
Mostly Lock-Free Malloc

Dave Dice

Sun Microsystems, Inc.
Burlington, MA

dice@computer.org

Alex Garthwaite
Sun Microsystems Laboratories

Burlington, MA
alex.garthwaite@sun.com

Abstract
Modern multithreaded applications, such as application
servers and database engines, can severely stress the
performance of user-level memory allocators like the
ubiquitous malloc subsystem. Such allocators can prove
to be a major scalability impediment for the applications
that use them, particularly for applications with large
numbers of threads running on high-order
multiprocessor systems.

This paper introduces Multi-Processor Restartable
Critical Sections, or MP-RCS. MP-RCS permits user-
level threads to know precisely which processor they are
executing on and then to safely manipulate CPU-specific
data, such as malloc metadata, without locks or atomic
instructions. MP-RCS avoids interference by using
upcalls to notify user-level threads when preemption or
migration has occurred. The upcall will abort and
restart any interrupted critical sections.

We use MP-RCS to implement a malloc package,
LFMalloc (Lock-Free Malloc). LFMalloc is scalable,
has extremely low latency, excellent cache
characteristics, and is memory efficient. We present
data from some existing benchmarks showing that
LFMalloc is often 10 times faster than Hoard, another
malloc replacement package.

1 Introduction and Motivation
Many C and C++ applications depend on the malloc
dynamic memory allocation interface. The performance
of malloc can be crucial and can limit the application.
Many malloc subsystems were written in a time when
multiprocessor systems were rare. They use memory
efficiently but are highly serial and constitute an obstacle
to throughput for parallel applications. Evidence of the
importance of malloc comes from the wide array of after-
market malloc replacement packages that are currently
available.

Our goals are to provide a malloc implementation with
the following characteristics:

♦ Low latency.

♦ Excellent scalability. It should provide high
throughput even under extreme load with large
numbers of threads and processors.

♦ Memory-efficiency. The allocator should minimize
wastage

♦ Minimal interconnect traffic. Interconnect
bandwidth is emerging as the limiting performance
factor for a large class of commercial applications
that run on multiprocessor systems. We reduce
traffic by increasing locality.

♦ Generality. Our implementation should be
independent of threading models, and work with
large numbers of threads in a preemptive
multitasking environment, where threads are
permitted to migrate freely between processors.

In addition to the raw performance of malloc itself, the
secondary effects of malloc policies take on greater
importance. A good malloc implementation can reduce
the translation lookaside buffer miss rate, the cache miss
and the amount of interconnect traffic for an application
accessing malloc-ed blocks. These effects are
particularly important on large server systems with deep
memory hierarchies.

Malloc implementations exist in a wide spectrum. At
one extreme we find a single global heap protected by
one mutex. The default “libc” malloc in the Solaris™
Operating Environment is of this design. This type of
allocator can organize the heap with little wastage, but
operations on the heap are serialized so the design
doesn’t scale well. At the other extreme a malloc
allocator can provide a private heap for each thread.
Malloc operations that can be satisfied from a thread’s
private heap don’t require synchronization and have low
latency. When the number of threads grows large,
however, the amount of memory reserved in per-thread

 2

heaps can become unreasonable. Various solutions have
been suggested, such as adaptive heap sizing or trying to
minimize the number of heaps in circulation by handing
off heaps between threads as they block and unblock.

In the middle, we find Hoard [1], which limits the
number of heaps by associating multiple threads with a
fixed number of local heaps. A thread is associated with
a local heap by a hashing function based on the thread’s
ID. The number of heaps in Hoard is proportional to the
number of CPUs. Since the local heaps are shared,
synchronization is required for malloc and free
operations. To avoid contention on heaps, Hoard
provides more heaps than processors.

LFMalloc is similar to Hoard version 2.1.0 - it uses many
of the same data structures and policies as Hoard but
needs only one heap per CPU. Malloc and free
operations on shared per-CPU heaps don’t usually
require locking or atomic operations. Allocating threads
know precisely which processor they are running on,
resulting in improved data locality and affinity. Local
heap metadata tends to stay resident in the CPU, even
though multiple threads will operate on the metadata.

2 Related Work
Much research has been done in the area of kernel-
assisted non-blocking synchronization. In [4] and [5]
Bershad introduces restartable atomic sequences.
Mosberger et al. [2][3] and Moran et al. [6] did related
work. Johnson and Harathi describe interruptible
critical sections in [29]. Takada and Sakamura describe
abortable critical sections in [28]. Scheduler
activations, in [7] and [8], make kernel scheduling
decisions visible to user programs.

A primary influence was the paper by Shivers et al. [9]
on atomic heap transactions and fine-grained interrupts.
In that work, the authors describe their efforts to develop
efficient allocation services for use in an operating
system written in ML, how these services are best
represented as restartable transactions, and how they
interact well with the kernel's need to handle interrupts
efficiently. A major influence on their project is the work
done at MIT on the ITS operating system. That operating
system used a technique termed PCLSR [10] that
ensured that, when any thread has examined another
thread's state, the observed state was consistent. The
basic mechanism was a set of protocols to roll a thread's
state either forward or backward to a consistent point at
which they could be suspended.

Hudson et al. [11] propose clever allocation sequences
that use the IA64’s predicate registers and predicated
instructions to annul interrupted critical sections.

Similarly, the functional recovery routines [12] and
related mechanisms of the OS/390 MVS operating
system allow sophisticated transactions of this type.

We also draw on a large body of malloc research,
including that of Hoard. Hoard version 2.1.0 is built on
top of Lea’s malloc package [13].

Finally, a number of recent papers emphasize allocators
that are friendly to multiprocessor systems. These
include Bonwick’s Vmem allocator [14], McKenney’s
kernel memory allocator [16], Nakhimovsky’s mtmalloc
[25], Larson and Krishnan’s LKMalloc [23], Golger’s
PTMalloc [26] and Vee and Hsu’s allocator [27].

3 Design and Implementation
LFMalloc consists of a malloc allocator and the MP-RCS
subsystem. The allocator, which shares many
characteristics with Hoard, uses MP-RCS to safely
operate on CPU-local malloc metadata. The MP-RCS
subsystem includes a kernel driver, a user-mode
notification routine, and the restartable critical sections
themselves. The kernel driver monitors migration and
preemption, and posts upcalls to the user-mode
notification routine. The notification routine (a) tracks
which processor a thread is running on, and (b) aborts
and recovers from any interrupted critical sections. A
restartable critical section is a block of code that updates
CPU-specific data. Collectively, we refer to the driver
and the notification routine as the critical execution
manager. The initial implementation of LFMalloc is on
SPARC™ Solaris.

3.1 MP-RCS
MP-RCS permits multiple threads to operate on CPU-
specific data in a consistent manner - without
interference. MP-RCS doesn’t presume any particular
thread model - threads may be preemptively scheduled
and may migrate between processors at any time.

In the general case, interference can come from either
preemption or from threads running concurrently on
other CPUs. Since restartable critical sections operate
only on CPU-specific data, we need only be concerned
with preemption. For a uniprocessor system,
interference is solely the result of kernel preemption.

Techniques to avoid interference fall into two major
categories: mutual exclusion-based or lock-free [30]
[17][18]. Mutual exclusion is usually implemented with
locks. It is pessimistic – mutual exclusion techniques
prevent interference. If a thread holding a traditional
lock is preempted, other threads will be denied access to
the critical section, resulting in convoys, excessive
context switching, and the potential for priority
inversion.

 3

Lock-free operations, like compare-and-swap (CAS),
load-locked/store-conditional (LL-SC) and MP-RCS are
optimistic – they detect and recover from interference. A
transaction fetches data, computes a provisional value
and attempts to commit the update. If the update fails,
the program must retry the transaction. Unlike locking
techniques, lock-free operations behave gracefully under
preemption. If a thread is interrupted in a critical
section, other threads are permitted to enter and pass
through the critical section. When the interrupted thread
is eventually rescheduled it will restart the critical
section. Since the thread is at the beginning of a full
quantum, it will normally be able to complete the critical
section without further quantum-based preemption.
Lock-free operations are also immune to deadlock. Note
that the term critical section is usually applied to mutual
exclusion, but in this paper we mean it in the more
general sense of atomic sequence.

Under MP-RCS, if a thread executing in a restartable
critical section either (a) migrates to another CPU, or (b)
is preempted, and other related threads run on that
processor, then the interrupted operation may be ”stale”
and must not be permitted to resume. To avoid
interference, the kernel driver posts an upcall to a user-
mode recovery routine. The upcall, which runs the next
time the thread returns to user-mode, aborts the
interrupted operation and restarts the critical section by
transferring control to the first instruction in the critical
section. A thread that has been preempted and may hold
stale state is not permitted to commit.

Figure 2 describes the control flow used by restartable
critical sections. Table 1 provides a detailed example of
the actions that take place during an interrupted critical
section.

3.1.1 Restartable Critical Sections
A restartable critical section is simply of block of code.
The start, end, and restart addresses of all critical
sections are known to the notification routine.

A restartable critical section proceeds without locks or
atomic instructions, using simple load and store
instructions. Restartable critical sections take the
following form: (a) fetch the processor ID from thread-
local storage and locate CPU-specific data, (b) optionally
fetch one or more CPU-specific variables and compute a
provisional value, (c) attempt to store that new value into
a CPU-specific variable. As seen in Figure 2, restartable
critical sections always end with a store instruction – we
say the store commits the transaction.

3.1.2 Kernel Driver
The kernel driver delivers selective preemption
notification. If a thread is preempted, and other
unrelated threads run, then when the original thread is

scheduled onto a CPU there is no risk of interference, so
the kernel does not post an upcall. Also, by convention,
we don’t permit blocking system calls within a critical
section, so the kernel can forego notification to threads
that voluntarily context switch.

The driver makes kernel scheduling decisions, which are
normally hidden, visible to user-mode threads. The
driver doesn’t change scheduling policies or decisions in
any manner but instead informs the affected threads. It
doesn’t change which threads will run or when they will
run but only where they will resume: in a notification
routine or at the original interrupted instruction. Upcalls
are deferred until the thread runs – at the next transition
from kernel to user-mode.

Referring to Figure 2, upcalls are delivered at the
ONPROC transition. ONPROC is a Solaris term for “on
processor” – it is the thread state transition between
ready and running. Solaris internals are described in
detail in [19]. Running the notification routine at the
OFFPROC “off processor” transition is more intuitive
and natural, but would violate Solaris scheduling
invariants.

The kernel driver posts an upcall by saving the
interrupted user-mode instruction pointer, and
substituting the address of the user-mode upcall routine.
The next time the thread returns to user-mode, it will
resume in the upcall routine instead of at the interrupted
instruction.

The current driver is conservative; it posts an upcall if
there is any potential for interference. The driver is
currently unable to determine if a thread was executing
within a critical region. Interference will result in an
upcall, but not all upcalls indicate true interference. For
ease of construction we partitioned responsibility: the
kernel driver detects migration and preemption while the
notification routine detects and restarts interrupted
critical sections.

The kernel driver uses a set of preexisting context switch
hooks present in Solaris. Among other things, these
hooks are used to load and unload performance counters
and hardware device state that might be specific to a
thread. The driver merges multiple pending upcalls
which can result when a thread is preempted and then
migrates. The kernel driver passes the current processor
ID and the original interrupted instruction pointer (IP) as
arguments into the notification routine. The notification
routine will examine the interrupted IP to see if it was
within a restartable critical section.

3.1.3 User-mode Notification Routine
The user-mode notification routine aborts and restarts
interrupted critical sections, as well as tracks which CPU
a thread is currently executing on. Critically, the
notification routine executes before control could pass

 4

back into an interrupted critical section. This gives the
routine the opportunity to vet and, if needed, to abort the
critical section.

The kernel passes the current processor ID to the
notification routine which stores the value in thread-
specific storage. Subsequent restartable critical sections
fetch the processor ID from thread-specific storage and
locate the appropriate CPU-specific data, such as malloc
metadata. Upcalls give us a precise processor ID – used
inside a restartable critical section, the value will never
be stale.

We originally implemented upcalls with UNIX signals,
but signals had specific side-effects, such as expedited
return from blocking system calls, that proved
troublesome. Still, upcalls are similar in spirit to signals.

Finally, to avoid nested upcalls, MP-RCS inhibits
notification while an upcall is executing. The upcall
hand-shakes with the kernel to indicate that it is finished.
Also, upcalls have precedence over asynchronous
signals.

3.1.4 Transactional Layer
To make it easier to employ MP-RCS we have developed
a small transactional layer written in assembler, but
callable from C. The layer is built on top of small
restartable critical sections. It supports starting a
transaction, conditional loads, and conditional stores.
Each thread has a private “interference” flag. Starting a
transaction clears the flag. The load and store operators,
protected by restartable critical sections, test the flag, and
then execute or annul the memory operation,
accordingly. The notification routine sets the flag,
indicating potential interference.

3.1.5 Discussion
Upcalls and restartable critical sections are time-efficient
On a 400 MHz UltraSPARC-II system the latency of an
upcall is 13 µsecs. Restarting a critical section entails
reexecution of a portion of the critical section. These are
wasted cycles, but in practice critical sections are short
and upcalls are infrequent. An important factor in the
upcall rate is the length of a quantum. If the duration of
a restartable critical section approaches the length of a
quantum, the critical section will fail to make progress.
This same restriction applies to some LL-SC
implementations, like that found in the DEC Alpha.

MP-RCS confers other benefits. Restartable critical
sections are not vulnerable to the A-B-A problem [18]
found in CAS. More subtly, reachable objects are known
to be live. Take the example of a linked list with
concurrent read and delete operations. We need to
ensure that a reader traversing the list doesn’t encounter
a deleted node. The traditional way to prevent such a
race is to lock nodes – such locks are usually associated

with the reference, not the object. A restartable critical
section can traverse such a list without any locking. If a
reader is preempted by a delete operation the reader will
restart and never encounter any deleted nodes. [22],
with the Read-Copy Update protocol, and [15] describe
other approaches to the problem of existence guarantees.

MP-RCS does not impose any particular thread model.
MP-RCS works equally well with a 1:1 model or a multi-
level level model (where multiple logical threads are
multiplexed on fewer “real” threads). In addition, MP-
RCS operates independently of the relationship between
threads and processors; under MP-RCS threads may be
bound to specific processors or allowed to migrate freely.

3.2 Malloc and Free
This section briefly describes the Hoard allocator,
contrasts Hoard with the LFMalloc allocator and
describes the operation of malloc and free in LFMalloc.

3.2.1 Hoard
Hoard has a single global heap and multiple local heaps.
Each heap contains a set of superblocks. A superblock
consists of a header and an array of fixed size blocks.
The superblock header contains a LIFO free list of
available blocks. A block contains a pointer to the
enclosing superblock, alignment padding, and the data
area. The malloc operator allocates a block from a free
list and returns the address of the data area.

All superblocks are the same length – a multiple of the
system page size - and are allocated from the system.
All blocks in a superblock are in same size-class. The
maximum step between adjacent size-classes is 20%,
constraining internal fragmentation to no more than 20%.
Hoard handles large requests by constructing a special
superblock that contains just one block – this maintains
the invariant that all blocks must be contained within a
superblock.

3.2.2 Comparing LFMalloc and Hoard
LFMalloc shares all the previous characteristics with
Hoard but differs in the following:

1. In LFMalloc a local heap may “own” at most one
superblock of a given size-class while the global
heap may own multiple superblocks of a given size-
class. Hoard permits both global and local heaps to
own multiple superblocks of a size-class. Hoard
will move superblocks from a local heap to the
global heap if the proportion of free blocks to in-use
blocks in the local heap passes the emptiness
threshold. Because LFMalloc limits the number of
superblocks of a given size to one, it does not need
to take special measures to prevent excessive blocks
from accumulating in a local heap. .

 5

2. LFMalloc requires only C local heaps (C is the
number of processors), where Hoard must over-
provide heaps to avoid heap lock contention. Hoard
works best then the number of threads is less than
the number of local heaps.

3. In Hoard, a set of threads, determined by a hash
function applied to the thread ID, will share a local
heap. During its tenure a thread will use only one
local heap. Hoard has the potential for a class of
threads, running concurrently on different
processors, to map to a single “hot” local heap. In
LFMalloc, threads are associated with local heaps
based on which processor they are executing on.
Concurrent malloc operations are evenly distributed
over the set of local heaps. The association between
local-heaps and CPUs is fixed in LFMalloc while in
Hoard the association varies as threads migrate
between CPUs.

4. Since LFMalloc has fewer superblocks in
circulation, we increased the superblock size from
8192 to 65536 bytes without appreciably affecting
the peak heap utilization.

5. In LFMalloc, each superblock has two free lists: a
local free list which is operated on by restartable
critical sections and a remote free list protected by a
traditional system mutex. The two lists are disjoint.
Malloc and free operations on a local heap
manipulate the local free list without locks or atomic
instructions. A thread allocates blocks from its local
heap but can free a block belonging to any heap.
Blocks being freed in a non-local heap are added to
the remote free list.

6. In malloc, Hoard computes the size-class with a
loop. LFMalloc uses a radix map which operates in
a constant number of instructions.

7. Superblocks are size-stable. They remain of a fixed
size-class until the last in-use block is released. At
that time, LFMalloc will return the superblock to the
operating system or it will make the superblock
available to be “reformatted” – it can be changed to
any needed size-class. Hoard never returns
superblocks to the operating system.

3.2.3 LFMalloc: Malloc and Free Algorithms
In LFMalloc a superblock is either online or offline. An
online superblock is associated with a processor – it
belongs to a local heap. An offline superblock is in the
global heap. We say a block is local to a thread if the
block belongs to a superblock that is associated with the
processor on which the thread is running. The block is
remote if the enclosing superblock is associated with
some other processor. Finally, the block is offline if it
belongs to a superblock in the global heap. A local heap
and local free lists of the superblocks it owns are CPU-

specific data. A local heap is permanently fixed to its
processor. A superblock’s local free list is CPU-specific
while the superblock remains online.

LFMalloc uses restartable critical sections to operate on
local free lists and to attach and detach superblocks from
local heaps.

Pseudo-code for malloc (sz)

[1] // RCS {...} delineates a restartable
[2] // critical section
[3] if sz is large
[4] construct and return a large superblock
[5] i SizeClass [sz/8]
[6] self find thread-local storage block
[7] for the current thread
[8] Retry:
[9] RCS { // try to allocate locally
[10] H LocalHeap[self.processorID]
[11] S H[i]
[12] b pop a block from S.LocalFreeList
[13] }
[14] if b != null, return b // fast path
[15] // Superblock is empty – replace it
[16] search the global heap for a
[17] non-full superblock R of size-class i
[18] if none found,
[19] construct a new superblock R
[20] else
[21] lock R
[22] Merge R.RemoteFreeList into
[23] R.LocalFreeList
[24] unlock R
[25] // R goes online, S goes offline
[26] Try to install R in H, replacing S
[27] If failed,
[28] move R to global heap
[29] else
[30] move S to global heap
[31] Goto Retry

Following the pseudo-code above, malloc finds the local
heap H associated with the current processor using the
processor ID supplied by the notification routine. Using
the local heap, malloc locates the superblock S of the
appropriate size-class and attempts to unlink a block b
from the local free list. If no superblock of the size-class
exists, or if the superblock’s local free list is empty,
malloc will find or construct a new superblock and then
attempt to install it in the local heap. Finally, the
previous superblock, if it exists, is returned to the global
heap – it transitions offline.

Pseudo-code for free (b)

[1] if the block is large,
[2] destroy the superblock and return
[3] S superblock containing b

 6

[4] RCS {
[5] If block is not local, goto Slow
[6] add b to S.LocalFreeList
[7] }
[8] return // fast path
[9] Slow:
[10] lock S // S is remote or offline
[11] add b to S.RemoteFreeList
[12] unlock S
[13] if the number of in use blocks in S
[14] reaches 0 and the number of entirely free
[15] superblocks in global heap exceeds a
[16] limit,
[17] destroy the superblock s
[18] return

To free a local block, the free operator pushes the block
onto the superblock’s local free list. To free a non-local
block, the free operator must lock the superblock, add the
block to the remote free list, and then unlock the
superblock.

A malloc request that can be satisfied from the local heap
is lock-free. Likewise, freeing a local block is lock-free.

Local heap metadata is accessed exclusively by one
processor. The association between processors and local
heaps remains fixed even as various threads run on the
processors. This supports our claim of good locality.
Because superblocks consist of a contiguous set of
blocks, and a superblock stays associated with a
processor until it becomes empty, our design minimizes
false sharing.

Malloc and free operations tend to occur on the same
processor. The only exceptions are when a thread
migrates between the malloc and free, or when the
allocating thread hands off the block to be freed by some
other thread. This means that most free operations are on
local blocks and take the “fast path”, show in free, above.

We believe the arguments in [1] regarding Hoard’s
maximum fragmentation and bounded blowup apply to
LFMalloc as well.

4 Results
In this section we describe our results. We compare the
scores of a set of malloc benchmarks, varying the
number of threads used in the benchmarks, and the
underlying malloc package. We also pick a single
micro-benchmark, and, holding the number of threads
constant, perform a detailed analysis of the execution of
that program with various malloc implementations.

4.1 Methodology and Environment
All tests were performed on a 16-processor Sun E6500
system, with 400 MHz UltraSPARC-II processors. The

system had 16 Gb or RAM and was running Solaris 8.
Each processor had a 16 Kb L1 cache and a 4 Mb direct-
mapped L2 cache. All tests were run in the timeshare
(TS) scheduling class. All components, except those
provided in binary form by the system, were compiled in
32-bit mode with GCC 2.95.3. Hoard was built at
optimization level 6 (-O6), and the remainder at
optimization level 4 (-O4).

We ran all tests with the new liblwp libthread package
(liblwp can be found in /lib/liblwp in Solaris 8). Liblwp
uses a single-level threading model where all user-level
threads are bound 1:1 to LWPs (an LWP is a light-
weight process, or kernel thread). In Solaris 9, this 1:1
threading model will become the default. Hoard version
2.1.0 hashes the current thread’s LWP ID to locate a
local heap. Hoard queries a thread’s LWP ID by calling
the undocumented lwp_self function. In the default
libthread on Solaris 8 and lower, lwp_self simply fetches
the current LWP ID from thread-local storage. In the
liblwp, lwp_self calls the _lwp_self system call, which is
significantly slower. We adapted Hoard to call thr_self
instead of lwp_self. This is benign, as under liblwp or
Solaris 9 libthread, a thread’s ID is always the same as
its LWP ID.

We built all C++ benchmarks with mallocwrap.cpp from
Hoard. Mallocwrap replaces the __builtin new and
delete operators with simple wrappers that call malloc
and free, respectively.

All malloc packages, including LFMalloc, were built as
dynamically linked libraries.

We compared LFMalloc to the following: Hoard 2.1.0,
the default Solaris libc malloc, and mtmalloc. Mtmalloc,
described as an “MT hot memory allocator”, is delivered
in binary form with Solaris. Libc malloc is highly
serialized – all operations are protected by a single
mutex.

A standard suite of multithreaded malloc benchmarks
does not yet exist. Instead, we recapitulate some of the
micro-benchmark results reported in previous papers.
We use Larson, from [23] which can be found in the
Hoard source release. Larson simulates a server. We
discovered that Larson scores are sensitive to scheduling
policy. Worker threads start and make progress outside
the timing interval – before the main threads starts
timing. If the main thread stalls, as can happen with a
large number of worker threads, the Larson scores will
be biased upward. To remedy the problem we added a
barrier in the beginning of the worker’s code path. The
main thread starts timing and only then drops the barrier.
All Larson scores reported in this paper reflect the
modified version.

We also report results for linux-scalability [24] and
Hoard’s own threadtest. Finally, we introduce our own

 7

micro-benchmark, mmicro. In writing mmicro, we
factored out influences such as scheduling decisions and
fairness. The program measures the throughput of a set
of threads – it does not measure latency. Given a fixed
time interval, it measures the aggregate amount of work
(malloc-free pairs) accomplished in the allotted time. No
threads are created or destroyed in the timing interval.
The benchmark reports malloc-free pairs/second.

We use Solaris’ cputrack utility to collect data from the
processor’s performance counters. Cputrack perturbs
scheduling decisions. Mmicro scores are stable under
cputrack – they don’t change. However, Larson, linux-
scalability and threadtest are not stable under cputrack.

4.2 Speedup and Scalability
We ran Larson, threadtest, linux-scalability and mmicro
on libc, mtmalloc, Hoard and LFMalloc, varying the
number of concurrent threads from 1…16, 18, 20, 22, 24,
26, 28, 30, 32, 64, 128 and 256. The results are
presented in Figure 1 (a)-(d). All scores are normalized
to libc – the Y-axis is given as the speedup multiple over
libc. For all data points, LFMalloc was faster than libc,
mtmalloc and Hoard.

The performance drop for Larson, Figure 1(a), at higher
numbers of threads may be due to scalability obstacles
outside the allocator. As an experiment, we modified
Larson and removed the malloc-free operations from the
loop of the worker thread. The modified program had a
peak score of 153 times libc at 24 threads. At higher
thread counts the performance dropped off.

In Figure 1 (e), we show the scalability characteristics of
the various malloc packages by plotting the Y-axis as the
speedup relative to one thread. An ideal benchmark
running on a perfectly scalable allocator would have
Speedup(t) = t, for t up to the number of processors.
Both Hoard and LFMalloc show excellent scalability –
concurrent allocator operations don’t impede each other.

4.3 Execution Characteristics
To better understand why LFMalloc performs well, we
picked a single micro-benchmark, mmicro, and set of
parameters and then ran on libc, mtmalloc, Hoard and
LFMalloc, using cputrack and other tools to gather
detailed data. We present that information in Table 2,
Execution Characteristics. As can be seen in the table,
programs running on LFMalloc have excellent cache and
interconnect characteristics, supporting our previous
claims. Notable is that mmicro on LFMalloc runs at
.909 cycles per instruction, realizing the potential of the
UltraSPARC’s superscalar design. Care should be taken
when examining the libc results. Under libc, mmicro
was only able to achieve 14.1% CPU utilization – it
could only saturate about two of the 16 processors.
Threads in the libc trial spent most of their time blocked
on the single heap mutex.

The raw translation lookaside buffer (TLB) miss rate was
higher under LFMalloc than Hoard, but in the timing
interval LFMalloc executed nearly 10 times more
malloc-free pairs. The TLB miss rate per allocation pair
is lower for LFMalloc.

In Table 3, we explore which aspect of our algorithm –
fast synchronization or perfect CPU-identity – contribute
the most to performance. As seen in the table, CPU-
identity is critical to scalability. MP-RCS-based
synchronization is helpful, but only improves
performance about 2 times as compared to a traditional
Solaris mutex.

Finally, the heap “footprint” for LFMalloc is generally
very close to that of Hoard’s. We ran threadtest at
1…16, 18, 20, 22, 24, 26, 28, 30, 32, 64, 128 and 256
threads. Hoard’s peak heap utilization ranged from
6.591 Mb to 7.430 Mb while LFMalloc’s peak heap
utilization ranged from 4.980 Mb to 5.898 Mb

(a) larson: speedup relative to libc

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 18 22 26 30 64 256

threads

sp
ee

du
p

X
ov

er
 li

bc

mtmalloc
hoard
LFMalloc

(b) threadtest: speedup relative to libc

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 18 22 26 30 64 256

threads

sp
ee

du
p

X
ov

er
 li

bc

mtmalloc
hoard
LFMalloc

(c) linux-scalability: speedup relative to libc

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 18 22 26 30 64 256

threads

sp
ee

du
p

X
ov

er
 li

bc

mtmalloc
hoard
LFMalloc

(d) mmicro: speedup relative to libc

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 18 22 26 30 64 256

threads

sp
ee

du
p

X
ov

er
 li

bc

mtmalloc
hoard
LFMalloc

(e) mmicro: speedup relative to one thread

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 18 22 26 30 64 256

threads

sp
ee

du
p

X
ov

er
 t=

1

libc
mtmalloc
hoard
LFMalloc

Figure 1: Scalability and Speedup

Critical Execution Manager

D

A: no preemption - simple return
B: preemption - potential interference
C: not in Critical Section - simple return
D: Interrupted Critical Section - restart

1: LD Self Cpu,C 2: LD C Head,H 4: ST N,C Head 3: LD H Next,N

BLOCKED

Other threads
may run

Kernel

Restartable Critical Section

ONPROC OFFPROC

User

t1

A

B

C

Upcall

Kernel Driver

t3

t2

t4

Interrupt

Table 1: Example of an Interrupted Critical Section

Time Action

t1 The thread enters the Restartable Critical Section. The critical section will attempt to pop a node off a CPU-specific
linked-list. Self is a pointer to thread-local-storage and Self Cpu is a pointer to CPU-specific-data. The thread executes
instructions #1 and #2 and is then interrupted – the interrupted user-mode instruction pointer (IP) points to instruction #3.
Control passes into the kernel. The kernel deschedules the thread – the thread goes OFFPROC. Other related threads
run, potentially rendering the saved H and C register values stale.

t2 The thread is eventually rescheduled – it goes ONPROC. The kernel calls a routine in the driver, previously registered as
a context switch callback, to notify the driver that a thread of interest is making the transition from ready state to running
state. The driver checks to see if (a) the thread has migrated to a different CPU since it last ran, or, (b) if any related
threads have run on this CPU since the current thread last went OFFPROC. We’ll presume (b) is the case, so there is
a risk of interference. The driver posts an upcall – the driver saves the interrupted IP and substitutes the address of the
notification routine. The thread eventually returns to user-mode, but restarts in the notification instead of at instruction
#3.

t3 The notification routine updates Self->Cpu to refer to the appropriate CPU (the thread may have migrated). Next, it
retrieves the interrupted IP, which refers to instruction #3, and checks to see if the IP was within a critical section. In our
example the routine adjusts the IP to point to the beginning of the critical section (#1). For convenience, we currently
write critical sections in a non-destructive idiom – it does not destroy any input register arguments. If a critical section is
interrupted the critical execution manager can simply restart it. The notification routine also checks for interrupted critical
sections interrupted by signals and arranges for them to restart as well.

t4 The upcall unwinds, passing control to the start of the interrupted critical section, causing it to restart.

Figure 2: Control Flow for Restartable Critical Sections

 10

.

Table 2: Execution Characteristics

 libc mtmalloc Hoard LFMalloc

MP-RCS migration upcalls 473

MP-RCS preemption upcalls 2705

MP-RCS of interrupted critical sections 812

Peak heap size (Mb) unknown unknown 3.5 Mb 4.1 Mb

Malloc-free latency (ηsecs per pair) 166,525 ηsecs 19,230 ηsecs 2,251 ηsecs 227 ηsecs

Overall malloc-free throughput (pairs/sec) 102,111 844,454 6,589,446 70,749,108

User-mode CPU utilization (%) 14.1% 85.6% 98.6% 98.7%

Context switch rate (switches/second) Includes both voluntary switches caused by
blocking and involuntary switches.

1043 8537 657 412

User-mode cycles per instruction (CPI) 1.985 3.106 1.505 .909

User-mode snoops (cycles/second) - snoop invalidations caused by cache line
migration

3,529,464/sec 22,484,855/sec 137,625/sec 41,452/sec

User-mode Snoops / malloc-free pair 33.382 26.112 0.021037 0.000583

System DTLB miss rate (exceptions/second) 4,965/sec 20,8114/sec 4,870/sec 10,028/sec

User-mode L1 miss rate 2.544% 6.668% 7.325% 1.699%

User-mode L2 miss rate 33.258% 24.139% 0.015% 0.008%

User-mode L1 Cache misses / malloc-free pair 139.087 36.022 10.333 .407

Execution characteristics of “mmicro 64 :10000 200” – a 10 second run with 64 threads, each thread loops, malloc()ing 64 blocks of length 200 and then free()s
the blocks in same order in which they were allocated.

Table 3: Contributions of Synchronization and Perfect Processor Identity

Synchronization mechanism Local heap selection 1 thread 16 threads 256 threads

Restartable Critical Sections By processor ID via upcall 4548 69911 72163

Per-CPU Solaris mutex By processor ID via upcall 2124 33020 30678

Per-CPU Solaris mutex Hoard-style hash of thread ID 2012 23742 2060

“mmicro T :10000 64” scores - malloc-free pairs/msec – for 1, 16 and 256 threads showing the effect of
different synchronization and heap selection mechanisms.

 11

5 Conclusion
We have introduced Multi-Processor Restartable Critical
Sections and demonstrated their utility by developing a
scalable malloc allocator. Despite using shared heaps the
allocator can usually operate lock-free. The allocator
has excellent execution characteristics, particularly on
multiprocessor systems.

MP-RCS is novel in that it works on multiprocessors but
for CPU-specific data. Other kernel-assisted
synchronization techniques work only on uniprocessors.

MP-RCS provides two facilities: processor location
awareness and restartable critical sections. Restartable
critical sections require processor location awareness, but
the converse is not true. We have shown that of these,
processor location awareness is more useful. Finally,
MP-RCS operates without limiting kernel preemption
policies, and is independent of threading models and
applications.

5.1 Future Work
For uniprocessors and for a process with all related
threads bound to one CPU, restartable critical sections
can emulate CAS; all data is CPU-specific. Our results
show the emulated form to be 1.8 times faster than the
actual hardware instruction.

We intend to adopt commit records [29] to extend the
MP-RCS facility to multi-word transactions.

By creating superblocks of size B, (B is a power of two)
aligned on virtual addresses that are a multiple of B, we
can eliminate the block header, saving 8 bytes per-block.
Given a block, the free operator can then locate the
enclosing superblock by simply masking the address of
the block.

To reduce the cost and frequency of upcalls, we intend to
establish a convention so the kernel can determine if an
interrupted thread was executing in a critical section.
We have also prototyped a simple free block cache
“stacked” on top of the existing malloc subsystem.

We have adapted a Java™ virtual machine to operate on
per-CPU heap allocation buffers with MP-RCS
operators. In addition to heap allocation, we believe that
MP-RCS can offer fast logging write barriers, and the
potential for fast mutator thread suspension, needed by
stop-the-world garbage collectors. (A thread targeted for
suspension would block itself in the upcall).

We would like to collect data on NUMA systems –
LFMalloc should perform well in that environment. We
also intend to retrofit Hoard with MP-RCS components.
In particular, we will replace Hoard’s

hoardGetThreadID thread-to-heap mapping function
with one based on the precise processor ID.

5.2 Acknowledgements
We would like to thank Chris Phillips for pointing out
IBM’s use of function recovery routines and service
requests. We would also like to thank Paula J. Bishop
for helpful comments.

6 References
[1] Emery Berger, Kathryn McKinley, Robert Blumofe and Paul

Wilson. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. In ASPLOS-IX: Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems. 1997.

[2] David Mosberger, Peter Druschel and Larry L. Peterson. A Fast
and General Software Solution to Mutual Exclusion on
Uniprocessors. Technical Report 94-07, Department of Computer
Science, University of Arizona. June 1994.

[3] David Mosberger, Peter Druschel and Larry L. Peterson.
Implementing Atomic Sequences on Uniprocessors Using
Rollforward. In Software – Practice & Experience. Vol. 26, No.
1. January 1996.

[4] Brian N. Bershad. Practical Considerations for Non-Blocking
Concurrent Objects. In Proc. International Conference on
Distributed Computing Systems, (ICDCS). May 1993.

[5] Brian N. Bershad. Fast Mutual Exclusion for Uniprocessors. In
ASPLOS-V: Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems.
1992.

[6] William Moran and Farnham Jahanian. Cheap Mutual Exclusion.
In Proc. USENIX Technical Conference. 1992.

[7] Christopher Small and Margo Seltzer. Scheduler Activations on
BSD: Sharing Thread Management State Between Kernel and
Application. Harvard Computer Systems Laboratory Technical
Report TR-31-95. 1995

[8] T. Anderson, B. Bershad, E. Lazowska and H. Levy. Scheduler
Activations: Effective Kernel Support for User-Level
Management of Parallelism. ACM Transactions on Computer
Systems, 10(1). 1992.

[9] O. Shivers, J. Clark and R. McGrath. Atomic Heap Transactions
and Fine-grain Interrupts. In Proc. International Conference on
Functional Programming (ICFP). 1999.

[10] Alan Bawden. PCLSRing: Keeping Process State Modular.
Available at ftp://ftp.ai.mit.edu/pub/alan/pclsr.memo. 1993.

[11] Richard L. Hudson, J. Eliot B. Moss, Sreenivas Subramoney and
Weldon Washburn. Cycles to Recycle: Garbage Collection on the
IA-64. In Tony Hoskings, editor, ISMM 2000, Proc. Second
International Symposium on Memory Management, 36(1). of the
ACM SIGPLAN Notices. 2000.

[12] IBM OS/390 MVS Programming: Resource Recovery. 1998.
GC28-1739-03.

[13] Doug Lea. A Memory Allocator. Available at
http://g.oswego.edu/dl/html/malloc.html.

[14] Jeff Bonwick and Jonathan Adams. Magazines and Vmem:
Extending the Slab Allocator to Many CPUs and Arbitrary
Resources. In Proc. USENIX Technical Conference. 2001.

 12

[15] Ben Gamsa, Orran Krieger, Jonathan Appavoo and Michael
Stumm. Tornado: Maximizing Locality and Concurrency in a
Shared Memory Multiprocessor Operating System. In Proc. of
Symp. On Operating System Design and Implementation. (OSDI-
III). 1999.

[16] Paul McKenney, Jack Slingwine and Phil Krueger. Experience
with a Parallel Memory Allocator. In Software – Practice &
Experience. Vol. 31. 2001.

[17] Michael Greenwald. Ph. D. Thesis. Non-Blocking
Synchronization and System Design. Stanford University, 1999.

[18] John Valois. Lock-Free Data Structures. Ph. D. Thesis,
Rensselaer Polytechnic Institute, 1995.

[19] Jim Maura and Richard McDougall. Solaris™ Internals: Core
Kernel Architecture. Sun Microsystems Press. Prentice-Hall.
2001.

[20] Hans-J. Boehm. Fast Multiprocessor Memory Allocation and
Garbage Collection. HP Labs Technical Report HPL-2000-165.
2000.

[21] David L. Weaver, Tom Germond, editors. The SPARC
Architecture Manual, Version 9. SPARC International, Prentice-
Hall, 1994.

[22] Paul McKenney and John Slingwine. Read-Copy Update: Using
Execution History to Solve Concurrency Problems. In 10th
IASTED International Conference on Parallel and Distributed
Computing Systems. (PDCS’98). 1998

[23] P. Larson and M. Krishnan. Memory Allocation for Long-
Running Server Applications. In International Symp. On Memory
Management (ISMM 98). 1988.

[24] Chuck Lever and David Boreham. Malloc() Performance in a
Multithreaded Linux Environment. In USENIX Technical
Conference, 2000.

[25] Greg Nakhimovsky. Improving Scalability of Multithreaded
Dynamic Memory Allocation. In Dr. Dobbs Journal, #326. July
2001.

[26] Wolfram Golger. Dynamic Memory Allocator Implementations
in Linux System Binaries. Available at www.dent.med.uni-
muenchen.de/~wmglo/malloc-slides.html. Site visited January
2002.

[27] Voon-Yee Vee and Wen-Jing Hsu. A Scalable and Efficient
Storage Allocator on Shared-Memory Multiprocessors. In
International Symp. of Parallel Architectures, Algorithms, and
Networks (I-SPAN 99). 1999.

[28] Hiroaki Takada and Ken Sakamura. Real-Time Synchronization
Protocols with Abortable Critical Sections. In Proc. of the First
Workshop on Real-Time Systems and Applications. (RTCSA).
1994.

[29] Theodore Johnson and Krishna Harathi. Interruptible Critical
Sections. Dept. of Computer Science, University of Florida.
Technical Report TR94-007. 1994.

[30] Maurice Herlihy. A Method for Implementing Highly Concurrent
Data Objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 15(5), November 1993.

Sun, Sun Microsystems, Java, JDK and Solaris are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other
countries. All SPARC trademarks are used under license,
and are trademarks or registered trademarks of SPARC
International, Inc. in the United States and other
countries. Products bearing the SPARC trademark are
based on an architecture developed by Sun
Microsystems, Inc.

