
AJaPACK: Experiments in Performance Portable Parallel
Java Numerical Libraries

Shigeo Itou, Satoshi Matsuoka, Hirokazu Hasegawa
Tokyo Institute of Technology

2-12-10okayama, Meguro-ku, Tokyo, Japan
{itou,matsu,b962220} @ is.titech.ac.jp

ABSTRACT
Although Java promises pla t form por tabi l i ty amongst di-
verses et of systems, for most Java platforms today, it is
not clear if they are appropr ia te for high-performance nu-
merical computing. In fact, most previous a t t empt s at uti-
lizing Java for HPC sacrificed Java 's portabil i ty, or did not
achieve necessary performance required for HPC. Instead,
we propose an al ternat ive methodology based on Download-
ale Self-tuning Library, and constructed an exper imental
prototype called AJaPACK, which is a por table and high-
performance parallel BLAS library for Java which "tunes"
itself to the environment to which it is installed upon. Once
AJaPACK is downloaded and executed, the Java version of
ATLAS (ATLAS for Java) and the parallelized version of
JLAPACK combine to achieve optimized pure Java execu-
t ion for the given environment . Benchmarks have shown
tha t AJaPACK achieves approximately 1/2 to 1/5 of the
speed of optimized C-ATLAS and vendor supplied BLAS
libraries, and with por table parallelization in SMP environ-
nmnts, achieves superior performance to single-threaded C-
based native libraries. This is an order of magni tude su-
perior w.r.t, performance compared to previous pure Java
BLAS libraries, and opens up fur ther possibilities of employ-
ing Java in HPC settings, bu t still shows t ha t J IT compilers
with optimizat ions expect ing numerical code highly-tuned
at the source- or bytecode level would be highly desirable.

1. INTRODUCTION
Distr ibuted and high-performance comput ing ares becom-
ing much more synergetic thanks to the widespread avail-
ability of high-performance networks and inexpensive com-
puting nodes such as PC clusters. In such an environment ,
HPC applications and libraries highly-portable across a va-
riety of highly-divergent execution platforms are in absolute
need. Tradit ional HPC languages such as C or For t ran do
not completely s tandardize the language, the library, the
machine binary, the parallel machine architecture, nor the
execution environment . As a result, it is quite difficult to
have por table HPC applications t h a t work ubiquitously in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Java 2000 San Francisco CA USA
Copyright ACM 2000 1-58113-288-3/00/6...$5.00

140

dis t r ibuted envi ronment . Al though efforts such as H PF and
O p e n M P strive to achieve some por tabi l i ty of parallel code,
a single b inary working across different parallel machines is
still unavailable.

Java has received considerable a t t en t ion in the HPC com-
munity, thanks to its good object-or iented language design,
as well as suppor t of s t andard language features for par-
allel and d is t r ibuted comput ing such as threads and RMI.
Moreover, s tandardized Java bytecode suppor ts por table ex-
ecution via the Java Vir tua l Machine. On the other hand,
it is not clear whether Java AS IS is entirely appropr ia te for
por table d is t r ibuted H PC programming, as pointed out by
various efforts including those by JavaGrande . In part icu-
lar, Java execution envi ronment is quite divergent, ranging
from pure in terpre ta t ion , dynamic J IT compilation, to stat ic
compilation; as a result, an opt imizat ion scheme for a par-
t icular Java pla t form may not be well-applicable for others.
This includes not only the compiler, bu t also the run- t ime
system.

We claim t h a t the impor t an t characteris t ics for HPC in
an network envi ronment is "performance portabi l i ty" for
code t ha t are downloaded and move across the network. By
performance por tabi l i ty we do not mean t h a t a given code
must perform the same across divergent machines; ra ther ,
it is a proper ty whereby the same code will perform within
some cer ta in fract ion of the peak performances of differ-
ent machines. For example, when a certain opt imizat ion
is performed on the code, if the code exhibi ts measurable
performance improvement over different machines, then the
opt imizat ion is performance portable . For For t ran and C,
this is typically the case, bu t for Java, whether this is the
case is not clear, and in fact several counter cases have been
reported [1].

From this perspective, we categorize several previous ap-
proaches employed for HPC comput ing in Java:

• E m p l o y i n g N a t i v e L i b r a r i e s : A HPC nat ive li-
brary is called, using interfaces such as JNI. Kernel
numerical performance obviously matches t ha t of C or
Fort ran, bu t por tabi l i ty na tura l ly suffers, and more-
over, main ta in ing mult iple nat ive code for download-
ing would be quite cumbersome. Examples include
JCI(Java- to-C interface generator)[2] and the frontend
wrapper in IceT[3].

• O p t i m i z i n g (S t a t i c) C o m p i l e r : Tradi t ional op-
t imizing compiler as is wi th C and Fort ran. Examples
include IBM High Performance Compiler for Java[4]
and Fuji tsu HBC[6]. In this case, one obta ins u tmos t

efficiency, sometimes almost match ing t ha t of optimiz-
ing Fortran[4]. On the other hand, not only portabi l i ty
suffers, because it only speeds up program on a par-
t icular platform, but it becomes more difficult to im-
plement the dynamic aspects of Java, such as dynamic
loading, security checks, reflection, etc. In fact, as far
as we know bo th compilers do not suppor t the official
full Java spec in this respect.

• A u t o m a t e d t r a n s l a t i o n f r o m o t h e r p r o g r a m -
m i n g l a n g u a g e s t o J a v a : There are several tools
t ha t t rans la te existing code in t radi t ional HPC lan-
guages, such as Fortran, into Java. An example is
f2j[7], where For t ran LAPACK is automatical ly t rans-
lated into Java in a source-to-source fashion. How-
ever, in order to implement For t ran semantics~ the
t rans la ted source embodies various art ifacts such as
"pseudo-gotos", and as a result, becomes ra ther diffi-
cult to unders tand for fur ther tuning. Moreover, as it
does not take into account specific Java features, per-
formance for pure Java code is low compared to the
original nat ive Fortran.

• M a n u a l T u n i n g : We tune a par t icular Java HPC
code at ei ther source- or bytecode level by hand, leav-
ing the low-level opt imizat ion to the J I T compiler.
Examples include the evaluation of Daxpy and other
BLAS implementat ions by Pozo[8]. Al though porta-
bility is quite high with this approach, there is no
guarantee t h a t performance por tabi l i ty is achieved on
different platforms, due to the divergent na ture of Java
pla t form implementat ions as ment ioned above.

In order to achieve performance portabi l i ty of Java nu-
merical code, we are investigating the construct ion of a self-
tuning library and compilat ion framework for Java. Basi-
cally, we obta in best performance on each Java execution
pla t form by automatical ly tuning for t ha t par t icular plat-
form at the source- and bytecode level. This allows leverag-
ing of existing JVMs and J IT compilers, while still obta in ing
the best speed achievable for t h a t par t icular platform. More
concretely, we implement the compiler /code-generator , per-
formance monitor, code tester, and the high-level ghm li-
brary, etc. entirely in Java, and when a part icular l ibrary is
downloaded over the network for the first time, not only the
l ibrary class file itself bu t the entire self-tuning framework is
downloaded, and opt imizat ion will occur ei ther on the spot
or off-line when the machine uti l izat ion is low. Moreover,
we define or generate parallel mul t i threaded code when pos-
sible, thanks to the portabi l i ty of Java threads. Al though
a similar s t rategy has been a t t empted in various settings,
more recently in efforts such as ATLAS and PhiPAC we de-
scribe below, with Java it would be easy to make the entire
process automated, wi thout user intervention. Furthermore,
self-tuning l ibrary is more significant for Java, again due to
relatively divergent performance characterist ics of Java ex-
ecution environment .

On the other hand, there are several technical challenges
t ha t are open questions, mainly regarding the feasibility of
the approach:

• U b i q u i t o u s E f f e c t i v e n e s s o f S e l f - t u n i n g o n V a r -
ious J a v a P l a t f o r m s :

Al though previous work on adaptive compilation, as
well as more aggressive self-tuning libraries have shown

success for For t ran or C such as PhiPAC[9] and AT-
LAS[10], often achieving the performance of vendor-
tuned libraries, it is not clear whether the same strat-
egy would be effective for Java platforms. In fact, there
are various possibilities where t radi t ional opt imizat ion
strategies applicable to For t ran and C would not be
effective, we must investigate whether self-tuning will
(or will not) perform well under different Java plat-
forms. A part ia l s tudy for the Ll-blocked BLAS core
has been done in [1], bu t a s tudy using a larger-grained
l ibrary wi th parallel execution is required.

• E f f e c t i v e A r c h i t e c t u r e for S e l f - t u n i n g L i b r a r i e s :
Since libraries are somewhat persistent and used mul-
tiple t imes over different applications, it could afford
longer t ime durat ions for tuning. However, when li-
braries are huge, tun ing t ime may still outweigh the
gain in execution t ime of the application utilizing the
library. Thus, as is wi th t radi t ional libraries, the tun-
ing archi tecture would ideally identify the kernel rou-
t ines t ha t would be most beneficial, and leave the non-
kernel, higher-level routines to s tandard J IT compiler
opt imizat ion. It is not clear, however, how much the
slower execution of higher-level routines due t o Java
(such as non-aliasable, non-contiguous array seman-
tics often requiring array copies) would penalize the
overall library performance.

• Use of Java Threads for Large-scale HPC:

Also, although Java is multithreaded at the program-
ming language level, it is not clear how much paral-
lel multithreading will scale, especially w.r.t, numer-
ical computation. Early versions of Java only sup-
ported "green threads" which were merely coroutines.
Many recent versions of Java are truly multithreaded
(native threads), but various research has shown the
substantial overhead associated with multithreading in
Java, and proposed various solutions (Six papers on
Java thread synchronization appeared in recent OOP-
SLA'1999[II]). All such research we know to date,
however, optimize cases where the threads do NOT
synchronize, eliminating or minimizing the cost of syn-
chronization. It is not clear how scalable Java perfor-
mance is for highly-tuned numerical code, especially
for code which DO synchronize, and will suffer from
other overheads such ms thread scheduling.

In order to investigate whether downloadable self-tuning
libraries are feasible for attaining performance portability,
we are constructing AJaPACK, a prototype self-tuning lin-
ear algebra package for dense matrices, as a proof-of-concept
experimentation. AJaPACK employs our pure-Java port of
ATLAS[10], called ATLAS for Java. ATLAS for Java, as is
with the original ATLAS, allows generation of optimized LI-
blocked small-matrix kernel Level 3 BLAS code for each Java
platform. Experiments show that, on various platforms, AT-
LAS for Java benefits from the L1 blocking optimization,
and exhibits I/2 to 1/4 the speed of C-version of ATLAS on
the best JIT compilers for the particular hardware.

In order to implement a higher-level linear-algebra rou-
tine on top of ATLAS for Java, we modified and extended
JLAPACK/Harpoon[12] significantly, as well as paralleliz-
ing some of the routines, notably gemm 0. This allowed
several factors of performance increase compared to the orig-
inal J L A P A C K / H a r p o o n implementat ion. Parallelization of

141

gemm 0 was done in several ways, including stat ic and dy-
namic job par t i t ioning and thread allocation, and tested its
scalability on several different large SMP platforms. Bench-
mark results show tha t , wi th stat ic parallelization, we obta in
high scalability of gemm 0 code on some platforms; however,
dynamic job allocation did not scale as well. Moreover, we
found tha t some platforms have relatively poor suppor t for
mult i threading, result ing in performance loss due to paral-
lelization. We believe this is because Java in general is still
in development stage for scalable parallel p rog ramming- -a s
such, support for low-overhead context switching, effective
memory management in the context of parallel processing
including parallel garbage collection, etc. will need ubiqui-
tous deployment on all Java platforms.

. AJAPACK: AUTOMATIC PARALLEL
TUNING LIBRARY FOR PARALLEL
BLAS IN JAVA

2.1 Overview ofDownloadable Self-TuningLi-
brary and AJaPACK

We first overview the general archi tecture of downloadable
self-tuning library; as seen in Figure I this is composed of
five components, all wr i t ten in Java.

Performance i[I
I Monitor [ILAPACKI

~ ~parameter [I ~]
l I Code I [BLASI ![1

resua I [Generator] I II ill
l ~generation ~ E M M I I t
r - - - l - a t " ~ e n e r a t e d l ~ ' " ' " r - - " ILl [Driver~l~ Kernel ~ ~y2gne -~e, ve, [|t
, , . , . ~ w r a r y ~ t a s s i| I

A T L A S f o r Java (J L A P A C K) ill

F i g u r e 1: O v e r v i e w of D o w n l o a d a b l e S e l f - t u n i n g Li-
b r a r y in Java

• Code Genera tor /Compi le r : Generates performance crit-
ical por t ion of the library. Ideally, we employ gen-
eral compiler framework such as our OpenJIT[13] for
this purpose as a toolkit framework to easily construct
a customized code generator for each library. Since
AJaPACK is a proof-of-concept prototype, however,
we directly targeted dense linear algebra computa t ion ,
using the code generator of ATLAS for Java as well as
addit ional code for feasibility exper imentat ion.

• Genera ted Kernel: The numerical kernel generated by
the code generator. The driver tests the performance
and the opt imal one is automat ical ly embedded into
the higher-level l ibrary classes.

• Driver: The driver module t ha t tests the performance
of the Genera ted Kernel. Repor ts the measured per-
formance to the performance monitor.

142

• Performance Monitor: Receives report from the driver
on performance of each generated kernel routine, and
feeds back performance to the code generator, guid-
ing generat ion of addi t ional tes t kernel code. As such
the performance moni tor is parameter ized by a search
heuristics, and guides the pruned search of possibly
opt imal kernel code.

• Higher-Level Library Classes: Par t s of libraries t h a t
Provide higher-level APIs, bu t are not on the
performance-cri t ical p a t h of the library. By embed-
ding the generated kernel tuned to the par t icular Java
platform, the l ibrary executes at the opt imal perfor-
mance possible.

We owe much of t he higher-level archi tecture as a gener-
alization of ATLAS. Again, we do feel t h a t au tomated code
tuning has more t h a n the impor tance t h a t ATLAS had for
C / F o r t r a n for several reasons including those ment ioned ear-
lier, namely:

1. Au tomated downloading and execution of the entire
self-tuning l ibrary is easy because of Java portability.

2. Java pla t form is much more divergent, and perfor-
mance por tabi l i ty is more difficult to achieve with mere
s tat ic code opt imizat ion.

3. As ment ioned earlier, manual tun ing of Java numeric
code is difficult due to language design and implemen-
t a t ion features, and it is be t t e r to resort to au tomated
means.

4. As the tun ing occurs at source-code or bytecode level,
it can readily adap t to cases where the underlying ar-
chi tecture changes, for wi th Java it is easy to ma in ta in
the downloaded code in por table format.

5. Since the validity of the generated kernel code is checked
by the Java security checker, the user will have be t te r
confidence t h a t whatever code dynamical ly generated
will be safer t h a n For t ran or C code.

In AJaPACK, each component has the following imple-
menta t ion wi th respect to the systems we have ported or
developed (to be described in detail later):

• Code Genera to r /Compi le r : The code generator por-
t ion ATLAS for Java, namely par ts of xemit . java and
xmmsearch we see in Figure 2.

• Genera ted Kernel: The small L1 cache-blocked Level 3
• BLAS in Java which xemit . java generates. Currently,

we emit the source file which is compiled by javac,
a l though in principle direct generat ion of bytecode is
also possible.

• Driver: Corresponds to fc.java of ATLAS for Java.

• Performance Monitor: Corresponds to par ts of xmm-
search.java in ATLAS for Java.

• Higher-Level Library Classes: As ment ioned earlier,
we employed JLAPACK/Harpoon[12] by Chat ter jee et
al., to work wi th ATLAS for Java, and fur thermore
parallelized the BLAS routine. We describe the de-
tails of paral lel izat ion and thei r implications in later
sections.

2.2 Overview of the Original ATLAS
The original ATLAS(Automatically Tuned Linear Algebra
Software) [10] is a source-level automated tuning tool for
BLAS, being developed by Whaley and Dongarra at Uni-
versity of Tennessee. ATLAS searches for and finds the
most appropriate L1 cache blocking factor, number of un-
rolls, software pipelining latencies, and generates the best
C-based BLAS Level 3 code for a given platform.

F i g u r e 2: A r c h i t e c t u r e o f A T L A S (v . l . 0)

The parameters employed in ATLAS v.l.01 are basically
muladd, NB, MU, NU, KU, and LAT. Muladd indicates
where fused multiply-add is available. NB is the L1 cache
blocking size, and MU, NU, and KU are number of unrolls
for each loop, and LAT is the latency factor for software
pipelining. Given such parameter space, ATLAS generates
the kernel cache-blocked code for each parameter, tests the
performance, and finally outputs the one with the best per-
formance. In order to prune the search space, ATLAS em-
ploys a prescribed search strategy[10].

Although the search space is considerably pruned, ATLAS
execution is still quite expensive, and such extensive opti-
mization is difficult to embed in a compiler. However, for
libraries, such cost could be amortized over multiple execu-
tion of the library, and in fact it is reported that ATLAS gen-
erated code matches the best results by the vendor-supplied
optimized BLAS library.

We also note here that ATLAS represents all matrices
in one-dimensional form, as required by LAPACK. This is
an advantage for Java, as it avoids several overhead issues
relevant to performance of array accesses, including non-
rectangular representation of multi-dimensional arrays, and
requirement to check array bounds for each dimension.

2.3 ATLAS for Java
ATLAS for Java is a port of ATLAS v. l .0 onto Java. Be-
cause we have the Java VM intervene between the native
CPU and ATLAS, what we obtain by automated tuning is
the best possible performance for the particular Java plat-
form, and not for tha t particular hardware architecture.
Still, this in a sense satisfies performance portability, as it
is the best performance that the particular Java platform

1The current version of ATLAS is 3.0.

class ram{
void dNBmm(myarray ma, int idc){

do /* N-loop */{
do /* M-loop */{

indexb = indexB;
c00_0 = 0.0;
b0 = ma.B[indexb];
a0 = ma.A[indexA];

/* Start floating point pipe */
m0 = a0 * b0;
b0 = ma.B[indexb + i] ;
a0 = ma.A[indexA + i] ;

/* easy loop to unroll */
for (k=O; k > O; k--) {

indexA++;
indexb++;}

/* Do last iteration of K-loop, and drain the pipe */
cO0_O += mO;
m0 = a0 * b0;
cO0_O += mO;
indexA += 2;
ma.CO[COindex] += cOO_O;
COindex ++;}

while(indexA != stM);
indexA = ma.indexa;
COindex += incC;
indexB += 2;}

while(indexB != siN);}

F i g u r e 3: S a m p l e c o d e g e n e r a t e d by A T L A S f o r J a v a
(N o t O p t i m a l)

can produce without resorting to non-portable means such
as native methods.

ATLAS for Java is entirely writ ten in Java to work portably
across all s tandard JDK environments that facilitate stan-
dards tools such as javac. It basically employs the same
search algorithm as the original ATLAS, employing cache
blocking, loop unrolling and software pipelining.

The original ATLAS makes extended usage of pointer
passing for arrays and scalars. Because Java does not have
pointers to scalars or array interiors, we defined a wrapper
class which embodies the array indices as well as the con-
tents of the array in one-dimensional form. As objects are
passed by reference, we can pass all the arguments at once.
We also performed initial analysis to verify that use of ob-
ject field access was being compiled away and not causing
overhead. The same applies for normal scalars, where the
argument is being used as an in-out parameter; again, we
defined wrapper classes, and made sure that no overhead
will occur due to this indirection.

Figure 3 illustrates the sample code generated by ATLAS
for Java. We note tha t arrays are referenced via fields, but
otherwise local variables are employed exclusively in hopes
that it will be mapped to registers, just as is with C and
Fortran. We also note tha t the parameters for this code is far
from the optimal actually found; on modern-day processors
with deep pipelining and large L1 caches, inner loops are
unrolled over 30 times, and the generated classfile typically
exceeds 200 Kilobytes.

2.4 AJaPACK High-Level Library Class - -
JLAPACK/Harpoon

For AJaPACK's high-level library class API, we considered
the available LAPACKs in Java. In order to achieve portable
performance, we also undertook parallelizing the code so
that multiprocessing platforms can automatically take ad-
vantage of parallel Java threads.

We found two good Java LAPACKS available; one me-

143

chanically converts the LAPACK wri t ten in For t ran into
equivalent Java code[7]. Thus, the result ing code is not
object-oriented, bu t rather , Java is employed as an interme-
diate target language. We considered this to be somewhat
inappropriate, as it is difficult to have clean API between
the optimized kernel versus the higher-level classes. More-
over, as far as we found not all of LAPACK routines execute
correctly, likely due to mechanical t ranslat ion.

The other one we considered is the J L A PA CK / Harpoon .
Its archi tecture is well-designed with appropr ia te object en-
capsulat ion of array types and operations. The problem is
t ha t only a very few LAPACK routines are actually imple-
mented (gesv, getrf, getrs, getf2, and laswp; by contrast , f2j
implements all 288 LAPACK routines). For the purpose of
our research on producing an prototype proof-of-concept, we
decided to use JLAPACK, due to its clean object-oriented
API, plus stable and correct operations.

The original JLAPACK consists of the 3 packages below:

• JLAPACK

• JBLAS

• J L A S T R U C T
Packages JLAPACK and JBLAS are por t of LAPACK into
Java, and the BLAS into Java, respectively. Package JLAS-
T R U C T adds various helper and glue methods where a mere
port of the For t ran LAPACK is insufficient.

For AJaPACK, we reimplemented JBLAS so t h a t JLA-
PACK calls the optimized kernel generated by ATLAS for
Java. More concretely, we changed the xBLAS classes (where
x is D, C, etc.), in par t icular the xgemm 0 methods so t ha t it
performs optimized blocking, and calls the kernel routines.
Moreover, we wrote glue code so t h a t the kernel routines pro-
duce appropriate the descriptor object for arrays employed
by JLAPACK. This turned out to be not trivial, as consid-
erable modifications were required for ATLAS for Java, as
well as requiring good amount of glue code for interfaces.

We also are wri t ing addi t ional rout ines available in LA-
PACK, such as LU decomposit ion as well as parallelizing
gemm 0 and addi t ional algorithms. For LU, we are imple-
ment ing bo th sequential and parallel versions of blocked LU
(dgetrf) and recursive a lgor i thm by Gustavson[14] (rgetf2).
Both employ gemm 0 for blocked operations.

There are several minor notes in the implementat ion. First,
the the blocked subarrays always need to be copied, as no
aliasing is possible wi th Java. Instead of generat ing new
submatr ices every t ime (typically about 36 by 36), we t ry to
reuse the submatr ices avoiding object allocation and deallo-
cation 2. Another minor note is when arrays do not exactly
match the block size. In order to always employ the fast
kernel code, we fill the non-used port ion with 0. A simple
s t ra tegy is to dynamical ly determine this, bu t instead we
generate the boundary blocks once, and cache them. Al-
though this uses O(n) memory for n × n arrays, in our
benchmarks this s t ra tegy was 10-30% faster, bu t in some
cases the inverse was seen. We do provide a switch so t ha t
dynamic filling can be used for memory- t ight si tuations.

3. PARALLELIZING AJAPACK
The advantage of Java for performance portabi l i ty is mul-
t i threading at the language level. In fact, it is not jus t the

2Note t ha t this does preclude the exploi ta t ion of Java se-
mantics for the 0 filling, as newly allocated arrays are guar-
anteed to contain 0

language specification itself, bu t also t h a t the entire system,
including the run- t ime system, the libraries, profilers and
debuggers, etc. assume t h a t the language is mul t i threaded.
This is impor tan t for ubiqui tous mul t i - threaded parallel ex-
ecution e.g., the libraries and JVMs are designed to be reen-
t rant . Inherent suppor t for parallelism is wha t distinguishes
Java from C or For t ran, where parallel execution is added
as an af ter thought , and its safety is not at all guaranteed
across all systems, libraries, compilers, etc.

In order to achieve good performance in a por table way,
downloadable self- tuning libraries should exploit the avail-
abili ty of multiple CPUs on SMPs wherever possible. On
the other hand, character is t ics of t ru ly parallel execution on
all Java platforms, especially thei r scalabili ty on intensive
scientific code, have not been well-established.

We explored whether paral lel izat ion of AJaPACK would
be feasible using Java threads across all platforms. Paral-
lelization for BLAS is well known, especially with subar-
ray blocking, since if A × B is performed as summat ion of
Aij x Bjk, t hen each A~j × Bjk can be executed indepen-
dently in parallel. The quest ion is ra ther , what style or a
method of parallel p rogramming would be appropr ia te for
achieving proper scalability. So, for BLAS we implemented
three most likely styles for mul t i th readed parallelism, and
compared their performance on SMPs ranging from 2 to 60
processors on various Java platforms:

F i n e - g r a i n e d M a s t e r - W o r k e r (F M W)

We generate a prescribed number of worker threads
(typically number of processors ÷ 1-2), and each worker
th read on each i tera t ion requests work from the mas-
ter worker queue, computes the product , stores the
result, and repeats the sequence unti l all the work are
exhausted. For fine-grained we allocate a single small
blocked mat r ix mult iply per each worker. Al though
this seems too fine-grained, i t el iminates various over-
head, as in Java the arrays must be copied up-front as
there is no aliasing. Synchronizat ion occurs on fetch-
ing work from the mas ter queue, and when the result
is wr i t ten back to the p roduc t matr ix .

C o a r s e - G r a i n e d M a s t e r - W o r k e r (C M W)

Similar to FMW, bu t the worker acquires multiple
tasks at once, increasing granulaxity. In order to re-
duce synchronizat ion costs, we stage the execution into
three phases, namely array copying, mat r ix multiply,
and wri t ing back of all the results. Al though this may
seem more efficient t h a n F M W , in practice it could
add overhead due to the ex t ra complexity involved.

S t a t i c a l l y - D e c o m p o s e d F o r k - J o i n (S F J)

Since mat r ix mult iply is determinist ic , we decompose
the outermost I-loop, and allocate tasks to each forked
worker in a balanced fashion. The program needs no
synchronizat ion for blocked d is t r ibut ion except for the
outermost fork-join, as wri tebacks into the product ar-
ray are independent .

More sophist icated strategies such as workstealing amongst
multiple work queues, are possible. Of the current three,
Master-Worker paral lel izat ion may incur more overhead, es-
pecially for BLAS where it is relatively easy to perform static
decomposition, bu t for a rb i t ra ry problems load balancing
occurs naturally, and is thus more flexible. Since it was
obvious t ha t SFJ would win out, we compared F M W and

144

CMW against SFJ to see if they would scale equivalently
or not, exhibiting the cost of Java mult i threading overhead.
These will become apparent in the next section.

4. PERFORMANCE BENCHMARK
We measure the performance of AJaPACK, how the kernel
tuned by ATLAS for Java compare against the C kernels
tuned by the original ATLAS (v.2.0), and also explore how
much overhead the higher-level library APIs will sacrifice
performance, for each platform. We also investigate how
much of the performance could be recovered by parallel ex-
ecution, and how they scale. We also explore what style of
parallelism is effective for implementing BLAS, as well as
LU factorization.

4.1 Evaluation Environment and Methodolo-
gies

Our previous work[l] showed tha t x86 platforms exhibited
the best sequential performance for Java. We re-tested sev-
eral JIT compilers, and chose the IBM J D K 1.1.8 which
includes a tuned and heavily modified version of the Sun's
original JVM, and also a high-performance JIT compiler,
which exhibited the best performance in our initial tests.

For Sparcs, we employed Sun's Research VM (Solaris 7
Production Release JVM), and turned on the flag to enable
the optimizing JIT compiler, which is claimed to be faster
than the default JIT (java -Xopt imize) . According to our
measurements, Sun's Hotspot was much slower with respect
to numerical code, and in fact the adaptive compilation in
the new release failed to get turned on in ATLAS for Java,
resulting in performance around 1MFlops.

We also tested several SMP and CC-NUMA platforms,
namely the Ultra Enterprise Servers, and the Origin 2000s.
As mentioned above, these are shown not to have the best
sequential numerical execution speed, especially in compari-
son to the C counterparts. On the other hand, they claim to
support high-performance native threads, which the JVMs
should be exploiting for server-style applications.

• PC Platforms

- Dual PIII PC (Pentium III 450MHz x 2) procs +
Linux Redhat 6.0

* L1 Cache Inst-16KB + Data-16KB
* L2 Cache 512KB
* IBM JDK-I.I.8 JVM with optimizing JIT com-

piler
- Athlon PC (Athlon 600MHz) + Linux Redhat 6.0

* L1 Cache Inst-64KB + Data-64KB
* L2 Cache 512KB
* IBM JDK-I.I.8 JVM with optimizing JIT com-

piler

• SMP Platforms
- Sun Enterprise4000(UltraSPARC 300MHz x 8 procs)

+ Solaris 2.6
* L1 Cache Inst-16KB + Data-16KB
* L2 Cache 1MB
* Solaris Production Release JVM 1.2 with opti-

mizing JIT compiler (JBE)
- Sun Enterprise 10000(StarFire))(UltraSparc 250Mhz

x 60 procs) + Solaris 2.6
* L1 Cache Inst-16KB + Data-16KB
* L2 Cache 4MB
* Solaris Production Release JVM 1.2 with opti-

mizing JIT compiler (JBE)

- SGI Origin2000(R10000 250Mhz x 16 procs) + IRIX
* L1 Cache Inst-32KB + Data-32KB
* L2 Cache 4MB
* SGI JDK 1.2.1

For all the platforms, we performed the benchmarks with
the following methodologies:

• We tested the basic kernel performance as reported by
xmmsearch, the gemm 0 performance and the perfor-
mances of blocked and blocked recursive LU.

• As a reference, we tested C performance for the orig-
inal ATLAS and the ATLAS-enhanced C-LAPACK
against AJaPACK.

- For Java gemm 0 and LU factorizations, we tested se-
quential and parallel versions. For gemm0, we test the
three methodologies for parallelization, namely SFJ,
FMW, and CMW. (The parallel LU factorization is in
early development, and is not fully optimized as we see
in the benchmarks.)

• For all benchmarks, we vary the sizes of the problem
matrices. For parallel benchmarks, we also vary the
number of threads. The reported performance are the
best scores achieved for respective parameters. For ex-
ample, when we vary the matrix size for the parallel
versions, the reported score is the best amongst differ-
ent number of threads benchmarked.

4.2 Overview of Results
Table 1 shows the peak performance achieved by each li-
brary. As we see, sequential performance differs for the type
of CPU, and the Java platform employed. On Athlon, we
obtain the best score for xmmseareh.java, where we record
nearly 300MFlops, which is approximately about 1/2 of C
performance. The same is true for Pentium Ill, but the per-
formance is lower, although still being 1/2 of C. However,
for SPARCs, the Java score is lower relative to C, being
approximately 1/3 of C performance. Similar phenomenon
was seen for the Origin 2000.

We also see a sharp decline in performance when we move
to higher-level class libraries, in contrast to C. In fact, we
observe approximately 40-60% performance drop compared
to xmmsearch performance, whereas for C, we observe much
smaller or very little performance penalty. Preliminary in-
vestigation for the cause revealed that , this is at tr ibutable to
overhead imposed by the the object-oriented nature of the
library. Because gemm 0 generally accepts various forms of
underlying data representations of the matrix (such as be-
ing transposed), copying of the portions of the matrix to
Ll-blocked subarray requires sophisticated translations. In
fact, the current version of AJaPACK employs element-wise
copying by specifying higher-level matrix (not array) indices,
incurring invocation of the accessor method for each element
copied. We initially assessed that the copying cost would be
considerably smaller compared to actual computation of the
Ll-blocked subarray, and tha t the compiler would compile
away the method call and and the overhead, but this was
not the case. For future versions we plan to add methods to
copy the subarray all at once, according to each underlying
matrix data representation.

For blocked LU, we see tha t for C the Gustavson's re-
cursive algorithm is generally superior to standard, non-
recursive algorithm. On the other hand, for Java, the re-

145

T a b l e 1: S u m m a r y of P e a k P e r f o r m a n c e s A c h i e v e d b y E a c h L i b r a r y
PII IC PI I I J Peak(MFlops) E4KC E4KJ I E10KC E10KJ I ~O21~.J I

xmmsearch 401.9 132.9 281.2 1 1 0 . 4 ' 3 7 5 . 6 171.7 ~ 81.95 '
I

G E M M seq. 321.5 52.10 i 286.0 52.6 'i 325.0 102.6 4 3 . 0 4 '

G E M M par . - - 349.9 , - - 1365.4 77.3 - - 4 8 7 . 3 '

LU block seq. 216.2 47.25 i - - - - , 216.6 87.40 ' 298.5 140.9 I - - I !
LU block par. 152.9 , - - - - , - - 98.0 f :

- - - - 2 7 3 . 1 36.70 399.8 86.40 - - - - LU recur, seq. 250.8 34.23 i I
LU recur par. - - 58.85 - - ! - - 79.4 i

I AthlC Ath lJ I O2KC O2KJ]

570.5 296.0 ' 330.5
' 555.7 165.1 i 340.9
' 112.5 I - - '

I

[!

i

E4K = Sun Enterprise 4000 (UltraSparc 300MHz x 8)
E10K = Sun Enterprise 10000 (UltraSparc 250MHz x 60)
P I I I = Dual Pen t ium III PC (Pent ium III 450MHz x 2)
Athl = Athlon PC (Athlon 600MHz x 1)
O2K = Origin 2000 (R10000 250Mhz x 16)
C and J denote C and Java, respectively.
" - - " indicates benchmark not yet performed due to t ime restrictions.

~ o ~ j . ° . .o.°.-" c

. f

i-
2OO

F i g u r e 4: A t h l o n P C (6 0 0 M H z x 1) G e m m P e r f o r -
m a n c e w i t h V a r y i n g M a t r i x S i z e s

150

1,10

110

I I = , L , I
~ Z 4 8 S 10 12 ~,1

F i g u r e 5: A t h l o n P C (6 0 0 M H z x 1) G e m m P e r f o r -
m a n c e w i t h V a r y i n g N u m . o f T h r e a d s

cursive a lgor i thm is slower; our prel iminary profiling analy-
sis has revealed t h a t this is probably due to the BLAS L1
and L2 operat ions not being appropr ia te ly cache-blocked.
In fact, as recursion becomes deeper, the blocksize of the
ATLAS for Java-generated mult iply routine turned out to
be excessively large. Still, more investigation is needed.

Parallel execution on the SMP platforms scaled well, bu t
not so on a PC, where practically no benefit and even per-
formance loss is incurred wi th parallelization.

4.3 Detailed Results for Each Platform
Figures 4 th rough 16 describe detailed performance mea-
surements for each platform.

Athlon PC
Athlon is a uniprocessor machine, as there is no current
chipsets t ha t suppor t a multiprocessor configuration. We
nevertheless tested Athlon under multiprocessing se t t ing to
investigate whether the parallelized code would penalize per-
formance and if so, by how much.

As mentioned earlier, the performance of Athlon is quite
impressive, with xmmsearch reaching nearly 300MFlops. How-
ever, whereas the C ATLAS incurs very little penal ty for
g e m m 0 , we are impacted with nearly 45% overhead for Java,
likely due to subarray coping overhead. For blocked LU,

we again only reach approximate ly 50% of C performance
due to similar reasons. Paral lel izat ion also penalizes perfor-
mance, as we see in Table and Figures 4-6, especially for
master-worker parallelism. This shows t h a t the por table li-
brary must judge the n u m b e r of CPUs available, and employ
the sequential version if only a single CPU is available.

Dual Pentium II1 PC
The dual processor should give us twice the performance,
since there should be l i t t le sequential overhead for such a
low-parallel machine. However, th is is not necessarily the
case--here , the sequential speed outclasses all parallel ver-
sions. Close examina t ion of the graph in Figure 8 reveals
tha t , the performance sa tu ra tes at threads ---- 2. Another
anomaly is seen Figure 7, where the master-worker perfor-
mance suddenly drops at mat r ix size ---- 500. These suggest
tha t , a l though IBM JDK 1.1.8 is a nat ive threads implemen-
tat ion, there seem to be anomalies which precludes smooth
parallel operations, especially on Linux. We plan to investi-
gate the phenomenon on a larger Pen t ium Xeon machines.

Enterprise 4000 and 10000
Here we observe the parallel speedup Figures 1(~14. For
relatively lower number of processors (For Enterprise 4000
and Also Enterpr ise 10000 with number of threads < 20),

146

40O

35O

aCO

250

q z o o

I so

too

so

o

AMD ATHLON tJnux IBM JOK 1.1.8

• dgetd~C
, tf2-seq .-....__:

/./...../" - . j //// //'" ~ - ~ ~,~, /e

• , . . - ' " ,,,..

I ~ } 200 300 400 500 600 700 6CO 900 1000 1100

Matlix Size

F i g u r e 6: A t h l o n P C (6 0 0 M H z x 1) L U P e r f o r m a n c e
w i t h V a r y i n g M a t r i x S i z e s

3OO

250

150

100

SO

0

. . - , . a o q - -

~ . , . . ~ ' ~ v ~ ' SFJ

C - - -

,
!

I /

: i ,
200 ,Ice soo 8oo tooo

~ t ~ x

F i g u r e 7: D u a l P e n t i u m I I I P C G e m m P e r f o r m a n c e
(4 5 0 M h z x 2) w i t h V a r y i n g M a t r i x Sizes

PC d ~ l CPU Madairm 18M JDK SpeedUp

SFJ

/

/
/ !

/

2 4 6 8 10 12 14 16 b~, OI 131 r ~ d s

F i g u r e 8: D u a l P e n t i u m I I I P C G e m m P e r f o r m a n c e
(4 5 0 M h z x 2) w i t h V a r y i n g N u m . o f T h r e a d s

3OO

2S0

~ 0

q lS0

loo

so

o
too 200 300 4Go :Too 600 700 800 9,0o i~oo 110o

M=tnx S~ze

F i g u r e 9: D u a l P e n t i u m I I I P C L U P e r f o r m a n c e
(4 5 0 M h z x 2) w i t h V a r y i n g M a t r i x S i z e s

gemm 0 does scale well for s tat ic fork-join, whereas master-
worker seems to incur some overhead. However, when we
increase the number of threads beyond 20 (Figure 14), we
s tar t observing the dropoff in scalability even for stat ic de-
composition. Still, we reach maximum performance when
number of threads reaches the number of processors for each
machine (Figures 11 and 14). This suggests tha t , wi th bet-
ter J IT compilers tuned for be t t e r numerical performance,
we could obta in significant performance with SMPs for Java
numerical computing.

Origin 2000
We observe similar behavior to Enterprise server for Origin
2000 (Figure 15 16). At 16 processors, it does not seem to
have reached the limits of scalable Java parallel execution.
The difference is, however, t ha t the fine-grain mul t i thread-
ing has very little scalability, and exhibits extremely poor
performance compared to stat ic fork-join. This could be at-
t r ibuted to the difference in thread scheduling and mntual
exclusion in the operat ing system, the JVM, or both.

5. RELATED WORK
There have been recent surge of efforts of implement ing nu-
merical libraries in pure Java. A notable example the Java
Array Package in Java by IBM[5], where a flexible Java ar-
ray class is defined so t ha t it could be run as pure Java code

or subject to opt imizat ion by a special optimizing compiler.
Another is Java Numerical comput ing in Java[8], by where it
supports s t andard linear algebra operat ions such as BLAS,
LU-decomposit ion, QR-decomposit ion, etc. B. Blount [12]
and f2j are the efforts of por t ing JLAPACK to Java. Pozo
et. al. have proposed SciMark as a benchmark for Java in
numerical comput ing 3

These efforts and others, especially those by the Java-
Grande Numerics Working Group are quite significant in
a t t empt ing to make Java applicable to hard-core numerical
comput ing t radi t ional ly domina ted by C and Fortran. How-
ever, a l though opt imizing individual Java compilers have
been investigated, especially in the context of the Java ar-
ray package and the IBM HPCJ[4], achieving performance
por table numerical code, and their implications especially
for parallel machines, have not been well investigated.

Both PHiPAC[9] and ATLAS are numerical kernel gen-
erators for optimized blocked GEMM. Although they have
very similar objectives, while ATLAS aims to tune the BLAS
kernel for each platform, PHiPAC aims to be more general;
however, search t ime on PHiPAC takes considerably longer,
reportedly requiring several days.

MTTL[15] and BLITZ[16] are por table matr ix and lin-
ear algebra libraries in C + + . By extensive use of C + +

3http ://gams. hist. gov/j avanumerics/

147

~ m n = 4ooo

F~ -----'~

~o / Y v "~''"\'VV '," \ v v ~.--------~.

f" ^ -':'.::"

/ . . ."

o

m i n x

F i g u r e 10: E n t e r p r i s e 4 0 0 0 G e m m P e r f o r m a n c e w i t h
V a r y i n g M a t r i x Sizes

9 Ir~

F I ~ N ~
SFJ
~ q

~.___/

2 4 S a 10 12 14
NUfl~,C~Tiwe4ds

F i g u r e 11: E n t e r p r i s e 4 0 0 0 G e m m P e r f o r m a n c e w i t h
Varying N u m . o f Threads

2 ~

1oo

So

o

SUN E n ~ ,mOO

. , .~ ' - - :

M a ~ $ ~ e

Figure 12: Enterpr i se 4 0 0 0 L U P e r f o r m a n c e w i t h
Varying Matr ix S izes

t400

tZO0

tO00

o
1000 iSGO 2000

m b l =

F i g u r e 13: E n t e r p r i s e 10000 G e m m Per formance
w i t h V a r y i n g M a t r i x Sizes

templates allowing template metaprogramming technique,
bo th allow extensive opt imizat ions such as loop unrolls and
some loop res t ructur ing t ha t t radi t ional ly compilers had
performed for C and Fortran. This allows performance near-
ing or matching t ha t of For t ran-opt imized code or even ven-
dor libraries, jus t as is wi th PHiPAC or ATLAS. However,
they do not offer any suppor t of " tuning" the parameters
for loop unrolls etc; thus, they need to in tegrate the tun-
ing techniques of, say, ATLAS to be t ruly portable. For
Java, it becomes more difficult due to the lack of compile-
t ime templa te support ; rather , source-code generat ion tools
in Java such as EPP[17] or O p e n J I T could be used in place
of templates.

W h a t we really propose is to not only to follow the foot-
steps of For t ran and C and create "static" libraries, bu t
exploit the characterist ics of Java, such as dynamic compila-
tion, por table code, au tomat ic downloading, security checks,
etc. to aggressively optimize Java libraries automatical ly for
each Java platform. This is more difficult wi th non-por table
languages such as C or Fortran, where such infrastructures
are not provided.

6. CONCLUSION
We have introduced AJaPACK, a self-tuning parallel lin-
ear algebra package for dense matrices for Java. AJaPACK
tunes itself to respective Java platforms using the ATLAS

technology, and utilizes the parallel th reads which is natively
provided by Java pla t form running on SMPs. Benchmarks
show t h a t A J a P A C K reaches approximately 50%-25% per-
formance of ATLAS-based C library, and with paralleliza-
tion, exceeds t h a t performance. I t is substant ia l ly superior
to tested figures for f2j and J L A P A C K / H a r p o o n on the same
platforms.

On the o ther hand, A J a P A C K is still somewhat reliant
on the quali ty of bo th the JVM and the J IT compiler, the
former for mul t i th read ing performance, and the la t ter for
code quality. We see subs tan t ia l overhead for higher-level
libraries; this is due to object-or iented da t a encapsulat ion
and also t h a t it is difficult to alias Java subarrays, requiring
element-wise array copies to incur method invocation on ev-
ery copy. We need to add considerable code to AJaPACK
to cope wi th opt imal copying of subarrays, and is a subject
of immediate future work.

Thread paral lel izat ion scaled well for Solaris and O2K,
bo th server platforms; this was somewhat negated by rel-
atively underperforming J I T compiler for numerical com-
put ing purposes. On the other hand, for P C s / L i n u x dual
processor, a l though the J IT compiler was superb, it did not
have proper mul t i th read ing support .

Future work includes identifying other overhead of higher-
level libraries. Also, for AJaPACK in particular, we need
to improved the search strategy; for this purpose, we are

148

I4C~

1200

o

SFJ --

........... 7- 7--- T , •
m 2o 3o 40 so eo

Number of Threada

F i g u r e 14: E n t e r p r i s e 1 0 0 0 0 G e m m P e r f o r m a n c e
w i t h V a r y i n g N u m . o f T h r e a d s

sso

30o

2so

zoo

9

"~ 1so

loo

so

o

o~gi . moo s p e ~ u p

FMW - -
SFJ
~ q

/ j

/
/

S 10 15 20
Ntwnker ol Th~da

F i g u r e 16: O r i g i n 2 0 0 0 G e m m P e r f o r m a n c e w i t h
V a r y i n g N u m . o f T h r e a d s

4C0

S 2~

0

.." ~w

............. x~2___
B ~

....Y
..."

/
,./'

..."
/'

/
./ /"

/
/

/

2 -
l i

~o Iooo
I

1 5 0 0 £ ~ 0

F i g u r e 15: O r i g i n 2 0 0 0 G e m m P e r f o r m a n c e w i t h
V a r y i n g M a t r i x S i z e s

look ing a t the newly re leased At l a s 3.0. We would l ike to,
however , genera l i ze our f r a m e w o r k by no t d i r e c t l y r e ly ing
on t he A T L A S for Java , b u t r a t h e r c o m i n g up w i t h a more
genera l i zed t oo lk i t for code t r a n s f o r m a t i o n and g e n e r a t i o n
based on O p e n J I T . T h i s wil l a l low us to e x p a n d the d o m a i n

of a p p l i c a b i l i t y to o the r n u m e r i c a l a l g o r i t h m s , as well as
a l lowing o the r people to c o n s t r u c t t h e i r own l ibrar ies . Ide-
ally, cod ing a l i b r a ry p lus a sma l l effort, such as a n n o t a t i n g
the core e l e m e n t s a n d / o r fol lowing a c e r t a i n des ign p a t t e r n ,
based on such a f r amework , wil l a l low users to code a wide
range of p e r f o r m a n c e p o r t a b l e pa ra l l e l l ib ra r ies for 3ava.

Acknowledgments
We deeply thank Jack Dongarra, Clint Whaley, and Sid
Chat ter jee for the development of their respective libraries
which we have substant ia l ly employed as a basis, and also
their valuable feedback on our work. We also thank the De-
pa r tmen t of Informat ion Science, the Universi ty of Tokyo,
and E l e c t r o t e c h n i e a l Labo ra to ry , e spec i a l ly Ken j ro T a u r a
and O s a m u Ta tebe , who have m a d e our usage of E l 0 0 0 0
and Or ig in 2000 possible .

R E F E R E N C E S
[1] Satoshi Matsuoka and Shigeo Itou. Towards Performance

Evaluation of High-Performance Computing on Multiple Java
Platforms. Proceedings of ICS'99 workshop on Java for

149

High-Performance Computing, Rhodes, Greece, July, 1999.
(h~tp ://w~rw. csrd. uiuc. edu/fcs99/workshops, html)

[2] Sava Mintchev and Vladimir Getov. Automatic Binding of
Native Scientific Libraries to Java. Proceedings of ISCOPE'97,
Springer LNCS 1343, pp. 129-136.

[3] Paul Gray and Vaidy Sunderam. The IceT Environment for
Parallel and Distributed Computing. Proceedings of
ISCOPE'97, Springer LNCS 1343, pp. 275-282.

[4] J. E. Moreira, S. P. Midkiff, and M. Gupta. From flop to
Megaflops: Java for technical computing. In Proceedings of the
l l t h International Workshop on Languages and Compilers for
Parallel Computing, LCPC '98, 1998. IBM Research Report
21166.

[5] J. E. Moreira S. P. Midkiff M. Gupta R. Lawrence. High
Performance Computing with the Array Package for Java: A
Case Study using Data Mining. Proceedings of
Supercomputing'99, Portland, Oregon, 1999 (CD-ROM
proceedings).

[6] The J-Accelerator and HBC (High-Speed Bytecode Compiler).
http ://www. fuj it su. co. j p/hypertex~ /

softinfo/produc~/use/j ac/.

[7] David M. Doolin, Jack Dongarra, and Keith Seymour.
JLAPACK-Compiling LAPACK FORTRAN to Java. Technical
Report ut-cs-98-390, University of Tennessee, 1998.

[8] Ronald F.Boisvert, Jack Dongarra, Roldan Pozo, Karin
Remington, and G. W. Stewart. Developing Numerical
Libraries in Java. Proceedings of ACM 1998 Workshop on Java
for High-Performance Network Computing, 1998.

[9] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim
Demmel. Optimizing Matrix Multiply Using PhiPAC: a
Portable, High-Performance, ANSI C Coding Methodology.
Proceedings of ACM International Conference on
Supercomputing, July 1997.

[10] R. Clint Whaley and Jack Dongarra. Automatically Tuned
Linear Algebra software. Proceeding of IEEE/ACM
Supercomputing '98, Nov. 1998.

[11] Proceedings of OOPSLA'99, Denver, Colorado, The ACM
Press, November 1999. p

[12] Brian Blount and Sid Chatterjee. An evaluation of Java for
numerical computing. Proceedings of ISCOPE'98, Springe
LNCS 1505, 1998, pp. 35-46.

[13] Satoshi Matsuoka et. al. The OpenJIT Project,
http : //wuw. opsnj i~. or E,

[14] Fred G. Gustavson. Recursion leads to automatic variable
blocking for dense linear-algebra algorithms IBM Journal of
Research and Development Vol.41, No.6, 1997 p.737

[15] Jeremy Siek and Andrew Lumsdaine. The Matrix Template
Library: A Generic Programming Approach to
High-Performance Numerical Linear Algebra. Proceedings of
ISCOPE'98, Springer LNCS 1505, 1998, pp. 59-70.

[16] Todd Veldhuizen. Arrays in Bli tz++. Proceedings of
ISCOPE'98, Springer LNCS 1505, 1998, pp. 223 230.

[17] Yuuji Ichisugi and and Yves Roudier. Extensible Java
Preprocessor Kit and Tiny Data-Parallel Java. Proceedings of
ISCOPE'97, Springer LNCS 1343, 1997, pp. 153-160.

