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Abstract. Recently, some divisible electronic cash (e-cash) systems have
been proposed. However, in existing divisible e-cash systems, efficiency
or unlinkability is not sufficiently accomplished. In the existing efficient
divisible cash systems, all protocols are conducted in the order of the
polynomial of log N where N is the divisibility precision (i.e., (the total
coin amount)/ (minimum divisible unit amount)), but payments divided
from a coin are linkable (i.e., anyone can decide whether the payments
are made by the same payer). The linked payments help anyone to trace
the payer, if N is large. On the other hand, in the existing unlinkable
divisible e-cash system, the protocols are conducted in the order of the
polynomial of N , and thus it is inefficient for large N . In this paper, an
unlinkable divisible e-cash system is proposed, where all protocols are
conducted in the order of (log N)2.
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1 Introduction

As the core to realizing the electronic commerce, the electronic cash (e-cash) is
in great demand. In e-cash systems, a customer withdraws electronic coins from
a bank, and the customer pays the coins to a shop in the off-line manner. The
off-line means that the customer has no need to communicate with the bank or
a trusted third party during the payment. Finally, the shop deposits the paid
coins to the bank.

To protect the privacy of customers, each payment should be anonymous,
and furthermore unlinkability should be satisfied. The unlinkability means that
any other one except the trusted third party cannot determine whether two
payments are made by the same customer. In linkable anonymous e-cash systems,
the linked payments enable the other one to trace the payer by other means (i.e.,
correlating the payments’ locality, date, frequency, etc.), as noted in [1].

In practice, it is desirable that e-cash systems are divisible, which means that
payments of any amount up to the monetary amount of a withdrawn coin can
be made. Hereafter, let N be (the total coin amount)/ (minimum divisible unit
amount). N indicates the divisibility precision, and thus N needs to be large
from the viewpoint of convenience. For example, when the total coin amount
is $1000 and the minimum divisible unit amount is 1 cent, N is about 217.



Therefore, the computational complexity for N is an important criterion in the
divisible e-cash systems. In [2, 3], the efficient divisible e-cash systems where
all protocols are conducted in O(poly(log N)) are proposed, where poly means
the polynomial. However, these systems in [2, 3] do not satisfy the unlinkability
among the payments derived from the same coin. Thus, the larger N grows, the
more easily the payer may be traced owing to the linked payments.

In [4], as a variant of divisible e-cash systems, an electronic coupon (e-coupon)
system is proposed. In this system, a withdrawn coin, called a ticket, is divided
into sub-tickets, and only the sub-tickets can be spent. The advantage of this
system is to satisfy the unlinkability among all payments including ones from
the same ticket, and thus both divisibility and unlinkability hold. On the other
hand, the computational complexity requires O(poly(N)).

In this paper, a divisible e-cash system is proposed, where (1) the unlink-
ability among all payments holds, and (2) the computational complexity of all
protocols is O((logN)2). This e-cash system is based on the above e-coupon
system. In the e-coupon system, the payment is accomplished by proving the
ownership of a withdrawn ticket, which is the bank’s digital signature, without
revealing the ticket. Furthermore, to detect over-spending, the payer is forced
to send values which are the same if and only if the payer uses the same sub-
ticket. In the divisible e-cash system of this paper, the binary tree approach is
adopted to realize O(poly(log N)) computational complexity as well as the divis-
ible e-cash systems [2, 3]. In this approach, a withdrawn coin has a binary tree,
where the root represents the monetary amount of the coin and the other nodes
represent the half of the amount of the parent node. In addition to the proof of
the ownership of the coin as well as in the e-coupon system, the payer is forced
to send values which are linked if and only if the nodes with the parent-child
relationship are used for payments or the same node is used twice or more, which
implies over-spending.

This paper is organized as follows: Section 2 describes a model and require-
ments for a divisible e-cash system. In Section 3, the binary tree approach and
cryptographic primitives used in the proposed e-cash system are shown. In Sec-
tion 4, a divisible e-cash system satisfying the requirements based on the model is
proposed. Section 5 discusses the security and efficiency of the proposed system.
Section 6 concludes this paper.

2 Model and Requirements

We adopt the model of “escrow cash” [5] to protect illegal acts of anonymous
customers. In this model, trusted third parties, called trustees, participate in the
system. The trustees cooperatively can revoke anonymity of payments to protect
the illegal acts as money laundering, blackmailing attack [6] and so on. Though,
in this paper, one trustee has the authority of the revocation for simplicity, it is
easily extended into the the model of multiple trustees by using the threshold
cryptosystems [7].

The requirements for divisible e-cash systems are as follows [2, 5]:



Unforgeability: A coin and a transcript of a payment can not be forged.
No over-spending: The customer who over-spends a coin can be identified.
No swindling: No one except the customer who withdraws a coin can spend

the coin. The deposit information can not be forged.
Anonymity: No one except the payer and the trustee can trace the payer from

the payment.
Unlinkability: No one except the payer and the trustee can determine whether

any pair of payments is executed by the same customer, unless the payments
cause over-spending.

Anonymity revocation: Anonymity of a transcript of a payment can be re-
voked only by the trustee and when necessary, where the following revocation
procedures should be accomplished:
Owner tracing: To identify the payer of a targeted payment.
Coin tracing: To link a targeted withdrawal of a coin to the payments

derived from the coin.
Only the transcript for which a judge’s order is given must be de-anonymized.

Divisibility: Payments of any amount up to the monetary amount of a with-
drawn coin can be made.

Off-line-ness: During payments, the payer communicates only with the shop.

3 Preliminaries

3.1 Binary Tree Approach

In the proposed e-cash system, the binary tree approach is adopted to accomplish
the divisibility as well as the divisible e-cash systems in [2, 3]. Thus, before
describing our system, we review this approach.

Each coin of w = 2ℓ−1 worth is assigned to a binary tree of ℓ levels. Each node
of the tree is assigned to a denomination. The root node, denoted n0, indicates
the monetary amount w of the coin, and any other node nj1···ju

(2 ≤ u ≤ ℓ)
indicates half of the amount of the parent node nj1···ju−1 , where j1 = 0 and
ji ∈ {0, 1} for i = 2, . . . , u. A binary tree of 3 levels is illustrated in Figure 1.

n0

n 00 n 01

n000 n001 n010 n011

w
value of each node

w / 2

w / 4

Fig. 1. A binary tree of 3 levels

To accomplish the divisibility, the following rule is used:



Divisibility rule: When a node is used, all descendant and ancestor nodes are
not used. Furthermore, any node is not used multiple times.

This rule is satisfied if and only if over-spending is protected [2].

In the proposed system, each node nj1···ju
possesses a value Fj1···ju

, which is
called F value. F value Fj1 of the root node is proper to the coin, and F value
Fj1···ju

of any other node is applied by a one-way bijection for F value Fj1···ju−1

of the parent node. Thus, the nodes which have the parent-child relationship can
be linked by a sequence of bijections, while the nodes without the relationship
does not have such a sequence. Through this link, over-spending can be detected,
and the over-spender can be identified by the trustee.

3.2 Signatures Based on Zero-knowledge Proofs of Knowledge

As well as the e-coupon system [4], the proposed e-cash system uses the extension
of the group signature scheme of [8], where, as primitives to prove the knowledge
of secret values without leaking any useful information, signatures based on zero-
knowledge proofs of knowledge (SPK’s) are used. Since the proposed system
also uses some types of SPK’s, this subsection reviews the SPK’s. These are
converted from zero-knowledge proofs of knowledge (PK’s) by the so-called Fiat-
Shamir heuristic [9]. That is, the prover determines the challenge by applying
a collision-resistant hash-function to the commitment and the signed message
and then computes the response as usual. The resulting signature consists of
the challenge and the response. Such SPK’s can be proven to be secure in
the random oracle model [10] given the security of the underlying PK’s. Let
SPK{(α, β, . . .) : Predicates}(m) be the signature on message m proving that
the signer knows α, β, . . . satisfying the proven predicates Predicates. In this
notation, Greek letters denote the secret knowledge and the other letters denote
public parameters between the signer and the verifier. In the proposed system
as well as the group signature scheme [8] which are based on the hardness of the
discrete logarithm problem, the relations among the discrete logarithms from
cyclic groups are used as the proved predicates. In the following, let G and G1

be cyclic groups with order q and q1, respectively. The discrete logarithm of
y ∈ G to the base z ∈ G is x ∈ Zq satisfying y = zx if such an x exists. We
denote x = logz y. This is extended to the representation of y ∈ G to the bases
z1, z2, . . . zk ∈ G which is x1, x2, . . . xk ∈ Zq satisfying y = zx1

1 · zx2
2 · · ·zxk

k if such
xi’s exist. The double discrete logarithm of y1 ∈ G1 to the bases z1 ∈ G1 and

z ∈ G is x ∈ Zq satisfying y1 = z
(zx)
1 if such an x exists. The e-th root of the

discrete logarithm of y ∈ G to the base z ∈ G is x ∈ Zq satisfying y = z(xe) if
such an x exists.

The first type of SPK is the signature proving the knowledge of represen-
tations of y1, . . . , yw ∈ G to the bases z1, . . . , zv ∈ G on message m, and it is
denoted as

SPK{(α1, . . . , αu) : (y1 =
∏l1

j=1 z
αe1j

b1j
) ∧ · · · ∧ (yw =

∏lw
j=1 z

αewj

bwj
)}(m),



where constants li ∈ {1, . . . v} indicate the number of bases on representation of
yi, the indices eij ∈ {1, . . . , u} refer to the elements α1, . . . , αu and the indices
bij ∈ {1, . . . , v} refer to the elements z1, . . . , zv. For example, SPK{(α, β) : y1 =

zα
1 ∧ y2 = zβ

1 zα
2 }(m) is a SPK on m of an entity knowing the discrete logarithm

of y1 to the base z1 and a representation of y2 to the bases z1 and z2, where the
z2-part of this representation equals the discrete logarithm of y1 to the base z1.
The second type is a SPK proving the knowledge of the e-th root of the discrete
logarithm of y ∈ G to the base z ∈ G on m, and is denoted as

SPK{β : y = zβe

}(m).

The third type is a SPK proving the knowledge of the e-th root of the z2-part
of a representation of y ∈ G to the bases z1, z2 ∈ G on m, and is denoted as

SPK{(γ, δ) : y = zγ
1 zδe

2 }(m).

The efficient constructions of these types of signatures are concretely described
in [8].

The fourth type is a SPK proving the knowledge of the discrete logarithm
of y ∈ G to the base z ∈ G and the double discrete logarithm of ỹ1 ∈ G1 to the
bases z̃1 ∈ G1 and z̃ ∈ G on m, where the discrete logarithm of y to the base z
equals the double discrete logarithm of ỹ1 to the bases z̃1 and z̃. This is denoted
as

SPK{ǫ : y = zǫ ∧ ỹ1 = z̃
(z̃ǫ)
1 }(m).

This is described in [11]. Note that there is a difference between this type of
SPK used in this paper and that in [11]. The difference is the orders of G1 and
G. The orders of G1 and G in this paper are different, and are prime or not
prime, though the orders in [11] are prime. This difference does not affect the
proof that the underlying PK is zero-knowledge proof of knowledge. Since the
construction in [11] utilizes a cut-and-choose method, this is less efficient than
the constructions of the other types which do not utilize the method.

4 An Unlinkable Divisible Electronic Cash System

In this section, an unlinkable divisible e-cash system is constructed by using the
extension of the group signature scheme [8], as well as the unlinkable e-coupon
system [4]. The group signature schemes allow a group member to anonymously
sign on a group’s behalf. Furthermore, the anonymity of the signature can be
revoked by the trusted party. In the scheme of [8], the group consists of own-
ers of unforgeable certificates issued from the group manager. In the e-coupon
system, the certificate is used as a ticket issued from the bank and the group sig-
nature is used as a transcript of a payment. This simple replacement brings the
system the anonymity, unlinkability, unforgeability, no swindling, off-line-ness,
and owner tracing of the anonymity revocation. Furthermore, in the e-coupon
system, mechanisms to detect the payments derived from the same sub-ticket



and to enable coin tracing are added. The former mechanism is that a payer
is forced to send values which are the same if and only if the payer uses the
same sub-ticket. The latter mechanism is that, in a withdrawal, a customer is
forced to send the encryption of a value, which is linked to payments derived
from the withdrawal, with the trustee’s key. In the proposed divisible e-cash
system, this mechanism of coin tracing is adopted, and the mechanism to detect
over-spending is modified as the payer is forced to send values which are linked
if and only if the nodes with the parent-child relationship are used for payments
or the same node is used twice or more. In the concrete, the payer sends F value
Fj1···ju

for the payment of the node nj1···ju
, as noted in Section 3.1.

Assume that each participant publishes the public key of any digital signature
scheme and keeps the corresponding secret key. Hereafter, except in the payment
protocol, the values sent from each participant are signed on the digital signature
scheme. Furthermore, assume that all customers and shops open their accounts
on the bank. Let 0̃ be the empty string. If A is a set, a ∈R A means that a is
chosen at random from A according to the uniform distribution. Let 〈g〉 be a
cyclic group with generator g.

4.1 Setup

To set up the cash system, the bank and trustee generate public and secret
keys. The public keys described in this setup protocol are assigned to a single
monetary amount w = 2ℓ−1. If multiple monetary amount is adopted, the setup
is executed for each monetary amount.

1. The bank computes an RSA modulus n, two public exponents e1, e2 > 1,
and two integers f1, f2 > 1. Note that e1, e2, f1 and f2 must satisfy that
solving the congruence f1x

e1 + f2 ≡ ve2 (mod n) is infeasible. The choices
for e1, e2, f1 and f2 are discussed in [8]. Then, the bank computes a cyclic
group Gn = 〈gn〉 of order n which is a subgroup of Z∗

p2
for a prime p2 =

2n + 1. Similarly, the bank computes a cyclic group Gpi
= 〈gpi

〉 of or-
der pi which is a subgroup of Z∗

pi+1
for a prime pi+1 = 2pi + 1 with all

i (2 ≤ i ≤ ℓ). In these cases, the bank redoes the above procedure from
the computation of n if 2n + 1, 2p2 + 1, . . ., or 2pℓ + 1 is not prime. Fur-
thermore, the bank chooses elements h, h̃ ∈ Gn, h(2,0), h(2,1) ∈ Gp2 ,. . . ,
h(ℓ,0), h(ℓ,1) ∈ Gpℓ

whose discrete logarithms to the bases gn, gp2 , . . . , gpℓ

are unknown, respectively. Note that Gp2 , . . . , Gpℓ
are constructed so that

functions hxn

(2,0), h
xp2

(3,0), . . . , h
xpℓ−1

(ℓ,0) , hxn

(2,1), h
xp2

(3,1), . . . , h
xpℓ−1

(ℓ,1) on inputs xn ∈ Gn,

xp2 ∈ Gp2 , . . . , xpℓ−1 ∈ Gpℓ−1 can be defined well as one-way bijections. Fi-
nally, the bank publishes Y = (n, e1, e2, f1, f2, Gn, Gp2, . . . , Gpℓ

, gn, gp2 , . . .,

gpℓ
, h, h̃, h(2,0), . . . , h(ℓ,0), h(2,1), . . ., h(ℓ,1)) as the public key, and keeps the

factorization of n secret.

2. For all i (0 ≤ i ≤ ℓ − 1) and all J ∈ {0, 1}i, the bank makes database F0J

empty, which holds F values included in the transcripts of payments using
the node n0J to detect over-spending in the below deposit protocol.



3. The trustee chooses ρ ∈R Z∗

n to compute yR = hρ. Then, the trustee makes
yR public, and keeps ρ secret.

4.2 Withdrawal

To withdraw a coin, a customer conducts the following protocol with the bank.
This is the same as that of the e-coupon protocol, which corresponds to the issue
of a membership certificate in the group signature scheme.

1. A customer chooses x ∈R Z∗

n to compute y = xe1 mod n and z = gy
n. Then,

the customer chooses r1, r2 ∈R Z∗

n to compute ỹ = re2

1 (f1y+f2) mod n, C1 =
hr2 h̃y, C2 = yr2

R . Furthermore, the customer computes the following SPK’s:

V1 = SPK{α : z = gαe1

n }(0̃),

V2 = SPK{β : gỹ
n = (zf1gf2

n )βe2
}(0̃),

V3 = SPK{(γ, δ) : C1 = hγh̃δ ∧C2 = yγ
R ∧ z = gδ

n}(0̃).

The customer sends the bank (ỹ, z, C1, C2, V1, V2, V3).
2. If V1, V2 and V3 are correct, the bank sends the customer ṽ = ỹ1/e2 mod n

and charges the customer’s account the amount w.
3. The customer computes v = ṽ/r1 mod n to obtain the coin (x, v), where

v ≡ (f1x
e1 + f2)

1/e2 (mod n).

4.3 Payment

Assume that each shop owns a unique identifier. Let m be the concatenation of
the identifier of the shop obtaining the payment and the time when the payment
is made. In the payment protocol, the customer pays the shop any amount
w̃ (≤ w = 2ℓ−1). Let [w̃ℓ · · · w̃1] be the binary representation of w̃. Then, if
w̃ℓ−u+1 = 1 (1 ≤ u ≤ ℓ), the customer pays a node nj1···ju

among the nodes
in the u-th level that do not violate the divisible rule, as well as [2]. Here, the
payment protocol for a node nj1···ju

is shown. By executing this payment protocol
for multiple nodes parallel, the payment for any amount is accomplished.

During the payment, the payer sends the bank F value of the paid node
together with the group signature. F value of the root node, denoted Fj1 , is h̃y.

F value of a node nj1···ju
, denoted Fj1···ju

, is h
Fj1···ju−1

(u,ju) where Fj1···ju−1 is F value

of the parent node. F values of a binary tree of 3 levels are illustrated in Figure 2.
The detailed payment protocol is as follows:

1. The customer computes C̃1 = hr̃gy
n and C̃2 = yr̃

R for r̃ ∈R Z∗

n. Furthermore,
the customer computes the following SPK’s:

Ṽ1 = SPK{(α, β) : C̃1 = hαgβe1

n }(m),

Ṽ2 = SPK{(γ, δ) : C̃f1

1 gf2
n = hγgδe2

n }(m),

Ṽ3 = SPK{(ǫ, ζ) : C̃1 = hǫgζ
n ∧ C̃2 = yǫ

R}(m).



n0

n 00 n 01

n000 n001 n010 n011

F0=h y~

= h(3,0)F010

F 01 = h(3,1)F011

F 01= h(3,1)F001

F 00= h(3,0)F000

F 00

F0F 01= h(2,1)
F0F 00= h(2,0)

Fig. 2. F values of a binary tree of 3 levels

Note that these are the same as the group signature in [8]. Then, the customer
conducts the followings according to the level u of the paid node:
Case of u = 1: The customer computes F value of the paid root node, Fj1 =

h̃y, and the following SPK’s which proves the validity of F value:

Ṽ4 = SPK{(η, θ) : Fj1 = h̃η ∧ C̃1 = hθgη
n}(m).

Then, the customer sends the shop A = (j1, Fj1, C̃1, C̃2, Ṽ1, Ṽ2, Ṽ3, Ṽ4)
as the payment.

Case of u = 2: The customer computes F values of the root node and the

paid child node, Fj1 = h̃y, Fj1j2 = h
Fj1

(2,j2)
. Then, the customer computes

g̃n = gr̃1
n , F̃1 = g̃y

n for r̃1 ∈R Z∗

n, and the following SPK’s which proves
the validity of Fj1j2 :

Ṽ4 = SPK{(η, θ) : F̃1 = g̃η
n ∧ C̃1 = hθgη

n}(m),

Ṽ5 = SPK{ι : F̃1 = g̃ι
n ∧ Fj1j2 = hh̃ι

(2,j2)
}(m).

Then, the customer sends the shop A = (j1j2, Fj1j2 , g̃n, F̃j1, C̃1, C̃2, Ṽ1,

Ṽ2, Ṽ3, Ṽ4, Ṽ5) as the payment.
Cases of 3 ≤ u ≤ ℓ: The customer computes F values from the root node to

the paid node nj1···ju
, Fj1 = h̃y, Fj1j2 = h

Fj1

(2,j2)
, . . . , Fj1···ju

= h
Fj1 ···ju−1

(u,ju) .

Then, to commit F values of nodes except the paid node, the cus-
tomer computes g̃n = gr̃1

n , g̃p2 = gr̃2
p2

, . . ., g̃pu−1 = g
r̃u−1
pu−1 , F̃1 = g̃y

n, F̃2 =

g̃
Fj1
p2 , . . . , F̃u−1 = g̃

Fj1 ···ju−2
pu−1 for r̃1 ∈R Z∗

n, r̃2 ∈R Z∗

p2
, . . . , r̃u−1 ∈R Z∗

pu−1
.

Furthermore, to prove the validity of F value of the paid node by using
the committed F values, the customer computes the following SPK’s:

Ṽ4 = SPK{(η, θ) : F̃1 = g̃η
n ∧ C̃1 = hθgη

n}(m),

Ṽ5,1 = SPK{ι1 : F̃1 = g̃ι1
n ∧ F̃2 = g̃h̃ι1

p2
}(m),



Ṽ5,2 = SPK{ι2 : F̃2 = g̃ι2
p2

∧ F̃3 = g̃
h

ι2
(2,j2)

p3 }(m),

· · ·

Ṽ5,u−2 = SPK{ιu−2 : F̃u−2 = g̃ιu−2
pu−2

∧ F̃u−1 = g̃
h

ιu−2

(u−2,ju−2)

pu−1 }(m),

Ṽ5,u−1 = SPK{ιu−1 : F̃u−1 = g̃ιu−1
pu−1

∧ Fj1···ju
= h

h
ιu−1
(u−1,ju−1)

(u,ju)
}(m).

Finally, the customer sends the shop A = (j1j2 · · · ju, Fj1···ju
, g̃n, g̃p2 , . . .,

g̃pu−1 , F̃1, F̃2, . . . , F̃u−1, C̃1, C̃2, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5,1, . . ., Ṽ5,u−1) as the
payment.

2. The shop verifies that A is correctly formed. If the shop is successful, this
payment is permitted.

4.4 Deposit

In the deposit protocol, over-spending is checked on the divisibility rule shown
in Section 3.1. If over-spending does not occur, the paid amount is deposited
in the account of the shop. Otherwise, the over-spender can be identified by
the below owner tracing protocol. When the node nj1···ju

is used for the pay-
ment, the transcript of the payment includes F value Fj1···ju

. If the same node
is used, the sameness of F value indicates over-spending. If the nodes nj1···ju

and nj1···ju′
(u < u′) with the parent-child relationship are used which also

means over-spending, the corresponding Fj1···ju
and Fj1···ju′

have relations as

Fj1···ju+1 = h
Fj1 ···ju

(u+1,ju+1)
, . . . , Fj1...ju′

= h
Fj1 ···j

u′
−1

(u′,ju′)
for F values of the intermedi-

ate nodes, Fj1···ju+1 , . . . , Fj1···ju′
−1

. Thus, the relation enables the bank to detect
over-spending. The following is the detailed protocol to deposit the payment of
the node nj1···ju

. For the payment of multiple nodes, this protocol is executed
multiple times.

1. The shop sends the bank the transcript of the payment A.
2. The bank verifies that the transcript is correctly formed. Then, the bank

checks whether the payment causes the node nj1...ju
to be over-spent as

follows:

(a) If u ≥ 2, for all databases Fj1···ji
(1 ≤ i ≤ u − 1) and all F̂i ∈ Fj1···ji

,

the bank computes F̂i+1 = hF̂i

(i+1,ji+1)
, . . ., F̂u = h

F̂u−1

(u,ju), and checks

F̂u = Fj1···ju
.

(b) For the database Fj1···ju
and all F̂u ∈ Fj1···ju

, the bank checks F̂u =
Fj1···ju

.

(c) If u ≤ ℓ − 1, for all i (u + 1 ≤ i ≤ ℓ), all ĵu+1, . . . , ĵi ∈ {0, 1}, all
databases Fj1···juĵu+1···ĵi

and all F̂i ∈ Fj1···juĵu+1···ĵi
, the bank computes

Fu+1 = hFu

(u+1,ĵu+1)
, . . ., Fi = h

Fi−1

(i,ĵi)
where Fu = Fj1···ju

, and checks

F̂i = Fi.



When any check is successful, the paid node is over-spent. Then, the over-
spender can be identified by the owner tracing protocol. Otherwise, the
amount of the node is deposited in the shop’s account, and Fj1···ju

is kept
in the bank’s databases Fj1···ju

, while the transcript A is also kept since it
can be used as the witness if over-spending occurs in the future.

4.5 Anonymity Revocation

When a judge’s order of the anonymity revocation is given, the following owner
or coin tracing protocols for a targeted payment or withdrawal is executed, re-
spectively. Furthermore, when over-spending is detected in the deposit protocol,
owner tracing for the over-spent payment is executed. The owner tracing proto-
col is the same as the identification of the signer in the original group signature
scheme. The coin tracing protocol is arranged from that of the e-coupon system.

Owner tracing:

1. The bank sends the trustee a transcript of the targeted payment A, which
includes C̃1 and C̃2.

2. The trustee verifies that the transcript is correctly formed. If it is cor-

rectly formed, the trustee sends the bank ẑ = C̃1/C̃2
1/ρ

and SPK{α :

C̃1 = ẑC̃2
α
∧ h = yα

R}(0̃). This SPK proves that (C̃1, C̃2) is decrypted
into ẑ.

3. The bank searches z identical with ẑ to present the customer’s signature
on z, which indicates the payer of A.

Coin tracing:

1. The bank sends the trustee the transcript of the targeted withdrawal
(ỹ, z, C1, C2, V1, V2, V3).

2. The trustee verifies that the transcript is correctly formed. If it is cor-

rectly formed, the trustee sends the bank ĥ = C1/C
1/ρ
2 and SPK{α :

C1 = ĥCα
2 ∧ h = yα

R}(0̃). This SPK proves that (C1, C2) is decrypted

into ĥ, which should equals h̃y.
3. For the sent ĥ, the bank (and shops) checks the following for F value,

Fj1···ju
, sent during payment of the node nj1···ju

(1 ≤ u ≤ ℓ):

Case of u = 1: They checks Fj1 = ĥ.

Case of u = 2: They checks Fj1j2 = hĥ
(2,j2)

.

Cases of 3 ≤ u ≤ ℓ: They computes F2 = hF1

(2,j2)
, . . .Fu−1 = h

Fu−2

(u−1,ju−1)
,

where F1 = ĥ, to check Fj1···ju
= h

Fu−1

(u,ju).

If any check is successful, the transcript is derived from the targeted
withdrawal.

5 Discussion

The e-cash system proposed in this paper as well as the original e-coupon system
and group signature scheme is based on the infeasibility to compute and compare



the discrete logarithms, the security of the ElGamal encryption [12] and blind
RSA signature [13], and the infeasibility to compute (x, v) satisfying f1x

e1+f2 ≡
ve2 (mod n).

It is discussed that the proposed system satisfies the requirements in Sec-
tion 2.

Unforgeability: From the infeasibility to compute (x, v) satisfying f1x
e1+f2 ≡

ve2 (mod n), it is infeasible to forge a coin. From the soundness of the
SPK’s, it is infeasible to compute the transcript of the payment without a
coin.

No over-spending: The SPK’s during payment assure that F value of the
paid node is correct. Assume that a customer over-spends a coin. If the
customer spends the same node twice or more, over-spending is detected
in Step 2 (b) of the deposit protocol owing the sameness of F value. If
the customer spends nodes nj1···ju

and nj1···ju′
(1 ≤ u < u′ ≤ ℓ) with

the parent-child relationship, the corresponding Fj1···ju
and Fj1···ju′

have

relations as Fj1···ju+1 = h
Fj1···ju

(u+1,ju+1)
, . . . , Fj1...ju′

= h
Fj1···j

u′
−1

(u′,ju′)
for F values of

the intermediate nodes, Fj1···ju+1 , . . . , Fj1···ju′
−1

. Thus, in Step 2 (a) or (c) of
the deposit protocol, over-spending is detected. Since the SPK’s also assure
that (C̃1, C̃2) is the ElGamal encryption of z, the bank cooperating with the
trustee can identify the over-spender in the owner tracing protocol.

No swindling: The blind signature prevents anyone except a customer who
withdrew a coin (x, v) from obtaining the coin. Because of the secrecy of the
SPK and the infeasibility to compute the discrete logarithm, no other party
can obtain (x, v) from a transcript of a payment. Thus, no other party can
spend the coin of a valid customer. The deposit information is a transcript of
a payment. Since the transcript is unforgeable and no other party can spend
the coin of a valid customer, the deposit information cannot be forged.

Anonymity: In the confirmation of the anonymity and unlinkability, the pay-
ments of the case of 3 ≤ u ≤ ℓ are only discussed, since the other cases can
be discussed similarly. To identify the payer, it is required to decide whether
y which is used to compute the withdrawal (ỹ, z, C1, C2, V1, V2, V3) and y
which is used to compute the payment (j1j2 · · · ju, Fj1···ju

, g̃n, g̃p2, . . . , g̃pu−1 ,

F̃1, F̃2, . . . , F̃u−1, C̃1, C̃2, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5,1, . . ., Ṽ5,u−1) are the same. In

both transactions, since (C1, C2) and (C̃1, C̃2) are the ElGamal encryptions
and ỹ is a blinded message on the blind RSA signature, they reveal no in-
formation about y. Furthermore, V1, V2, V3, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5,1, . . ., Ṽ5,u−1

are SPK’s, and thus they also reveal no information. Therefore, the possibly
available values are z together with its public base gn in the withdrawal,
and the revealed F value Fj1···ju

and the committed F values F̃1, . . . , F̃u−1

together with their public bases h̃, h(2,0), . . . , h(ℓ,0), h(2,1), . . . , h(ℓ,1) and the
random bases g̃n, g̃p2 , . . . , g̃pu−1 in the payment. When the revealed F value
is used, the above decision is performed by deciding whether loggn

z and
logh̃(logh(2,j2)

(· · · (logh(u,ju)
Fj1···ju

) · · ·)) are the same. However, the latter

decision is infeasible owing to the following proof:



Assume on the contrary that a probabilistic polynomial time algorithm M
decides whether loggn

z and logh̃(logh(2,j2)
(· · · (logh(u,ju)

Fj1···ju
) · · ·)) are the

same with a non-negligible probability. Then, the following probabilistic
polynomial time algorithm M̄ with the inputs h̄1, h̄

′

1, z̄1, z̄
′

1 ∈ Gn can be
constructed:
First, M̄ chooses ḣ2 ∈R Gp2 ,. . . , ḣu ∈R Gpu

. Next, from them and the input

z̄′1, M̄ computes ż2 = ḣ
z̄′

1
2 , ż3 = ḣż2

3 , . . . , żu = ḣ
żu−1
u . Finally, M̄ runs M with

the inputs gn = h̄1, z = z̄1, h̃ = h̄′

1, h(2,j2) = ḣ2,. . . , h(u,ju) = ḣu, and
Fj1···ju

= żu.
Then, since loggn

z = logh̄1
z̄1 and logh̃(logh(2,j2)

(· · · (logh(u,ju)
Fj1···ju

) · · ·)) =

logh̄′
1
z̄′1, M̄ can decide whether logh̄1

z̄1 and logh̄′

1
z̄′1 are the same with

the non-negligible probability. This contradicts the infeasibility to decide the
sameness of discrete logarithms. Thus, the decision of loggn

z = logh̃(logh(2,j2)
(

· · · (logh(u,ju)
Fj1···ju

) · · ·)) is also infeasible. This proof also holds on the cases

of the committed F values F̃1, . . . , F̃u−1. Therefore, the anonymity is assured.
Unlinkability: To link two payments (j1j2 · · · ju, Fj1···ju

, g̃n, g̃p2 , . . . , g̃pu−1 , F̃1,

F̃2, . . . , F̃u−1, C̃1, C̃2, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5,1, . . ., Ṽ5,u−1) and (j′1j
′

2 · · · j
′

u′ , F ′

j′

1···j
′

u′

,

g̃′n, g̃′p2
, . . . , g̃′pu′

−1
, F̃ ′

1, F̃
′

2, . . . , F̃ ′

u′
−1, C̃ ′

1, C̃
′

2, Ṽ ′

1 , Ṽ ′

2 , Ṽ ′

3 , Ṽ ′

4 , Ṽ ′

5,1, . . ., Ṽ ′

5,u′
−1)

for u ≤ u′, it is required to decide whether y which used to compute them
are the same. Since the use of the same y implies that F values of the same
nodes are the same, the link is also performed by deciding whether F values
of the same nodes are the same. The possibly available values are the rev-
eled F values and the committed F values together with the bases used to
compute them, as mentioned in the anonymity.
If the paid nodes nj1···ju

and nj′

1···j
′

u′

have the parent-child relationship which

it means over-spending, the payments are linkable as shown in the confirma-
tion of no over-spending. Otherwise, j1 = j′1, . . ., jv = j′v and jv+1 6= j′v+1

for some v < u. Then, the common youngest ancestor node of the paid nodes
is nj1···jv

. When the reveled F values Fj1···ju
and F ′

j′

1···j
′

u′

in the payments

are used to link them, the link is reduced to decide whether

logh(v+1,jv+1)
(· · · (logh(u,ju)

Fj1···ju
) · · ·))

= logh(v+1,j′
v+1

)
(· · · (logh(u′,j′

u′
)
F ′

j′

1···j
′

u′

) · · ·))

holds, which means to decide whether Fj1···jv
and F ′

j′

1···j
′

v
are the same. This

decision is infeasible by the similar proof shown in the anonymity. This proof
also holds on the cases of the decision between the committed F values, and
the decision between the F value and the committed F value. Therefore, the
unlinkability is assured.

Anonymity revocation:

Owner tracing: Since the SPK’s assure that (C̃1, C̃2) is the ElGamal en-
cryption of z, the bank cooperating with the trustee can identify the
payer from the targeted payment in the owner tracing protocol, where



(C̃1, C̃2) in the other payments are not decrypted and thus the payments
remain anonymous.

Coin tracing: The SPK’s during the withdrawal assure that (C1, C2) is
the ElGamal encryption of hy, and the SPK’s during the payment as-

sure Fj1 = h̃y, . . . , Fj1···ju
= h

Fj1···ju−1

(u,ju) . Thus, the bank and shops co-

operating with the trustee can trace the transcripts of the payments
with Fj1 = h̃y as shown in the coin tracing protocol. Since (C1, C2) in
the other withdrawals are not decrypted and thus the other payments
remain anonymous.

From the description of the protocols, it is shown straightforwardly that the
divisibility and off-line-ness hold.

Next, the efficiency of the proposed system for N , which is the divisibility
precision, is discussed. The setup and withdrawal protocols are conducted in
O(logN) and O(1), respectively. To pay any amount of a coin, O(logN) nodes
can be used. The protocols after the payment are conducted in O(logN) per a
node. Thus these protocols are conducted in O((log N)2).

6 Conclusion

In this paper, a divisible e-cash system has been proposed, where (1) the unlink-
ability among all payments holds, and (2) the computational complexity of all
protocols is O((log N)2). Since a type of SPK (i.e., the proof that a discrete log-
arithm and a double discrete logarithm are the same) utilizes a cut-and-choose
method, the proposed system is less efficient than systems in [2, 3]. Therefore,
an open problem is to propose the efficient unlinkable divisible e-cash system
where any cut-and-choose method is not used. In addition, the security of our
system is based on the heuristic assumption as the infeasibility to compute (x, v)
satisfying f1x

e1 +f2 ≡ ve2 (mod n). Thus, another open problem is to propose
the system where the security is proved based on the cryptographic assumptions
theoretically clarified.
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