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Abstract
Stack allocation of objects offers more efficient use of cache mem-
ories on modern computers, but finding objects that can be safely
stack allocated is difficult, as interprocedural escape analysis is
imprecise in the presence of virtual method dispatch and dynamic
class loading. We present a new technique for doing optimistic
stack allocation of objects. Our technique does not require inter-
procedural analysis and is effective in the presence of dynamic
class loading, reflection and exception handling. Moreover, we usu-
ally achieve higher proportions of stack allocated data than static
strategies. In this paper we present optimistic stack-allocation for
Java-like languages. For experiments we use traces of running Java
programs to drive simulations of various garbage collection and
allocation strategies.

Categories and Subject Descriptors D.3.4. [Programming lan-
guages]: Processors – Memory management (garbage collection)

General Terms languages, performance

Keywords garbage collection, Java, stack allocation

1. Introduction
Object-oriented languages such as Java, BETA or Smalltalk require
allocation and deallocation of objects in an ordering that is not al-
ways last-in-first-out. This means that allocation cannot in general
occur on a stack. It is however often the case, that a considerable
subset of object allocations and deallocations are in last-in-first-out
order or some useful approximation hereof. This opens up the pos-
sibility of performing these allocations on a stack-like structure.
Stack allocation holds the promise of improved execution perfor-
mance through efficient use of deep cache hierarchies.

In this paper we present an effective allocation system where
memory allocations occur in stacked regions, but can be moved
to a heap if necessary. This potentially combines the simplicity
of universal heap allocation of objects with the performance of
systems where stack allocatable objects have been identified by
static analysis. Our approach is based on loops rather than method
invocations and therefore requires simple intraprocedural escape
analysis, which we describe and implement. Pretenuring heuristics
are examined and evaluated. Results are presented from simulating
our system on programs from the SPECjvm98 benchmark suite.
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Our experiments indicate that we in most cases achieve higher
proportions of stack-allocated data than alternative strategies.

1.1 The Performance Argument for Stack Allocation

Stack allocation generally means that memory is on average re-
claimed very fast (on method termination), and reused immediately
(often on the next method call). This reused memory is very likely
to be in the fastest, smallest cache, since it was very recently used.
Garbage collected heaps have difficulty in concentrating their most
frequently used objects in an area as small as that covered by the
level 1 (fastest) cache and even making good use of the slightly
slower and larger level 2 cache requires some care.

Stack allocation also has the desirable property of making good
use of caches regardless of their size and configuration. In this sense
stack allocation is cache oblivious [Pro99]. Stack allocation is,
however, not in general asymptotically optimal under any particular
assumption of cache behaviour, a meaning that is sometimes also
associated with the term.

1.2 The Cache Benefits of a Write-allocate Cache

Despite the number of recent papers detailing stack allocation tech-
niques for Java, the benefits of stack allocation are not entirely
uncontroversial. Several papers, including [AS94], [Rei94] and
[DTM93] argue that a write-allocate cache can reduce the costs of
heap allocation to the point (4-5%) where other optimisations made
possible by heap allocation can more than compensate.

Unfortunately, it appears that modern processors are not im-
plemented in this way. According to “The IA-32 Intel Architec-
ture Software Developer’s Manual” [Inta] Section 10.2 most mem-
ory in a modern Pentium 4 or Xeon system is handled in “write
back mode” (fetch-on-write mode) and no mode corresponding to
write-allocate mode is in practice available to the systems program-
mer. The situation for embedded CPUs is not much better, with
the popular Xscale RISC CPU also implementing a fetch-on-write
policy. See Section 6.2.3.3 in “Intel XScale Microarchitecture for
the PXA250 and PXA210 Applications Processors” [Intb]. While
many recent CPUs include prefetch machine instructions [Int00],
our measurements indicate that they cannot replace write-allocate
caches in terms of performance. See for details our M.Sc. thesis
[Cor04].

1.3 A Review of Static Escape Analysis in Java

Much effort has in the last few years gone into static analysis of
Java in order to determine which objects may be stack allocated
without altering program semantics.

The following papers describe escape analysis algorithms for
Java. The analyses identify objects whose lifetime is delimited by
the lifetime of a method invocation. This allows the objects to be
allocated in the stack frame of the relevant method invocation and
deallocated automatically when the method returns and its stack
frame is removed from the stack.



Blanchet [Bla99], Choi et al. [CGS+99] and Reid et al. [RMB+99]
implement their static escape analysis for the static subset of Java
(without dynamic loading). Gay and Steensgaard [GS00] imple-
ment their escape analysis for Marmot, a static compiler that com-
piles a language that is almost Java.

Changes to the allocation strategy are always in danger of
changing the space complexity of the algorithm they seek to imple-
ment. If a stack allocation analysis changes any program that uses
O(n) non-collectable memory for an input of size n into a new pro-
gram that uses O(n2) non-collectable memory then that is unlikely
to be an acceptable ‘optimisation’. Blanchet tries to avoid changes
in space complexity due to loops by reusing space that is provably
dead when the next loop iteration starts. This does not completely
avoid space complexity issues associated with loops since it is lim-
ited by the ability of the stack allocation algorithm to automatically
prove things about object lifetimes. Therefore Blanchet also runs
his benchmarks in a safe configuration, where the system does not
do stack allocation at all in loops unless it can reuse the space
in the stack frame by using liveness analysis. Even in the safe
mode, space complexity is not preserved in the presence of recur-
sive method calls. The approach to space complexity issues in Gay
and Steensgaard’s paper is similar to Blanchet’s safe configuration,
while Choi et al.’s proposal aggressively stack allocates objects
without regard for space complexity issues. The stack allocation
techniques in Reid et al.’s paper will also potentially cause adverse
changes in space complexity. Though Reid et al. acknowledge the
problem they give no systematic way to avoid it.

All the Java analyses mentioned above are whole program anal-
yses. That is, the analysis relies for correctness on knowledge of
the whole program rather than working on individual classes or
methods. This means the analysis must be rebuilt if the program
dynamically loads new classes during program execution. Some of
the schemes in theory allow previously calculated data to be reused
when the new analysis is generated, but as far as we can ascertain
this feature is not used in the sample implementations.

Reid et al.’s proposal includes deep stack allocation where an
object can be allocated in the stack frame of a method on the
current call stack other than the currently active one. They describe
a rotating stack system where n different stacks are used in rotation,
allowing simple allocation on any of the last n stack frames. Gay
and Steensgaard also support deep stack allocation, though only
one level deep.

Some objects may be subject to scalar replacement. That is,
they are reduced to a collection of local variables by inlining all
methods that act on the object. This optimisation is implemented
by Gay and Steensgaard.

In order to increase the opportunities for stack allocation, meth-
ods are inlined in Blanchet’s proposal and in Gay and Steensgaard’s
proposal. Inlining of method calls (where the code in a method is
copied into the calling method instead of being called) can increase
the number of objects that fulfill the necessary criteria for reduc-
tion. It is of course only possible where the called method can be
determined statically by the compiler. Another effect of inlining is
that it can convert a deep stack allocation into a normal stack al-
location, by unifying the allocating method and the method from
which an object does not escape.

The results in Choi et al.’s paper are encouraging, showing that
1-70% of objects can be stack allocated. Unfortunately, none of
the results appear comparable with other papers due to choice of
benchmark programs. Results for the other papers are presented in
Section 2.

The emphasis in the literature on whole-program analyses is
a problem in the light of the trend within the Java world towards
more dynamic class loading. In addition, some of the papers have
unresolved issues around space complexity.

2. Optimistic Stack Allocation According to
Baker

Since the analysis of ‘stackability’ is of necessity imprecise, it
would be nice to be able to optimistically stack allocate objects
where the compiler was in doubt, and then move these objects to
the heap at a later time if the object turned out not to be stackable
after all. A scheme to achieve this was proposed by Henry Baker
in “CONS should not CONS its Arguments, or a Lazy Alloc is a
Smart Alloc” [Bak92]. We believe it suggests a productive line of
inquiry.

The scheme will here be described in terms of a downwards
growing stack. It is based on the idea of a simple write barrier
used for pointer writes, combined with a read barrier, which we
will show in the next section can be avoided. In Baker’s scheme,
the stack is placed in the lowest part of memory, followed by
the youngest generation of garbage collected heap, followed by
the other generations if any. This arrangement is critical, since it
makes a very fast inlined write barrier possible. It corresponds to
an arrangement as in the left side of figure 1. All objects are initially
allocated on the stack in the stack frame of the currently executing
method invocation.

We now set up the “Baker constraint”: That no pointer in mem-
ory may point downwards, that is that no pointer may have the ad-
dresser above the addressee. For calculating the height of a pointer
we divide memory into one region per stack frame, and one for the
heap. It is critical to note that within each region, the height of all
objects is equal, and a pointer is only downwards if it points to an
object with a lower height.

In order to conservatively detect potential violations of this
constraint, it is enough to compare the addresser with the addressee
– if the pointer points to a numerically higher address, then it cannot
violate the constraint. If it points to a numerically lower address
then the runtime system needs to investigate further. It may be
that the two objects are in the same region and thus have the same
height, or it may be that a potential violation of the constraint has
occurred.

This suggests a simple write barrier (reinvented in [Ste99]),
such that (in pseudo-C) setting the 4th word in the object p to point
to the object q is code generated in the following way:

if (p > q) // Perform in-line fast-path test
slow_path(); // Call out-of-line slow path check

p[4] = q; // Pointer write. Not part of barrier

This code is intended to be very fast for the common case, namely
the one where the pointer points upwards, or remains within the
same stack frame. The “greater-than” test is also compact in most
instruction sets. It will be noted that the same fast common case
applies to the write barrier needed to record pointers from an older
generation to a newer one (not illustrated here). Thus the write
barriers for both purposes can be combined. The first task of the
slow path code is to determine whether the two pointers are in fact
in different regions. If not, we will term this a false alarm. Note
that the ‘slow path’ need not be particularly slow. It is likely to
look rather like a regular write barrier, having a fast and a slow part
itself, and it may even be partially inlined.

If the pointers are in different regions, then our write barrier has
detected a violation of the Baker constraint (see the left of figure
1, where the new pointer from B to W is a violation). In this case
the slow path code should move (evacuate) the pointed-to objects
(in this case W) to the heap in order to preserve the constraint,
leaving behind a forwarding pointer for the read barrier to find. In
figure 1 the object X was pointed to by the evacuated object W, and
therefore this object was also evacuated. The resolution according
to Baker is illustrated in the centre of figure 1, where the old copy
of W is replaced with a forwarding pointer to the new location.



When reading a reference from an object, Baker’s scheme re-
quires the program to use a read barrier. The job of the read barrier
is to check the reference in order to ascertain whether the pointed-to
object is still there, or whether it has been moved to a new location,
leaving behind a forwarding pointer.

The implementation of the read barrier is likely to be very
expensive in terms of code size and execution resources. A 20
percent slowdown combined with a 100 percent code size increase
is mentioned by Zorn [Zor90]. While and Field [WF] manage to
get the overhead down to about 10 percent, but by using techniques
that cannot be applied to object-oriented languages with public
member variables. Other proposals for fast read barriers [BH04]
rely on all data being tagged, which is not normally the case in
Java implementations. As will be seen in the results section a
read barrier would be invoked on the order of once for every byte
allocated by a Java program.

What the Baker constraint buys us is a guarantee that, when
a method returns, and its stack frame is deallocated by raising
the stack pointer there can be no live pointers to the data in that
stack frame. To see why, consider that since no pointers may point
downwards, and since the stack frame being deallocated is by
definition the lowest object area in the system, there can be no
pointers into the stack frame being deallocated. It is therefore
garbage, and may be deallocated.

Registers may contain pointers, but register operations are not
checked for Baker constraint violations. Registers are few and
cannot themselves be referenced since they have no address. It
is sufficient to check the registers for references to a stack frame
when it is deallocated. Since in Baker’s proposal stack frames are
deallocated at method return most registers can simply be zeroed.

It is of course the case that the eviction of an object to a higher
object area is itself a write operation and is itself subject to the
constraint and therefore must be protected by the write barrier. As
the pointers in the evicted object move to a higher area, they may
thus end up pointing downwards. This can result in new recursive
evacuations which are however bound to terminate since no new
objects are being created by the process, and there is a finite number
of objects on the stack that can be evicted. This case is illustrated
in the centre of figure 1, where the eviction of object W also results
in the eviction of object X.

3. Optimistic Stack-Allocation for Java-like
languages

3.1 How to Remove the Read Barrier

The most obvious problem with Baker’s approach, and in our
opinion the main reason why it has (to our knowledge) never been
implemented lies in the read barrier and the performance problems
associated with it (see above).

The read barrier of Baker’s proposal is necessary in order to
catch pointers that point to the old location and redirect them to the
new location of the object. Instead we propose to find and fix such
pointers at eviction time. These pointers can only reside in the same
or lower stack frames as the object being evicted (or they would
have triggered the eviction earlier). It turns out that evacuations can
be made very rare, and most evacuations will happen to objects
near the tip of the stack (the newest, or lowest end of the stack),
so that only a small number of stack frames need be scanned and
fixed. See Section 5.6. The right of figure 1 shows the part of the
stack that needs scanning for pointers that need fixing.

3.2 Heap Allocating Selected Objects Immediately

We can use heuristics to identify some objects that are likely to be
evicted. They can then be heap allocated right away. This is known
as pretenuring and is used in other garbage collection schemes to

choose the generation an object should be allocated in [CHL98].
Our stack allocation scheme is safe in both directions. If we allocate
an object on the stack that should have been on the heap or vice
versa then the only consequence is a loss of performance; the
program will still execute correctly. This gives us a lot of leeway in
choosing heuristics for pretenuring when compared with traditional
stack allocation that relies on a necessarily pessimistic analysis to
decide which objects belong on the stack.

Heap allocating objects immediately because they are likely to
be evicted soon can cause extra eviction of objects, even if we
were correct in saying that our object would end on the heap. To
understand why, consider the following scenario: An object, A,
is stack allocated. A pointer to object B, also stack allocated, is
written into A. The pointer to B is overwritten with a pointer to a
third object, C. If A is now evicted, B may stay on the stack, since
there is no longer a pointer from A to B that would violate the Baker
constraint. However, if we had been ‘clever’ and immediately heap
allocated A, knowing that it was likely to be evicted later then B
would have been evicted when the pointer to it was written into A.
In practice this effect is very small as we shall see in Section 5.3.

3.3 Locking of Stack Allocated Objects

Choi et al. [CGS+99], Blanchet [Bla99] and Ruf [Ruf00] cite sig-
nificant performance gains from elimination of unnecessary lock-
ing operations in Java through static escape analysis. For our vari-
ation of Baker’s scheme something similar is possible. Stack allo-
cated objects in Java are not accessible from other threads (there is
of course a stack per thread).

3.4 Loop-Based Allocation and Deallocation on an Object
Stack

Conventionally, when stack allocating data, the data is allocated on
the same stack as the method invocation data. We propose having
separate stacks. One stack holds the method invocations as before.
The second stack (the object stack) holds stack allocated objects.
This arrangement gives us more freedom in determining when to
deallocate the stack allocated objects, a subject we delve into in
this subsection. We divide the object stack into regions (or frames).
It must support the following operations:

• Starting a new region

• Allocating a new object in the current region

• Evicting a given object from any region to the heap

• Scanning the objects in a region and the region’s successors for
pointers to evicted objects.

• Deallocating a region and all objects in it

Note that our regions do not support intra-region garbage collection
and compaction, which, though possible, is probably not necessary,
and adds considerable extra complication to an implementation.

Traditionally, the starting of a new frame (region) and the deal-
location of a frame have been done on method entry and exit. This
is not always a good match for object lifetime: Not all objects al-
located in a given method are garbage on method exit; conversely
other objects should be made into garbage long before exit in order
to avoid space complexity bugs. Therefore various variations have
been made to the frame management regime, e.g. deep allocation,
inlining of methods to avoid new frame creation, heap allocation of
all objects allocated from within loops, etc. (see Section 1.3ff).

We propose a more radical change: Starting a new stack region
on entry to a loop, and deallocating the region on leaving the loop.
No allocation or deallocation on the object stack occurs at method
invocation or termination. On each iteration of a loop, the region
should be emptied (equivalently it can be deallocated and a new
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Figure 1. On the left the write barrier has detected a potential violation of the constraint, as a pointer to W was about to be written into B.
In the centre, W has been evicted to the heap, and has pulled X out with it (forwarding pointers are not drawn for clarity). This is as detailed
in [Bak92]. On the right we see the modified scheme where the tip of the stack is scanned and the pointer in Y is fixed, removing the need for
the read barrier.

region created in the same place). With this scheme the method call
stack and the object stack are decoupled. This scheme is illustrated
by figure 2. The advantages of this scheme are:

• Factory methods (any method that allocates a new object and
then returns it to its caller) are now not a problem. Since no new
frame is started when calling the factory method it will allocate
the new object in the same frame as its caller. This frame is not
deallocated when the factory method returns.

• Constructors that create new objects and embed references to
them in the object they are constructing are unproblematic for
the same reasons.

• All allocation can take place in the latest frame. Since there is
no deep allocation the frames can be stacked in a linear manner,
reducing frame management overhead to a minimum.

• Objects allocated in a loop can still be stack allocated and yet
do not cause unlimited expansion of a stack frame.

• There is no need to inline method bodies in their callers merely
in order to optimise their allocation behaviour. This is both a
simplification and also avoids the code size increase associated
with inlining.

Based on these points it is our opinion that loops form a much
more natural boundary for creating and destroying regions than
method invocations. As far as we know the idea has not previously
been pursued.

A potential disadvantage of the scheme in its pure form is that a
method that has a recursive call outside a loop and recurses deeply
would use a large amount of memory in this scheme. The scheme
shares this flaw with all static escape analyses that are powerful
enough to stack allocate in recursive methods.

Deeply recursive method calls in most object-oriented lan-
guages result in memory usage at least proportional to the recursion
depth, since most of them lack tail call optimisation. Therefore it
is difficult to construct a credible code example that suffers from
excessive memory use due to this effect.

In any case, the problem can be neatly avoided in our scheme
by one of two means. In an architecture that does not support tail
call recursion (this includes all known Java implementations) the
system can use stack allocation heuristics: It would be trivial to put
a limit on the object stack size. If the limit is exceeded we can fall
back to doing only heap allocation. The infrastructure is already
in place to evacuate the stack regions. We can evacuate the stack
regions completely and switch to a pretenuring heuristic that only
uses the heap subsequently, collecting it as normal (see Section 5.2
on pretenuring heuristics).

In a system that supports tail recursion elimination we have the
alternative possibility of treating a tail recursion in a very similar
way to a loop iteration. At the point where a method is called in a
tail recursive way we can evacuate all objects from the top region,
resetting its size to zero. This will of course reduce the oportunities
for stack allocation. The primary object oriented platform with tail
recursion elimination is Microsoft CLR. Here, a tail recursive call
must be specially marked and is associated with a performance
penalty [BSS04], so it can be expected that only recursive tail calls
will be so marked.

In summary, it should be relatively simple to modify our scheme
to be safe for space complexity.

Having two stacks (the region stack and the call stack) means
that two stack pointers need to be maintained. This may increase
register pressure, which can be a problem on architectures where
registers are in short supply. In fact, a frame pointer is also required
for the region stack, in order to make it simple to test whether a
pointer is contained in the top region and in order to speed up the
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operation of clearing the top region by resetting the region stack
pointer to the start of the region. Our results show that many regions
remain empty at all times, making the region frame pointer more
frequently used than the region stack pointer and therefore a better
candidate for register allocation.

On the other hand, on the call stack we may be able to save a
register. A call stack often needs both a frame pointer and a stack
pointer in order to be able to stack alllocate variable length objects.
However, if stack allocation occurs on a different stack there is
never any need to allocate variable length objects on the call stack,
and so the call stack frame pointer can be omitted.

The performance consequences of these implementation choices
are a subject for future work.

3.5 Intraprocedural Escape Analysis

One consequence of creating and deallocating stack frames around
loops is that we need to do escape analysis on method-local vari-
ables and registers. These analyses allow us to determine which
method-local variables and registers need to be checked for dan-
gling pointers when the loop iterates or terminates and its asso-
ciated stack region is respectively cleared or destroyed. Dangling
pointers are pointers into the imminently empty stack region. If
dangling pointers are discovered we either evict the objects they
refer to or, if we can determine that the pointers will not be used
again, null the pointers.

In the following we describe the analysis for the Java virtual
machine because the JVM is simple and well defined. In addition,
we implemented it for the byte code language in the JVM. An
equivalent analysis can be done on the registers and spill slots of
compiled code from Java or other garbage collected languages.

The local variables and the positions on the operand stack are
referred to collectively as the slots. The slots in a method can
transport references from inside a loop to outside it, and they are not
subject to the “Baker constraint” with regard to pointing “down”
the stack. (This is for the same reasons that registers are not subject
to the constraint in the original Baker scheme, see Section 2).

The intraprocedural analysis is rather simpler than the in-
terprocedural analysis needed for traditional stack allocation. No
reference can point to a slot, and so there are no aliasing issues:
Indirect slot manipulations that affect unknown slot(s). Also, there
is no ambiguous control flow. For every instruction there is a lim-
ited number of instructions that may follow it. In contrast, for in-
terprocedural escape analysis, the destination of method calls is
unknown, both due to polymorphism and dynamic class loading.

In addition, dynamic class loading is no problem at all for
intraprocedural analysis. There is no global aspect to our analysis,
and no data that needs rebuilding when new classes with new
methods are loaded. In fact we perform the entire analysis on the
system classes ahead of time and can reuse the analysis for every
program that uses the system classes. For the same reason reflection
and reflective invocation of methods poses no problem for our
analysis. (Our analysis will not consider the complications caused
by JVM jsr and ret instructions, since they can be eliminated by
code copying and are no longer generated by Java compilers).

The escape analysis needs to identify points where the control
flow enters, iterates or exits a loop. At the iteration or exit points we
need to identify those references that may still contain a reference
to the (object) stack frame being emptied or deleted.



3.5.1 Loop Analysis

We construct a flow graph for the method. In addition to the ob-
vious edges caused by branches, conditional branches and switch
instructions we also need edges caused by exception handlers.

We can model these edges conservatively, by ignoring the type
of the exception and looking only at the range of the exception
handler. Any instruction that can throw an exception is given an
edge to each of the handlers that cover its range. The edge is split
in two by adding a synthetic node because our flow graph analysis
attaches data to nodes rather than edges.

If an exception is thrown for which no handler exists then the
current method is terminated, the stack is unwound, and the ex-
ception is ‘re-thrown’ by the instruction that called the terminated
method. Under some circumstances we add a catch-all exception
handler that cleans up stack regions and then leaves the method by
re-throwing the exception.

Methods compiled by a Java compiler will only contain re-
ducible flow graphs. This very convenient property (which applies
even in the presence of exception handlers) will not necessarily
hold for other languages that can be compiled for the Java virtual
machine. If a method has a non-reducible flow graph, we can fall
back on a less efficient strategy: All allocations in this method take
place on the heap, and we start a new object stack frame just before
all method calls, and terminate it after they return. This is subopti-
mal, but safe in terms of space complexity.

After identifying the loops, we can categorise each edge in the
graph with respect to the loop into one of three types: the edges
that enter the loop, the back edges that indicate loop iteration and
the edges that leave the loop. These three types of edges are split
into two with the addition of new nodes. These nodes will contain
the code needed to handle the results of our intraprocedural escape
analysis.

We designate loops in which no allocation and no method calls
occur as trivial, and delete them from our analysis. If we were
to create stack regions for such loops they would always remain
empty and so would cause needless overhead. Allocations and
method calls that occur within an inner loop cannot prevent the
outer loop from being designated as trivial, for the same reason.

3.5.2 Reference Copy Propagation Analysis

For the region number analysis in the next section it is useful to
know which slots (local variables and operand stack positions) can
be said to contain the same reference. Most Java virtual machine
instructions can operate only on the top stack positions, so values
are copied there in order to work on them.

We construct a data flow analysis to determine reference propa-
gation. The analysis is conservative in the sense that it determines
slots that are guaranteed to contain the same reference. There is
no attempt to trace reference copies written into or read from ob-
jects/arrays.

3.5.3 Region Analysis

Each instruction is given a home stack region number. This tells
us the currently active object stack region (see figure 2) for that
instruction. It is also the loop nesting depth. This stack region
number tells us the region (relative to the active region at method
entry) that will be used for a stack allocation at that point. The
region at method entry is numbered 0, and the regions created on
entering loops are numbered 1, 2 etc. depending on how deeply the
loop is nested.

We perform a data-flow analysis to determine for each slot
which stack region its referred object is in. There is no attempt to
track the stack region number for references that are written into
objects or arrays, then read back out, though the Baker constraint

does allows us to make some guarantees about references in objects
even without tracking.

As is traditional for data-flow analyses this proceeds by gen-
erating a function on a lattice for each instruction, then finding a
fixed point for the lattice. For most instructions the function is fairly
straightforward. For method call instructions that return a reference
the returned reference is given the stack region number correspond-
ing to the home stack region number of the instruction. Allocation
instructions result in a new reference which is either given the home
stack region number of the allocating instruction, or the stack re-
gion number zero. Zero would be the correct stack region number
if the instruction were known to be allocating the object in the heap
for some reason (e.g. a directive from the programmer or as a result
of data from a training run of the program). In our implementation
(see below) we do not make use of this possibility, since it adds
little power to the analysis.

Reference store instructions (aastore, putfield and putstatic)
are a little more interesting. Due to the Baker constraint we can be
sure that after the instruction completes (including possible evic-
tions) the referenced object has a stack region number that is less
than or equal that of the referring object. We can use the results
of the reference copy analysis above to extend that information
to copies of the referenced object reference in other slots. Con-
versely, the Baker constraint ensures that reference load instruc-
tions (aaload, getfield, getstatic) yield a new reference that has
a stack region number less than or equal that of the reference used
to load it. We conservatively assume the loaded reference has the
same stack region number as the reference from which it is loaded.

For the newly inserted loop exit and loop iteration nodes we can
assume in our analysis that, after the execution of the new nodes,
slots will have been checked and zeroed so that none of them refer
to the now defunct stack region.

3.5.4 Using the Analyses

We use the results of the above analyses to generate code for the
new nodes in the flow graph: Loop entry, loop iteration and loop
exit. On entry to a nontrivial loop we create a new stack region and
arrange for subsequent allocations to take place in it.

On loop iteration or exit we must check slots for references that
point to the current region number. The check is rather fast since the
slots to be checked are usually in registers in the case of JITed code.
The check itself is simply a greater-than comparison relative to the
start of the stack region. The slots that need checking are those that
our static intraprocedural analysis determines are references, live
and have the correct region number (the region number equal to
the loop nesting depth).

If the runtime check finds references that point to the stack
region being destroyed, the corresponding objects are evicted. In
addition, we need to take dead slots into account if they reference
the destroyed stack frame. Although they are dead and thus will
never be used by the program itself they are still visible to the
conventional garbage collector, which uses the slots as roots (but
not the object stack). Therefore we need to zero slots that are
references and dead and have the correct region number.

This operation is rather cheap (in JITed code it merely involves
zeroing a register) and generally beneficial even in the absence of
stack allocation, since it reduces memory leaks.

4. Measuring Opportunities for Stack Allocation
As a first step to evaluate our proposed stack allocation scheme we
perform some detailed simulations. This involves implementing the
intraprocedural analysis and implementing a simulated system con-
taining our stack allocation together with a conventional garbage
collector. This enables us to verify that the proposal works and to
evaluate what opportunities for stack allocation are present, how to



decide whether to stack allocate a particular object and the effec-
tiveness of loop oriented creation and deallocation of regions on the
stack.

All the suggested modifications to Baker’s scheme from the
previous section (except synchronisation avoidance) are combined
in our simulation in order to test how they work in practice:

• Stack scanning instead of read barriers

• Two stacks, one for method invocations, the other for stack
allocating objects in stacked regions

• Stack region creation and deletion based on loop entry/exit/iter-
ation with associated intraprocedural escape analysis

• Heuristics to decide when to pretenure objects to the heap

The simulation framework is in four stages – see Figure 3. The
first is an intraprocedural analysis very similar to that described in
the previous section. This is implemented as a byte-code analyser
that reads Java class files. For the system classes we produce a file
that summarises the results of the analysis. This file can be used for
all applications since the system classes do not change.

When the intraprocedural analysis has been completed, the sec-
ond stage of the simulation can proceed: We annotate the class files
with new instructions designed to generate a trace of execution. The
analysis and the annotation can occur both before-hand and at run
time as the classes are loaded into the Java virtual machine.

The third stage is to trace some runs of medium sized Java
applications. A high level of detail is needed in the trace files.

From these trace files we can run the actual simulations of al-
location and garbage collection and collect statistics on the results.
This is the fourth stage of the simulation. The architecture is illus-
trated in figure 3. An added potential advantage is that we can use
interactive programs without running into problems of repeatability
– the traces can be replayed several times.

In order to generate these trace files it is not necessary to modify
the Java virtual machine at all. Instead we modify the class files
to log information on allocations, loop iterations and writes of
pointers to stack and object locations. This is detailed below.

4.1 Intraprocedural Analysis for Stack Allocation Around
Loops

The intraprocedural analysis needed to generate trace files of mem-
ory allocation activity is almost identical to the analysis that would
be needed for a virtual-machine-internal implementation of the
stack allocation scheme proposed. Therefore the analyses detailed
in the previous section are implemented: loop analysis (Section
3.5.1), reference copy propagation analysis (Section 3.5.2), and re-
gion analysis (Section 3.5.3).

4.2 Using the Analyses – Rewriting the Byte Codes

In this section we will describe how the system and application
classes were modified to output a trace of their activity that could
be used by our garbage collection simulator.

The BCEL framework comes with a subclass of Java’s Class-
Loader class. We use this mechanism to run an entire applica-
tion under the control of our byte code modifier, inserting trace-
generating code into all methods in the classes comprising an ap-
plication. There are some tricky aspects to this technique: static
initializers and finalizers.

Static initializers in Java are methods that are called when the
class is initialized. The procedure is rather involved, and is de-
scribed in [GJS96] section 12.4.2. The order in which static initial-
izers are invoked is poorly defined and easy to perturb by byte-code
rewriting. This triggers various hard-to-diagnose bugs in the Java
system while it is starting up. Therefore, following [Bur01], we do
not add trace-generating code to static initializers in the standard

libraries. The result is that some objects appear in the trace files
without a preceding allocation event. During the simulation, these
objects are assumed to be on the heap on the rare occasions that
they are encountered. This is a worst-case assumption that we do
not expect to cause significant distortion. Trace-generating code is
added to to static initializers of (non-system) application classes
without encountering problems.

Java provides for a finalizer method to be called on an object im-
mediately before it is garbage collected. In Sun’s JVM implemen-
tation the finalizers are all run in a separate thread. We chose not
to trace this thread, since doing so caused crashes in the VM. The
benchmarks we ran in our system did not make heavy use of final-
ization and we did not observe any distortion due to this decision.
For an implementation of our stack allocation scheme, finalizers
would not be a serious problem. They are typically implemented
using a linked list to prevent premature garbage collection of ob-
jects with nontrivial finalizers. This would cause finalizable objects
to be evicted to the heap immediately.

4.3 The Simulated Machine

We built a simulated Java virtual machine (JVM) with an allocation
and garbage collection subsystem to run the trace files on. The
simulated system uses 4 bytes per pointer. Each simulated object
is the size of its member variables plus an 8 byte header to simulate
virtual machine overhead. Arrays have a 12 byte header. A real
implementation might add 4 bytes to store extra bookkeeping in
stack allocated objects, though Qian and Hendren [QH03] showed
an alternative implementation that reuses the lock field for the
purpose.

The simulated JVM has one invocation stack and one object
stack per thread. The heap is split into a nursery which is col-
lected by a semispace copying collector and an older generation.
In the current implementation the older generation is not collected.
Though ideally this generation should be collected too, since no
references exist from mature space to the stacks (by design) the
addition of a mature space collector is not expected to make a big
difference to the important measurements (on the stack regions).

Since the heap is two-generation we implemented a table that
records pointers from the old generation to the nursery. This table
is maintained by the write barrier.

Objects in the simulated JVM are represented by objects of type
GCSObject in the simulator. This class represents both real first class
objects, stack frames on the call stack and the static data (class
variables) associated with classes. The latter are of course always in
the oldest generation and stack frames are not in a specific region.
All other objects are placed in a region object, which manages
their position, performs garbage collection etc. Each object in the
simulator also has a reference to its current region.

References in the simulated JVM are represented by fat pointers
in the simulator. These consist of a reference to the GCSObject
pointed to (or null) and a region reference that indicates where
the object is. When objects are moved to another region in the
simulated JVM it is important that pointers to them are updated
to refer to the new address (failure to do so would indicate a bug in
the algorithm). In the simulator this is represented by updating the
region reference in the fat pointer. If a bug in the algorithm leaves
us with a dangling pointer in the simulated JVM we risk following
a pointer to an object that is no longer there. In the simulator this
is represented by an assertion inserted wherever we use the fat
pointer. The assertion checks that the object is in the same region
as the fat pointer indicates it is.

When the memory associated with objects in the simulated
JVM is deallocated, the memory is reused. We simulate this in the
simulator by marking the GCSObject object as dead. Whenever we
use an object, an assertion checks that it is not dead.
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Figure 3. The architecture for simulation of optimistic stack allocation

The simulator starts by reading in two files with the result of
our intraprocedural analysis. One of these contains the results for
the standard classes, while the other has the results for the program
run we are simulating. See Figure 3. We then read in the trace file
itself, dispatching the events from the trace file to the correct parts
of the simulator. In the trace file, objects are referred to by a 64-bit
unique identifier (UID).

4.4 Garbage Collecting the Semispaces

The semispace garbage collection proceeds much as a standard
semispace collector, with some small differences. The simple, but
unsatisfactory, way to collect the semispaces is to treat all refer-
ences in objects in the stack regions as roots and collect as normal.
The problem with this is that not all objects in the stack regions are
reachable. This might keep potentially unbounded memory uncol-
lectable merely because it is linked from unreachable objects on the
region stack. Therefore in our simulation we treat only the invoca-
tion stack as a source of roots and trace through the region stacks
to find reachable references to the semispaces. We can do this with
a traditional marking phase much like the one used in the first stage
of a mark-sweep collector. The algorithm is:

add invocation stack roots to work list
add intergeneration pointers to work list
for references in work list

if reference points to stack region object
if stack region object is not marked

mark stack region object and add it to work list
if reference points to semispace object
if semispace object is young

move it to new semispace and update reference
else

move it to old generation and add to intergen. table

As in a traditional semispace collector the objects moved to the
new semispace are also added to the worklist. This is implemented
by alternating between scanning objects on the work-list itself and
scanning newly moved objects in the new semispace until both
sources of new references are empty.

Garbage collecting the semispaces does show up one interest-
ing aspect of the Baker constraint: It does not apply during semis-
pace collection. The reason for this is that semispace collections oc-
cur during multi-object evictions. This exception to the Baker con-
straint is not a problem since no stacked region is deallocated dur-

ing a semispace garbage collection, and the constraint is restored
after the semispace collection and the eviction have completed.

5. Results
5.1 Example Programs

We chose to run four of the benchmarks from the popular SPEC-
jvm98 benchmark suite. These benchmark programs have been
used in several of the papers already discussed and are intended
to be representative of typical Java workloads while performing
an interesting amount of allocation and deallocation. They are
provided with input data in three variations, designed to run for
1%, 10% or 100% of the standard time. We chose to use the 10%
data sets. In this configuration the applications generate trace files
with between 32 million and 121 million events in them. See Table
1 for details.

In Table 1 we have a column named “read barriers”. Our pro-
posal does not include read barriers, but we have counted how many
times a reference is read from an object. This would be the number
of read barrier operations needed under the reasonable assumption
that references on the stack are fixed at eviction time, but references
in the stacked regions are not fixed until they are next used. It can be
seen that read barriers are of the order of one per byte allocated. It
seems unlikely that a read barrier that is so frequently invoked can
be implemented efficiently enough to be an effective alternative to
our data scanning proposal.

It can be seen from Table 1 that the example programs have far
fewer loop iterations than they have method invocations. This is be-
cause trivial loop iterations (those without allocation or method in-
vocation in the body of the loop) are not counted. Almost all alloca-
tions are associated with at least one method invocation in Java: The
constructor. The relative frequencies of loop iteration and method
invocation help explain why our loop-based stack allocation is able
to find more stack-allocatable data than invocation-based stack al-
locators.

5.2 The Zero Tolerance Policy (ZT)

We experimented with different pretenuring heuristics. These are
systems for making the decision on whether to stack allocate or
heap allocate.

Our first heuristic is the zero tolerance (ZT) policy. This heuris-
tic is the relatively simple one that maintains a ‘reputation’ for each
point in the code where an object can be allocated. All allocation



Program Memory Objects Read Write Method Stack Non-empty Av. references Av. refs
allocated allocated barriers barriers invocations regions stack checked zeroed

(kbyte) destroyed regions per region per region

202 jess 3876 101,592 15,620,216 485,506 5,867,568 4,296,007 35,344 0.0006 0.2074
209 db 3694 113,273 5,439,867 503,179 1,216,964 498,671 53,757 0.0933 1.5869
213 javac 7424 214,734 3,566,420 517,346 2,982,147 733,094 34,447 0.0427 0.1667
228 jack 19,534 694,988 7,671,859 1,277,803 7,119,896 1,764,054 301,992 0.0500 0.1778

Table 1. Characteristics of the example programs.
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202 jess 8.4% 12.3% 21% 10.5%/5.3% 6.50%
209 db 8.5% 8.7% 0.74%
213 javac 21.1% 34.0% 13% 8.80%
228 jack 27.1% 60.6% 20% 22.87%

Table 2. The simple Zero Tolerance heuristic and the more com-
plex Calling Method heuristic when compared with other papers.
The table shows the percentage of allocated bytes that were allo-
cated and deallocated on the stack.

points start with a good reputation, and are therefore allowed to
stack allocate. If an object is evicted, that immediately blackens the
reputation of the allocation point that allocated that object, causing
it to heap allocate.

The ZT heuristic is relatively easy to support. Each object needs
to carry a note of its allocation point with it so that we can identify
the reputation when eviction occurs, but this note is only needed
in the stack regions. One option would be to reserve a few extra
bytes for the purpose when the object is in a stack region, and not
to copy them onto the heap. We shall see that the stack regions
contain fairly few objects at any one time so the space needed may
not be so large.

Using this heuristic and the CM heuristic we will compare the
amount of stack allocation achieved (in bytes) with some of the
other papers we discussed in this article. Unfortunately the other
papers with which we are comparing ourselves did not run their
benchmarks with one of the standard data sets provided by SPEC.
Therefore, we are not sure of the data sets and in some cases pro-
gram versions used by the other researchers and there are other
reasons why the results may not be comparable. Nevertheless, Ta-
ble 2 gives a hint at the relative efficacy of the competing schemes.
Blanchet uses javacc which is a later version of the jack program
found in SPECjvm98. Gay and Steensgaard run jess with two dif-
ferent data sets, giving the two different results shown.

One advantage that some static analyses have is that inlining
methods increases the number of distinct allocation sites, which can
improve the results. Our optimistic stack allocation scheme could
be combined with selective inlining to achieve the same effect.

5.3 Oracle

The oracle pretenuring heuristic is a ‘magic’ heuristic in that it can
see into the future. It is of course very unrealistic, but it gives an
upper limit for the effectiveness of the other heuristics. If a heuristic
gets almost as good results as the oracle then it is close to optimal.
The oracle heuristic stack allocates an object if and only if that
particular object would escape eviction in a program run where

all objects were stack allocated. It works by using the data from a
previous test run of the program with the exact same input.

5.4 Calling Method (CM)

The calling method (CM) heuristic maintains a reputation for each
combination of calling method and allocation point. It is an open
question how this could be implemented efficiently; possibilities
include generating a hash using an allocation point id and the re-
turn address on the stack, or passing an explicit token when calling
a method.

It is good Java style to have multiple overloaded methods with
the same name but with different parameters. These methods will
often call each other in sequence. Therefore the immediate caller of
a method is very often another method in the same class, which tells
us very little about where we are in the program. For this heuristic
we therefore use the identity of the most recent method on the call
stack that is from a different class than the current one.

The CM heuristic works well, though there is wide variation
depending on the benchmark in question. On the jack benchmark
it doubles the amount of stack allocation, reaching near oracular
60.6% stack allocation.

5.5 Feedback Heuristics (ZTF and CMF)

The feedback heuristics (ZTF and CMF) work in the same way
as the non-feedback heuristics with the corresponding names (ZT
and CM), but they initialize their table of reputations from data
collected during a test run. We ran the SPEC programs on the 1%
datasets in order to produce reputation data for the allocation sites
used in the 10% test runs shown in Table 3.

For the Jess and DB benchmarks the input data set for the 1%
training run is disjoint from the input data set for the 10% measured
run. For the Javac benchmark we think this is also the case. For the
Jack benchmark, the input data appears to be identical for the 1%
and 10% runs. No source code is provided for Jack and Javac.

Using feedback data makes almost no difference to the amount
of stack allocation, but it can make a big difference to the amount
of data that is evicted from the stack. This supports our intuition
that most evictions occur at the start of the program run.

5.6 Assessment of the Simulation Results

For our proposal to be viable it is important that the overhead
associated with it is low enough that the cache benefits from stack
allocation are not more than outweighed by the extra work that
must be performed by the runtime system. The extra work consists
of (1) invocations of the slow path code from the write barrier
(see Section 2), (2) overhead for the pretenuring heuristics, (3)
the overhead of pointer checks and slot zeroing resulting from the
intraprocedural analysis and finally work associated with evictions
of objects. The eviction work can be divided up into (4) the actual
copying of evicted objects and (5) the scanning of the stacks needed
to fix pointers to the old locations.

1. The fast case of the write barrier works very well everywhere
except in the nursery. For example for jess with the ZT heuristic
the write barrier tests around half a million pointer pairs (Table



ZT CM ZTF CMF Oracle

Allocated and deallocated on stack
202.jess 8.39% 12.34% 8.34% 12.16% 55.58%
209.db 8.48% 8.65% 8.32% 8.48% 8.55%
213.javac 21.09% 34.02% 21.00% 33.91% 64.73%
228.jack 27.05% 60.61% 27.02% 60.57% 62.99%

Evicted from stack
202.jess 0.42% 1.09% 0.03% 0.06% 0.18%
209.db 0.20% 0.61% 0.00% 0.01% 0.16%
213.javac 0.54% 0.91% 0.18% 0.31% 0.16%
228.jack 0.06% 0.16% 0.00% 0.00% 0.07%

Data scanned to fix pointers
202.jess 4.80% 6.72% 0.06% 0.22% 0.33%
209.db 0.92% 1.53% 0.01% 0.02% 0.07%
213.javac 0.85% 1.96% 0.31% 1.15% 0.72%
228.jack 3.33% 3.34% 0.00% 0.05% 0.11%

Stack scanned for semispace GC
202.jess 3.61% 3.51% 3.59% 3.51% 2.11%
209.db 1.37% 1.37% 1.37% 1.37% 1.37%
213.javac 2.43% 2.16% 2.43% 2.20% 1.50%
228.jack 0.87% 0.50% 0.85% 0.51% 0.47%

Maximum region stack size
202.jess 15k 46k 3k 5k 11k
209.db 16k 31k 3k 3k 9k
213.javac 27k 27k 14k 14k 22k
228.jack 66k 92k 51k 62k 68k

Average regions scanned per eviction
202.jess 1.052 1.048 1.000 1.029 1.000
209.db 1.000 1.000 1.000 1.000 1.000
213.javac 0.946 0.977 0.897 0.963 1.000
228.jack 0.985 1.018 1.000 1.000 1.000

Table 3. Evaluation of competing pretenuring heuristics. All per-
centages are calculated as a proportion of total memory allocated.
GC stack scanning data is shown for comparison.

1). Of these, only 12% fail the fast case less-than test so that the
conventional write barrier code must be called. Of those that fail
the initial test 94.5% are false alarms caused by two objects both
in the nursery, a case that the ‘slow path’ can easily be optimised
to handle quickly. Almost no write barrier false alarms occur in the
region stacks (0.2%), and when they do happen they are invariably
in the most recent region, which is the easiest to test membership
of. More data on the effectiveness of the write barrier may be found
in our M.Sc thesis [Cor04].

2. The ZT heuristic is simple to implement with low overhead
and is able to find substantial amounts of stack-allocatable data
(see Table 2). The CM heuristic is considerably more difficult
to implement with low overhead but also considerably better at
finding stack-allocatable data.

3. Our intraprocedural analysis results in almost no slots need-
ing to be checked when a region is deallocated (Table 1). We quite
often need to zero a single slot when a region is deallocated or emp-
tied. This is, however, a very fast operation (zeroing a register).

4. From Table 3 we can see that very little data is evicted
from the stack regions. The copying is rarely more than 1% of the
memory allocated, often much less.

5. Some heuristics cause rather a lot of scanning of the invoca-
tion stack and stack regions. However, it is never more than about
twice as much scanning as the system would be doing anyway in
order to find roots when garbage collecting the semispaces and it is
sometimes much less. As can be seen from Table 3, the feedback-

aided heuristics do much less stack scanning than the non-feedback
aided heuristics. The reason for this is probably that almost all evic-
tions affect only the bottom stack region and the bottom few invo-
cation stack frames. For systems where feedback-aided heuristics
are not realistic, an alternative implementation that combined the
loop-oriented, heuristic-controlled optimistic stack allocation with
a highly optimised read barrier could be an interesting alternative.

In summary all the possible sources of overhead are small or can
be made so. Against these overheads we must consider the benefits,
i.e. how well the stacks make use of the cache. One indication of
this is their size, since level 1 caches are usually between 16kbyte
and 64kbyte large. Region stacks are usually very small and can be
expected to make very good use of the cache. The ZTF heuristic on
javac, for example allocates 21% of objects in a space maximally
14kbyte large, putting a very small upper bound on the cache
footprint of the region stack.

In conclusion, our results are positive, showing that the strate-
gies we propose have encouraging tradeoffs between extra work
the runtime system must perform to implement them and the re-
sults they achieve in terms of stack allocating data.

6. Related Work
Much of the related work has been described earlier.

6.1 An Adaptive, Region-Based Allocator for Java

“An Adaptive, Region-Based Allocator for Java” by Qian and Hen-
dren [QH03] contains some of the same ideas as our proposal. Like
our proposal they optimistically stack allocate all objects and use a
write barrier to detect pointers into these regions. They also use pre-
tenuring heuristics. Like in our proposal stack allocated objects are
placed on a different stack from the method invocations, and this
allows them to decouple the two to a certain extent. Stack region
lifetimes in [QH03] are still based roughly on method invocations
(rather than loop iterations), but a method that returns a reference
will always share a stack region with its caller.

The most significant difference is the system’s reaction to a
problematic pointer into a stacked region. In this case the system
declares the stack region to be escaped, and it conceptually be-
comes part of the heap. The region is, however, not moved to a dif-
ferent address. The consequence of this is that their stacked regions
cannot be arranged contiguously in memory, and finding space for
a new region can be very costly in terms of execution time. Unlike
our proposal Qian and Hendren’s scheme allows for garbage col-
lection within the stacked regions. In effect the garbage collector is
a multi-generational collector that treats the regions as a generation.
Heuristics are used to determine when objects should be promoted
to other generations. It is not clear whether this avoids the space
complexity problems around loops and deep recursion.

Another consequence of the more free placement of stack re-
gions is that the simple write barrier due to Baker (Section 2) can-
not be used. Instead memory is arranged in chunks and each chunk
allows a relatively fast lookup to determine the region it belongs
to. Their write barrier still appears rather more complicated than
ours, and the chunk system causes some waste of memory since
the chunks have a fixed size and are not always filled up. The mem-
ory wasted by this is termed froth in the paper and varies from less
than 1% to over 600% depending on the benchmark involved.

The proposal in the paper has been implemented for the Jikes
RVM. At the time of the paper no performance improvements could
be attested. The overhead of allocating and deallocating the regions
and the overhead of the write barrier was more than the gain from
stack allocation. As can be seen from Table 2 our scheme stack
allocates more data and likely with less overhead.



6.2 Region Inference

In a series of articles starting 1992 and summarised in 2004
[TBEH04] Mads Tofte et al. describe an automatic transforma-
tion for ML progams that annotates them with region informa-
tion. All allocation takes place in a stack of regions and functions
take zero or more region parameters in addition to those parame-
ters they already took before the transformation. In the pure form
of the system, deallocation can only take place by deallocating a
whole region at once. The system was implemented in the ML-Kit
[BTV96].

The ML Kit region based system is proved safe in terms of ob-
ject and region lifetimes. Thus there is no need to test at runtime
for dangerous references that refer to an object in a region closer
to the top of the stack. On the other hand, the system is not safe
for space complexity. Certain constructs will cause memory use
to grow asymptotically larger than it would be with garbage col-
lection. For this reason garbage collection within the regions was
implemented (see [HET02]). Garbage collection never moves ob-
jects from one region to another, it simply shrinks the regions by
removing unreachable objects.

Though the analysis is in principle local, some of the optional
analyses are whole-program in nature. An example is the storage-
mode analysis, which attempts to prevent tail recursive function
invocations from using memory proportional to the number of
recursions (see “From Region Inference to von Neumann Machines
via Region Representation Inference” [BTV96]).

The transformation can be done on individual modules, but
it is always done by making use of information about the way
the module is used. Thus the code for a module may need to
be regenerated with different numbers of region parameters to
functions if the module is used in a different way (see Martin
Elsman’s Ph.D. thesis page 189 [Els99]). This work is performed
at link time, but if the scheme was implemented in a language with
dynamic loading of code (for example Java) the analysis and code
regeneration would complicate the run-time system.

In the case where a program can be tuned to use only region
allocations without region size explosions the system is likely to
be superior to our proposal in terms of speed, space and real-time
response.

The set of objects that can be stack allocated and deallocated
for the ML Kit region scheme is neither a superset or a subset
of those our scheme allocates. No program analysis can find all
dynamically available opportunities for stack allocation. This is
both due to inevitable insufficiencies in the analysis algorithm and
due to data-driven program behaviour. For example, a parser that
is only presented with well-formed inputs has a lot of code that
is ’unreachable’ in the sense that it is never executed. However,
no correct program analysis can ever determine this, since the
program analysis cannot know that the inputs are well-formed. Any
references that only escape by means of this ’unreachable code’
can be stack allocated in our scheme, but must be allocated in a
deep region by the ML Kit. This region is likely to need garbage
collection.

On the other hand, our scheme can only allocate in the top
region or on the heap, while the ML Kit scheme is free to allocate
in any region, giving more opportunities for placement of objects in
a region whose lifetime corresponds well with the object’s lifetime.

Our decision only to allow allocation in the top region helps
reduce space waste and simplifies allocation and deallocation of
regions. Our regions do not need to be based on a whole number
of linked memory pages, but can be arranged contiguously in a
memory area.

Cherem and Rugina [CR04] have developed a similar program
transformation for Java. The result of the transformation is a region
annotated program that runs on a region-aware virtual machine.

Unlike the ML Kit, regions are not lexically scoped, but can be
associated with loops. Like the ML Kit, the resulting program is
safe and needs no run-time checks for pointers into deallocated
regions. The analysis is whole-program and thus only targets the
static subset of Java. The transformation can eliminate conventional
garbage collection completely, but in this case the transformation is
not in general safe for space complexity. No results are presented
for SpecJVM programs.

The Cherem and Rugina program transformation has many of
the same strengths and weaknesses relative to our proposal as the
ML Kit and for broadly the same reasons: Firstly, deep allocation
is allowed and secondly, the analysis is static rather than dynamic.

7. Conclusion and Further Work
Our stack allocation proposal shows promise. Our simulation of the
full proposal (including loop-based rather than invocation-based
allocation, pretenuring heuristics and stack scanning to fix pointers)
indicates that the overhead from the sources we identified can
be expected to be low and that a relatively large proportion of
memory can be allocated on small stacks. These small stacks can be
expected to make good use of cache memory. Despite its efficacy
the analysis behind our scheme is simple to implement and robust
in the face of popular Java technologies such as dynamic class
loading, exception handling and reflection.

There are many avenues that can be explored relating to new
allocation heuristics that may be more effective or easier to imple-
ment than the ones already measured. In addition, is is worth ex-
ploring whether objects that are evicted to the heap at the moment
a region is deallocated could in some circumstances be added to the
previous region instead.

The next stage is to implement our scheme in a Java Virtual
machine. The Jikes RVM is a suitable target since it has some in-
frastructure for running with different garbage collectors. Since our
proposal necessitates some code rewriting (insertion of exception
handlers to deallocate stack regions, checking of local variables on
loop iteration and loop exiting) it will not be possible to implement
our scheme using only the pluggable garbage collection interface
provided by the standard Jikes RVM. Changes will also be needed
to the core VM. Such an implementation would provide opportuni-
ties for more detailed measurements.
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