy theory. The elementary definition we
shall use [4] is derived from the categorical abstraction of
fibrations between topological spaces.

Recall that agraph morphism G→ H is given by a
pair of functions fV : VG → VH and fA : AG → AH
which commute with the source and target functions, i.e.,
sH ∘ fA = fV ∘ sG andtH ∘ fA = fV ∘ tG. In other words,
a morphism maps nodes to nodes and arcs to arcs in such
a way to preserve the incidence relation, because the two
commuting conditions are to be read “the source (target) of
the image of an arc is the image of the source (target) of
the arc”. In the coloured case, we require also thatγG =

γH ∘ fA, i.e., that the map on the arcs preserves colours.

Definition 1 A fibration1 between (coloured) graphsG and
B is a morphismϕ : G → B such that for each arca ∈ AB
and for eachp ∈ VG such thatϕ(p) = t (a) there is a unique
ãp ∈ AG such thatϕ(̃ap) = a andt (̃ap) = p.

We recall some topological terminology. Ifϕ : G → B
is a fibration,B is called thebaseof the fibration. We shall
also say thatG is fibred (over B). Thefibre over a vertex
p ∈ VB is the set of vertices ofG which are mapped to
p, and will be denoted byϕ−1(p). A fibre is trivial if it is
a singleton, i.e., if|ϕ−1(p)| = 1. A fibration isproper if
every fibre is nontrivial; it isdiscreteif the subgraph in-
duced by each fibre is totally disconnected in the strong
sense (i.e., iff it is acyclic).

The geometric meaning of the definition of fibration is
that given a vertexp ∈ VB and pathπ terminating atp,

1The name we have given is justified by the following fact: a morph-
ism between two graphs induces a functor between the free categories
generated by the graphs; the functor is a fibration in the categorical
sense (see [5]) exactly when the morphism satisfies our definition. Note
also that the notion ofdivisibility of graphs(see [7]), known from the
sixties in the algebraic theory of graphs, is related to the theory of graph
fibrations because there is a fibrationG → B if and only if B is a
rear divisor of G. However, in that theory the main interest is in the
arithmetic notion of divisibility, rather than in the geometric notion of
fibration.

4

for each vertexq in the fibre overp there is a unique path
terminating atq which is mapped by the fibration onπ ; this
path is called thelifting of π at q. In the following picture,
fibres are represented by dotted ovals (not all nodes of a
fibre are shown, though), and we indicate how a path can be
lifted at two different points of a fibre. Note that self-loops
are not necessarily lifted to self-loops.

p

π

q

r

H

G

���
���
���
���

���
���
���
���

���
���
���
���

There is a very intuitive characterization of fibrations based
on the concept of local isomorphism. A fibrationϕ : G →

B induces an equivalence relation between the vertices of
G, whose classes are precisely the fibres ofϕ. When two
verticesp andq are equivalent (i.e., they are in the same
fibre), there is a one-to-one correspondence between arcs
ending in p and arcs ending inq which preserves colours,
and such that the sources of any two related arcs are equi-
valent.

A covering is a special kind of fibration, where each arc
can also be lifted uniquely from its tail; more formally:

Definition 2 A fibration ϕ : G → B is a covering if,
for every arca ∈ AB and every vertexp ∈ VG such
that ϕ(p) = s(a), there is a uniquepã ∈ AG such that
ϕ(pã) = a ands(pã) = p.

In the case of coverings, the local isomorphism property
gives a bijective correspondence between the whole (dis-
joint) neighbourhoods of two nodes in the same fibre. In the
following picture, we show graphically how an eight-cycle
covers a four-cycle:

���
���
���
���

���
���
���
���

���
���
���
���

A coveringϕ : G → B between two symmetric graphs
is asymmetric coveringif and only if it commutes with the
symmetries, i.e., for alla ∈ AG we haveϕ(a) = ϕ(a).

We will now state some properties and constructions of
fibrations. Recall that all our graphs are strongly connected.

Let G be a graph andp a vertex ofG. We define a
(possibly infinite) in-directed rooted arc-coloured treẽGp

as follows:

• the nodes of̃Gp are the (finite) paths ofG ending inp,
the root ofG̃p being the empty path;

• there is an arc from the nodeπ to the nodeπ ′ if π is
obtained by adding an arca at the beginning ofπ ′ (the
arc will have the same colour asa).

We can define a graph morphismυ p
G from G̃p to G, by

mapping each nodeπ of G̃p (i.e., each path ofG ending in
p) to its starting vertex, and each arc of̃Gp to the corres-
ponding arc ofG.

The following important property holds:

Lemma 1 For every vertexp of a graphG, the morphism
υ

p
G : G̃p → G is a fibration, called theuniversal fibration

of G at p.

The universal fibration atp is a tree representing intu-
itively “everything processorp can learn from interaction
with its neighbours” (in fact, thelocal viewof [11] is essen-
tially its universal fibration).

Now, we defineĜ as the graph obtained from̃Gp by
identifying isomorphic subtrees; it is easy to verify that this
construction doesnot depend on the choice ofp. Clearly,
one can construct a morphismµG : G → Ĝ mapping each
vertex p ∈ VG to (the equivalence class of)̃Gp, and each
arc ofG to the corresponding arc in̂G.

Lemma 2 For each graphG, the morphismµG : G → Ĝ
is a fibration; moreover, ifϕ : G → B is a fibration ofG,
there is a fibrationψ : B → Ĝ s.t. ψ ∘ ϕ = µG (i.e.,µG
factors through any fibration ofG). As a consequence,G is
properly fibred over some graph iffµG is proper.

In the following picture, we illustrate this notions by

5

showing a graphG, Ĝ andG̃p:

Now, we have to face the problem of how a node can
build Ĝ in an effective, distributed way; the following res-
ult (which extends the one given in [14]) is a step in this
direction:

Theorem 1 If G hasn nodes, for all processorsp,q, G̃p ∼=

G̃q iff there is an isomorphism between the firstn levels of
the two trees.

Thus, we can build̂G as follows. Each processorp starts
to build G̃p; at the beginning of the computation,̃Gp is the
empty tree. Then, knowing̃Gq truncated at heightk for all
its in-neighboursq, the processorp can buildG̃p truncated
at heightk+1, and so on. By Theorem 1, after 2n iterations
(in fact, aftern + δ iterations, whereδ is the diameter of
G) the truncated tree so far obtained has the same subtree
isomorphism classes as the wholeG̃p, and sôG can be built
(appropriate counter-based synchronization is necessary in
case of asynchronous activation).

Note that only the knowledge ofn is required: the con-
struction of Ĝ does not depend on the knowledge ofG.
Moreover, each processorp knows which fibre ofµG it
belongs to, because—by construction—the universal fibra-
tions of Ĝ coincides with those ofG, in the sense that
p ∈ VG andq ∈ VĜ have the same universal fibration iff
q = µG(p).

7 Characterizing election for fixed labellings

In this section we characterize the networks (with a given
local labelling) for which election is possible. This will give
us necessary conditions for the characterization in the case
an evil adversary can choose the local labellings. In fact, we
shall see that the conditions we derive will be also sufficient.

The cornerstone of our theory is the following

Theorem 2 For each (labelled) networkG there is a weak
election algorithm. Moreover, there is an election algorithm

exactly whenG is not properly fibred (in the asynchronous
activation model, only discrete fibrations are considered).

Proof. If G is properly fibred (discretely, in the asynchron-
ous case), all processors terminate immediately in the “im-
possibility of election” state.

Otherwise, we have already described how each pro-
cessor can determine the fibre ofµG it belongs to. In the
synchronous model, ifG is not properly fibred a leader will
be elected among those processors with trivial fibre, for in-
stance by ordering lexicographically the treesG̃p.

In the asynchronous model,µG must necessarily be non-
proper or nondiscrete. In the first case, we can again elect a
leader among those with trivial fibre. In the other case, the
processors in the same fibre label themselves eitherA or B
according to the following rule:

• if the processor wakes up and all in-neighbours in its
fibre are unlabelled, it labels itselfA;

• if the processor wakes up and any in-neighbours in its
fibre is labelled, it labels itselfB.

At the end of this “A-B game”, the processors compute
again the fibres ofµG, this time taking into account theA-
B identifier they possess. This process can be repeated, and
can only terminate whenµG is nonproper; this happens be-
cause we assumed that no proper discrete fibration existed,
and at each step every nontrivial, nondiscrete fibre breaks at
least into two pieces (in such a fibre, the first activated pro-
cessor labels itselfA, and among the processors belonging
to an oriented cycle the least activated processor necessarily
labels itselfB).

On the other hand, in the synchronous case the orbits of
processors in the same fibre are exactly the same; this hap-
pens because the local isomorphism property says that for
any two processorsp andq in the same fibre, and anyc-
coloured arc terminating atp and starting fromp′, there is
a c-coloured arc terminating atq and starting from a pro-
cessor in the same fibre asp′; moreover, this association is
a colour preserving bijection between the arcs entering in
p andq. Thus, two processors in the same fibre are either
elected or not elected at the same time; consequently, when
no fibre is trivial it is impossible to terminate with exactly
one leader.

In the asynchronous case, the adversary schedules the
processors fibrewise. The scheduling starts from a sink of
the fibre (i.e., from a node with no outcoming edges), and
continues inductively on the subgraph induced by the re-
maining processors. This is possible because the fibres are
discrete, and it guarantees that all processors in the same
fibre remain in the same state; being the fibration proper, it
is impossible to terminate with exactly one leader.

It is clear that too much knowledge is required in this
theorem (in fact, complete information aboutG). It is not

6

advisable to assume that complete knowledge of the net-
work topology is at the processors’ disposal. However, the
theorem is relevant because in a number of special cases we
can derive complete knowledge of the network from much
less data.

The following theorems show that under certain assump-
tions on the local labellings, only certain types of fibration
can really exist.

Theorem 3 If G has output port awareness, then all fibra-
tionsϕ : G → B are coverings.

Proof. Note that under the given assumptionsG has an
induced colouring which is deterministic. Letp andq be
any pair of vertices ofB. One can easily build an injection
from the fibre ofq to the one ofp by lifting a path con-
nectingp to q at each element of the fibre ofq and taking
the starting vertex of the resulting path. This association is
necessarily injective, for otherwise two arcs with the same
label should exit from a node along the path. This implies
|ϕ−1(q)| ≤ |ϕ−1(p)| for all p andq.

Consider now an arca of B which goes fromp to q.
There are exactly|ϕ−1(q)| liftings of a going from the fibre
over p to the fibre overq, and any two of them cannot start
from the same node because of determinism. Thus, by pi-
geonholing,a can be tail-lifted uniquely from every node in
the fibre ofp, andϕ is a covering.

Theorem 4 If G has complete port awareness, then for all
fibrationsϕ : G → B we have thatB is coloured symmet-
rically, andϕ is a symmetric covering.

Proof. Note that under the given assumptionsG is coloured
deterministically and symmetrically (the symmetry is given
by 〈 j , k〉 = 〈k, j 〉). By Theorem 3,ϕ is certainly a covering.
We have to show thatB is symmetrically coloured, and that
ϕ commutes with the symmetries ofG andB.

Consider an arca of B going from p to q. Let r be an
element of the fibre overq, and̃ar the corresponding lifting
of a. Then we definea = ϕ(̃ar); in other words, we lift
a, we take the symmetric inG, and we map it withϕ in B.
This association is independent of the choice ofr , because
there cannot be two parallel arcs with the same colour; for
the same reason, it is a self-inverse bijection and it satisfies
the commutation condition.

Finally, we show that() commutes with the symmetry
on the colours. This is easy, as for any arca of B

γ (a) = γ (ϕ(̃ar)) = γ (̃ar) = γ (̃ar) = γ (ϕ(̃ar)) = γ (a).

8 Election in spite of an evil adversary

In this section we characterize those networks in which
election is possible, given that an evil adversary has the pos-
sibility of choosing the local labellings. In other words,

given an uncoloured graphH , we must provide an al-
gorithm which will weakly elect a leader on all networks
using a certain communication/activation model and having
H as an underlying graph (said otherwise, the processors
have knowledge ofH , but not of its colouring). In order to
mark the distinction with the previous discussion, we shall
use the letterH to denote an uncoloured graph.

We shall use several time the idea oflifting a colouring:
whenever we have a morphismϕ : H → B, and B has
a colouring, the arcs ofH can be coloured using the same
colour as their image, i.e.,γ (a) = γ (ϕ(a)). This guaran-
tees thatϕ is still a morphism betweenH and B seen as
coloured graphs.

In the next section, we shall provide weak election al-
gorithms, working in the presence of output port awareness
(Theorem 10) or symmetry (Theorem 9), which only re-
quire the knowledge of the number of processors; in the
case of no awareness only one colouring is possible, and we
can apply Theorem 2. Thus, we havea fortiori the follow-
ing

Theorem 5 There is a weak election algorithm for every
graph H , except in the caseH is not symmetric, and the
model has input port awareness but no output port aware-
ness.

The (perhaps surprising) fact that in the case of non-
symmetric graphs with input (but no output) port awareness
weak election is not possible is witnessed by the following
counterexample:

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The graphH on the left of the picture is strongly connec-
ted (we used thick lines to represent pairs of arcs with op-
posite direction), and can be fibred onto the graphB on the
right with two different fibrationsϕ andψ (represented by
the colours of each half of the nodes). Note thatψ is proper,
while ϕ is not. It is easy to give local input labellings toB
in such a way that the resulting coloured graph has no non-
trivial fibrations; by lifting its colouring toH usingϕ andψ
we obtain two different networks, with the same underlying

7

graph, such that only the second one admits election2. Thus,
in the case of input port awareness only, no weak election
algorithm exists.

We conclude this section by classifying the graphs in
which election is possible.

Theorem 6 In all models without output port awareness, a
graph H has an election algorithm exactly when it is not
properly fibred (in the asynchronous activation model, only
discrete fibrations are considered).

Proof. The election algorithm is essentially the same as in
Theorem 2, but colours are ignored: the hypotheses guar-
antee that a leader can be elected (there is at least a trivial
fibre).

In order to show that no election algorithm exists ifH is
not properly fibred, we prove that, given a proper fibration
ϕ : H → B, there is a way of assigning local labellings in
such a way to make election impossible.

First of all, we label locallyB using∗ for all outcoming
arcs, and using∗ or distinct numbers for the incoming arcs,
depending on the presence of input port awareness. This
local labelling induces a colouring onB, which we lift to
H . Now the lifting property ensures that this colouring of
H induces a local labelling.

Note that in the following two cases the weak algorithm
of Theorem 5 applies.

Theorem 7 In all models with output (but not complete)
port awareness, a graphH has an election algorithm ex-
actly when it does not cover properly another graph (in the
asynchronous activation model, only discrete coverings are
considered).

Proof. We just have to prove that a proper coloured fibra-
tion of H exists for some local labelling if and only ifH
properly covers some other graph. The proof is analogous
to Theorem 6. The only difference is that we must label loc-
ally B using distinct numbers for the outcoming arcs. The
lifting and tail-lifting properties ensure that this induces a
local labelling onH .

It should be noted that the previous two theorems are
independent both of the presence of input port awareness
and of the presence of symmetry. This fact, together with
the following theorem, shows that bidirectionality does not
help in breaking symmetry unless complete knowledge of
the incoming and outcoming ports and of their association
is available.

Theorem 8 In all models with complete port awareness,
a graphH has an election algorithm exactly when it does

2In order to extend the counterexample to the asynchronous activa-
tion case, one just needs to remove the self-loops and the relative lift-
ings fromB andH , connect the left and right nodes ofH in such a way
to form K2,3, and updateB correspondingly.

not cover properly and symmetrically a graph (in the asyn-
chronous activation model, only discrete coverings are con-
sidered).

Proof. If the adversary has a way of choosing the labelling
so that election is impossible, thenH a fortiori covers prop-
erly and symmetrically. We just have to show that given a
proper symmetric coveringϕ : H → B there is a way of
assigning local labellings in such a way to make election
impossible.

The labelling is obtained by lifting the colouring ofB
defined as follows: first of all, we label locally all arcs
which are not self-loops, using the same number for incom-
ing and outcoming arcs related by the symmetry. Then we
divide the self-loops at each node into the ones fixed by the
symmetry, which are labelled locally using the same num-
ber for input and output, and the remaining ones, which are
labelled in such a way that ifa has input labelj thena has
output labelj .

We have to show that the lifting of this colouring induces
a local labelling onH which gives complete port awareness.
Let a be an arc ofH with label 〈 j , k〉. Then, sinceϕ is
symmetric,

γ (a) = γ (ϕ(a)) = γ (ϕ(a)) = γ (ϕ(a)) = γ (a) = 〈k, j 〉,

so thata anda are labelled locally in the same way.

9 Election knowing the number of nodes

Up to this point, we characterized the graphs in which
election is possible, and we provided weak election al-
gorithms for single networks. Now we start showing that
under topological assumptions weak election is possible
knowing much less information, i.e., the number of nodes.
In other words, our evil adversary has now the possibility of
completely configuring the network, provided it is strongly
connected.

Theorem 9 If H is symmetric and all processors know the
numbern of nodes, then weak election is possible.

This theorem is an immediate consequence of the fol-
lowing graph-theoretical lemma:

Lemma 3 Let ϕ : H → B be a fibration, whereH is a
symmetric graph. For all verticesp andq of B let dpq =

| {a ∈ AB | s(a) = p andt (a) = q} |. Then|ϕ−1(p)|dqp =

|ϕ−1(q)|dpq holds for all p,q ∈ VB.

Let now k be the number of nodes of̂H , and m1,
m2, . . . , mk the cardinality of the fibres ofµH : H → Ĥ .
SinceĤ has at leastk − 1 distinct (unordered) pairs of con-
nected nodes (by strong connection), the previous lemma

8

gives us at leastk−1 independent homogeneous linear con-
straint on themi ’s. Then the equationm1+m2+· · ·+mk =

n forces the system to have at most one solution. Since all
processors can build̂H , knowing just the number of nodes
they can also solve the system; then we just have to apply
Theorem 2.

Note that the symmetry condition doesnot imply that the
graph is symmetrically coloured.

Finally, using the fact that in a covering all fibres have the
same cardinality, it is easy to prove the following theorem:

Theorem 10 If H has output port awareness and all pro-
cessors know the number of nodes, then weak election is
possible.

The following three graphs provide an evidence that the
knowledge of the number of nodes is not always sufficient
to guarantee that weak election is possible:

H

���
���
���
���

���
���
���
���

K
���
���
���
���

B ���
���
���
���

One can easily see thatB is a base of bothH andK . Thus,
a processor cannot know if it belongs toH or K , and con-
sequently it cannot decide whether election is possible or
not (because the black fibre is trivial forH but not forK).

Our theorem has some simple corollaries, providing pos-
sibility and impossibility results for specific graphs.

Corollary 1 For everyn > 1 it is impossible to elect a
leader inKn in the synchronous model, even in the case of
port awareness.

Corollary 2 With port awareness, there exists a leader
election algorithm that successfully elects a leader inKi, j
iff i , j are relatively prime.

Proof. With port awareness, all fibres have the same car-
dinality, because of Theorem 4. An immediate corollary of
this is that with port awareness, there exists a leader election
algorithm that successfully elects a leader inKi, j iff i , j are
relatively prime.

SupposeC1 andC2 were incident fibres such that|C1| >

|C2|. Then, lettingEα be the set of all edges with labelα on
theC2 side, connected toC1, there have to be verticesp,q
in C1 such thatp is adjacent toEα, butq is not.

10 Further results and conclusions

In this section we just outline some additional results. A
complete treatment of these aspects will appear in the full
paper.

10.1 Election without knowledge

The algorithms sketched above make essential use of
the knowledge ofn, the number of vertices in the graph.
However, it is possible to elect a leader on nonproperly
fibred networks with complete port awareness even ifn is
not known.

First, what we mean in this case by “leader election” is
that if a leader can be elected inG (in spite of adversary
labeling of edges, and in spite of the schedule given by the
central daemon), we will eventually succeed in electing a
leader. Otherwise, we may not elect any processor, or may
mistakenly designate several processors as leaders. Note
that even when a leader is eventually elected, there may be a
period during which several processors (mistakenly) believe
themselves leaders: all we require is that a single processor
be elected “in the limit”.

Our general strategy is as follows. Forn = 1,2, . . . we
run the algorithm above. For anyn for which the algorithm
succeeds, the leader imposes a breadth-first tree on the net-
work, counts the number of vertices, and checks that it is
n. This will succeed for the correct value ofn (and also for
some larger values.) Assuming that a leader can be elec-
ted in the network, we will find it as soon asn becomes
the actual size of the network. In the synchronous case, the
same leader will be elected for all greater values ofn. In the
asynchronous case, because of different schedules, we may
get different leaders. We overcome this difficulty by check-
ing the network for leaders elected in previous rounds, say
when we hadn = p. If there are any, we check whether it
is consistent to assume that the network has sizep. If so,
the leader “abdicates” and lets the previous leader remain
the leader. It is only if an error is detected that the previ-
ous leader is killed, and the new leader candidate actually
becomes a leader if this happens for all smaller values ofn.

10.2 Self-stabilization

We can strengthen our algorithms (when they exist) to
be self-stabilizing. The self-stabilizing algorithms are far
from practical. Due to space limitations, we give only a
very rough sketch of the techniques needed to accomplish
this.

The basic idea is to continuously restart the election al-
gorithm: eventually it will correctly elect a leader. Also, the
size of the network is not known (the adversary may have
set the variables to arbitrary values), so we have to also try
all possible values for the size of the network. Since we
want to eventually elect always the same processor to be

9

the leader, we must rerun the algorithm so that if a processor
was correctly elected by a previous process, we defer to it.
To be able to establish what a “previous process” is, we first
obtain a global self-stabilizing clock, using the techniques
of [2]. We compose two self-stabilizing algorithms using
the methodology of [15], so we may assume the existence
of a correct clock. Each process carries with it the time it
begun. The messy details are omitted from the abstract.

Note that this is not a realistic algorithm: the num-
ber of processes (and, therefore, message length) increases
without bound.

10.3 Randomized leader election algorithms

Our characterizations for the possibility of leader elec-
tion by deterministic algorithms allows us to obtain simple
probabilistic algorithms for leader election in anonymous
networks. These algorithms use independent coin tosses
at each processor, and correctly elect a leader with high
probability. As discussed before, it is easy to obtain such
algorithms, either by tossingO(logn) coins at each pro-
cessor to obtain distinct identifiers, or to play an elimina-
tion tournament among processors where individual games
are decided by random coin tosses. Again in this case, we
expect that a leader will be elected afterO(logn) rounds,
and thusO(logn) random bits will be used per processor.
These bounds depend onn, the number of processors, but
are independent of the underlying graph.

Our algorithms use a very small number of random bits.
There are several reasons to use algorithms that use few ran-
dom bits. It is difficult in practice to generate independent
random strings in a distributed environment. Thus, random
bits are a possibly scarce resource in distributed computa-
tions, and it is interesting to study the “randomness require-
ments” of distributed algorithms.

Consider the following randomized algorithm, for both
the synchronous and the asynchronous model. Given a net-
work with underlying graphG, for every nodev ∈ VG as-
sign independently at random the labels 1, 2, . . . , d (where
d is the degree ofv) to the edges incident onv. (Note
that this corresponds to simply associating each link with
an arbitrary port.) From now on, our algorithm becomes
the deterministic leader election algorithm described in our
proofs.

Theorem 1 The probability that a unique leader will be
elected is 1− 1/poly(n).

The proof is an estimate of the probability that there is
an appropriate homomorphism after the random labelling of
the edges, and is omitted from this abstract.

Our techniques also yield lower bounds on the number
of random bits required for leader election.

Theorem 2 There are n-vertex graphs that require

�(logn) random bits per processor in order to elect a
leader.

Proof. (Sketch) ConsiderKn, the complete graph onn ver-
tices in the model with no port awareness. We may assume
that every probabilistic algorithm starts by tossing the ap-
propriate number of coins at processors, and becomes a de-
terministic algorithm with access to these bits. If there are
less thann distinct bit strings, there will be two processors
with identical views, and thus we cannot elect a unique
leader.

10.4 Conclusions

We believe that graph morphisms are an elegant and
powerful tool in the theory of distributed algorithms. Our
fibration-based characterizations not only enabled us to
settle the leader election question in several different mod-
els of computation, but provides upper and lower bounds
for probabilistic algorithms. A graph morphism based tech-
nique was recently used to prove impossibility of self-
stabilizing phase clocks [12], while fibrations were used to
construct networks with optimal sense of direction [3]. We
believe that there are many more potential applications.

References

[1] D. Angluin. Global and local properties in networks of pro-
cessors. InProc. 12th Symposium on the Theory of Com-
puting, pages 82–93, 1980.

[2] A. Arora, S. Dolev, and M. Gouda. Maintaining digital
clocks in step. Parallel Processing Letters, 2(1):11–18,
1991.

[3] P. Boldi and S. Vigna. Good fibrations and other construc-
tions which preserve sense of direction. Submitted for pub-
lication, 1996.

[4] P. Boldi and S. Vigna. Graph fibrations. Preprint, 1996.
[5] F. Borceux. Handbook of Categorical Algebra 2,

volume 51 ofEncyclopedia of Mathematics and Its Applic-
ations. Cambridge University Press, 1994.

[6] J. Burns and J. Pachl. Uniform self-stabilizing rings.ACM
Trans. Progr. Lang. Syst., 11:330–344, 1989.

[7] D. M. Cvetkovíc, M. Doob, and H. Sachs.Spectra of
Graphs. Academic Press, 1978.

[8] E. Dijkstra. Self-stabilizing systems in spite of distributed
control. CACM, 17(11):643–644, 1974.

[9] M. Gouda. The triumph and tribulation of system stabiliza-
tion. In M. Helary and M. Raynal, editors,Proc. of the 9th
International Workshop on Distributed Algorithms, num-
ber 972 in LNCS. Springer-Verlag, 1995.

[10] G. Itkis, C. Lin, and J. Simon. Deterministic, constant
space, self-stabilizing leader election on uniform rings.In
M. Helary and M. Raynal, editors,Proc. of the 9th Inter-
national Workshop on Distributed Algorithms, number 972
in LNCS. Springer-Verlag, 1995.

10

[11] R. E. Johnson and F. B. Schneider. Symmetry and sim-
ilarity in distributed systems. InProc. 4th conference on
Principles of Distributed Computing, pages 13–22, 1985.

[12] C. Lin and J. Simon. Possibility and impossibility res-
ults for self-stabilizing phase clocks on synchronous rings.
In Proc. of the 2nd WSS, Las Vegas, 1995. University of
Nevada.

[13] G. Milne and R. Milner. Concurrent processes and their
syntax.Journal of the ACM, 26:302–321, 1979.

[14] N. Norris. Universal covers of graphs: Isomorphism to
depthn − 1 implies isomorphism to all depth.Discrete
Applied Mathematics, 56:61–74, 1995.

[15] K. P. S. Katz. Self-stabilizing extensions for message-
passing systems.Distributed Computing, 7:17–26, 1993.

[16] M. Schneider. Self-stabilization.ACM Computing Surveys,
25(1):45–67, 1993.

[17] M. Yamashita and T. Kameda. Computing on anonymous
networks. InProc. of the 4th PODC, pages 13–22, 1985.

[18] M. Yamashita and T. Kameda. Electing a leader when pro-
cessor identity numbers are not distinct. InProc. of the 3rd
International Workshop on Distributed Algorithms, num-
ber 392 in LNCS. Springer-Verlag, 1989.

11

