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ABSTRACT 
Although Java  promises pla t form por tabi l i ty  amongst  di- 
verses et  of systems, for most  Java  platforms today, it is 
not clear if they are appropr ia te  for high-performance nu- 
merical computing.  In fact, most  previous a t t empt s  at  uti- 
lizing Java  for HPC sacrificed Java 's  portabil i ty,  or did not 
achieve necessary performance required for HPC. Instead,  
we propose an al ternat ive methodology based on Download- 
ale Self-tuning Library, and constructed an exper imental  
prototype called AJaPACK,  which is a por table  and high- 
performance parallel BLAS library for Java  which "tunes" 
itself to the  environment  to  which it is installed upon. Once 
AJaPACK is downloaded and executed, the  Java  version of 
ATLAS (ATLAS for Java) and the  parallelized version of 
JLAPACK combine to achieve optimized pure Java  execu- 
t ion for the given environment .  Benchmarks  have shown 
tha t  AJaPACK achieves approximately 1/2 to 1/5 of the 
speed of optimized C-ATLAS and vendor supplied BLAS 
libraries, and with por table  parallelization in SMP environ- 
nmnts, achieves superior performance to single-threaded C- 
based native libraries. This  is an order of magni tude  su- 
perior w.r.t, performance compared to previous pure Java  
BLAS libraries, and opens up fur ther  possibilities of employ- 
ing Java  in HPC settings,  bu t  still shows t ha t  J IT  compilers 
with optimizat ions expect ing numerical  code highly-tuned 
at the source- or bytecode level would be highly desirable. 

1. INTRODUCTION 
Distr ibuted and high-performance comput ing  ares becom- 
ing much more synergetic thanks  to the widespread avail- 
ability of high-performance networks and inexpensive com- 
puting nodes such as PC clusters. In such an environment ,  
HPC applications and libraries highly-portable  across a va- 
riety of highly-divergent execution platforms are in absolute 
need. Tradit ional  HPC languages such as C or For t ran  do 
not  completely s tandardize  the  language, the  library, the  
machine binary, the  parallel machine architecture,  nor the  
execution environment .  As a result, it is quite difficult to 
have por table  HPC applications t h a t  work ubiquitously in a 
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dis t r ibuted  envi ronment .  Al though efforts such as H PF  and  
O p e n M P  strive to achieve some por tabi l i ty  of parallel code, 
a single b inary  working across different parallel machines is 
still unavailable. 

Java  has received considerable a t t en t ion  in the  HPC com- 
munity,  thanks  to its good object-or iented language design, 
as well as suppor t  of s t andard  language features for par- 
allel and d is t r ibuted  comput ing  such as threads  and RMI. 
Moreover, s tandardized Java  bytecode suppor ts  por table  ex- 
ecution via the  Java  Vir tua l  Machine. On the  other  hand,  
it is not  clear whether  Java  AS IS is entirely appropr ia te  for 
por table  d is t r ibuted  H PC programming,  as pointed out  by 
various efforts including those by JavaGrande .  In part icu- 
lar, Java  execution envi ronment  is quite divergent,  ranging 
from pure in terpre ta t ion ,  dynamic  J IT  compilation,  to  stat ic 
compilation; as a result,  an  opt imizat ion  scheme for a par- 
t icular Java  pla t form may not  be well-applicable for others.  
This  includes not  only the  compiler, bu t  also the  run- t ime 
system. 

We claim t h a t  the  impor t an t  characteris t ics  for HPC in 
an network envi ronment  is "performance portabi l i ty"  for 
code t ha t  are downloaded and move across the  network. By 
performance por tabi l i ty  we do not  mean  t h a t  a given code 
must  perform the  same across divergent  machines; ra ther ,  
it is a proper ty  whereby the  same code will perform within 
some cer ta in  fract ion of the  peak performances of differ- 
ent  machines.  For example,  when a certain opt imizat ion 
is performed on the  code, if the  code exhibi ts  measurable  
performance improvement  over different machines,  then the  
opt imizat ion is performance portable .  For For t ran  and C, 
this  is typically the  case, bu t  for Java, whether  this  is the  
case is not  clear, and in fact several counter  cases have been 
reported [1]. 

From this  perspective, we categorize several previous ap- 
proaches employed for HPC comput ing  in Java: 

• E m p l o y i n g  N a t i v e  L i b r a r i e s :  A HPC nat ive li- 
brary  is called, using interfaces such as JNI. Kernel 
numerical  performance obviously matches  t ha t  of C or 
Fort ran,  bu t  por tabi l i ty  na tura l ly  suffers, and more- 
over, main ta in ing  mult iple nat ive code for download- 
ing would be quite cumbersome.  Examples  include 
JCI(Java- to-C interface generator)[2] and the frontend 
wrapper  in IceT[3]. 

• O p t i m i z i n g  ( S t a t i c )  C o m p i l e r :  Tradi t ional  op- 
t imizing compiler as is wi th  C and Fort ran.  Examples 
include IBM High Performance Compiler for Java[4] 
and Fuji tsu HBC[6]. In this  case, one obta ins  u tmos t  



efficiency, sometimes almost match ing  t ha t  of optimiz- 
ing Fortran[4]. On the other  hand,  not  only portabi l i ty  
suffers, because it only speeds up program on a par- 
t icular platform, but  it becomes more difficult to im- 
plement the  dynamic  aspects of Java, such as dynamic 
loading, security checks, reflection, etc. In fact, as far 
as we know bo th  compilers do not  suppor t  the  official 
full Java  spec in this  respect. 

• A u t o m a t e d  t r a n s l a t i o n  f r o m  o t h e r  p r o g r a m -  
m i n g  l a n g u a g e s  t o  J a v a :  There  are several tools 
t ha t  t rans la te  existing code in t radi t ional  HPC lan- 
guages, such as Fortran,  into Java. An example is 
f2j[7], where For t ran  LAPACK is automatical ly  t rans-  
lated into Java  in a source-to-source fashion. How- 
ever, in order to implement  For t ran  semantics~ the 
t rans la ted  source embodies various art ifacts such as 
"pseudo-gotos", and as a result, becomes ra ther  diffi- 
cult to unders tand  for fur ther  tuning.  Moreover, as it 
does not  take into account  specific Java  features, per- 
formance for pure Java  code is low compared to the 
original nat ive Fortran.  

• M a n u a l  T u n i n g :  We tune  a par t icular  Java  HPC 
code at ei ther source- or bytecode level by hand,  leav- 
ing the  low-level opt imizat ion to the J I T  compiler. 
Examples include the  evaluation of Daxpy and other  
BLAS implementat ions  by Pozo[8]. Al though porta-  
bility is quite high with this  approach, there is no 
guarantee t h a t  performance por tabi l i ty  is achieved on 
different platforms, due to the divergent na ture  of Java  
pla t form implementat ions  as ment ioned above. 

In order to achieve performance portabi l i ty  of Java  nu- 
merical code, we are investigating the  construct ion of a self- 
tuning library and compilat ion framework for Java. Basi- 
cally, we obta in  best performance on each Java  execution 
pla t form by automatical ly  tuning  for t ha t  par t icular  plat-  
form at the source- and bytecode level. This  allows leverag- 
ing of existing JVMs and J IT  compilers, while still obta in ing 
the  best speed achievable for t h a t  par t icular  platform. More 
concretely, we implement  the compiler /code-generator ,  per- 
formance monitor,  code tester,  and the  high-level ghm li- 
brary, etc. entirely in Java, and when a part icular  l ibrary is 
downloaded over the network for the  first time, not  only the 
l ibrary class file itself bu t  the  entire self-tuning framework is 
downloaded, and opt imizat ion will occur ei ther  on the spot 
or off-line when the machine uti l izat ion is low. Moreover, 
we define or generate parallel mul t i threaded  code when pos- 
sible, thanks  to the  portabi l i ty  of Java  threads.  Al though 
a similar s t rategy has been a t t empted  in various settings, 
more recently in efforts such as ATLAS and PhiPAC we de- 
scribe below, with Java  it would be easy to make the entire 
process automated,  wi thout  user intervention.  Furthermore,  
self-tuning l ibrary is more significant for Java, again due to 
relatively divergent performance characterist ics of Java  ex- 
ecution environment .  

On the  other  hand,  there are several technical challenges 
t ha t  are open questions, mainly regarding the feasibility of 
the  approach: 

• U b i q u i t o u s  E f f e c t i v e n e s s  o f  S e l f - t u n i n g  o n  V a r -  
ious  J a v a  P l a t f o r m s :  

Al though previous work on adaptive compilation, as 
well as more aggressive self-tuning libraries have shown 

success for For t ran  or C such as PhiPAC[9] and AT- 
LAS[10], often achieving the  performance of vendor- 
tuned libraries, it is not  clear whether  the same strat-  
egy would be effective for Java  platforms. In fact, there 
are various possibilities where t radi t ional  opt imizat ion 
strategies applicable to For t ran  and C would not be 
effective, we must  investigate whether  self-tuning will 
(or will not)  perform well under  different Java  plat-  
forms. A part ia l  s tudy for the  Ll-blocked BLAS core 
has been done in [1], bu t  a s tudy using a larger-grained 
l ibrary wi th  parallel execution is required. 

• E f f e c t i v e  A r c h i t e c t u r e  for  S e l f - t u n i n g  L i b r a r i e s :  
Since libraries are somewhat  persistent  and used mul- 
tiple t imes over different applications, it could afford 
longer t ime durat ions  for tuning.  However, when li- 
braries are huge, tun ing  t ime may still outweigh the 
gain in execution t ime of the  application utilizing the 
library. Thus,  as is wi th  t radi t ional  libraries, the tun-  
ing archi tecture  would ideally identify the kernel rou- 
t ines t ha t  would be most  beneficial, and leave the non- 
kernel, higher-level routines to s tandard  J IT  compiler 
opt imizat ion.  It  is not clear, however, how much the 
slower execution of higher-level routines due t o  Java  
(such as non-aliasable, non-contiguous array seman- 
tics often requiring array copies) would penalize the 
overall library performance. 

• Use of Java Threads for Large-scale HPC: 

Also, although Java is multithreaded at the program- 
ming language level, it is not clear how much paral- 
lel multithreading will scale, especially w.r.t, numer- 
ical computation. Early versions of Java only sup- 
ported "green threads" which were merely coroutines. 
Many recent versions of Java are truly multithreaded 
(native threads), but various research has shown the 
substantial overhead associated with multithreading in 
Java, and proposed various solutions (Six papers on 
Java thread synchronization appeared in recent OOP- 
SLA'1999[II]). All such research we know to date, 
however, optimize cases where the threads do NOT 
synchronize, eliminating or minimizing the cost of syn- 
chronization. It is not clear how scalable Java perfor- 
mance is for highly-tuned numerical code, especially 
for code which DO synchronize, and will suffer from 
other overheads such ms thread scheduling. 

In order to investigate whether downloadable self-tuning 
libraries are feasible for attaining performance portability, 
we are constructing AJaPACK, a prototype self-tuning lin- 
ear algebra package for dense matrices, as a proof-of-concept 
experimentation. AJaPACK employs our pure-Java port of 
ATLAS[10], called ATLAS for Java. ATLAS for Java, as is 
with the original ATLAS, allows generation of optimized LI- 
blocked small-matrix kernel Level 3 BLAS code for each Java 
platform. Experiments show that, on various platforms, AT- 
LAS for Java benefits from the L1 blocking optimization, 
and exhibits I/2 to 1/4 the speed of C-version of ATLAS on 
the best JIT compilers for the particular hardware. 

In order to implement a higher-level linear-algebra rou- 
tine on top of ATLAS for Java, we modified and extended 
JLAPACK/Harpoon[12]  significantly, as well as paralleliz- 
ing some of the  routines, notably  gemm 0.  This allowed 
several factors of performance increase compared to the orig- 
inal J L A P A C K / H a r p o o n  implementat ion.  Parallelization of 
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gemm 0 was done in several ways, including stat ic  and dy- 
namic job par t i t ioning and thread allocation, and tested its 
scalability on several different large SMP platforms. Bench- 
mark results show tha t ,  wi th  stat ic parallelization, we obta in  
high scalability of gemm 0 code on some platforms; however, 
dynamic job allocation did not scale as well. Moreover, we 
found tha t  some platforms have relatively poor  suppor t  for 
mult i threading,  result ing in performance loss due to paral- 
lelization. We believe this  is because Java  in general is still 
in development  stage for scalable parallel p rog ramming- -a s  
such, support  for low-overhead context  switching, effective 
memory management  in the context  of parallel processing 
including parallel garbage collection, etc. will need ubiqui- 
tous deployment  on all Java  platforms. 

. AJAPACK: AUTOMATIC PARALLEL 
TUNING LIBRARY FOR PARALLEL 
BLAS IN JAVA 

2.1 Overview ofDownloadable Self-TuningLi- 
brary and AJaPACK 

We first overview the  general archi tecture of downloadable 
self-tuning library; as seen in Figure I this  is composed of 
five components,  all wr i t ten  in Java. 

Performance i[I 
I Monitor [ ILAPACKI 

~ ~parameter [ I ~] 
l I Code I [BLASI ![1 

resua I [Generator] I II ill 
l ~generation ~ E M M  I I t 
r - - - l - a t " ~ e n e r a t e d l  ~ ' " ' "  r - -  " ILl [Driver~l~ Kernel ~ ~y2gne -~e, ve, [|t 
, , .  , . ~ w r a r y ~ t a s s  i| I 

A T L A S  f o r  Java  ( J L A P A C K )  ill 

F i g u r e  1: O v e r v i e w  of  D o w n l o a d a b l e  S e l f - t u n i n g  Li- 
b r a r y  in  Java 

• Code Genera tor /Compi le r :  Generates  performance crit- 
ical por t ion of the  library. Ideally, we employ gen- 
eral compiler framework such as our OpenJIT[13] for 
this  purpose as a toolkit  framework to easily construct  
a customized code generator  for each library. Since 
AJaPACK is a proof-of-concept prototype,  however, 
we directly targeted dense linear algebra computa t ion ,  
using the code generator  of ATLAS for Java  as well as 
addit ional  code for feasibility exper imentat ion.  

• Genera ted  Kernel: The  numerical  kernel generated by 
the code generator.  The  driver tests  the  performance 
and the  opt imal  one is automat ical ly  embedded into 
the  higher-level l ibrary classes. 

• Driver: The  driver module t ha t  tests  the performance 
of the  Genera ted  Kernel. Repor ts  the  measured per- 
formance to the  performance monitor.  
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• Performance Monitor:  Receives report  from the driver 
on performance of each generated kernel routine, and 
feeds back performance to the  code generator,  guid- 
ing generat ion of addi t ional  tes t  kernel code. As such 
the  performance moni tor  is parameter ized by a search 
heuristics, and  guides the  pruned search of possibly 
opt imal  kernel code. 

• Higher-Level Library Classes: Par t s  of libraries t h a t  
Provide higher-level APIs,  bu t  are not  on the  
performance-cri t ical  p a t h  of the  library. By embed- 
ding the  generated kernel tuned  to the  par t icular  Java  
platform, the  l ibrary executes at  the  opt imal  perfor- 
mance possible. 

We owe much of t he  higher-level archi tecture  as a gener- 
alization of ATLAS. Again, we do feel t h a t  au tomated  code 
tuning  has more t h a n  the  impor tance  t h a t  ATLAS had for 
C / F o r t r a n  for several reasons including those ment ioned ear- 
lier, namely: 

1. Au tomated  downloading and  execution of the  entire 
self-tuning l ibrary is easy because of Java  portability. 

2. Java  pla t form is much more divergent,  and  perfor- 
mance  por tabi l i ty  is more difficult to achieve with mere 
s tat ic  code opt imizat ion.  

3. As ment ioned earlier, manual  tun ing  of Java  numeric 
code is difficult due to language design and implemen- 
t a t ion  features, and  it is be t t e r  to  resort  to au tomated  
means. 

4. As the  tun ing  occurs at  source-code or bytecode level, 
it can readily adap t  to  cases where the  underlying ar- 
chi tecture  changes, for wi th  Java  it is easy to ma in ta in  
the  downloaded code in por table  format.  

5. Since the  validity of the  generated kernel code is checked 
by the  Java  security checker, the  user will have be t te r  
confidence t h a t  whatever  code dynamical ly generated 
will be safer t h a n  For t ran  or C code. 

In AJaPACK,  each component  has the  following imple- 
menta t ion  wi th  respect  to the systems we have ported or 
developed (to be described in detail  later):  

• Code Genera to r /Compi le r :  The  code generator  por- 
t ion ATLAS for Java, namely par ts  of xemit . java and 
xmmsearch  we see in Figure 2. 

• Genera ted  Kernel: The  small  L1 cache-blocked Level 3 
• BLAS in Java  which xemit . java generates.  Currently, 

we emit  the  source file which is compiled by javac, 
a l though in principle direct generat ion of bytecode is 
also possible. 

• Driver: Corresponds to fc.java of ATLAS for Java. 

• Performance Monitor:  Corresponds to par ts  of xmm- 
search.java in ATLAS for Java. 

• Higher-Level Library Classes: As ment ioned earlier, 
we employed JLAPACK/Harpoon[12]  by Chat ter jee  et 
al., to  work wi th  ATLAS for Java, and fur thermore 
parallelized the  BLAS routine.  We describe the de- 
tails of paral lel izat ion and  thei r  implications in later 
sections. 



2.2 Overview of the Original ATLAS 
The original ATLAS(Automatically Tuned Linear Algebra 
Software) [10] is a source-level automated tuning tool for 
BLAS, being developed by Whaley and Dongarra at Uni- 
versity of Tennessee. ATLAS searches for and finds the 
most appropriate L1 cache blocking factor, number of un- 
rolls, software pipelining latencies, and generates the best 
C-based BLAS Level 3 code for a given platform. 

F i g u r e  2: A r c h i t e c t u r e  o f  A T L A S  ( v . l . 0 )  

The parameters employed in ATLAS v.l.01 are basically 
muladd, NB, MU, NU, KU, and LAT. Muladd indicates 
where fused multiply-add is available. NB is the L1 cache 
blocking size, and MU, NU, and KU are number of unrolls 
for each loop, and LAT is the latency factor for software 
pipelining. Given such parameter  space, ATLAS generates 
the kernel cache-blocked code for each parameter,  tests the 
performance, and finally outputs  the one with the best per- 
formance. In order to prune the search space, ATLAS em- 
ploys a prescribed search strategy[10]. 

Although the search space is considerably pruned, ATLAS 
execution is still quite expensive, and such extensive opti- 
mization is difficult to embed in a compiler. However, for 
libraries, such cost could be amortized over multiple execu- 
tion of the library, and in fact it is reported that  ATLAS gen- 
erated code matches the best results by the vendor-supplied 
optimized BLAS library. 

We also note here that  ATLAS represents all matrices 
in one-dimensional form, as required by LAPACK. This is 
an advantage for Java, as it avoids several overhead issues 
relevant to performance of array accesses, including non- 
rectangular representation of multi-dimensional arrays, and 
requirement to check array bounds for each dimension. 

2.3 ATLAS for Java 
ATLAS for Java is a port  of ATLAS v. l .0 onto Java. Be- 
cause we have the Java VM intervene between the native 
CPU and ATLAS, what  we obtain by automated tuning is 
the best possible performance for the particular Java plat- 
form, and not for tha t  particular hardware architecture. 
Still, this in a sense satisfies performance portability, as it 
is the best performance that  the particular Java platform 

1The current version of ATLAS is 3.0. 

class ram{ 
void dNBmm(myarray ma, int idc){ 

do /* N-loop */{ 
do /* M-loop */{ 

indexb = indexB; 
c00_0 = 0.0; 
b0 = ma.B[indexb]; 
a0 = ma.A[indexA]; 

/* Start floating point pipe */ 
m0 = a0 * b0; 
b0 = ma.B[indexb + i] ; 
a0 = ma.A[indexA + i] ; 

/* easy loop to unroll */ 
for (k=O; k > O; k--) { 

indexA++; 
indexb++;} 

/* Do last iteration of K-loop, and drain the pipe */ 
cO0_O += mO; 
m0 = a0 * b0; 
cO0_O += mO; 
indexA += 2; 
ma.CO[COindex] += cOO_O; 
COindex ++;} 

while(indexA != stM); 
indexA = ma.indexa; 
COindex += incC; 
indexB += 2;} 

while(indexB != siN);} 

F i g u r e  3: S a m p l e  c o d e  g e n e r a t e d  by A T L A S  f o r  J a v a  
( N o t  O p t i m a l )  

can produce without  resorting to non-portable means such 
as native methods.  

ATLAS for Java is entirely writ ten in Java to work portably 
across all s tandard  JDK environments that  facilitate stan- 
dards tools such as javac. It basically employs the same 
search algorithm as the original ATLAS, employing cache 
blocking, loop unrolling and software pipelining. 

The original ATLAS makes extended usage of pointer 
passing for arrays and scalars. Because Java does not have 
pointers to scalars or array interiors, we defined a wrapper 
class which embodies the array indices as well as the con- 
tents of the array in one-dimensional form. As objects are 
passed by reference, we can pass all the arguments at once. 
We also performed initial analysis to verify that  use of ob- 
ject field access was being compiled away and not causing 
overhead. The same applies for normal scalars, where the 
argument is being used as an in-out parameter; again, we 
defined wrapper classes, and made sure that  no overhead 
will occur due to this indirection. 

Figure 3 illustrates the sample code generated by ATLAS 
for Java. We note tha t  arrays are referenced via fields, but 
otherwise local variables are employed exclusively in hopes 
that  it will be mapped to registers, just as is with C and 
Fortran. We also note tha t  the parameters for this code is far 
from the optimal actually found; on modern-day processors 
with deep pipelining and large L1 caches, inner loops are 
unrolled over 30 times, and the generated classfile typically 
exceeds 200 Kilobytes. 

2.4 AJaPACK High-Level Library Class - -  
JLAPACK/Harpoon 

For AJaPACK's  high-level library class API, we considered 
the available LAPACKs in Java. In order to achieve portable 
performance, we also undertook parallelizing the code so 
that  multiprocessing platforms can automatically take ad- 
vantage of parallel Java threads.  

We found two good Java LAPACKS available; one me- 
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chanically converts the  LAPACK wri t ten in For t ran into 
equivalent Java  code[7]. Thus,  the  result ing code is not 
object-oriented, bu t  rather ,  Java  is employed as an interme- 
diate target  language. We considered this to be somewhat  
inappropriate,  as it is difficult to have clean API  between 
the  optimized kernel versus the  higher-level classes. More- 
over, as far as we found not all of LAPACK routines execute 
correctly, likely due to mechanical  t ranslat ion.  

The  other  one we considered is the  J L A PA CK / Harpoon .  
Its archi tecture is well-designed with appropr ia te  object  en- 
capsulat ion of array types and operations.  The  problem is 
t ha t  only a very few LAPACK routines are actually imple- 
mented (gesv, getrf, getrs, getf2, and laswp; by contrast ,  f2j 
implements  all 288 LAPACK routines).  For the  purpose of 
our research on producing an prototype proof-of-concept, we 
decided to use JLAPACK,  due to its clean object-oriented 
API,  plus stable and correct operations.  

The  original JLAPACK consists of the 3 packages below: 

• JLAPACK 

• JBLAS 

• J L A S T R U C T  
Packages JLAPACK and JBLAS are por t  of LAPACK into 
Java, and the  BLAS into Java, respectively. Package JLAS- 
T R U C T  adds various helper and glue methods  where a mere 
port  of the  For t ran  LAPACK is insufficient. 

For AJaPACK,  we reimplemented JBLAS so t h a t  JLA- 
PACK calls the optimized kernel generated by ATLAS for 
Java. More concretely, we changed the  xBLAS classes (where 
x is D, C, etc.), in par t icular  the xgemm 0 methods  so t ha t  it 
performs optimized blocking, and calls the  kernel routines. 
Moreover, we wrote glue code so t h a t  the  kernel routines pro- 
duce appropriate  the descriptor object  for arrays employed 
by JLAPACK. This  turned  out  to be not  trivial,  as consid- 
erable modifications were required for ATLAS for Java, as 
well as requiring good amount  of glue code for interfaces. 

We also are wri t ing addi t ional  rout ines available in LA- 
PACK, such as LU decomposit ion as well as parallelizing 
gemm 0 and addi t ional  algorithms. For LU, we are imple- 
ment ing  bo th  sequential  and parallel versions of blocked LU 
(dgetrf) and recursive a lgor i thm by Gustavson[14] (rgetf2). 
Both  employ gemm 0 for blocked operations.  

There  are several minor notes in the implementat ion.  First,  
the  the blocked subarrays always need to be copied, as no 
aliasing is possible wi th  Java. Instead of generat ing new 
submatr ices  every t ime (typically about  36 by 36), we t ry  to 
reuse the  submatr ices  avoiding object  allocation and deallo- 
cation 2. Another  minor note  is when arrays do not  exactly 
match  the  block size. In order to always employ the fast 
kernel code, we fill the non-used port ion with 0. A simple 
s t ra tegy is to dynamical ly determine this, bu t  instead we 
generate the boundary  blocks once, and cache them.  Al- 
though this uses O(n)  memory for n × n arrays, in our 
benchmarks  this  s t ra tegy was 10-30% faster, bu t  in some 
cases the  inverse was seen. We do provide a switch so t ha t  
dynamic filling can be used for memory- t ight  si tuations.  

3. PARALLELIZING AJAPACK 
The advantage of Java  for performance portabi l i ty  is mul- 
t i threading  at  the  language level. In fact, it is not  jus t  the 

2Note t ha t  this  does preclude the  exploi ta t ion of Java  se- 
mantics for the  0 filling, as newly allocated arrays are guar- 
anteed to contain 0 

language specification itself, bu t  also t h a t  the  entire system, 
including the  run- t ime system, the  libraries, profilers and 
debuggers, etc. assume t h a t  the language is mul t i threaded.  
This is impor tan t  for ubiqui tous mul t i - threaded parallel ex- 
ecution e.g., the  libraries and JVMs  are designed to be reen- 
t rant .  Inherent  suppor t  for parallelism is wha t  distinguishes 
Java  from C or For t ran,  where parallel execution is added 
as an af ter thought ,  and  its safety is not  at  all guaranteed 
across all systems, libraries, compilers, etc. 

In order to achieve good performance in a por table  way, 
downloadable self- tuning libraries should exploit the  avail- 
abili ty of multiple CPUs  on SMPs wherever possible. On 
the  other  hand,  character is t ics  of t ru ly  parallel execution on 
all Java  platforms,  especially thei r  scalabili ty on intensive 
scientific code, have not  been well-established. 

We explored whether  paral lel izat ion of AJaPACK would 
be feasible using Java  threads  across all platforms. Paral-  
lelization for BLAS is well known, especially with  subar- 
ray blocking, since if A × B is performed as summat ion  of 
Aij x Bjk, t hen  each A~j × Bjk can be executed indepen- 
dently in parallel. The  quest ion is ra ther ,  what  style or a 
method of parallel p rogramming  would be appropr ia te  for 
achieving proper  scalability. So, for BLAS we implemented 
three most  likely styles for mul t i th readed  parallelism, and 
compared their  performance on SMPs ranging from 2 to 60 
processors on various Java  platforms: 

F i n e - g r a i n e d  M a s t e r - W o r k e r  ( F M W )  

We generate a prescribed number  of worker threads  
(typically number  of processors ÷ 1-2), and  each worker 
th read  on each i tera t ion requests  work from the  mas- 
ter  worker queue, computes  the  product ,  stores the  
result,  and  repeats  the  sequence unti l  all the  work are 
exhausted.  For fine-grained we allocate a single small  
blocked mat r ix  mult iply  per each worker. Al though 
this  seems too fine-grained, i t  el iminates various over- 
head, as in Java  the  arrays must  be copied up-front as 
there  is no aliasing. Synchronizat ion occurs on fetch- 
ing work from the  mas ter  queue, and when the  result  
is wr i t ten  back to the  p roduc t  matr ix .  

C o a r s e - G r a i n e d  M a s t e r - W o r k e r  ( C M W )  

Similar to FMW,  bu t  the  worker acquires multiple 
tasks at  once, increasing granulaxity. In order to re- 
duce synchronizat ion costs, we stage the  execution into 
three  phases, namely array copying, mat r ix  multiply, 
and  wri t ing back of all the  results. Al though this may 
seem more efficient t h a n  F M W ,  in practice it could 
add overhead due to the  ex t ra  complexity involved. 

S t a t i c a l l y - D e c o m p o s e d  F o r k - J o i n  ( S F J )  

Since mat r ix  mult iply is determinist ic ,  we decompose 
the  outermost  I-loop, and allocate tasks to each forked 
worker in a balanced fashion. The  program needs no 
synchronizat ion for blocked d is t r ibut ion  except for the 
outermost  fork-join, as wri tebacks into the  product  ar- 
ray are independent .  

More sophist icated strategies such as workstealing amongst  
multiple work queues, are possible. Of the current  three,  
Master-Worker  paral lel izat ion may incur more overhead, es- 
pecially for BLAS where it is relatively easy to perform static 
decomposition, bu t  for a rb i t ra ry  problems load balancing 
occurs naturally,  and is thus  more flexible. Since it was 
obvious t ha t  SFJ would win out, we compared F M W  and 
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CMW against SFJ to see if they would scale equivalently 
or not, exhibiting the cost of Java mult i threading overhead. 
These will become apparent  in the next section. 

4. PERFORMANCE BENCHMARK 
We measure the performance of AJaPACK, how the kernel 
tuned by ATLAS for Java compare against the C kernels 
tuned by the original ATLAS (v.2.0), and also explore how 
much overhead the higher-level library APIs will sacrifice 
performance, for each platform. We also investigate how 
much of the performance could be recovered by parallel ex- 
ecution, and how they scale. We also explore what  style of 
parallelism is effective for implementing BLAS, as well as 
LU factorization. 

4.1 Evaluation Environment and Methodolo- 
gies 

Our previous work[l] showed tha t  x86 platforms exhibited 
the best sequential performance for Java. We re-tested sev- 
eral JIT compilers, and chose the IBM J D K  1.1.8 which 
includes a tuned and heavily modified version of the Sun's 
original JVM, and also a high-performance JIT compiler, 
which exhibited the best performance in our initial tests. 

For Sparcs, we employed Sun's Research VM (Solaris 7 
Production Release JVM), and turned on the flag to enable 
the optimizing JIT compiler, which is claimed to be faster 
than the default JIT ( java  -Xopt imize) .  According to our 
measurements,  Sun's Hotspot  was much slower with respect 
to numerical code, and in fact the adaptive compilation in 
the new release failed to get turned on in ATLAS for Java, 
resulting in performance around 1MFlops. 

We also tested several SMP and CC-NUMA platforms, 
namely the Ultra Enterprise Servers, and the Origin 2000s. 
As mentioned above, these are shown not to have the best 
sequential numerical execution speed, especially in compari- 
son to the C counterparts.  On the other hand, they claim to 
support  high-performance native threads, which the JVMs 
should be exploiting for server-style applications. 

• PC Platforms 

- Dual PIII PC (Pentium III 450MHz x 2) procs + 
Linux Redhat 6.0 

* L1 Cache Inst-16KB + Data-16KB 
* L2 Cache 512KB 
* IBM JDK-I.I.8 JVM with optimizing JIT com- 

piler 
- Athlon PC (Athlon 600MHz) + Linux Redhat 6.0 

* L1 Cache Inst-64KB + Data-64KB 
* L2 Cache 512KB 
* IBM JDK-I.I.8 JVM with optimizing JIT com- 

piler 

• SMP Platforms 
- Sun Enterprise4000(UltraSPARC 300MHz x 8 procs) 

+ Solaris 2.6 
* L1 Cache Inst-16KB + Data-16KB 
* L2 Cache 1MB 
* Solaris Production Release JVM 1.2 with opti- 

mizing JIT compiler (JBE) 
- Sun Enterprise 10000(StarFire))(UltraSparc 250Mhz 

x 60 procs) + Solaris 2.6 
* L1 Cache Inst-16KB + Data-16KB 
* L2 Cache 4MB 
* Solaris Production Release JVM 1.2 with opti- 

mizing JIT compiler (JBE) 

- SGI Origin2000(R10000 250Mhz x 16 procs) + IRIX 
* L1 Cache Inst-32KB + Data-32KB 
* L2 Cache 4MB 
* SGI JDK 1.2.1 

For all the platforms, we performed the benchmarks with 
the following methodologies: 

• We tested the basic kernel performance as reported by 
xmmsearch, the gemm 0 performance and the perfor- 
mances of blocked and blocked recursive LU. 

• As a reference, we tested C performance for the orig- 
inal ATLAS and the ATLAS-enhanced C-LAPACK 
against AJaPACK. 

- For Java gemm 0 and LU factorizations, we tested se- 
quential and parallel versions. For gemm0,  we test the 
three methodologies for parallelization, namely SFJ, 
FMW, and CMW. (The parallel LU factorization is in 
early development, and is not fully optimized as we see 
in the benchmarks.) 

• For all benchmarks,  we vary the sizes of the problem 
matrices. For parallel benchmarks, we also vary the 
number of threads. The reported performance are the 
best scores achieved for respective parameters. For ex- 
ample, when we vary the matrix size for the parallel 
versions, the reported score is the best amongst differ- 
ent number of threads benchmarked. 

4.2 Overview of Results 
Table 1 shows the peak performance achieved by each li- 
brary. As we see, sequential performance differs for the type 
of CPU, and the Java platform employed. On Athlon, we 
obtain the best score for xmmseareh.java, where we record 
nearly 300MFlops, which is approximately about 1/2 of C 
performance. The same is true for Pentium Ill, but the per- 
formance is lower, although still being 1/2 of C. However, 
for SPARCs, the Java score is lower relative to C, being 
approximately 1/3 of C performance. Similar phenomenon 
was seen for the Origin 2000. 

We also see a sharp decline in performance when we move 
to higher-level class libraries, in contrast to C. In fact, we 
observe approximately 40-60% performance drop compared 
to xmmsearch performance, whereas for C, we observe much 
smaller or very little performance penalty. Preliminary in- 
vestigation for the cause revealed that ,  this is at tr ibutable to 
overhead imposed by the the object-oriented nature of the 
library. Because gemm 0 generally accepts various forms of 
underlying data  representations of the matrix (such as be- 
ing transposed),  copying of the portions of the matrix to 
Ll-blocked subarray requires sophisticated translations. In 
fact, the current version of AJaPACK employs element-wise 
copying by specifying higher-level matrix (not array) indices, 
incurring invocation of the accessor method for each element 
copied. We initially assessed that  the copying cost would be 
considerably smaller compared to actual computation of the 
Ll-blocked subarray, and tha t  the compiler would compile 
away the method call and and the overhead, but this was 
not the case. For future versions we plan to add methods to 
copy the subarray all at once, according to each underlying 
matrix data  representation. 

For blocked LU, we see tha t  for C the Gustavson's re- 
cursive algorithm is generally superior to standard,  non- 
recursive algorithm. On the other hand, for Java, the re- 
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T a b l e  1: S u m m a r y  of  P e a k  P e r f o r m a n c e s  A c h i e v e d  b y  E a c h  L i b r a r y  
PII IC PI I I J  Peak(MFlops)  E4KC E4KJ I E10KC E10KJ I ~O21~.J I 

xmmsearch 401.9 132.9 281.2 1 1 0 . 4 ' 3 7 5 . 6  171.7 ~ 81.95 ' 
I 

G E M M  seq. 321.5 52.10 i 286.0 52.6 'i 325.0 102.6 4 3 . 0 4 '  

G E M M  par .  - -  349.9 , - -  1365.4 77.3 - -  4 8 7 . 3 '  

LU block seq. 216.2 47.25 i - -  - -  , 216.6 87.40 ' 298.5 140.9 I - - I !  
LU block par. 152.9 , - -  - -  , - -  98.0 . . . .  f : 

- -  - - 2 7 3 . 1  36.70 399.8 86.40 - -  - -  LU recur, seq. 250.8 34.23 i I 
LU recur par. - -  58.85 - -  ! - -  79.4 i 

I AthlC Ath lJ  I O2KC O2KJ ] 

570.5 296.0 ' 330.5 
' 555.7 165.1 i 340.9 
' 112.5 I - -  ' 

I 

[ ! 

i 

E4K = Sun Enterprise  4000 (UltraSparc 300MHz x 8) 
E10K = Sun Enterprise  10000 (UltraSparc 250MHz x 60) 
P I I I =  Dual Pen t ium III PC (Pent ium III 450MHz x 2) 
Athl  = Athlon  PC (Athlon 600MHz x 1) 
O2K = Origin 2000 (R10000 250Mhz x 16) 
C and J denote  C and  Java, respectively. 
" - - "  indicates benchmark  not  yet performed due to t ime restrictions. 
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m a n c e  w i t h  V a r y i n g  N u m .  o f  T h r e a d s  

cursive a lgor i thm is slower; our prel iminary profiling analy- 
sis has revealed t h a t  this  is probably  due to the  BLAS L1 
and L2 operat ions not  being appropr ia te ly  cache-blocked. 
In fact, as recursion becomes deeper, the  blocksize of the  
ATLAS for Java-generated mult iply routine turned  out  to 
be excessively large. Still, more investigation is needed. 

Parallel execution on the  SMP platforms scaled well, bu t  
not so on a PC, where practically no benefit  and even per- 
formance loss is incurred wi th  parallelization. 

4.3 Detailed Results for Each Platform 
Figures 4 th rough  16 describe detailed performance mea- 
surements  for each platform. 

Athlon PC 
Athlon is a uniprocessor machine,  as there  is no current  
chipsets t ha t  suppor t  a multiprocessor configuration. We 
nevertheless tested Athlon  under  multiprocessing se t t ing to 
investigate whether  the parallelized code would penalize per- 
formance and if so, by how much. 

As mentioned earlier, the  performance of Athlon  is quite 
impressive, with xmmsearch reaching nearly 300MFlops. How- 
ever, whereas the  C ATLAS incurs very little penal ty  for 
g e m m 0 ,  we are impacted with nearly 45% overhead for Java, 
likely due to subarray coping overhead. For blocked LU, 

we again only reach approximate ly  50% of C performance 
due to similar reasons. Paral lel izat ion also penalizes perfor- 
mance, as we see in Table and Figures 4-6, especially for 
master-worker parallelism. This  shows t h a t  the  por table  li- 
brary  must  judge the  n u m b e r  of CPUs  available, and employ 
the  sequential  version if only a single CPU is available. 

Dual Pentium II1 PC 
The dual  processor should give us twice the  performance, 
since there  should be l i t t le sequential  overhead for such a 
low-parallel machine. However, th is  is not  necessarily the  
case--here ,  the  sequential  speed outclasses all parallel ver- 
sions. Close examina t ion  of the  graph in Figure 8 reveals 
tha t ,  the  performance sa tu ra tes  at  threads  ---- 2. Another  
anomaly  is seen Figure 7, where the  master-worker perfor- 
mance suddenly drops at  mat r ix  size ---- 500. These suggest 
tha t ,  a l though IBM JDK 1.1.8 is a nat ive threads  implemen- 
tat ion,  there  seem to be anomalies which precludes smooth  
parallel operations,  especially on Linux. We plan to investi- 
gate the  phenomenon  on a larger Pen t ium Xeon machines.  

Enterprise 4000 and 10000 
Here we observe the  parallel speedup Figures 1(~14. For 
relatively lower number  of processors (For Enterprise  4000 
and Also Enterpr ise  10000 with number  of threads  < 20), 
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gemm 0 does scale well for s tat ic  fork-join, whereas master-  
worker seems to incur some overhead. However, when we 
increase the number  of threads  beyond 20 (Figure 14), we 
s tar t  observing the dropoff in scalability even for stat ic de- 
composition. Still, we reach maximum performance when 
number  of threads  reaches the number  of processors for each 
machine (Figures 11 and 14). This  suggests tha t ,  wi th  bet- 
ter J IT  compilers tuned  for be t t e r  numerical  performance, 
we could obta in  significant performance with SMPs for Java  
numerical  computing.  

Origin 2000 
We observe similar behavior  to Enterprise  server for Origin 
2000 (Figure 15 16). At 16 processors, it does not seem to 
have reached the  limits of scalable Java  parallel execution. 
The  difference is, however, t ha t  the fine-grain mul t i thread-  
ing has very little scalability, and exhibits  extremely poor 
performance compared to stat ic fork-join. This could be at-  
t r ibuted  to the difference in thread  scheduling and mntual  
exclusion in the  operat ing system, the  JVM, or both.  

5. RELATED WORK 
There  have been recent surge of efforts of implement ing nu- 
merical libraries in pure Java. A notable  example the  Java  
Array Package in Java  by IBM[5], where a flexible Java  ar- 
ray class is defined so t ha t  it could be run  as pure Java  code 

or subject  to opt imizat ion by a special optimizing compiler. 
Another  is Java  Numerical  comput ing  in Java[8], by where it 
supports  s t andard  linear algebra operat ions such as BLAS, 
LU-decomposit ion,  QR-decomposit ion,  etc. B. Blount [12] 
and f2j are the  efforts of por t ing JLAPACK to Java. Pozo 
et. al. have proposed SciMark as a benchmark  for Java  in 
numerical  comput ing  3 

These efforts and others,  especially those by the Java- 
Grande  Numerics Working Group are quite significant in 
a t t empt ing  to make Java  applicable to hard-core numerical 
comput ing t radi t ional ly  domina ted  by C and Fortran.  How- 
ever, a l though opt imizing individual  Java compilers have 
been investigated, especially in the context of the Java  ar- 
ray package and the IBM HPCJ[4], achieving performance 
por table  numerical  code, and their  implications especially 
for parallel machines,  have not  been well investigated. 

Both  PHiPAC[9] and ATLAS are numerical kernel gen- 
erators  for optimized blocked GEMM. Although they have 
very similar objectives, while ATLAS aims to tune the BLAS 
kernel for each platform, PHiPAC aims to be more general; 
however, search t ime on PHiPAC takes considerably longer, 
reportedly requiring several days. 

MTTL[15] and BLITZ[16] are por table  matr ix  and lin- 
ear algebra libraries in C + + .  By extensive use of C + +  

3http ://gams. hist. gov/j avanumerics/ 
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templates  allowing template metaprogramming technique, 
bo th  allow extensive opt imizat ions such as loop unrolls and 
some loop res t ructur ing t ha t  t radi t ional ly  compilers had  
performed for C and Fortran.  This  allows performance near- 
ing or matching  t ha t  of For t ran-opt imized code or even ven- 
dor libraries, jus t  as is wi th  PHiPAC or ATLAS. However, 
they do not offer any suppor t  of " tuning" the  parameters  
for loop unrolls etc; thus, they need to in tegrate  the  tun-  
ing techniques of, say, ATLAS to be t ruly portable.  For 
Java, it becomes more difficult due to the lack of compile- 
t ime templa te  support ;  rather ,  source-code generat ion tools 
in Java  such as EPP[17] or O p e n J I T  could be used in place 
of templates.  

W h a t  we really propose is to not  only to follow the foot- 
steps of For t ran and C and create "static" libraries, bu t  
exploit the  characterist ics of Java, such as dynamic  compila- 
tion, por table  code, au tomat ic  downloading, security checks, 
etc. to aggressively optimize Java  libraries automatical ly  for 
each Java  platform. This  is more difficult wi th  non-por table  
languages such as C or Fortran,  where such infrastructures  
are not  provided. 

6. CONCLUSION 
We have introduced AJaPACK,  a self-tuning parallel lin- 
ear algebra package for dense matrices for Java. AJaPACK 
tunes itself to respective Java  platforms using the ATLAS 

technology, and utilizes the  parallel th reads  which is natively 
provided by Java  pla t form running  on SMPs. Benchmarks  
show t h a t  A J a P A C K  reaches approximately  50%-25% per- 
formance of ATLAS-based C library, and  with paralleliza- 
tion, exceeds t h a t  performance.  I t  is substant ia l ly  superior 
to tested figures for f2j and  J L A P A C K / H a r p o o n  on the  same 
platforms. 

On the  o ther  hand,  A J a P A C K  is still somewhat  reliant 
on the  quali ty of bo th  the  JVM and the  J IT  compiler, the  
former for mul t i th read ing  performance,  and the  la t ter  for 
code quality. We see subs tan t ia l  overhead for higher-level 
libraries; this  is due to object-or iented da t a  encapsulat ion 
and also t h a t  it is difficult to alias Java  subarrays,  requiring 
element-wise array copies to  incur method  invocation on ev- 
ery copy. We need to add considerable code to AJaPACK 
to cope wi th  opt imal  copying of subarrays,  and is a subject  
of immediate  future work. 

Thread  paral lel izat ion scaled well for Solaris and O2K, 
bo th  server platforms; this  was somewhat  negated by rel- 
atively underperforming J I T  compiler for numerical  com- 
put ing purposes. On the  other  hand,  for P C s / L i n u x  dual 
processor, a l though the  J IT  compiler was superb,  it did not  
have proper  mul t i th read ing  support .  

Future  work includes identifying other  overhead of higher- 
level libraries. Also, for AJaPACK in particular,  we need 
to improved the  search strategy;  for this  purpose, we are 
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look ing  a t  the  newly  re leased  At l a s  3.0. We would  l ike to, 
however ,  genera l i ze  our  f r a m e w o r k  by no t  d i r e c t l y  r e ly ing  
on t he  A T L A S  for Java ,  b u t  r a t h e r  c o m i n g  up w i t h  a more  
genera l i zed  t oo lk i t  for code  t r a n s f o r m a t i o n  and  g e n e r a t i o n  
based  on O p e n J I T .  T h i s  wil l  a l low us to  e x p a n d  the  d o m a i n  

of a p p l i c a b i l i t y  to  o the r  n u m e r i c a l  a l g o r i t h m s ,  as well  as 
a l lowing  o the r  people  to  c o n s t r u c t  t h e i r  own l ibrar ies .  Ide- 
ally, cod ing  a l i b r a ry  p lus  a sma l l  effort, such as a n n o t a t i n g  
the  core e l e m e n t s  a n d / o r  fol lowing a c e r t a i n  des ign  p a t t e r n ,  
based  on such a f r amework ,  wil l  a l low users  to  code a wide  
range  of p e r f o r m a n c e  p o r t a b l e  pa ra l l e l  l ib ra r ies  for 3ava. 
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