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Abstract. Most congestion control algorithms try to emulate processor sharing
(PS) by giving each competing flow an equal share of a bottleneck link. This
approach leads to fairness, and prevents long flows from hogging resources. For
example, if a set of flows with the same round trip time share a bottleneck link,
TCP’s congestion control mechanism tries to achieve PS; so do most of the pro-
posed alternatives, such as eXplicit Control Protocol (XCP). But although they
emulate PS well in a static scenario when all flows are long-lived, they do not
come close to PS when new flows arrive randomly and have a finite amount of
data to send, as is the case in today’s Internet. Typically, flows take an order of
magnitude longer to complete with TCP or XCP than with PS, suggesting large
room for improvement. And so in this paper, we explore how a new congestion
control algorithm — Rate Control Protocol (RCP) — comes much closer to em-
ulating PS over a broad range of operating conditions. In RCP, a router assigns a
single rate to all flows that pass through it. The router does not keep flow-state,
and does no per-packet calculations. Yet we are able to show that under a wide
range of traffic characteristics and network conditions, RCP’s performance is very
close to ideal processor sharing.

1 Introduction

Congestion control algorithms try to share congested links efficiently and fairly among
flows. In the absence of information such as the size, round trip time (RTT) and path
of each flow, it is natural to share a congested link equally among all flows. In fact,
if the routers in the Internet had unlimited buffering, and if it was simple to emulate
Processor Sharing (PS), then the solution to the congestion problem would be simple:
Let a source send data at maximum rate, and use a PS scheduler to share link bandwidth
equally among flows.

But routers have limited buffers, and per-flow scheduling is non-trivial. And so con-
gestion control algorithms send feedback to the source to limit the amount of traffic
admitted into the network, allowing simple FIFO queuing in the routers. Most no-
tably, TCP’s congestion control mechanism provides feedback by dropping packets (or
through explicit congestion notification); and is quite successful at emulating proces-
sor sharing in a static scenario when a fixed number of flows have an infinite amount of
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data to send1. But in practice flows arrive randomly, and transfer a finite amount of data.
Simple experiments with ns-2 indicate that with typical Internet flow sizes, TCP does
not come close to emulating processor sharing. For example, Figure 1 compares TCP
(as well as XCP, which we’ll discuss shortly) with ideal PS, in case of Poisson flow
arrivals with pareto distributed flow sizes. The left plot compares the mean duration of
flows (how long they take to complete) as a function of flow size. The values for PS are
computed analytically [7] 2 and show that flows would complete an order of magnitude
faster than for TCP.
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Fig. 1. The plot on left shows the average flow duration versus flow size under TCP and XCP
from a simulation with Poisson flow arrivals, flow sizes are pareto distributed with mean = 30
pkts (1000 byte/pkt) and shape = 1.4, link-capacity = 2.4 Gbps, RTT = 100 ms, offered load =
0.9. The plot on right shows the the number of active flows versus time. In both plots the PS
values are computed from analytical expressions

There are several reasons for the long duration of flows with TCP. First, it takes
“slow-start” several round trip times to find the fair-share rate. In many cases, the flow
has finished before TCP has found the correct rate. Second, once a flow has reached the
“congestion-avoidance” mode, TCP adapts slowly because of additive increase. While
this was a deliberate choice to help stabilize TCP, it has the effect of increasing flow
duration. We’ll see later that we can design stable congestion control algorithms that
don’t require additive increase. A third reason TCP flows last so long is because of
buffer occupancy. TCP deliberately fills the buffer at the bottleneck, so as to obtain
feedback when packets are dropped. Extra buffers mean extra delay, which add to the
duration of a flow.

Our plots also show eXplicit Control Protocol (XCP) [2]. XCP is designed to work
well in networks with large bandwidth-delay products. The routers provide feedback,

1 We assume here that all flows have the same RTT. TCP approximately shares bandwidth as
K

RTT
√

p
where p is loss probability and K is a constant [1].

2 Flow duration in PS = RTT + L
C(1−ρ)

, L is flow length, C is link capacity, ρ is offered load.

in terms of incremental window changes, to the sources over multiple round trip times,
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which works well when all flows are long-lived. But as our plots show, in a dynamic
environment XCP can increase the duration of each flow even further relative to ideal
PS, and so there are more flows in progress at any instant.

The goal of our work is to identify a simple and practical congestion control algo-
rithm that emulates processor sharing irrespective of traffic characteristics and network
conditions. Our approach is very different from TCP and XCP. Instead of incremental
window changes in every round trip time, we want to know if there is an explicit rate
that the router can give to the flows so as to emulate processor sharing. Furthermore,
we would like to achieve this without per-flow state, per-flow queues, or per-packet
calculations at the routers.

2 Rate Control Protocol (RCP): An Algorithm to Achieve
Processor Sharing

2.1 Picking the Flow Rate

We are going to address the following question:

Is there a rate that a router can give out to all flows, so as to emulate processor sharing?
If the router has perfect information on the number of ongoing flows at time t, and
there is no feedback delay between the congested link and the source, then the rate
assignment algorithm would simply be:

R(t) =
C

N(t)

where R(t) is the rate given out to the flows by the router at time t 3, C is the link
capacity and N(t) is the number of ongoing flows at time t. But the router does not
know N(t) and it is complicated to keep track of. And even if it could, there is a feed-
back delay and so by the time R(t) reached the source, N(t) would have changed.
So, we propose that the routers have an adaptive algorithm that updates the rate as-
signed to the flows, to approximate processor sharing in the presence of feedback delay,
without any knowledge of the number of ongoing flows. RCP is a particular heuristic
designed to approximate PS. It has three main characteristics that makes it simple and
practical:

1. The flow rate is picked by the routers based on very little information (the current
queue occupancy and the aggregate input traffic rate).

2. Each router assigns a single rate for all flows passing through it.
3. The router requires no per-flow state or per-packet calculations.

2.2 The Algorithm

The basic RCP algorithm operates as follows.

3 The sources are informed at what rate to transmit. We will shortly see how this is done.

1. Every router maintains a single fair-share rate, R(t), that it offers to all flows. It
updates R(t) approximately once per RTT.
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2. Every packet header carries a rate field, Rp. When transmitted by the source, Rp =
∞ or the desired sending rate. When a router receives a packet, if R(t) at the router
is smaller than Rp, then Rp ← R(t); otherwise it is unchanged. The destination
copies Rp into the acknowledgment packets, so as to notify the source. The packet
header also carries an RTT field, RTTp, where RTTp is the source’s current es-
timate of the RTT for the flow. When a router receives a packet it uses RTTp to
update its moving average of the RTT of flows passing through it, d0.

3. The source transmits at rate Rp, which corresponds to the smallest offered rate
along the path.

4. Each router periodically updates its local R(t) value according to Equation (1)
below.

Intuitively, to emulate processor sharing the router should offer the same rate to every
flow, try to fill the outgoing link with traffic, and keep the queue occupancy close to
zero. We want the queue backlog to be close to zero since otherwise if there is always a
backlog then at any instant, only those flows which have their packets in the queue get
a bandwidth share, and the other flows do not. This does not happen in ideal PS where
at any instant every ongoing flow will get it’s fair share. The following rate update
equation is based on this intuition:

R(t) = R(t − d0) +
[α(C − y(t)) − β q(t)

d0
]

N̂(t)
(1)

where d0 is a moving average of the RTT measured across all packets, R(t− d0) is the
last updated rate, C is the link capacity, y(t) is the measured input traffic rate during the
last update interval (d0 in this case), q(t) is the instantaneous queue size, N̂(t) is the
router’s estimate of the number of ongoing flows (i.e., number of flows actively sending
traffic) at time t and α, β are parameters chosen for stability and performance.

The basic idea is: If there is spare capacity available (i.e., C − y(t) > 0), then
share it equally among all flows. On the other hand, if C − y(t) < 0, then the link is
oversubscribed and the flow rate is decreased evenly. Finally, we should decrease the
flow rate when the queue builds up. The bandwidth needed to drain the queue within
an RTT is q(t)

d0
. The expression α(C − y(t)) − β q(t)

d0
is the desired aggregate change

in traffic in the next control interval, and dividing this expression by N̂(t) gives the
change in traffic rate needed per flow.

RCP doesn’t exactly use the equation above for two reasons. First, the router cannot
directly measure the number of ongoing flows, N(t), and so estimates it as N̂(t) =

C
R(t−d0)

. Second, we would like to make the update rate interval (i.e., how often R(t)
is updated) a user-defined parameter, τ . This is in case we want to drain a filling queue
more quickly than once per RTT. The update interval is actually T = min(τ, d0) since
we want it to be at least equal to average RTT, d0. The desired aggregate change in
traffic over one average RTT is α(C − y(t))− β q(t)

d0
, and to update the rate more often
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than once per RTT, we scale this aggregate change by T/d0. And, N̂(t) = C/R(t−T ).
Then the equation becomes:

R(t) = R(t − T )[1 +
T
d0

(α(C − y(t)) − β q(t)
d0

)
C

] (2)

2.3 Understanding the RCP Algorithm

How good is the estimate N̂ = C/R ? When the router updates the rate, it knows
precisely the spare capacity and the queue size it needs to drain. So the accuracy of the
algorithm depends on how well C/R estimates N(t).
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Fig. 2. The time evolution of RCP rate factor γ(t) = R(t)/C and measured bottleneck utilization
under long-lived flows. At t = 0, 20 flows start; at t = 40s, 20 more flows start; at t = 100s, 20
flows finish. In each case, C/R(t) converges to N(t)

In the simplest scenario with only long-lived flows, C/R(t) converges to the correct
number of flows, N . An example is shown in Figure 2 where 20 flows start at time t = 0
and 20 more flows start at time 40, and 20 flows complete at time 100. In each case,
C/R(t) converges to N(t). The values of α and β only affect the rate of convergence;
we will examine the stability region for α and β shortly.

When flows are not long-lived, C/R(t) can still be a good estimate of the num-
ber of active flows. In particular, when flows correspond to current Internet conditions
(Poisson flow arrivals, pareto flow size distributions, and mean flow size E[L] is close
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Fig. 3. Comparison of the number of measured active flows and the estimate (C/R). Bottleneck
capacity, C = 10Mb/s, RTT = 50ms, flow arrival rate = 400 flows/sec, and flow sizes are pareto
with mean = 25 pkts (1000 byte/pkt) and shape parameter is 1.2
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to or greater than bandwidth×RTT), then C/R(t) is a good estimate. It is a smoothing
estimate of N(t) since flows arrive and depart quickly and N(t) changes rapidly. An
example of this case is shown in Figure 3.

When E[L] � bandwidth × RTT, most of the flows fit in the bandwidth-delay
“pipe” and most do not have sufficient data to send for an entire round trip. In this case
C/R(t) represents an “effective” number of flows, Ne(t) < N(t), where each flow has
at least a round trip time worth of data to send. Underestimating the flows (and hence
increasing the rate for each flow) is actually the right thing to do because when each
flow has less than an RTT of data to send, giving exactly C/N(t) to each flow means
the pipe will never be filled.

Stability and Convergence: Stability of RCP depends on it’s parameters α and β. We
can think about RCP stability under the following two very different regimes:

1) Deterministic scenario of long-lived flows: In this scenario with N long-lived flows
the equilibrium state of the RCP system is: Re (equilibrium rate) = C/N and qe (equi-
librium queue) = 0. We find that, if perturbed, the system will return to stability so long
as α, β are within the stable region shown in Figure 4. There are two regions shown in
the figure: a) The stable region obtained by Bode and Nyquist analysis of the linearized
system. Details of the linear stability analysis are given in the technical report [3]. b)
Stable region of the non-linear system. The real system is non-linear in nature, the most
important one being the queue saturation at q = 0. In general while doing the stability
analysis of congestion control protocols such as TCP, this non-linearity is ignored since
the equilibrium point is away from it. The same is not true of the RCP system. Shown
in Figure 4 is also the stable region obtained by simulations and phase portraits of this
nonlinear system. Using tools from non-linear control theory, we obtained a precise
characterization of the non-linear stable region and it matches well with our simulated
region. The details of the non-linear analysis can be found at [4].

Fig. 4. Region enclosed by the solid curve is the stability region obtained via Bode and Nyquist
analysis. The region to the left of the ′ − ∗′ line is the stability region of the non-linear system
obtained from simulations and phase plane method
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The two key points of the stability analysis are: First, the derived stability conditions
for (α, β) guarantee global stability in the sense that irrespective of the initial condi-
tions, (R0, q0), the system always converges to the equilibrium point; and second, we
can make the system stable by choosing α and β independent of link RTT, capacity
and number of flows. Although these results are proved to hold true incase of a single
bottleneck link, our simulations in [3] indicate that they also hold true in a network
scenario with multiple bottlenecks.

2) Stochastic scenario with random flow arrival times and flow sizes: In this case, con-
vergence of R(t) in the same sense as for long-lived flows is less meaningful because
the input conditions are changing. Further, as discussed before we do not always want
R(t) to be equal to C/N(t) exactly: If N(t) is very large but each of the flows has very
little traffic to send (less than a RTT) then we actually want to underestimate N(t) and
thereby give a higher rate to each flow, since if we give C/N(t) exactly to each flow
we will never fill up the link.

What would be more meaningful would be convergence in the stochastic sense like
E[N(t)] (mean number of flows) and E[D(l)] (mean flow completion time for flow
of length l) converge to finite equilibrium values. Proving such a result rigorously is
a notoriously hard problem specially for non-linear delayed feedback systems such as
RCP. The same is true for TCP, XCP and other algorithms. A large number of simu-
lations indicate that under a variety of dynamic situations (like different flow arrival
distributions, different flow size distributions, offered load, link capacities, round trip
times...) RCP’s performance in terms of E[N(t)] and E[D(l)] converges to that under
ideal processor sharing for a wide range of (α, β) > 0. These simulations are shown in
section 3 and a more exhaustive set is in [3].

The convergence of RCP’s performance measures E[D(l)] (and E[N(t)]) to that of
processor sharing is independent of the initial value of R(t) chosen. The simulations
support this. For any particular simulation we observe that R(t) sweeps over the entire
space (min-rate, link-capacity), depending on the conditions on the link. Any point
could have been the starting point of the experiment. An example to illustrate this is
shown in Figure 5. Notice that R(t) takes a wide range of values depending on the
input conditions. Starting with different initial values of R(t) will give different sample
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Fig. 5. The figure shows the normalized rate, R(t)/C versus time for Poisson flow arrivals with
pareto distributed flow sizes. Bottleneck capacity, C = 150 Mb/s, RTT = 100ms, offered load =
0.7, mean flow size = 30 pkts (1000 byte/pkt) and shape parameter is 1.2. Initial rate, R(0) =

0.05C. R(t) sweeps over it’s entire range depending on the input conditions
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paths of the stochastic processes N(t) and D(l), but the key point is the underlying
statistical properties E[N(t)] and E[D(l)] converge to that in processor sharing.

Given that the algorithm is stable for a wide range of (α, β) > 0, we picked those
values for the RCP system to maximize performance for a wide range of traffic and
network conditions.

Round Trip Time Estimation: Every packet passing through the router carries the
source’s estimate of it’s RTT. The router uses this to update the moving average, d0, as
follows:

d0 = gain × RTTpacket + (1 − gain) × dlast
0

where gain = 0.02. The running average gives an estimate of the average RTT across all
packets passing through the router. This skews the RTT estimate towards flows which
have a larger number of packets. This is what is desired since the flows with a large
number of packets will last many RTTs and will determine the stability of the control
loop. The control loop stability depends less on the short flows which finish within one
or just a few RTTs.

We find from our large number of simulations that RCP is robust to the RTT distri-
bution of the flows. An example is shown in section 3.3 where flows with RTT ratios
up to two orders of magnitude co-exist on a single link and RCP successfully emulates
processor sharing.

Handling Packet Losses: RCP retransmits lost packets just like TCP. Losses were
rare events for RCP in all our simulations, which is not surprising since RCP drives the
queue towards empty. A queue only builds up because of the short term “mistakes” in
rate estimation, resulting from the feedback delay and the small amount of information
the algorithm is working with. Although the current form of RCP in Equation (2) does
not explicitly account for losses, we note that it can easily do so by replacing q(t) with
q(t)+ (number of packet losses in interval T ) – i.e. this would have been the queue we
wanted to drain if we had enough buffering to accept the lost packets.

Comparison with XCP: Both XCP and RCP try to emulate processor sharing among
flows, which is why their control equations are similar. The manner in which they con-
verge to PS is quite different; the main difference between XCP and RCP is in the kind
of feedback that flows receive. XCP gives a window increment or decrement over the
current window size of the flow (which is small for all newly starting flows). At any
time XCP flows could have different window sizes and RTTs and therefore different
rates. XCP continuously tries to converge to the point where all flows have the fair-
share rate, by slowly reducing the window sizes of the flows with rates greater than
fair-share and increasing windows of the flows with rates less than fair-share (while
avoiding over-subscription). New flows start with a small window, and the convergence
could take several RTTs especially if there is little or no spare capacity. If the flows ar-
rive as a Poisson process with heavy-tailed flow sizes, then most of the flows finish by
the time they reach their fair share. In RCP, all flows (new and old) receive the same rate
feedback which is their equilibrium rate. This helps flows finish quickly. We will see in
Section 3 that this difference between RCP and XCP contributes to a big difference in
their performance.
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SYN Desired
Rate=10Mb/s

SYN Rate=5Mb/s SYN Rate=5Mb/s

SYN-
ACK Rate=5Mb/s

FIN-ACK

Sending Rate = 5Mbps

Sender Router 1 Router 2 Receiver

FIN

Fig. 6. The SYN message sent by the source indicates the rate at which it wants to send the flow
(which could be infinite). As detailed in the last section, each router maintains a single rate, R(t),
that it assigns to all flows. As the message passes through the network, if the current rate R(t) at
a router is lower than the value in the SYN packet, the router overwrites it. When the SYN packet
reaches its destination, it has the lowest rate corresponding to the most congested link along the
path. This value is sent back to the source in the SYN-ACK message to set the starting rate. When
the flows last longer than an RTT then they are periodically and explicitly told a new rate by the
network. This rate is piggy-backed on the data and the ACK messages

XCP is computationally more complex than RCP since it gives different feedback
values to each flow, and involves multiplications and additions for every packet. RCP
maintains a single rate for all flows and involves no per-packet computation. 4

2.4 RCP for the Internet

This is an outline of how RCP can be implemented in the Internet. We assume that
– as with TCP – flows continue to have the connection set-up phase to establish state
at both ends of the connection. This allows the initial rate to be calculated during the
initial handshake by piggy-backing on the SYN and SYN-ACK messages. This is very
important for short-lived flows, which could last less than one RTT. Current feedback-
based algorithms do not work well for short-lived flows, yet most flows in the Internet
are of this type [5]. An example of the RCP startup mechanism is illustrated in Figure 6.

3 RCP Performance

3.1 Simulation Setup

In this section we study RCP’s performance using ns-2 [6] (Version 2.26) augmented
with RCP end-host and queue modules.

We compare the performance of RCP with processor sharing, TCP and XCP. We are
primarily interested in the average flow completion time (AFCT) 5. Flow completion

4 The router uses the RTT information in the packets to update its RTT estimate – our stability
analysis and simulations indicate that it is sufficient for the router to have a “rough” estimate
of the feedback delay, and so it can even just sample a few packets and update its estimate of
RTT.

5 We will use the term “flow” here to represent the packets corresponding to a particular appli-
cation flow.



276 N. Dukkipati et al.

time (FCT) is defined as the time from when the sender sends a SYN packet until the
receiver receives the last packet of the flow, i.e. FCT = 1 RTT for the connection set-
up plus the duration of the data transfer. For elastic flows this is arguably the most
important performance metric. We will use RTPD to abbreviate round-trip propagation
delay. AFCT is the average of FCT over all flows for the simulation run. Note that
AFCT ≥ 1.5RTPD + E[L]

C . This is because (ignoring queuing delay) the minimum
FCT for any flow of size L is: 1 RTPD for SYN/SYN-ACK and (1/2 RTPD + L/C) for
the data transfer. The analytical expression for FCT of a flow of size L under processor
sharing is [7]:

FCTPS = 1.5 RTPD +
L

C(1 − ρ)
(3)

where ρ is the offered load and C is the link capacity. We will use Equation (3) to
compute the PS values for our simulation setups. As secondary measures, in [3] we are
also interested in the link utilization, and the average number of ongoing or active flows
– which in PS can be simply computed by Little’s Law: E[N ] = λ × FCTPS where λ
is the flow arrival rate.

We assume the usual rule-of-thumb that a router’s queue equals the bandwidth-delay
product, i.e., link capacity multiplied by maximum RTPD of flows passing through it.
We also assume that packets are dropped from the tail of the queue. Our simulations
are run until the performance measures converge. In all simulations so far, we have not
seen any packet drops with RCP and XCP. There are packet drops with TCP.

Equation (2) is the rate update equation used in the RCP router. The RCP param-
eters are: Control period, T = min(10ms, d0) and α = 0.1, β = 1.0. For TCP, we
used TCP Reno module in ns-2 with an initial window size of two packets. The ns-2
implementation of XCP (Version 1.1) is publicly available [8], and the parameters are
set as in the paper [2].

All data packets are 1000 bytes and the control packets (SYN, SYN-ACK, FIN) are
40 bytes. Unless otherwise mentioned we will assume that flows arrive as a Poisson
process with rate λ and flow sizes are pareto distributed [5, 9]. The offered load on a
link is ρ = λE[L]/C. In our simulations we vary the network and traffic parameters
from one extreme to the other and observe how RCP, TCP and XCP compare with PS.

3.2 When Traffic Characteristics Vary

In this section our goal is to find out if RCP’s performance is close to PS under different
traffic characteristics. All simulations in this section are done with a single bottleneck
link in the network.

Average Flow Completion Time vs. Flow Size: In this section we will observe the
AFCT of RCP, XCP and TCP for an entire range of flow sizes in a particular simulation
setup chosen to represent high bandwidth-delay product (C × RTPD) environment.
This is the scenario that often differentiates the performance of protocols.

• Setup: C = 2.4 Gbps, RTPD = 100 ms, ρ = 0.9, pareto distributed flow sizes

AFCT is plotted against flow size in the top two graphs of Figure 7. The AFCT of
RCP is close to that of PS and it is always lower than that of XCP and TCP. For flows
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up to 2000 pkts, TCP delay is 4 times higher than in RCP, and XCP delay is as much as
30 times higher for flows around 2000 pkts. Note the logscale of the y-axis.

With longer flows (> 2000 pkts), the ratio of XCP and RCP delay still remains
around 30, while TCP and RCP are similar. For any fixed simulation time, not only
was RCP better for the flows that completed, but it also finished more flows (and more
work) than TCP and XCP.

The third graph in Figure 7 shows the maximum delay for a given flow size. Note
that in RCP the maximum delay experienced by the flows is also very close to the
average PS delay. With all flow sizes, the maximum delay for RCP is smaller than for
TCP and XCP. TCP delays have high variance, often ten times the mean.

The results above are representative of the large number of simulations we per-
formed. Now let’s see why these protocols have such different delays.

RCP vs. TCP: In figure, 7 the TCP delay for most flows follows the Slow-start curve.
The delay in TCP slow-start for a flow of size L is [log2(L+1)+1/2]×RTPD+L/C
(excluding the queuing delay). With RCP the same flows get a jump-start because the
routers set a higher initial rate close to what they would have gotten with PS. Hence
their delay is close to PS. This is clear from the time evolution of a typical flow, as
shown in Figure 8 (left plot).

Next, consider the TCP flows which deviate from the Slow-start curve. These flows
experienced at least one packet drop in their lifetime and entered the additive increase,
multiplicative decrease (AIMD) phase. Once a flow is in the AIMD phase, it is slow in
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Fig. 7. AFCT for different flow sizes when C = 2.4 Gb/s, RTPD=0.1s, and ρ = 0.9. Flows
are pareto distributed with E[L] = 25 pkts, shape = 1.2. The top left plot shows the AFCT for
flow sizes 0 to 2000 pkts; the top right plot shows the AFCT for flow sizes 2000 to 105 pkts; the
bottom plot shows the maximum flow completion time among all flows of the particular size
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Fig. 8. Time evolution of the sequence numbers of two flows under TCP, XCP and RCP, chosen
from the simulation set up of Figure 7. The flow size in the left plot is 230 pkts, and in the right
plot is 3600 pkts

catching up with any spare capacity and therefore lasts longer than it needs to. RCP on
the hand is quick to catch up with any spare capacity available and flows finish sooner.
An example of the time evolution of a flow is shown in Figure 8 (right plot).

RCP vs. XCP: The time evolution of XCP for two sample flows is shown in Figure 8.
XCP is slow in giving bandwidth to the flows, giving a small rate to newly starting
flows. It gradually reduces the window sizes of existing flows and increases the window
sizes of the new flows, making sure there is no bandwidth over-subscription. It takes
multiple RTTs for most flows to reach their fair share rate (which is changing as new
flows arrive). Many flows complete before they reach their fair share rate. In general,
XCP stretches the flows over multiple RTPDs, to avoid over-subscribing the link, and
so keep buffer occupancy low. On the other hand, RCP tries to give the equilibrium
rate to every flow based on the information it has so far, at the expense of temporary
bandwidth over-subscription.

When mean flow size increases: Figure 9 compares AFCT when mean flow size gets
longer. Flow sizes are pareto distributed and the mean flow size is varied from 30 pkts
(equals 1

1000 · C · RTPD) to 30,000 pkts (equals C · RTPD). The left plot shows
the AFCT averaged over flows with < 7, 000 pkts and the right one is for flows ≥
7, 000 pkts. 6

There are two points to take away from the graph:

1. The AFCT of RCP is close to PS irrespective of the mean flow size
2. The performance of XCP and TCP is reversed as the mean flow size increases:

when the mean flow size is small, XCP performs far worse than TCP (for flows
with > 7000 pkts) and as the mean flow size gets larger, XCP’s performance gets
closer to PS while TCP deviates further from it – see right plot of Figure 9.

XCP vs. TCP: The reversal in performance of XCP and TCP is also clearly illustrated
in Figure 10. The top left plot shows a snap shot of the AFCTs for E[L] = 30 pkts
and the other two plots are for E[L] = 30000 pkts. In the bottom plot the AFCT

6 We consider these two different ranges because, with a pareto distribution, there are many more
short flows than long flows. Just taking the average AFCT over all flows is more representative
of the short flows than the long flows.
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Fig. 9. Comparison of AFCT as the mean flow size increases. Flows are pareto distributed with
shape 1.2 and the mean flow size varies as shown on x-axis. C = 2.4 Gb/s, RTPD = 0.1s and
ρ = 0.8. The left plot shows the AFCT for flows with < 7000 pkts vs. mean flow size; the right
plot shows the AFCT for larger flows (> 7000pkts) vs. mean flow size

of TCP flows is more than an order of magnitude higher than in PS – this is due to
the well known problem with TCP in high bandwidth delay product environments i.e.,
long flows are unable to catch up with spare bandwidth quickly after experiencing a
loss. XCP and RCP are both close to PS. On the other hand, for small flows, XCP’s
performance is worse than TCP’s because XCP is conservative in giving bandwidth to
flows, especially to newly starting flows. This unnecessarily prolongs flows and so the
number of active/ongoing flows begins to grow. This in turn reduces the rate of new
flows, and so on. Our many simulations showed that new flows in XCP start slower
than with Slow Start in TCP.

We observe from a large number of simulations that the trends in flow completion
times observed above for RCP, TCP and XCP hold true for other traffic characteristics
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Fig. 10. Comparison of AFCT as the mean flow size increases. The simulation set up is the same
as in Figure 9. The top left graph shows the AFCT vs. flow size when E[L] = 30; the top right
(RCP) and bottom graph (TCP, XCP) show the AFCT vs. flow size when E[L] = 30000 pkts.
RCP does close to PS irrespective of mean flow size. The performance of XCP and TCP are
reversed with the increase in the mean flow size
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such as different flow size distributions, as the offered load varies, and under different
non-poisson flow arrival time distributions. Simulation results for these are in [3].

3.3 When Network Conditions Vary

In this section we explore how well the congestion control algorithms match PS under
different network conditions. We show one particular scenario here when flows with
widely different round trip times share a common bottleneck link. Simulations for other
network conditions such as varying bottleneck link capacities, RTTs, increasing num-
ber of bottleneck links are shown in [3]. In each case, we find that RCP matches PS
closely for a single bottleneck. In case of multiple bottlenecks, RCP achieves max-min
fairness.

Flows with different round-trip times: All three congestion control schemes depend
on feedback to adjust the window size and/or sending rate. If different flows have shorter
round trip times, we do not want them to benefit at the expense of others.

To explore this effect we simulated flows that share a common bottleneck link, but
with different RTPDs. The round-trip delay of the common bottleneck link is 0.01 s and
its capacity is 640Mb/s. Arriving flows are classified into ten groups. Flows in the same
group have the same end-to-end RTPD, and each group has an RTPD of 0.02, 0.04, ,..,
0.18, or 0.2s. All groups have the same flow arrival rate and total ρ = 0.9.

Figure 11 shows the AFCT for these different groups of flows. The x-axis is each
group’s RTPD. For each RTPD, RCP is close to PS, suggesting that RCP is not biased
in favor of flows with shorter RTPD.
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Fig. 11. Comparison of RCP, TCP and XCP when flows with different RTPDs coexist on a single
bottleneck of C = 0.64 Gb/s. Flows arrive as a Poisson process with pareto distributed flow sizes,
E[L] = 25 pkts, shape = 1.2. RTPD of flows vary from 0.02s to 0.2s. The left figure is the AFCT
of flows with flow size ≤ 500 pkts and the right figure shows the AFCT for flows with size >

500 pkts

4 Conclusion

TCP’s congestion control mechanisms work well in a static network with only long-
lived flows. With long lasting flows, small mistakes in control do not lead to a big drop
in performance. This is no longer true in a dynamic environment with random flow
arrivals and arbitrary amounts of data to send. We saw in this paper the unnecessary
number of round trip times taken by the TCP slow-start and AIMD algorithm to find
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the fair-share rate. Often, the flow has finished before the fair-share rate has been found.
Unfortunately, making the network faster does not help, because the flow duration is
dominated by the propagation delay. The same is true for XCP.

It is the premise of this paper that it is better to design congestion control algorithms
to closely emulate processor sharing. This way the algorithm scales naturally with link
capacities, RTTs and other network conditions. The performance is invariant of the flow
size distribution – so it will not matter what mix of flows applications generate. Flows
will complete sooner for a broad range of network and traffic conditions.

RCP is designed to be a practical way to emulate processor sharing, and appears
to come very close to doing so under a broad range of conditions, and allows flow to
complete much faster than with TCP or XCP.
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