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Abstract. In this paper, we propose a new integration approach to simulate an 
Autonomous Virtual Agent's cognitive learning of a task for interactive Virtual 
Environment applications. Our research focuses on the behavioural animation 
of virtual humans capable of acting independently. Our contribution is impor-
tant because we present a solution for fast learning with evolution. We propose 
the concept of a Learning Unit Architecture that functions as a control unit of 
the Autonomous Virtual Agent’s brain. Although our technique has proved to 
be effective in our case study, there is no guarantee that it will work for every 
imaginable Autonomous Virtual Agent and Virtual Environment. The results 
are illustrated in a domain that requires effective coordination of behaviours, 
such as driving a car inside a virtual city. 

1   Introduction 

The production of believable Autonomous Virtual Agents (AVAs) that are outfitted 
with learning abilities in a Virtual Environment (VE) is very helpful in many areas. In 
computer games, the use of AVAs capable of learning a specific task and evolving 
their skills for that task can greatly improve both the enjoyment and the strategy of the 
game-play. 

An AVA driving a car inside a virtual city is an example of this feature. By adjust-
ing its internal “memory” to match the level of difficulty, the AVA is able to accom-
plish the task. This process of problem solving can be referred to as task learning. In 
real life, human learning involves many complex cognitive processes. Realistically, 
the simulation of AVAs exhibiting behaviours that reflect those of humans demands 
efficient simulation algorithms. This is especially true for the interactive systems such 
as computer games. 

A number of challenges are raised in developing a system incorporating learning 
AVAs. From a behavioural animation point of view, there are several areas to con-
sider, such as: 

1. The design of a learning control structure, 
2. The internal storage of the learning information and 
3. The efficient evaluation and calculation of feedbacks and reactions from the en-

vironment. 
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Learning involves adaptation and evolution in which modifications made by internal 
subunits of the adaptive system, like the human brain, mirror external environmental 
changes. Up to a certain degree of complexity, many Artificial Intelligence (AI) mod-
els are able to simulate human learning behaviour [1]. 

The simulation of human behaviour is achieved through the use of a complex 
“cognitive map” and the application of a hierarchy of behavioural strategies [2]. The 
overall cognitive mapping process involves acquisition, coding, storage, recall and 
decoding [3] of the environmental information. In fact, an individual “cognitive map” 
will often contain numerous inaccuracies or distortions [4]. Many of these are due to 
the fact that humans predominantly use a visual perception system and they are un-
able to process everything they see because of the vast amount of incoming informa-
tion [5]. Other errors result from the way the information is processed and stored 
within the "cognitive map" structure itself. Therefore, to simulate human-like behav-
iour more closely, we separate the AVA from its environment and provide it with 
perception and effector systems only.  

We have developed [6] new methodologies to map all the information coming 
from the VE and from the virtual sensors of vision, audition and touch in the form of 
a “cognitive map”. They enable the partial re-mapping of the cognitive and semantic 
information at a behavioural level. For example, when spatial attention is primed with 
tactile stimulation, the location of the attention spotlight is only partially re-mapped in 
visual coordinates. With the aid of this framework, we can prepare multi-sensory 
information for cognitive learning. 

Unlike mechanical memory that can permanently store information, human mem-
ory is imperfect and information can be forgotten. Humans and animals selectively 
process only the information that is important to them whilst actively searching for 
new information. Similarly, we can have two types of learning in an intelligent sys-
tem: 

1. Active learning where the system selects filters and searches for relevant infor-
mation. 

2. Passive learning where the system accepts all incoming data. 

In this paper we are presenting research work in the domain of behavioural animation 
using a high learning approach combined with an active learning approach. This is 
accomplished through the use of a cognitive model defining how the AVA should 
react to stimuli from its environment. In summary, this paper presents a novel ap-
proach that allows an AVA to learn a "cognitive model" by itself. 

Document Organisation: Section 2 – State of the Art; Section 3 – Methodology; 
Section 4 - Realisation and Integration; Section 5 – Experimental and Results; Section 
6 – Discussion and Improvement Proposals. 

2   State of the Art 

A great deal of research has been performed on the control of animated autonomous 
characters [7-10]. These techniques have produced impressive results, but are limited 
in two aspects. Firstly, they have no learning ability and are thus limited to explicit 
pre-specified behaviours. Secondly, they only perform behavioural, not cognitive, 
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control (where behavioural means reactive decision making and cognitive means 
reasoning and planning to accomplish long-term tasks). 

On-line behavioural learning has begun to be explored in computer graphics [11] 
and [12]. A notable example is [13], where a virtual dog can be interactively taught by 
the user to exhibit a desired behaviour. This technique is based on reinforcement 
learning and has been shown to work well in [14]. However, it has no support in 
long-term reasoning to accomplish complex tasks. Also, since these learning tech-
niques are all designed to be used on-line, they are, for the sake of interactive speed, 
limited in terms of how much can be learned. 

3   Methodology 

In this section we introduce AVA learning in which an AVA automatically learns an 
unknown cognitive model. We have developed a novel technique to achieve AVA 
learning using a tree search with a k-nearest neighbours (k-NN) method. 

3.1   Human Adaptability to Learn 

In order to simulate the AVA’s learning behaviour, a learning model has to be 
adapted. Learning by experience is one of the most well known principles of human 
task learning behaviour [15]. Indeed, most of the time we learn by direct experience 
in performing a task. Learning is an intricate process which involves many aspects of 
cognitive activities including knowledge acquisition, observing and thinking. 

Since each person has his/her own motivations and method of learning, the learn-
ing process is affected by the learning pattern. To perform a specific task, a person’s 
 

Motion
Modelling

Experience

Perception
Model

Message
Flow

Behaviour 
Control

Motivation

Learning Pattern

Decision
Making

Memory of 
Experience

Knowledge

Virtual
EnvironnementMotion

Modelling
Experience

Perception
Model

Message
Flow

Behaviour 
Control

Motivation

Learning Pattern

Decision
Making

Memory of 
Experience

Knowledge

Virtual
Environnement

 

Fig. 1. General behavioural Simulation Model 
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skills and abilities for the task can be developed during practice [16]. This concept is 
summarised in Fig. 1 and is used to make up the basis of our learning cognitive model 
for the AVA simulation. Fig. 1 shows the key elements of the human learning process 
such as: background knowledge of a specific task, motivations to accomplish the task, 
memory of the past experiences, individual learning pattern and finally trial and error. 
The learning process is a process of adaptation, evolution and decision making as a 
whole. Another key issue of learning is the environmental feedback. 

3.2   AVA Learning a Cognitive Model and Control Structure 

For any given AVA and VE the state space must be continuous. This is because in a 
stimulating environment where an agent and a human are competing or cooperating 
intimately, a small difference in state can lead to a large difference in behaviour. A 
continuous state space can also help achieve a realistic VE. For example, in our car 
driving case study, a discrete state space would be very unnatural for a car driving 
simulator. Therefore, our technique uses a continuous internal representation of states 
and actions. 

Most machine-learning algorithms make general and weak assumptions about the 
nature of the training data. As a result, they typically require large amounts of data to 
learn accurate classifiers. Normally, the performance improves as the algorithm ex-
ploits more information. It generally performs better at recognition than at generaliza-
tion. This problem can be solved by taking advantage of prior knowledge to eliminate 
the inconsistent classifiers. Hence, the resulting learning algorithms may be able to 
learn from very few training examples. To recognise a point, the k-NN method implic-
itly makes a comparative estimate of all the densities of class probabilities appearing 
in its vicinity and chooses the most probable. In fact, it approximates the Bayesian 
decision. Finally, a vector of quantification is introduced. The technique consists of 
replacing a completed combination of points by a limited number of prototypes repre-
sentative of the training set. 

However, there is a risk involved in incorporating prior knowledge, since this can 
add a bias to the learning process. If the knowledge is incorrect, it will then eliminate 
all the accurate classifiers. As a result, learning algorithms tend to perform fairly well 
on small training sets but, as the amount of data increases, as in our driving context, 
their performance suffers because they under fit the data. 

In most real-world problems all of these approaches are limited by the very large 
space of the possible states. These algorithms typically require time that is scaled in 
terms of the cube of the number of states. Hence, [17] and other researchers have 
focused on methods to construct computationally manageable approximations of the 
policy, the value function and the model. 

The k-NN algorithm was chosen as it provides a local approximation of the target 
function and can be used automatically without the designer selecting the inputs. It is 
guaranteed to learn the target function based on the quality of the examples provided 
and to memorize the decisions made by planning through a cognitive model. The 
decision-making of a cognitive model is a very important piece of information. The 
mapping is likely to be smoother if the information is presented as a separate input to 
the k-NN algorithm. 
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Generally with the k-NN approach, decreasing the number of points reduces the 
search space and the storage problem. This also leads to a diminution of the computa-
tion time. We used a pre-computed phase before the search phase to reorganize the 
learning space. 

The k-NN method does not require the separation of the various classes of learning. 
Instead, we selected a sub-domain of learning points. However, the method necessi-
tates the explicit storage of many examples of the target function. It can also auto-
matically discover the inputs necessary to approximate the target function like in our 
car driving cognitive model. The choice of the k-NN metric influences the rate of error 
and rejection. 

Our technique is quite scalable since, if a global approximation is needed, the cog-
nitive model can be approximated by several separate machine learners: k-NN, DSM 
(Decision Surface Mapping), LVQ (Learning Vector Quantization) and SVM (Support 
Vector Machine). Each of them learns a distinct subset of the state to action mapping 
(see Fig. 2).  Decision-making in different regions of the state space may rely on dif-
ferent state information and therefore these machine learners can use different state 
formulations to reduce the dimensionality. 

Our new approach uses a methodology adapted from the data mining domain [18] 
which computes a locally flexible metric by means of SVM. The maximum margin 
boundary is used to determine the most discriminated direction over the query's 
neighbourhood. Such direction provides a local weighting scheme for the input features. 
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Fig. 2. Cognitive Model with smooth blending. For query A, dimension X is more relevant 
because a slight move along axis X may change the class label, while for query B, dimension Y 
is more relevant. For query C, however, both dimensions are equally relevant. 
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To allow for smooth switching between learners during animation, the actions rec-
ommended by each one can be blended for a period of time (see Fig. 2). Traditionally, 
cognitive models are very slow to execute. Performing our smooth blending technique 
accelerates this cognitive learning process. 

3.2   Evolving Process 

Each individual's learning pattern and knowledge about the task are represented by 
predefined motion patterns that may be motion capture data. 

Taking the example of high jump, an AVA is assumed to have previously acquired 
the knowledge of how to jump by making full body movement. However, the AVA 
has to improve its performance in order to achieve a target. A high jump athlete may 
have to make several attempts before he/she can jump over a horizontal bar. Simi-
larly, simulating this kind of task requires an evolution model that approximates the 
evolving learning process during which the ability of the virtual athlete evolves as it 
improves. 

 

Fig. 3. AVA High Learning (AVAhighLEARN) with our Learning Unit Architecture (LUA) 

Our proposal of an approach for the evolving process involves "behaviour capture" 
and a Learning Unit Architecture (LUA). Supplying a different cognitive model for 
each context is a simple method of learning context-sensitive policies. These policies 
are then placed in the AVA's brain and the selection of the suitable k-NN to use is 
determined by the AVA's current internal state (see Fig. 3). 

For the evolving process, we introduce features such as forgetting and unimpor-
tance. If a state to action case was recorded long ago and/or is very similar to a new 
one being added, it is likely to be removed. Thus the AVA has the ability to "forget", 
which is very important in learning something as dynamic as a human behaviour. 

4   Realisation and Integration 

The realisation and integration of our AVA High Learning (AVAhighLEARN) meth-
odology which combines different machine-learning techniques with several novel 
improvements could be more useful to the computer graphics community than tech-
niques based purely on machine-learning approaches (see Fig. 4). 
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Fig. 4. Comprehensive UML design of AVAhighLEARN including virtual sensors from our 
AlifeE framework 

An AVA is fitted with sensors to inform it of the state of its external and internal 
VE. An AVA also possesses effectors to exert an influence on the VE and a control 
architecture to coordinate its perceptions and actions. The AVA's behaviour is adap-
tive as long as the control architecture allows it to maintain its variables in their vi-
ability zone. All of these characteristics are integrated in our ALifeE framework (see 
Fig. 4) developed for our research. It is based on an original approach inspired by 
neuroscience and equips an AVA with the main virtual sensors in the form of a small 
nervous system [6]. The acquisition steps of signals, filtering, selection and simplifi-
cation intervening before proprioception, active and predictive perception are inte-
grated into virtual sensors and a virtual environment. 

5   Experimental and Results 

With our approach it is not necessary to program an explicit cognitive model. Study-
ing how a task is accomplished is usually necessary before an explicit AI model can 
be programmed. Thus, in this experiment, our technique for AVA learning relieved us 
of this burden and therefore reduced the animation workload. 

We implemented our cognitive model learning approach to the driving simulation 
of a car inside a virtual city (see Fig. 5a and b). The AVA is a pilot driving a car in-
side the virtual city. The pilot and his/her co-pilot, have dual control over the accel-
eration and the wheel of the car (see Fig. 6). The controls are real-value (e.g. the ac-
tion space is continuous) and the car can move to any location or take any orientation. 
The continuous action is then quantified to achieve real-time performance. Conse-
quently, the possible actions of the pilot and the virtual instructor become limited. 

The experiment is performed with an approximate cognitive model with the ALifeE 
framework [6] but with pseudo-perception features. The characteristics of pseudo-
perception are used to compare the performances obtained with case study including 
our ALifeE framework. Indeed, in most of the AVA’s simulation environments, senso-
rial modalities and perception are not integrated in a way faithful to reality. In this 
experiment visual pseudo-perception is provided by the AVA pilot's field of view 
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which is in the shape of a circular zone (see Fig. 7a and b). Dynamic (e.g. cars) and 
static (e.g. road signals, traffic lights) objects are represented by rectangular graphic 
symbols. To test the recognition of the road signals and traffic lights, we integrated 
this visual pseudo-perception method so that it could determine which object is the 
closest to a given ray "r" of the circular zone (see Fig. 7b). 

 

Fig. 5a and b. Car driving simulation inside a virtual city. Semantic information such as road 
signals and traffic lights are included. 

 

Fig. 6. Explicit cognitive model with inputs and outputs 

 

Fig. 7a and b. An AVA learning to drive a car inside a virtual city with visual pseudo-
perception. The car "sees" the traffic lights inside a circular zone. 
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The k-NN algorithm was trained to approximate a single policy. It is only useful 
for one cognitive model and one goal at a time (see Fig. 3). Fig. 8a and b show the 
training of the approximate cognitive model for driving and the path of a car inside 
the virtual city, respectively. Subsequently, the information is used to simulate the 
behaviour of the AVA pilot. 

There can be more than one model for any given goal so that greater variety and/or 
robustness can be achieved. It is also possible to use the k-NN algorithm with differ-
ent explicit cognitive models of the same AVA's "brain" (see Fig. 3). 

In this experiment we improved the planning of our cognitive model taking advan-
tage of the pseudo-perception features.  

We tested our methodology with a LUA concept, mainly to encourage evolution of 
push the behaviours of the pedestrians to evolve and to verify the car pilot’s ability to 
"forget", which is essential in learning dynamic human behaviours. 

The final result was good driving behaviour, since the pilot could plan far enough 
ahead to adequately manoeuvre the car inside the virtual city. We achieved our best 
results by performing low-level learning method for 40 iterations (see Table 10). 

 

Fig. 8a and b. Snapshot of the car path with approximate cognitive model 

    

Fig. 9a and b.  A pilot wishes turns left and the co-pilot's indicators inform him to turn right 
based on his learning knowledge – road signals. The panel informs the driver that he/she must 
turn right (Arrow in red at bottom right corner of fig. 9b). The co-pilot, steering wheel is indi-
cated by a red circle. 
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Table 10. Results of our cognitive model with AVAhighLEARN method, using Learning Unit 
Architecture (LUA). All animations were rendered in real time using OpenGL on a 3.0 GHz PC 
with an nVIDIA GeForce FX Go5350 video card. 

 k-NN DSM LVQ SVM 
Execution 
time 

15 µs 9 µs 8 µs 6 µs 

Storage 1.4 MB 1.4MB 1.2 MB 24 KB 

6   Discussion and Improvement Proposals 

In this paper we presented a novel approach to simulate an AVA’s task learning be-
haviour for interactive VE applications. Our contribution is to propose the concept of 
a Learning Unit Architecture (LUA) that works as a control unit of the AVA’s brain. 
The LUA model is based on a human learning model. It is not a true simulation of the 
real human brain’s learning activities, but rather a simulation system that models its 
numerous aspects. This LUA can also be extended to represent different types of 
learning behaviours.  

Through this general and reusable technique, an AVA automatically learns to 
mimic the intelligent decision making process of a human. This is carried out by a 
human animator who has interactive control over the actions and decisions of the 
AVA. The designer constructs the cognitive model in an intuitive manner thus making 
this process simpler and quicker. 

Future work should continue to improve the current simulation system in order to 
simulate more complex human learning behaviours. The challenges that need to be 
addressed concern the efficiency, the realism and the control of the simulation. 

Through this AVAhighLEARN method, an AVA can independently and automati-
cally learn a cognitive model. For the animator, this alleviates the workload of design-
ing an explicit model. It also permits the creation of tasks for which it would be diffi-
cult, or virtually impossible, to develop an explicit model. 

However, there are some weaknesses in our approach. For instance, when perform-
ing on-line AVA learning, it can be hard to design the expected behaviour of the cog-
nitive model with exactitude. 

Simulating automatically learning behaviours is a not an easy and appealing task. 
Our approach could take interactive computer graphics to a completely new level, 
especially in the entertainment market. It would also be very useful if an animator 
could interactively train an AVA for cognitive learning. 

The approach presented here is part of a more complex model that is the object of 
our research. The goal is to realize a Virtual Life environment for an AVA including 
different interfaces and sensorial modalities coupled with different evolving learning 
methodologies. 
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