
Compiler Support to Customize the Mark and Sweep AlgorithmDominique COLNET, Philippe COUCAUD, Olivier ZENDRAE-mail: {colnet, coucaud, zendra}@loria.frLORIAUMR 7503(INRIA - CNRS - University Henri Poincaré)Campus Scienti�que, BP 239,54506 Vand÷uvre-lès-Nancy CedexFRANCEAbstractMark and sweep garbage collectors (GC) are classi-cal but still very e�cient automatic memory man-agement systems. Although challenged by otherkinds of systems, such as copying collectors, markand sweep collectors remain among the best interms of performance.This paper describes our implementation of ane�cient mark and sweep garbage collector tailoredto each program. Compiler support provides thetype information required to statically and auto-matically generate this customized garbage collec-tor. The segregation of objects by type allows theproduction of a more e�cient GC code. This tech-nique, implemented in SmallEi�el, our compiler forthe object-oriented language Ei�el, is applicable toother languages and other garbage collection algo-rithms, be they distributed or not.We present the results obtained on programsfeaturing a variety of programming styles and com-pare our results to a well-know and high qualitygarbage collector.1 IntroductionIn the last few decades, automatic memory man-agement gradually and constantly improved, andnow seems to be preferred to manual memorymanagement in most modern programming lan-guages. Numerous and e�cient techniques [Wil92,WSNB95, JL96] have been developed, providing awide range of solutions to language implementors.Nonetheless, some developers still consider thatthe best performance can be reached only by re-lying on manual memory management. Indeed,they believe it enables them to better address thespeci�c memory requirements of their application.However, the garbage collection community hasbeen working on the customization of the GC to

each application for a long time, thus address-ing the concerns of proponents of manual memorymanagement.Many of these customized collectors [Bar90,Ede92, BS93, AFI95] still require some kind of in-tervention from the developer. In this paper, wepresent our experience with the implementation ofa completely automatic system in which compilersupport allows the generation of a customized GCwithout requiring any additional work from the ap-plication developer.The GC we integrated to SmallEi�el � TheGNU Ei�el compiler � is a classical partially con-servative [Boe93] mark and sweep collector. Weuse an e�cient type inference algorithm [CCZ97]to analyze the class relations at compile time. Thisalgorithm provides the required information to seg-regate objects by type and statically customizemost of the GC code. Thus, memory managementrelies heavily on type-accurate, e�cient routines.The remainder of this paper is organized as fol-lows. Section 2 explains the overall method used tocustomize the GC code thanks to compiler supportand then details the management of �xed-size ob-jects. Resizable objects are considered in section 3.Section 4 brie�y describes more speci�c, language-dependant optimizations. Performance measure-ments are presented in section 5. Finally, section6 reviews related work and section 7 concludes.2 Fixed-size object management2.1 AllocationThe allocator we implemented takes advantage ofobject structure information, provided by the typeinference process [CCZ97] of SmallEi�el. Becauseit statically knows which kinds of objects are al-located, �xed-size objects are segregated by type,rather than by size as in most other segregatedalgorithms [WSNB95].A speci�c collection of typed chunks is dedi-cated to each inferred live type. This way, a chunkholds only one type of objects (see �gure 1), whosesize is known at compilation time and hard-codedwherever it is needed. Thus, the SmallEi�el GCdoes not need any extra word to store the objectsize. Each chunk is a memory area which containsa �xed number of slots for objects � not references
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N Figure 1: Overview of Memory Layout� of the corresponding concrete type. A chunkheader comprises some other type-speci�c infor-mation like pointers giving access to customizedmarking and sweeping functions.After trying and benchmarking some con�gura-tions, we found that �xed-size chunks of 8Kb werea good tradeo� between fast allocation and tightmemory footprint.Each type has its own customized allocationmethod and is associated to a Linear AllocationChunk (LAC). The latter is a chunk managed ina stack-like way, with a Free-Space Pointer (FSP)pointing to the beginning of the free space avail-able for objects of this type. When an object mustbe created, its type allocation method tries to allo-cate it directly from the corresponding LAC, justby incrementing the FSP for this type by the ob-ject size. Such a linear segregated allocation isprobably the fastest one can imagine.When not enough memory is available in theLAC, the allocation method looks in the type freelist, which chains free slots across all the chunksof the corresponding type (see �gure 2). If the listis not empty, the �rst slot it refers to is removedfrom the list and used for the new object. The seg-regation of objects by type thus makes it possibleto look for a free slot with a constant, low cost.If no room can be found in any of the chunkscorresponding to this type, a garbage collectioncycle can be triggered, which should reclaim un-used objects and thus provide a slot for the newobject. In case the GC cycle does not provide thenecessary memory, a new LAC for objects of therequired type has to be malloc'd.In order not to trigger a full GC cycle when-ever no free room can be found either in the LACor in the type list of free objects, an additional cri-terion, the memory �ceiling� is considered. It rep-resents the headroom for �xed-size objects, that isthe amount of allocated memory under which nogarbage collection is requested, but a new chunkis malloc'd instead.

Thanks to the type inference performed at com-pile time, an initial value can be assigned to theceiling by considering the number of live types inthe system. For example, a program with a fewconcrete live types has a lower ceiling than anotherone with many live concrete types. In practice, theceiling is equal to four times the number of liveconcrete types, which means each type is expectedto use four chunks on average. Some Ei�el objectshaving speci�c properties in the system (unique-ness for example) are managed in a particular way(see section 4).The constant ceiling incrementation is of coursetoo simplistic to provide good performance, partic-ularly because it does not consider the amount ofmemory previously allocated. Polynomial extrap-olation seems well adapted because it is able toupdate the ceiling according to the previous evo-lution of memory requirements, even when a verysteep increase occurs. However, we obtained thebest results, both in terms of speed and memoryfootprint, with a simple, constant growing factorof thirty per cent. Thus, after each garbage collec-tion cycle, the program is allowed to allocate newchunks representing up to thirty per cent of theamount of used chunks, in order to ensure it hasenough headroom.Figure 3 illustrates the behavior of this ceilingin a test program which features three di�erent ex-ecution phases. In the �rst phase (GC cycles 0 to9), it allocates a lot of memory. During this phase,the ceiling is quickly increased (it is doubled aftereach GC call when the allocated memory is lessthan 10Mb, and increased by thirty per cent afterthis limit). In the second phase (GC cycles 10 to14), the program allocates objects without keep-ing references to them: the ceiling is not updatedbecause the GC recycles enough memory chunks.Finally, the program enters a new allocation phase(GC cycles 15 to 18) which leads to a new seriesof 30% ceiling updates.
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slotFigure 2: Detail of a �xed-size object chunk2.2 MarkingThe marking process requires the addition ofsome information to each object in order to knowwhether it is marked or not. This extra infor-mation is implemented with a one-word long GCheader for each object. It holds the mark-bit,which we implemented as an integer �ag for thesake of simplicity. In future releases, we plan amore compact implementation using bitmap head-ers associated to each chunk.The mark phase relies on two di�erent stepsdepending on where object references are found:root pointers in the stack or internal pointers inobject structures � in SmallEi�el C code, pointersmay not be located in static areas.2.2.1 Finding the rootsOf all the data contained in the stack, only refer-ences to objects are of interest for marking.In Ei�el, normal objects are always allocated inthe heap and, in case a normal object is referencedfrom a local variable or argument, only a pointerto its location is pushed into the stack. However,Ei�el's expanded objects [Mey94] may be allocateddirectly in the stack. They may hold non-referenceobjects, and also references.Thus, examining the whole stack should allowall references to live heap objects to be retrieved.Finding internal references to other live objectswill be explained later.The stack depth1 is an important factor to takeinto consideration. A good computation of thestack area to be analyzed may save some wordanalysis at each call to the GC. SmallEi�el con-siders the address of the object associated to theroot class as the bottom of the stack, and the lastlocal variable allocated as its top.Since stack elements may be directly storedin processor internal registers, references to ob-jects may remain outside the stack. Thus,beside the stack scanning process, anotherone is needed to access the processor regis-ters. People interested in details may want tolook at SmallEi�el source code, accessible fromhttp://www.loria.fr/SmallEiffel.1We consider here that addresses increase as the stackgrows. But of course, SmallEi�el analyzes the direction ofstack growth and handles both increasing and decreasingaddresses.

When accessing any stack (or register) word,one does not know whether it is an Ei�el referenceor another data type (a properly-aligned bit pat-tern). Consequently, all stack words are a prioriconsidered possible references [BW88]. We thusneed to e�ciently identify genuine references: asin [Cha92] and [KID+90], four successive �lters areused to reduce cases of misidenti�cation.Let r be the candidate reference, and N the to-tal number of chunks (whatever the type). We note[Bx; Ex], with x 2 [1;N ] the range of addresses in-cluded in chunk x, and ObjectSize(x) the size ofthe slots in chunk x.1 - Because the addresses of all created chunksare sorted in the main table (as shown in �gure 1),we immediately have the range of acceptable ad-dresses for an object reference: r is an acceptablereference if and only if r 2 [B1; EN ].2 - Check if the potential pointer is included inthe address range of an existing chunk:9i 2 [1;N ] j r 2 [Bi; Ei].3 - Check if the pointer actually refers to (thebeginning of) an object in this chunk i. This isquickly done by a specialized function associatedto the chunk, which veri�es whether the pointervalue corresponds to an o�set from the beginningof the chunk by an integer multiple of the objectsize of the chunk:9k 2 N+ j r = Bi + k �ObjectSize(i).4 - Check whether the pointed address corre-sponds to an unmarked allocated object, thanksto the object mark �ag.If the candidate reference passes these fourtests, it is considered a valid root reference andthe pointed object is marked live, using the GCheader extra word.It should be noted that after the above fourtests we still do not know for sure whether apointer from the stack really is a reference to anobject or not. A coincidence might occur where astack word contains a bit pattern which is a validaddress, although the word is not a pointer at all.In this misidenti�cation case, the object is main-tained live when it should not be, and its mem-ory block cannot be reused until the address dis-appears from the stack. This may cause a slightincrease in memory use, but is the only safe pol-icy, because it guarantees the completeness of themarking algorithm. In [Boe93], Boehm experi-ments on test programs showed that misidenti�-cations caused memory retention of about 10% for
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Figure 3: Updating the memory allocation ceiling.fully conservative collectors. Memory retention islikely to be lower for our partially-conservativeGC,because misidenti�cations can only occur whenmarking from the stack.2.2.2 Following internal referencesWhen an object is reached and marked live, themarking process must continue on all objects re-ferred from it (its suppliers [Mey94]). A mark-ing process that would know nothing of the objectapart from its size would have to perform the samekind of reference identi�cation as previously de-scribed for root detection. Of course, in probablyall implementations of object-oriented languages,objects hold information about their dynamic type(if only to be able to perform late binding), inthe form of a pointer to an object descriptor oras a type ID used to access a type descriptor ta-ble. The marking process is thus able to accessthe object description, and then follow each in-ternal reference, without having to check whetherthe reference is a valid one or not. Many potentialmemory leakages [Boe93] are avoided in this way.SmallEi�el, thanks to its type inference andcode customization capacities, implements this in-ternal pointers processing in a very e�cient way.Indeed, SmallEi�el � relying on importantcode customization � generates a specializedmark function for each object type. Such a func-tion exactly knows where to �nd valid referencesto other objects and what their type is. So afterthe �rst blind jump from the stack into a chunk

c, the customized marking function associated tochunk c (see �gure 1) is called. Since it is a typedcustomized function, the marking process followsunambiguous, typed pointers and statically callsmarking functions until a leaf (a childless object)is reached.Assume for example that part of a system iscomposed of triangle objects which contain aninteger representing their color and three refer-ences to point objects, the latter holding two dou-bles as their coordinates. The marking functionmarkTRIANGLE looks like this:void markTRIANGLE(Triangle *triangle) {if (triangle->mark_flag!=MARKED_FLAG){triangle->mark_flag=MARKED_FLAG;if (triangle->point1 != NULL)markPOINT(triangle->point1);if (triangle->point2 != NULL)markPOINT(triangle->point2);if (triangle->point3 != NULL)markPOINT(triangle->point3);}} As can be seen, since attribute color of classtriangle is known to be a non-reference �eld,no code needs to be generated for its marking inmarkTRIANGLE.Since class point has only two double at-tributes, and does not hold any reference attribute,no marking code needs to be generated for chil-dren:void markPOINT(Point *point) {point->mark_flag=MARKED_FLAG;}



Also note that the absence of children makes itunnecessary to test whether the �ag is marked ornot.Of course, because of polymorphism, the con-crete type of a given supplier may be any descen-dant of its static type, and a late binding on thecorrect marking method is required. SmallEi�eltype inference mechanism [CCZ97] makes its pos-sible to signi�cantly reduce the cost of late binding,by narrowing the number of possible types to thosewhich are actually live, ensuring a fast late bind-ing. Assume for example that the abstract classfruit has two concrete living types: apple andpeach. The implementation of late binding onmarking functions for objects of static type fruitis as follows:void markFRUIT(Fruit *fruit) {switch (fruit->id) {APPLEid: markAPPLE((Apple*)fruit); break;PEACHid: markPEACH((Peach*)fruit); break;}} As for any late binding function, such a methodis in fact implemented using binary branchingcode, which results in very fast execution, as shownin [ZCC97].2.2.3 Avoiding recursive markingAs usual in recursive marking algorithms, deeplynested structures such as very long linked liststend to make the execution stack grow dramati-cally, eventually causing stack over�ow. The clas-sic technique for solving this problem is to trans-form recursive calls into iterative loops and auxil-iary data structures.Since the SmallEi�el compiler knows objectstructures, it can reorder the marking of their �eldsin the most e�cient order, avoiding the use of anyextra data structure when only one of these �eldsis the beginning of a long chain of references. Forexample, a linked list of integers is marked inthis way:void markLINK(Link *link) {do {if (link->mark_flag!=MARKED_FLAG){link->mark_flag=MARKED_FLAG;link = link->next;}} while (link != NULL);} We did not implement this technique for morecomplexe recursive structures, where more thanone �eld belong to long chains of references. Webelieve however that the generalization to suchcases is possible, and will still imply the use ofan extra data structure, whose size will be limitedand known thanks to the SmallEi�el type inferencealgorithm. This work is still under progress.2.3 SweepingThe next phase, sweeping, consists in looking atall allocated objects in order to collect the memoryused by those which have not been marked live.We thus have to scan all the chunks of the maintable (see �gure 1) to collect the objects that are

no longer referenced and whose �ag has been leftunmarked. This is e�ciently done in SmallEi�elwith sweeping functions customized for each type.Hence, the addresses where the �ags are to befound can easily be computed, thanks to the factthat all objects in a chunk have the same prede-�ned size. The continuous nature of the memoryheld by a chunk is also likely to guarantee a betterdata locality when scanning the chunk than withchained, scattered memory blocks. Here is a sim-pli�ed example of a sweeping function customizedfor the triangle chunks:void sweepTRIANGLEchunk(TriangleChunk *tc) {Triangle*tp;for (tp=tc->first; tp <= tc->end; tp++){if (tp->mark_flag!=MARKED_FLAG)addToFreeListOfTRIANGLE(tp);elsetp->mark_flag=UNMARKED_FLAG;}} Each type has its own free list comprising allthe free slots associated to this type, whateverchunk they are in. When an unmarked object isfound, it is linked ahead of the type free list. Thisfree list does not incur any space overhead, sincethe GC header extra word previously used to markwhether the object was live or not is now reusedto chain the object to the free list.All objects marked live are unmarked when thechunks are swept, readying the object graph for thenext garbage collection.When a chunk contains only free slots, it is putback in the list of free chunks. The latter is un-typed, which allows a better recycling of chunks,since they all have the same size.2.4 FinalizationBefore an Ei�el object is collected, a �nalizationroutine [Hay92] may be called on this object.Finalization routines in the SmallEi�el GCare generated like all other user-de�ned routines.Thus, they are produced only for objects whichactually de�ne an e�ective �nalization routine.Since all these routines are known at compiletime, the GC can be adapted to generate the corre-sponding calls when appropriate. Thus there is noneed to check whether each object has to be �nal-ized. Only the chunks holding objects which haveto be �nalized need to be examined, and in thesechunks, it is easy to consider only the objects whichhave been marked to_finalize. In this way, theoverhead incurred by �nalization management isvery limited and does not lower the program per-formance.Although these ideas have not been imple-mented yet in SmallEi�el, future versions of ourGC will feature such a customized �nalizationmechanism.3 Resizable object managementResizable objects are implemented in a very similarway to �xed-size objects. However, because thesize of resizable container objects (arrays, strings)is not computable at compile time, these objectsare more di�cult to manage.
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very e�cient. Indeed, the most appropriate codefor the element type is used instead of a genericone: direct calls to markTRIANGLE are made whilemarking a container of triangles.For a container holding non-reference objects,such as an array of integers, no further marking isneeded. Hence, the marking function just marksthe container itself and returns:void markContainerOfINTEGER(Integers *c) {c->mark_flag=MARKED_FLAG;} On such a container, the SmallEi�el cus-tomized marking algorithm is faster than that of aconservative garbage collector.Sweeping of resizable objects is similar to thatof �xed-size objects, except that the former musttake into account the actual size of each containerobject in the chunk. Since this process does notrely on the element type of the container, the samesweeping function is used for all resizable objectchunks.When a resizable object is collected, it is put inthe free list corresponding to its type. As for �xed-size objects, a completely free chunk is put in anuntyped free list of chunks and may be reused forany type.When a very large resizable object is freed, thecorresponding chunk is also put in this free list.This chunk may then be split to be used as anormal-size chunk for small resizable objects. Aconsequence of this splitting is that the remain-der may constitute a smaller than normal chunk.To avoid excessive fragmentation, a coalescing isperiodically triggered on these chunks.4 Speci�c optimizationsThe peculiarities of some kinds of objects result invarious speci�c customizations.4.1 The root objectThe root object, the �rst object created, on whichthe root method of the system is called, lives aslong as the program. Thus, it cannot be garbagedand always remains marked. However, since itsattributes may change during the program execu-tion, marking them is still necessary.Furthermore, since the root object is frequentlythe only object of its type in the system, it is not



allocated in a normal chunk, but apart, to avoidwasting memory.4.2 Once function resultsOnce routines [Mey94] are a speci�city of Ei�el.The body of such a routine is executed only oncein the program lifetime, the �rst time the routine iscalled. Subsequent calls return without executingthe routine body.When the once routine is a function, its resultis computed the �rst time the routine is called, andreturned at each subsequent call.Hence, objects returned by once functions, oronce objects, live from the time they were allocatedtill the end of the program. Thus, exactly like theroot object, a once object must always be consid-ered as marked by the collector, and may not becollected.Once object management can thus be opti-mized by relying on speci�c marking and com-pletely avoiding sweeping. This is currently beingimplemented in SmallEi�el.For some simple once functions, it is possibleto unambiguously know the type of the result atcompile time. Such results can thus be precom-puted, that is created at the very beginning of theprogram [ZCC97]. Further optimizations, such asnot checking whether the object is NULL, can beperformed in the GC when dealing with these ob-jects.4.3 Manifest stringsA manifest string is a string whose value appearsdirectly in the source code. A manifest string isnot a constant string; it is a reference to a resiz-able container of characters. Indeed, in Ei�el, thedeveloper does not normally have direct access toa resizable object itself, but to a �xed-size objectwhich encapsulates the behavior of the resizableobject in a portable way and hides its implemen-tation from the user [Mey94].A manifest string can thus be considered as aspecial type of once function whose value is pre-computable at compile time. Consequently, allthe manifest strings are allocated in speci�c mem-ory areas, are not subject to sweeping, and have amarking process customized and optimized as de-scribed for pre-computable once functions. This iscurrently implemented in SmallEi�el.5 PerformanceIn order to evaluate the performance of our im-plementation of a customized mark and sweepgarbage collector, we chose to benchmark severalimplementations of an Othello (or Reversi) game.These programs had been designed by 24 teams ofstudents using the previous version of SmallEi�el,without a GC. They enable us to compare real pro-grams performing the same kind of task, with var-ious programming styles and algorithms, resultingin di�erent execution behaviors, especially withrespect to memory. We also benchmarked smallprograms featuring a range of synthetic executionpatterns, as well as the SmallEi�el compiler itself.

These results are coherent with the ones we presenthereafter.Two of the 24 Othello programs were incorrect(failing because of assertion violations) and thuscould not be used. The 22 remaining programscan be split in two categories: non-leaky programs,where memory has been sparingly managed, andleaky ones, with many short-lived objects.Being generated in ANSI C, our GC isplatform-independent and has been tested on awide range of UNIX, Macintosh and Windowsplatforms. For the sake of brevity, we only presenthere the results we obtained with the aforemen-tioned programs on one UNIX platform. The re-sults on the other platforms were similar and leadto the same conclusions.5.1 Benchmarking platformWe compared the heap-accurate, customizedmark-sweep GC generated by SmallEi�el to theBoehm-Demers-Weiser GC (BDW) [BW88]. TheBDW GC is a renowned fully conservative GCwhich has been a topic of numerous research pa-pers, e.g [Boe93, Zor93, DDZ94]. It has also beendeveloped for a long time on UNIX systems and isthus very mature. Implemented in real-life sys-tems, it is a fast, robust and slim GC, thanksto highly optimized algorithms and e�cient datastructures. The BDW GC is thus a very valuablereference system.Furthermore, it has been used successfully forsome time in conjunction with SmallEi�el, becausethe latter did not provide its own GC until version-0.812.In might also have been interesting to com-pare our heap-accurate GC with a �typed� BDW.Indeed, in [BS93], Boehm and Shao show thatsome performance improvements over the classicalfully-conservative BDW seem possible. However,as they pointed out, it is unclear whether theseimprovements would scale up to large programs.Furthermore, in this study, we wanted to compareour partially conservative GC implementation toa fully conservative one. We thus only consideredthe classical BDW GC.Since version -0.81, SmallEi�el is able to pro-duce the C code adapted to an application with orwithout generating the C code corresponding tothe customized GC, depending on whether option-no_gc has been selected or not. When the GC isalso generated, instantiation instructions rely onthe whole GC described in sections 2 to 4. Con-versely, with -no_gc, the allocation routine of anew object (e.g newTRIANGLE) calls the standard Clibrary malloc. This makes it easy to include anexternal GC library rede�ning malloc and free,like the BDW GC, or to use no GC at all.We report here the results we obtained on aSUN Sparc Ultra Enterprise with 512 Mb of RAM,running Solaris- 2.6. The large amount of memoryof this machine made it possible for all the bench-marks � even the most memory-hungry � to runentirely in RAM without being swapped to disk.2The �rst version of SmallEi�el was numbered -0.99;version -0.80 is the 20th.



SmallEi�el -0.80 was used with optimiza-tion options -boost and -no_split to gen-erate the C code. Of course, -no_gc wasadded when producing the C code to be linkedwith the BDW 4.12 library (for which option-Dall_interior_pointers was disabled). The Ccode was compiled with egcs-1.0.1 (a variant ofgcc), using optimization option -O6.Because of the di�erences of complexity be-tween the various game algorithms used by the dif-ferent teams, and because of the major di�erencesin the e�ciency of the implementation of these al-gorithms, we had to benchmark them on di�erentboard sizes in order to get the most meaningful re-sults. Of course, each program was benchmarkedwith the same board size without any GC, withBDW and with SmallEi�el. Our �gures for eachbenchmark were obtained by running it 4 consecu-tive times, under a constant workload, and takingthe average on the last 3 runs.5.2 Executable sizeSince the BDW GC is a very compact self-contained library, its executable size overhead isa constant one, about 45 Kb. The SmallEi�el GC,on the contrary, generates additional, customizedGC code for each live type. Obviously, this in-trinsic drawback of the method may be a concernfor programs featuring a very large number of livetypes. On the SmallEi�el compiler itself, whichfeatures as many as 270 live types, the extra sizeincurred by the GC code is about 440 Kb (or 45%).However, one should be aware that the overheadmeasured on various kinds of programs, representsonly about 1.5 Kb per live type, which seems rea-sonable.5.3 Non-leaky programsFourteen of the Othello programs were non-leakyones, featuring rather careful object instantiationsand reuse of objects whenever possible. This isconsistent with the fact they were designed at atime when SmallEi�el did not provide its own GCmechanism. Figure 5 shows the results obtainedon these programs.5.3.1 Memory footprintAs could be expected, for all these non-leakyprograms, the maximum memory footprint wasroughly the same without GC and with either theBDW or the SmallEi�el GC. One of the 14 Othelloproduced a memory footprint around 2 Mb, all theothers using about 1 Mb only.In all cases, running the Othello program with-out any GC lead to the smallest memory footprint.Indeed, with non-leaky programs, a GC can collectvery few � if any � garbage objects, whereas itdoes take space, since it requires extra code anddata structures.On 6 of the Othello programs, SmallEi�el in-curs a smaller memory footprint than BDW, by1 to 7%, whereas BDW has an advantage of 1 to9 % on 7 programs. Both generally need about25% more memory than the -no_gc version, which

represents roughly 300 Kb on our benchmark pro-grams. The performances achieved by the BDWand SmallEi�el garbage collectors are thus verysimilar, which indicates the validity of our ap-proach.5.3.2 Execution timeOn these non-leaky programs, execution timeswithout any GC or with either GC are generallyalike.Overall, the -no_gc version is the fastest, sinceit outperforms both GC versions in 6 out of 14cases, with an advantage of up to 8% over thefaster of the two GC versions. The BDW GC ver-sion is the quickest in 1 only case, whereas Small-Ei�el scores �rst in 4 cases.These results con�rm that, for non-leaky pro-grams, it is better not to use a GC at all, and thatusing either SmallEi�el or BDW generally resultsin a speed decrease, although a limited one.When only the BDW and SmallEi�el are con-sidered, the former is faster in 7 cases, by up to20% (program #9). On the other hand, SmallEif-fel o�ers a speed advantage of up to 22% (program#14) in 5 cases. This shows that the overhead in-curred by the GC on non-leaky programs tends tobe lower in BDW than in SmallEi�el. This canbe explained by the fact that the SmallEi�el GCis still in its early days, and o�ers room for opti-mization.5.4 Leaky programsWe also benchmarked 8 di�erent leaky Othello pro-grams, among which sloppy memory allocationsand deallocations cause very important memoryleaks � 37 to 194 Mb � in 6 cases. We thinkthese programs constitute a benchmark which ismore representative of typical memory usage whenthe developer relies on an automatic GC. Figure 6shows the results obtained.5.4.1 Memory footprintThe usefulness of a GC clearly appears on theseleaky programs. Although the -no_gc versionstake between 2 and 194 Mb of memory, all pro-grams using either the BDW or the SmallEi�el GCfeature a very reasonable memory footprint (be-tween 1 and 2 Mb), similar to that of non-leakyprograms. This demonstrates the e�ectiveness ofboth collectors.When only BDW and SmallEi�el are consid-ered, their performance in terms of memory foot-print are alike. However, BDW generally has anadvantage of 136 to 552 Kb, which on these pro-grams featuring small optimal memory footprintstranslates to 10 to 31%.5.4.2 Execution timeOverall (5 cases out of 8), both the BDW andSmallEi�el GC are faster than the -no_gc version.This is because less memory has to be allocatedthanks to the recycling of dead objects by the sys-tem. The only case where the -no_gc version is
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Figure 5: Execution time and memory footprint comparisons of non-leaky programs under UNIXthe fastest � program #19 � also con�rms theprevious statement. Indeed, this program is by farthe one where memory leakage is the smallest, lessthan 1 Mb, which thus limits the gain a GC canreap. On most programs, this gain is about 10%for both GC versions, and even reaches about 30%on the �leakiest� benchmark (team #16, with a 193Mb leak).Thus, on leaky programs the SmallEi�el GCperforms rather well when compared to the BDWGC. The latter outperforms SmallEi�el in 3 cases,with an execution time advantage of up to 17%(on program #22), whereas SmallEi�el is faster in5 cases, by up to 11% (program #16).Table 1 allows us to show more precisely the
behavior of the SmallEi�el GC (SE). The numberof GC calls with BDW is given as a reminder ofthe program memory activity. As can be seen, theSmallEi�el GC is called 3 to 7 times less often thanBDW. The former, being non-incremental, is thuslikely to cause longer GC pauses in the program.The average time per GC call (mark-and-sweep cy-cle), which ranges from 0.9 to 3.3 millisecond, ap-pears reasonable for most programs but hard-realtime ones.Overall, the total GC time (including alloca-tions and mark-and-sweep cycles but excluding GCstructures initializations3 ) takes from as low as3These initializations, as well as decreased locality
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SmallEiffel - 0.80 GC Boehm-Demers-Weiser 4.12SmallEiffel - 0.80 No GCFigure 6: Execution time and memory footprint comparisons of leaky programs under UNIXTeam #15 #16 #17 #18 #19 #20 #21 #22Number of BDW 473 1636 276 1386 12 352 60 820GC calls SE 97 454 57 286 4 74 10 119Avg. time per GC call (ms) SE 1.4 1.1 2.5 1.0 0.9 1.4 3.3 2.9total GC time (ms) SE 795 3466 930 1811 22 549 223 1935% of exec. time in GC SE 3.2 20.6 1.7 8.8 0.1 0.9 0.8 0.7Table 1: Behavior of the SmallEi�el GC on leaky programs under UNIX0.1% and as much as 20.6% of the program ex-ecution time. The important di�erence betweenthese extremes is easily explained by the behaviorof the underlying programs, as shown by �gure 6.Indeed, program #16 is an extremely leaky onesince it produces about 193 Mb of dead objects,well above 150 times the maximum size of the datait needs at one time, which requires a very heavywork from the GC (20.6%). On the contrary, pro-gram #19 produces about 1 Mb of dead objects,which does not require much work from the GC(0.1%). This is con�rmed by similar results ob-tained on the non-leaky programs.On all these programs, the SmallEi�el GCtakes on average 4.6% of the program executiontime, which is a correct score [JL96].Consequently, although it does not have thematurity of the BDW GC, the SmallEi�el GC ap-pears quite promising and compares well with thismuch renowned and very e�cient automatic mem-ory management system.6 Related workThe research carried out by Detlefs and al.[DDZ94] tends to prove that conservative garbageproperties, may also be part of the performance di�erencebetween the -no_gc and the SmallEi�el GC versions.
collector performances compare quite well with ex-plicit memory deallocation.But although classic conservative collectorsperform well, a little extra information about spe-ci�c memory patterns is likely to signi�cantly im-prove the results. This information may be pro-vided by di�erent sources: pro�ling, developer,type analysis, ...Grunwald and al. describe in [GZ93] theirCustoMalloc system. After the pro�ling of aprogram, CustoMalloc produces a customizedmemory allocator (malloc) and a customized mem-ory deallocator (free) which are able to handlemore e�ciently the most frequent object sizes.Their work indeed shows on a variety of commonlyused programs that a few classes of object sizes �generally small sizes � represent almost all theallocated memory. Unlike CustoMalloc, Small-Ei�el generates not only customized memory allo-cator and deallocator, but a complete, customizedGC system. Furthermore, since in our systemonly static analysis is used to provide the infor-mation needed for customization, no pre-run is re-quired. It seems nonetheless possible that Small-Ei�el might bene�t from using pro�ling informa-tion, especially to predict resizable object sizes andthe most common classes of �xed-size objects.In [BS93], Boehm and Shao studied the per-



formance of an enhanced version of BDWGC in-volving type inference during the collection phases,thanks to a user-typed malloc. At runtime, theysample the �rst several objects allocated for eachtype and infer a type map. This extra informationallows a more e�cient marking of the memory andspeeds up garbage collection in some cases.Bartlett's Mostly Copying collector [Bar88] isa hybrid conservative and copying collector. It as-sumes no knowledge of register or stack area lay-outs, but it does assume that all pointers in heap-allocated data can be found accurately thanks tothe registration of all internal roots [Bar90] by thedeveloper.Other experiments around garbage collectorcustomization were carried out in [AF94] and[AFI95]. Their Customizable Memory Manage-ment (CMM) allows users to customize objectmanagement by specifying at each object alloca-tion which policy to adopt for its storage, and byproviding the optimal traversal routines for eachtype. The major interest of the latter kind of man-ual customization is that it allows type-accuratememory management.In Edelson's garbage collector for C++ [Ede92,Ede93], the marking functions are automaticallyproduced by a preprocessor which generates a callto a marking function for each pointer in theclass. This syntactical substitution reduces inter-nal pointer misidenti�cations and speeds up themarking process.In [BL71] Branquart and Lewi describe amethod relying on compile-time type informationto automatically produce tables mapping stack lo-cations to the appropriate garbage collection rou-tines, in an Algol-68 implementation.Diwan and al. [DMH92], as well as Age-sen and Detlefs [AD97], describe related and im-proved kinds of compiler-supported garbage collec-tion which allow accurate (or exact) collection. Tobe able to �nd pointers in the stack and in regis-ters at run-time, their compilers statically generatetables which encode the location of these point-ers at any point where a collection might occur.At garbage collection time, the return addresses ofstack frames give access to these tables.Goldberg's work [Gol91] also studies an e�-cient search of roots in the execution stack thanksto speci�c routines. Althought related to Bran-quart and Lewi's method, Goldberg's features animportant di�erence, since it avoids tables to mapthe stack. Speci�c routines can be generated foreach function in order to trace local pointer vari-ables in each activation record (frame). By follow-ing the return address pointers stored in the stack,it is possible to determine all the frames stacked ata given time, and call for each of the correspondingfunction the appropriate marking routine.An important di�erence between SmallEi�eland most previously described research is thatSmallEi�el automatically generates typed, cus-tomized memory management functions. Thanksto the static type inference performed by SmallEif-fel, no additional information, provided either bythe developer or by pre-executions, is required.

7 ConclusionIn this paper, we described an implementationin an Ei�el compiler of a compiler-supported GCcustomization technique for a classical mark andsweep algorithm Unlike many previous works,this customization is completely and automati-cally performed by the compiler, without any in-tervention from the developer. Most of this tech-nique is not speci�c to our system and is likelyto be applicable to other class-based languagesand other garbage collection algorithms, even dis-tributed ones.The set of benchmarks we described in section5, featuring various programming styles, allowedus to evaluate the performance of the GC on dif-ferent memory patterns. The results obtained onthese various execution patterns clearly show thevalidity of the approach both in terms of memoryfootprint and execution time.Although the SmallEi�el GC performs well, itcould bene�t from the addition of some features.Incrementality, for example, may be an importantasset in some situations and is thus worth explor-ing.Our future work is likely to focus on improv-ing the performance of our GC. The addition of�ow analysis or pro�le-guided analysis to SmallEif-fel would provide the GC with more informationon memory requirements, such as the most fre-quent size classes, thus helping to better tune theGC, and would allow an increased degree of cus-tomization of the GC routines. Deferred sweepingand coalescing of memory chunks is also likely toimprove the GC behavior, by delaying operationswhich are not immediately necessary.AcknowledgmentsWe thank the anonymous reviewers for their help-ful comments and suggestions, and Jean-MichelDrouet who proofread early versions of this paper.References[AD97] Ole Agesen and David Detlefs. FindingReferences in Java Stacks. In OOP-SLA'97 Workshop on Garbage Collec-tion and Memory Management, 1997.[AF94] Giuseppe Attardi and Tito Flagella.Customising Object Allocation. InECOOP'94, volume 821, 1994.[AFI95] Giuseppe Attardi, Tito Flagella, andPietro Iglio. Performance-Tuning ina Customizable Collector. In Inter-national Workshop on Memory Man-agement (IWMM'95), volume 986 ofLecture Notes in Computer Sciences,pages 179�198, 1995.[Bar88] Joel F. Bartlett. Compacting GarbageCollection with Ambiguous Roots.Technical report, DEC Western Re-search Laboratory. 88/2, 1988.
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