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Abstract 
Modern multithreaded applications, such as application 
servers and database engines, can severely stress the 
performance of user-level memory allocators like the 
ubiquitous malloc subsystem.  Such allocators can prove 
to be a major scalability impediment for the applications 
that use them, particularly for applications with large 
numbers of threads running on high-order 
multiprocessor systems.     

This paper introduces Multi-Processor Restartable 
Critical Sections, or MP-RCS.  MP-RCS permits user-
level threads to know precisely which processor they are 
executing on and then to safely manipulate CPU-specific 
data, such as malloc metadata, without locks or atomic 
instructions.  MP-RCS avoids interference by using 
upcalls to notify user-level threads when preemption or 
migration has occurred.  The upcall will abort and 
restart any interrupted critical sections.   

We use MP-RCS to implement a malloc package, 
LFMalloc (Lock-Free Malloc). LFMalloc is scalable, 
has extremely low latency, excellent cache 
characteristics, and is memory efficient.  We present 
data from some existing benchmarks showing that 
LFMalloc is often 10 times faster than Hoard, another 
malloc replacement package.   

1 Introduction and Motivation  
Many C and C++ applications depend on the malloc 
dynamic memory allocation interface.  The performance 
of malloc can be crucial and can limit the application.  
Many malloc subsystems were written in a time when 
multiprocessor systems were rare.  They use memory 
efficiently but are highly serial and constitute an obstacle 
to throughput for parallel applications.  Evidence of the 
importance of malloc comes from the wide array of after-
market malloc replacement packages that are currently 
available.  

Our goals are to provide a malloc implementation with 
the following characteristics: 

♦ Low latency. 

♦ Excellent scalability.  It should provide high 
throughput even under extreme load with large 
numbers of threads and processors.   

♦ Memory-efficiency.  The allocator should minimize 
wastage  

♦ Minimal interconnect traffic.  Interconnect 
bandwidth is emerging as the limiting performance 
factor for a large class of commercial applications 
that run on multiprocessor systems. We reduce 
traffic by increasing locality.  

♦ Generality.   Our implementation should be 
independent of threading models, and work with 
large numbers of threads in a preemptive 
multitasking environment, where threads are 
permitted to migrate freely between processors.  

In addition to the raw performance of malloc itself, the 
secondary effects of malloc policies take on greater 
importance. A good malloc implementation can reduce 
the translation lookaside buffer miss rate, the cache miss 
and the amount of interconnect traffic for an application 
accessing malloc-ed blocks.  These effects are 
particularly important on large server systems with deep 
memory hierarchies.   

Malloc implementations exist in a wide spectrum.  At 
one extreme we find a single global heap protected by 
one mutex.  The default “libc” malloc in the Solaris™ 
Operating Environment is of this design.  This type of 
allocator can organize the heap with little wastage, but 
operations on the heap are serialized so the design 
doesn’t scale well.  At the other extreme a malloc 
allocator can provide a private heap for each thread. 
Malloc operations that can be satisfied from a thread’s 
private heap don’t require synchronization and have low 
latency. When the number of threads grows large, 
however, the amount of memory reserved in per-thread 
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heaps can become unreasonable.  Various solutions have 
been suggested, such as adaptive heap sizing or trying to 
minimize the number of heaps in circulation by handing 
off heaps between threads as they block and unblock.   

In the middle, we find Hoard [1], which limits the 
number of heaps by associating multiple threads with a 
fixed number of local heaps.  A thread is associated with 
a local heap by a hashing function based on the thread’s 
ID. The number of heaps in Hoard is proportional to the 
number of CPUs.  Since the local heaps are shared, 
synchronization is required for malloc and free 
operations.  To avoid contention on heaps, Hoard 
provides more heaps than processors.   

LFMalloc is similar to Hoard version 2.1.0 - it uses many 
of the same data structures and policies as Hoard but 
needs only one heap per CPU.  Malloc and free 
operations on shared per-CPU heaps don’t usually 
require locking or atomic operations.  Allocating threads 
know precisely which processor they are running on, 
resulting in improved data locality and affinity.  Local 
heap metadata tends to stay resident in the CPU, even 
though multiple threads will operate on the metadata.     

2 Related Work 
Much research has been done in the area of kernel-
assisted non-blocking synchronization.  In [4] and [5] 
Bershad introduces restartable atomic sequences. 
Mosberger et al. [2][3]  and Moran et al. [6] did related 
work.  Johnson and Harathi describe interruptible 
critical sections in [29].  Takada and Sakamura describe 
abortable critical sections in [28].  Scheduler 
activations, in [7] and [8], make kernel scheduling 
decisions visible to user programs. 

A primary influence was the paper by Shivers et al. [9] 
on atomic heap transactions and fine-grained interrupts. 
In that work, the authors describe their efforts to develop 
efficient allocation services for use in an operating 
system written in ML, how these services are best 
represented as restartable transactions, and how they 
interact well with the kernel's need to handle interrupts 
efficiently. A major influence on their project is the work 
done at MIT on the ITS operating system. That operating 
system used a technique termed PCLSR [10] that 
ensured that, when any thread has examined another 
thread's state, the observed state was consistent. The 
basic mechanism was a set of protocols to roll a thread's 
state either forward or backward to a consistent point at 
which they could be suspended.     

Hudson et al. [11] propose clever allocation sequences 
that use the IA64’s predicate registers and predicated 
instructions to annul interrupted critical sections.    

Similarly, the functional recovery routines [12] and 
related mechanisms of the OS/390 MVS operating 
system allow sophisticated transactions of this type. 

We also draw on a large body of malloc research, 
including that of Hoard. Hoard version 2.1.0 is built on 
top of Lea’s malloc package [13].   

Finally, a number of recent papers emphasize allocators 
that are friendly to multiprocessor systems.  These 
include Bonwick’s Vmem allocator [14], McKenney’s 
kernel memory allocator [16], Nakhimovsky’s mtmalloc 
[25], Larson and Krishnan’s LKMalloc [23], Golger’s 
PTMalloc [26] and Vee and Hsu’s allocator [27].   

3 Design and Implementation 
LFMalloc consists of a malloc allocator and the MP-RCS 
subsystem.  The allocator, which shares many 
characteristics with Hoard, uses MP-RCS to safely 
operate on CPU-local malloc metadata.  The MP-RCS 
subsystem includes a kernel driver, a user-mode 
notification routine, and the restartable critical sections 
themselves.  The kernel driver monitors migration and 
preemption, and posts upcalls to the user-mode 
notification routine. The notification routine (a) tracks 
which processor a thread is running on, and (b) aborts 
and recovers from any interrupted critical sections.  A 
restartable critical section is a block of code that updates 
CPU-specific data.   Collectively, we refer to the driver 
and the notification routine as the critical execution 
manager.  The initial implementation of LFMalloc is on 
SPARC™ Solaris.   

3.1 MP-RCS 
MP-RCS permits multiple threads to operate on CPU-
specific data in a consistent manner - without 
interference.  MP-RCS doesn’t presume any particular 
thread model - threads may be preemptively scheduled 
and may migrate between processors at any time.    

In the general case, interference can come from either 
preemption or from threads running concurrently on 
other CPUs.  Since restartable critical sections operate 
only on CPU-specific data, we need only be concerned 
with preemption.  For a uniprocessor system, 
interference is solely the result of kernel preemption.  

Techniques to avoid interference fall into two major 
categories: mutual exclusion-based or lock-free [30] 
[17][18].  Mutual exclusion is usually implemented with 
locks.  It is pessimistic – mutual exclusion techniques 
prevent interference.  If a thread holding a traditional 
lock is preempted, other threads will be denied access to 
the critical section, resulting in convoys, excessive 
context switching, and the potential for priority 
inversion.   
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Lock-free operations, like compare-and-swap (CAS), 
load-locked/store-conditional (LL-SC) and MP-RCS are 
optimistic – they detect and recover from interference. A 
transaction fetches data, computes a provisional value 
and attempts to commit the update.  If the update fails, 
the program must retry the transaction. Unlike locking 
techniques, lock-free operations behave gracefully under 
preemption.  If a thread is interrupted in a critical 
section, other threads are permitted to enter and pass 
through the critical section.  When the interrupted thread 
is eventually rescheduled it will restart the critical 
section.  Since the thread is at the beginning of a full 
quantum, it will normally be able to complete the critical 
section without further quantum-based preemption.  
Lock-free operations are also immune to deadlock.  Note 
that the term critical section is usually applied to mutual 
exclusion, but in this paper we mean it in the more 
general sense of atomic sequence.  

Under MP-RCS, if a thread executing in a restartable 
critical section either (a) migrates to another CPU, or (b) 
is preempted, and other related threads run on that 
processor, then the interrupted operation may be ”stale” 
and must not be permitted to resume.  To avoid 
interference, the kernel driver posts an upcall to a user-
mode recovery routine. The upcall, which runs the next 
time the thread returns to user-mode, aborts the 
interrupted operation and restarts the critical section by 
transferring control to the first instruction in the critical 
section.  A thread that has been preempted and may hold 
stale state is not permitted to commit.  

Figure 2 describes the control flow used by restartable 
critical sections.  Table 1 provides a detailed example of 
the actions that take place during an interrupted critical 
section.   

3.1.1 Restartable Critical Sections 
A restartable critical section is simply of block of code.  
The start, end, and restart addresses of all critical 
sections are known to the notification routine.   

A restartable critical section proceeds without locks or 
atomic instructions, using simple load and store 
instructions.  Restartable critical sections take the 
following form: (a) fetch the processor ID from thread-
local storage and locate CPU-specific data, (b) optionally 
fetch one or more CPU-specific variables and compute a 
provisional value, (c) attempt to store that new value into 
a CPU-specific variable.  As seen in Figure 2, restartable 
critical sections always end with a store instruction – we 
say the store commits the transaction.   

3.1.2 Kernel Driver 
The kernel driver delivers selective preemption 
notification.  If a thread is preempted, and other 
unrelated threads run, then when the original thread is 

scheduled onto a CPU there is no risk of interference, so 
the kernel does not post an upcall.  Also, by convention, 
we don’t permit blocking system calls within a critical 
section, so the kernel can forego notification to threads 
that voluntarily context switch.    

The driver makes kernel scheduling decisions, which are 
normally hidden, visible to user-mode threads. The 
driver doesn’t change scheduling policies or decisions in 
any manner but instead informs the affected threads.  It 
doesn’t change which threads will run or when they will 
run but only where they will resume: in a notification 
routine or at the original interrupted instruction.   Upcalls 
are deferred until the thread runs – at the next transition 
from kernel to user-mode.  

Referring to Figure 2, upcalls are delivered at the 
ONPROC transition.  ONPROC is a Solaris term for “on 
processor” – it is the thread state transition between 
ready and running. Solaris internals are described in 
detail in [19].  Running the notification routine at the 
OFFPROC “off processor” transition is more intuitive 
and natural, but would violate Solaris scheduling 
invariants.   

The kernel driver posts an upcall by saving the 
interrupted user-mode instruction pointer, and 
substituting the address of the user-mode upcall routine.  
The next time the thread returns to user-mode, it will 
resume in the upcall routine instead of at the interrupted 
instruction.  

The current driver is conservative; it posts an upcall if 
there is any potential for interference.  The driver is 
currently unable to determine if a thread was executing 
within a critical region.  Interference will result in an 
upcall, but not all upcalls indicate true interference.  For 
ease of construction we partitioned responsibility: the 
kernel driver detects migration and preemption while the 
notification routine detects and restarts interrupted 
critical sections.    

The kernel driver uses a set of preexisting context switch 
hooks present in Solaris.  Among other things, these 
hooks are used to load and unload performance counters 
and hardware device state that might be specific to a 
thread.  The driver merges multiple pending upcalls 
which can result when a thread is preempted and then 
migrates.  The kernel driver passes the current processor 
ID and the original interrupted instruction pointer (IP) as 
arguments into the notification routine.   The notification 
routine will examine the interrupted IP to see if it was 
within a restartable critical section.   

3.1.3 User-mode Notification Routine 
The user-mode notification routine aborts and restarts 
interrupted critical sections, as well as tracks which CPU 
a thread is currently executing on.  Critically, the 
notification routine executes before control could pass 
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back into an interrupted critical section.  This gives the 
routine the opportunity to vet and, if needed, to abort the 
critical section.  

The kernel passes the current processor ID to the 
notification routine which stores the value in thread-
specific storage.  Subsequent restartable critical sections 
fetch the processor ID from thread-specific storage and 
locate the appropriate CPU-specific data, such as malloc 
metadata. Upcalls give us a precise processor ID – used 
inside a restartable critical section, the value will never 
be stale.  

We originally implemented upcalls with UNIX signals, 
but signals had specific side-effects, such as expedited 
return from blocking system calls, that proved 
troublesome.  Still, upcalls are similar in spirit to signals.  

Finally, to avoid nested upcalls, MP-RCS inhibits 
notification while an upcall is executing.  The upcall 
hand-shakes with the kernel to indicate that it is finished.   
Also, upcalls have precedence over asynchronous 
signals. 

3.1.4 Transactional Layer 
To make it easier to employ MP-RCS we have developed 
a small transactional layer written in assembler, but 
callable from C.  The layer is built on top of small 
restartable critical sections. It supports starting a 
transaction, conditional loads, and conditional stores.  
Each thread has a private “interference” flag.  Starting a 
transaction clears the flag.   The load and store operators, 
protected by restartable critical sections, test the flag, and 
then execute or annul the memory operation, 
accordingly.  The notification routine sets the flag, 
indicating potential interference.      

3.1.5 Discussion 
Upcalls and restartable critical sections are time-efficient 
On a 400 MHz UltraSPARC-II system the latency of an 
upcall is 13 µsecs.  Restarting a critical section entails 
reexecution of a portion of the critical section.  These are 
wasted cycles, but in practice critical sections are short 
and upcalls are infrequent.  An important factor in the 
upcall rate is the length of a quantum.  If the duration of 
a restartable critical section approaches the length of a 
quantum, the critical section will fail to make progress.  
This same restriction applies to some LL-SC 
implementations, like that found in the DEC Alpha.   

MP-RCS confers other benefits.  Restartable critical 
sections are not vulnerable to the A-B-A problem [18] 
found in CAS.  More subtly, reachable objects are known 
to be live.  Take the example of a linked list with 
concurrent read and delete operations.  We need to 
ensure that a reader traversing the list doesn’t encounter 
a deleted node.  The traditional way to prevent such a 
race is to lock nodes – such locks are usually associated 

with the reference, not the object.  A restartable critical 
section can traverse such a list without any locking.  If a 
reader is preempted by a delete operation the reader will 
restart and never encounter any deleted nodes.  [22],  
with the Read-Copy Update protocol, and [15] describe 
other approaches to the problem of existence guarantees. 

MP-RCS does not impose any particular thread model.   
MP-RCS works equally well with a 1:1 model or a multi-
level level model (where multiple logical threads are 
multiplexed on fewer “real” threads).  In addition, MP-
RCS operates independently of the relationship between 
threads and processors; under MP-RCS threads may be 
bound to specific processors or allowed to migrate freely.    

3.2 Malloc and Free 
This section briefly describes the Hoard allocator, 
contrasts Hoard with the LFMalloc allocator and 
describes the operation of malloc and free in LFMalloc.     

3.2.1 Hoard 
Hoard has a single global heap and multiple local heaps.  
Each heap contains a set of superblocks.  A superblock 
consists of a header and an array of fixed size blocks.  
The superblock header contains a LIFO free list of 
available blocks.  A block contains a pointer to the 
enclosing superblock, alignment padding, and the data 
area.  The malloc operator allocates a block from a free 
list and returns the address of the data area.   

All superblocks are the same length – a multiple of the 
system page size - and are allocated from the system.   
All blocks in a superblock are in same size-class.  The 
maximum step between adjacent size-classes is 20%, 
constraining internal fragmentation to no more than 20%.  
Hoard handles large requests by constructing a special 
superblock that contains just one block – this maintains 
the invariant that all blocks must be contained within a 
superblock.      

3.2.2 Comparing LFMalloc and Hoard 
LFMalloc shares all the previous characteristics with 
Hoard but differs in the following: 

1. In LFMalloc a local heap may “own” at most one 
superblock of a given size-class while the global 
heap may own multiple superblocks of a given size- 
class.   Hoard permits both global and local heaps to 
own multiple superblocks of a size-class.  Hoard 
will move superblocks from a local heap to the 
global heap if the proportion of free blocks to in-use 
blocks in the local heap passes the emptiness 
threshold.  Because LFMalloc limits the number of 
superblocks of a given size to one, it does not need 
to take special measures to prevent excessive blocks 
from accumulating in a local heap. .   
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2. LFMalloc requires only C local heaps (C is the 
number of processors), where Hoard must over-
provide heaps to avoid heap lock contention.  Hoard 
works best then the number of threads is less than 
the number of local heaps.      

3. In Hoard, a set of threads, determined by a hash 
function applied to the thread ID, will share a local 
heap.  During its tenure a thread will use only one 
local heap. Hoard has the potential for a class of 
threads, running concurrently on different 
processors, to map to a single “hot” local heap.  In 
LFMalloc, threads are associated with local heaps 
based on which processor they are executing on.  
Concurrent malloc operations are evenly distributed 
over the set of local heaps.  The association between 
local-heaps and CPUs is fixed in LFMalloc while in 
Hoard the association varies as threads migrate 
between CPUs. 

4. Since LFMalloc has fewer superblocks in 
circulation, we increased the superblock size from 
8192 to 65536 bytes without appreciably affecting 
the peak heap utilization.   

5. In LFMalloc, each superblock has two free lists: a 
local free list which is operated on by restartable 
critical sections and a remote free list protected by a 
traditional system mutex.  The two lists are disjoint. 
Malloc and free operations on a local heap 
manipulate the local free list without locks or atomic 
instructions.  A thread allocates blocks from its local 
heap but can free a block belonging to any heap. 
Blocks being freed in a non-local heap are added to 
the remote free list.     

6. In malloc, Hoard computes the size-class with a 
loop.  LFMalloc uses a radix map which operates in 
a constant number of instructions.  

7. Superblocks are size-stable.  They remain of a fixed 
size-class until the last in-use block is released.  At 
that time, LFMalloc will return the superblock to the 
operating system or it will make the superblock 
available to be “reformatted” – it can be changed to 
any needed size-class.  Hoard never returns 
superblocks to the operating system.   

3.2.3 LFMalloc: Malloc and Free Algorithms 
In LFMalloc a superblock is either online or offline.  An 
online superblock is associated with a processor – it 
belongs to a local heap.  An offline superblock is in the 
global heap.  We say a block is local to a thread if the 
block belongs to a superblock that is associated with the 
processor on which the thread is running.  The block is 
remote if the enclosing superblock is associated with 
some other processor.   Finally, the block is offline if it 
belongs to a superblock in the global heap.  A local heap 
and local free lists of the superblocks it owns are CPU-

specific data.  A local heap is permanently fixed to its 
processor. A superblock’s local free list is CPU-specific 
while the superblock remains online.  

LFMalloc uses restartable critical sections to operate on 
local free lists and to attach and detach superblocks from 
local heaps. 

Pseudo-code for malloc (sz) 

[1] // RCS {...} delineates a restartable  
[2] // critical section 
[3] if sz is large 
[4]     construct and return a large superblock 
[5] i  SizeClass [sz/8] 
[6] self  find thread-local storage block  
[7]     for the current thread 
[8] Retry:  
[9] RCS {  // try to allocate locally 
[10]    H  LocalHeap[self.processorID]      
[11]    S  H[i]  
[12]    b  pop a block from S.LocalFreeList  
[13] } 
[14] if b != null, return b // fast path 
[15] // Superblock is empty – replace it 
[16] search the global heap for a  
[17]     non-full superblock R of size-class i 
[18] if none found, 
[19]    construct a new superblock R  
[20] else 
[21]    lock R  
[22]    Merge R.RemoteFreeList into  
[23]        R.LocalFreeList 
[24]    unlock R 
[25] // R goes online, S goes offline 
[26] Try to install R in H, replacing S 
[27] If failed,  
[28]     move R to global heap 
[29] else 
[30]     move S to global heap  
[31] Goto Retry 
 

Following the pseudo-code above, malloc finds the local 
heap H associated with the current processor using the 
processor ID supplied by the notification routine.  Using 
the local heap, malloc locates the superblock S of the 
appropriate size-class and attempts to unlink a block b 
from the local free list.  If no superblock of the size-class 
exists, or if the superblock’s local free list is empty, 
malloc will find or construct a new superblock and then 
attempt to install it in the local heap.  Finally, the 
previous superblock, if it exists, is returned to the global 
heap – it transitions offline.       

Pseudo-code for free (b) 

[1] if the block is large,  
[2]    destroy the superblock and return 
[3] S  superblock containing b 
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[4] RCS {  
[5]    If block is not local, goto Slow 
[6]    add b to S.LocalFreeList  
[7] }  
[8] return   // fast path 
[9] Slow:  
[10] lock S  // S is remote or offline 
[11] add b to S.RemoteFreeList 
[12] unlock S 
[13] if the number of in use blocks in S  
[14]   reaches 0 and the number of entirely free 
[15]   superblocks in global heap exceeds a  
[16]   limit,   
[17]       destroy the superblock s 
[18] return 
 

To free a local block, the free operator pushes the block 
onto the superblock’s local free list.  To free a non-local 
block, the free operator must lock the superblock, add the 
block to the remote free list, and then unlock the 
superblock. 

A malloc request that can be satisfied from the local heap 
is lock-free.  Likewise, freeing a local block is lock-free.   

Local heap metadata is accessed exclusively by one 
processor.  The association between processors and local 
heaps remains fixed even as various threads run on the 
processors.  This supports our claim of good locality.  
Because superblocks consist of a contiguous set of 
blocks, and a superblock stays associated with a 
processor until it becomes empty, our design minimizes 
false sharing.  

Malloc and free operations tend to occur on the same 
processor.  The only exceptions are when a thread 
migrates between the malloc and free, or when the 
allocating thread hands off the block to be freed by some 
other thread.  This means that most free operations are on 
local blocks and take the “fast path”, show in free, above. 

We believe the arguments in [1] regarding Hoard’s 
maximum fragmentation and bounded blowup apply to 
LFMalloc as well. 

4 Results 
In this section we describe our results.   We compare the 
scores of a set of malloc benchmarks, varying the 
number of threads used in the benchmarks, and the 
underlying malloc package.  We also pick a single 
micro-benchmark, and, holding the number of threads 
constant, perform a detailed analysis of the execution of 
that program with various malloc implementations.   

4.1 Methodology and Environment 
All tests were performed on a 16-processor Sun E6500 
system, with 400 MHz UltraSPARC-II processors.  The 

system had 16 Gb or RAM and was running Solaris 8. 
Each processor had a 16 Kb L1 cache and a 4 Mb direct-
mapped L2 cache.  All tests were run in the timeshare 
(TS) scheduling class. All components, except those 
provided in binary form by the system, were compiled in 
32-bit mode with GCC 2.95.3. Hoard was built at 
optimization level 6 (-O6), and the remainder at 
optimization level 4 (-O4).   

We ran all tests with the new liblwp libthread package 
(liblwp can be found in /lib/liblwp in Solaris 8).  Liblwp 
uses a single-level threading model where all user-level 
threads are bound 1:1 to LWPs (an LWP is a light-
weight process, or kernel thread).  In Solaris 9, this 1:1 
threading model will become the default.  Hoard version 
2.1.0 hashes the current thread’s LWP ID to locate a 
local heap.  Hoard queries a thread’s LWP ID by calling 
the undocumented lwp_self function. In the default 
libthread on Solaris 8 and lower, lwp_self simply fetches 
the current LWP ID from thread-local storage.  In the 
liblwp, lwp_self calls the _lwp_self system call, which is 
significantly slower.  We adapted Hoard to call thr_self 
instead of lwp_self.  This is benign, as under liblwp or 
Solaris 9 libthread, a thread’s ID is always the same as 
its LWP ID.    

We built all C++ benchmarks with mallocwrap.cpp from 
Hoard.  Mallocwrap replaces the __builtin new and 
delete operators with simple wrappers that call malloc 
and free, respectively.   

All malloc packages, including LFMalloc, were built as 
dynamically linked libraries.   

We compared LFMalloc to the following:  Hoard 2.1.0, 
the default Solaris libc malloc, and mtmalloc.  Mtmalloc, 
described as an “MT hot memory allocator”, is delivered 
in binary form with Solaris.  Libc malloc is highly 
serialized – all operations are protected by a single 
mutex.   

A standard suite of multithreaded malloc benchmarks 
does not yet exist.  Instead, we recapitulate some of the 
micro-benchmark results reported in previous papers.    
We use Larson, from [23] which can be found in the 
Hoard source release.  Larson simulates a server. We 
discovered that Larson scores are sensitive to scheduling 
policy.  Worker threads start and make progress outside 
the timing interval – before the main threads starts 
timing.  If the main thread stalls, as can happen with a 
large number of worker threads, the Larson scores will 
be biased upward.  To remedy the problem we added a 
barrier in the beginning of the worker’s code path.  The 
main thread starts timing and only then drops the barrier.  
All Larson scores reported in this paper reflect the 
modified version.   

We also report results for linux-scalability [24] and 
Hoard’s own threadtest.  Finally, we introduce our own 
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micro-benchmark, mmicro.  In writing mmicro, we 
factored out influences such as scheduling decisions and 
fairness.  The program measures the throughput of a set 
of threads – it does not measure latency.   Given a fixed 
time interval, it measures the aggregate amount of work 
(malloc-free pairs) accomplished in the allotted time. No 
threads are created or destroyed in the timing interval.  
The benchmark reports malloc-free pairs/second.    

We use Solaris’ cputrack utility to collect data from the 
processor’s performance counters.  Cputrack perturbs 
scheduling decisions. Mmicro scores are stable under 
cputrack – they don’t change. However, Larson, linux-
scalability and threadtest are not stable under cputrack.  

4.2 Speedup and Scalability 
We ran Larson, threadtest, linux-scalability and mmicro 
on libc, mtmalloc, Hoard and LFMalloc, varying the 
number of concurrent threads from 1…16, 18, 20, 22, 24, 
26, 28, 30, 32, 64, 128 and 256.  The results are 
presented in Figure 1 (a)-(d).  All scores are normalized 
to libc – the Y-axis is given as the speedup multiple over 
libc.  For all data points, LFMalloc was faster than libc, 
mtmalloc and Hoard.   

The performance drop for Larson, Figure 1(a), at higher 
numbers of threads may be due to scalability obstacles 
outside the allocator.  As an experiment, we modified 
Larson and removed the malloc-free operations from the 
loop of the worker thread.  The modified program had a 
peak score of 153 times libc at 24 threads.  At higher 
thread counts the performance dropped off.  

In Figure 1 (e), we show the scalability characteristics of 
the various malloc packages by plotting the Y-axis as the 
speedup relative to one thread.  An ideal benchmark 
running on a perfectly scalable allocator would have 
Speedup(t) = t, for t up to the number of processors.   
Both Hoard and LFMalloc show excellent scalability – 
concurrent allocator operations don’t impede each other.  

4.3 Execution Characteristics 
To better understand why LFMalloc performs well, we 
picked a single micro-benchmark, mmicro, and set of 
parameters and then ran on libc, mtmalloc, Hoard and 
LFMalloc, using cputrack and other tools to gather 
detailed data.  We present that information in Table 2, 
Execution Characteristics.  As can be seen in the table, 
programs running on LFMalloc have excellent cache and 
interconnect characteristics, supporting our previous 
claims.   Notable is that mmicro on LFMalloc runs at 
.909 cycles per instruction, realizing the potential of the 
UltraSPARC’s superscalar design. Care should be taken 
when examining the libc results.   Under libc, mmicro 
was only able to achieve 14.1% CPU utilization – it 
could only saturate about two of the 16 processors. 
Threads in the libc trial spent most of their time blocked 
on the single heap mutex.   

The raw translation lookaside buffer (TLB) miss rate was 
higher under LFMalloc than Hoard, but in the timing 
interval LFMalloc executed nearly 10 times more 
malloc-free pairs.  The TLB miss rate per allocation pair 
is lower for LFMalloc.  

In Table 3, we explore which aspect of our algorithm – 
fast synchronization or perfect CPU-identity – contribute 
the most to performance. As seen in the table, CPU-
identity is critical to scalability.  MP-RCS-based 
synchronization is helpful, but only improves 
performance about 2 times as compared to a traditional 
Solaris mutex.   

Finally, the heap “footprint” for LFMalloc is generally 
very close to that of Hoard’s.  We ran threadtest at 
1…16, 18, 20, 22, 24, 26, 28, 30, 32, 64, 128 and 256 
threads.  Hoard’s peak heap utilization ranged from 
6.591 Mb to 7.430 Mb while LFMalloc’s peak heap 
utilization ranged from 4.980 Mb to 5.898 Mb 
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(c) linux-scalability: speedup relative to libc
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(d) mmicro: speedup relative to libc
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(e) mmicro: speedup relative to one thread
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Figure 1: Scalability and Speedup 



Critical Execution Manager 

D 

A: no preemption - simple return 
B: preemption - potential interference 
C: not in Critical Section - simple return 
D: Interrupted Critical Section - restart 

1: LD Self Cpu,C 2: LD C Head,H 4: ST N,C Head 3: LD H Next,N 

BLOCKED 

Other threads 
may run 

Kernel 

Restartable Critical Section 

ONPROC OFFPROC 

User 

t1 

A 

B 

C 

Upcall 

Kernel Driver 

t3

t2 

t4 

Interrupt 

Table 1: Example of an Interrupted Critical Section 

Time Action 

t1 The thread enters the Restartable Critical Section.  The critical section will attempt to pop a node off a CPU-specific 
linked-list.  Self is a pointer to thread-local-storage and Self Cpu is a pointer to CPU-specific-data.  The thread executes 
instructions #1 and #2 and is then interrupted – the interrupted user-mode instruction pointer (IP) points to instruction #3.  
Control passes into the kernel.  The kernel deschedules the thread – the thread goes OFFPROC.  Other related threads 
run, potentially rendering the saved H and C register values stale.  

t2 The thread is eventually rescheduled – it goes ONPROC. The kernel calls a routine in the driver, previously registered as 
a context switch callback, to notify the driver that a thread of interest is making the transition from ready state to running 
state.  The driver checks to see if (a) the thread has migrated to a different CPU since it last ran, or, (b) if any related 
threads have run on this CPU since the current thread last went OFFPROC.    We’ll presume (b) is the case, so there is 
a risk of interference.  The driver posts an upcall – the driver saves the interrupted IP and substitutes the address of the 
notification routine.  The thread eventually returns to user-mode, but restarts in the notification instead of at instruction 
#3.  

t3 The notification routine updates Self->Cpu to refer to the appropriate CPU (the thread may have migrated).  Next, it 
retrieves the interrupted IP, which refers to instruction #3, and checks to see if the IP was within a critical section. In our 
example the routine adjusts the IP to point to the beginning of the critical section (#1).  For convenience, we currently 
write critical sections in a non-destructive idiom – it does not destroy any input register arguments.  If a critical section is 
interrupted the critical execution manager can simply restart it. The notification routine also checks for interrupted critical 
sections interrupted by signals and arranges for them to restart as well.   

t4 The upcall unwinds, passing control to the start of the interrupted critical section, causing it to restart. 

Figure 2:  Control Flow for Restartable Critical Sections 
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Table 2: Execution Characteristics 

 libc mtmalloc Hoard LFMalloc 

# MP-RCS migration upcalls    473 

# MP-RCS preemption upcalls    2705 

# MP-RCS of interrupted critical sections    812 

Peak heap size (Mb) unknown unknown 3.5 Mb 4.1 Mb 

Malloc-free latency (ηsecs per pair) 166,525 ηsecs 19,230 ηsecs 2,251 ηsecs 227 ηsecs 

Overall malloc-free throughput (pairs/sec) 102,111 844,454 6,589,446 70,749,108 

User-mode CPU utilization (%) 14.1% 85.6% 98.6% 98.7% 

Context switch rate (switches/second) Includes both voluntary switches caused by 
blocking and involuntary switches. 

1043 8537 657 412 

User-mode cycles per instruction  (CPI) 1.985 3.106 1.505 .909 

User-mode snoops (cycles/second) - snoop invalidations caused by cache line 
migration 

3,529,464/sec 22,484,855/sec 137,625/sec 41,452/sec 

User-mode Snoops / malloc-free pair 33.382 26.112 0.021037 0.000583 

System DTLB miss rate (exceptions/second) 4,965/sec 20,8114/sec 4,870/sec 10,028/sec 

User-mode L1 miss rate  2.544% 6.668% 7.325% 1.699% 

User-mode L2 miss rate  33.258% 24.139% 0.015% 0.008% 

User-mode L1 Cache misses / malloc-free pair   139.087 36.022 10.333 .407 

Execution characteristics of “mmicro 64 :10000 200” – a 10 second run with 64 threads, each thread loops, malloc()ing 64 blocks of length 200 and then free()s 
the blocks in same order in which they were allocated.    

 

 

 

 
Table 3: Contributions of Synchronization and Perfect Processor Identity 

Synchronization mechanism Local heap selection 1 thread 16 threads 256 threads 

Restartable Critical Sections By processor ID via upcall 4548 69911 72163 

Per-CPU Solaris mutex By processor ID via upcall 2124 33020 30678 

Per-CPU Solaris mutex Hoard-style hash of thread ID 2012 23742 2060 

“mmicro T :10000 64” scores - malloc-free pairs/msec – for 1, 16 and 256 threads showing the effect of 
different synchronization and heap selection mechanisms.  
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5 Conclusion 
We have introduced Multi-Processor Restartable Critical 
Sections and demonstrated their utility by developing a 
scalable malloc allocator.  Despite using shared heaps the 
allocator can usually operate lock-free.   The allocator 
has excellent execution characteristics, particularly on 
multiprocessor systems. 

MP-RCS is novel in that it works on multiprocessors but 
for CPU-specific data.  Other kernel-assisted 
synchronization techniques work only on uniprocessors.  

MP-RCS provides two facilities: processor location 
awareness and restartable critical sections.  Restartable 
critical sections require processor location awareness, but 
the converse is not true.  We have shown that of these, 
processor location awareness is more useful.   Finally, 
MP-RCS operates without limiting kernel preemption 
policies, and is independent of threading models and 
applications.   

5.1 Future Work 
For uniprocessors and for a process with all related 
threads bound to one CPU, restartable critical sections 
can emulate CAS; all data is CPU-specific. Our results 
show the emulated form to be 1.8 times faster than the 
actual hardware instruction.   

We intend to adopt commit records [29] to extend the 
MP-RCS facility to multi-word transactions.   

By creating superblocks of size B, (B is a power of two) 
aligned on virtual addresses that are a multiple of B, we 
can eliminate the block header, saving 8 bytes per-block.  
Given a block, the free operator can then locate the 
enclosing superblock by simply masking the address of 
the block.   

To reduce the cost and frequency of upcalls, we intend to 
establish a convention so the kernel can determine if an 
interrupted thread was executing in a critical section.  
We have also prototyped a simple free block cache 
“stacked” on top of the existing malloc subsystem.   

We have adapted a Java™ virtual machine to operate on 
per-CPU heap allocation buffers with MP-RCS 
operators. In addition to heap allocation, we believe that 
MP-RCS can offer fast logging write barriers, and the 
potential for fast mutator thread suspension, needed by 
stop-the-world garbage collectors. (A thread targeted for 
suspension would block itself in the upcall).   

We would like to collect data on NUMA systems – 
LFMalloc should perform well in that environment.  We 
also intend to retrofit Hoard with MP-RCS components.  
In particular, we will replace Hoard’s 

hoardGetThreadID thread-to-heap mapping function 
with one based on the precise processor ID.  
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IBM’s use of function recovery routines and service 
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