AJaPACK: Experiments in Performance Portable Parallel
Java Numerical Libraries

Shigeo Itou, Satoshi Matsuoka, Hirokazu Hasegawa
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

{itou,matsu,b962220; @is.titech.ac.jp

ABSTRACT

Although Java promises platform portability amongst di-
verses et of systems, for most Java platforms today, it is
not clear if they are appropriate for high-performance nu-
merical computing. In fact, most previous attempts at uti-
lizing Java for HPC sacrificed Java’s portability, or did not
achieve necessary performance required for HPC. Instead,
we propose an alternative methodology based on Download-
ale Self-tuning Library, and constructed an experimental
prototype called AJaPACK, which is a portable and high-
performance parallel BLAS library for Java which “tunes”
itself to the environment to which it is installed upon. Once
AJaPACK is downloaded and executed, the Java version of
ATLAS (ATLAS for Java) and the parallelized version of
JLAPACK combine to achieve optimized pure Java execu-
tion for the given environment. Benchmarks have shown
that AJaPACK achieves approximately 1/2 to 1/5 of the
speed of optimized C-ATLAS and vendor supplied BLAS
libraries, and with portable parallelization in SMP environ-
ments, achieves superior performance to single-threaded C-
based native libraries. This is an order of magnitude su-
perior w.r.t. performance compared to previous pure Java
BLAS libraries, and opens up further possibilities of employ-
ing Java in HPC settings, but still shows that JIT compilers
with optimizations expecting numerical code highly-tuned
at the source- or bytecode level would be highly desirable.

1. INTRODUCTION

Distributed and high-performance computing ares becom-
ing much more synergetic thanks to the widespread avail-
ability of high-performance networks and inexpensive com-
puting nodes such as PC clusters. In such an environment,
HPC applications and libraries highly-portable across a va-
riety of highly-divergent execution platforms are in absolute
need. Traditional HPC languages such as C or Fortran do
not completely standardize the language, the library, the
machine binary, the parallel machine architecture, nor the
execution environment. As a result, it is quite difficult to
have portable HPC applications that work ubiquitously in a

Permission to make digital or hard copies of ail or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Java 2000 San Francisco CA USA

Copyright ACM 2000 1-58113-288-3/00/6...$5.00

140

distributed environment. Although efforts such as HPF and
OpenMP strive to achieve some portability of parallel code,
a single binary working across different parallel machines is
still unavailable.

Java has received considerable attention in the HPC com-
munity, thanks to its good object-oriented language design,
as well as support of standard language features for par-
allel and distributed computing such as threads and RMI.
Moreover, standardized Java bytecode supports portable ex-
ecution via the Java Virtual Machine. On the other hand,
it is not clear whether Java AS IS is entirely appropriate for
portable distributed HPC programming, as pointed out by
various efforts including those by JavaGrande. In particu-
lar, Java execution environment is quite divergent, ranging
from pure interpretation, dynamic JIT compilation, to static
compilation; as a result, an optimization scheme for a par-
ticular Java platform may not be well-applicable for others.
This includes not only the compiler, but also the run-time
system.

We claim that the important characteristics for HPC in
an network environment is “performance portability” for
code that are downloaded and move across the network. By
performance portability we do not mean that a given code
must perform the same across divergent machines; rather,
it is a property whereby the same code will perform within
some certain fraction of the peak performances of differ-
ent machines. For example, when a certain optimization
is performed on the code, if the code exhibits measurable
performance improvement over different machines, then the
optimization is performance portable. For Fortran and C,
this is typically the case, but for Java, whether this is the
case is not clear, and in fact several counter cases have been
reported [1].

From this perspective, we categorize several previous ap-
proaches employed for HPC computing in Java:

e Employing Native Libraries: A HPC native li-
brary is called, using interfaces such as JNI. Kernel
numerical performance obviously matches that of C or
Fortran, but portability naturally suffers, and more-
over, maintaining multiple native code for download-
ing would be quite cumbersome. Examples include
JCI(Java-to-C interface generator){2] and the frontend
wrapper in IceT[3].

e Optimizing (Static) Compiler: Traditional op-
timizing compiler as is with C and Fortran. Examples
include IBM High Performance Compiler for Java[4]
and Fujitsu HBC[6]. In this case, one obtains utmost

efficiency, sometimes almost matching that of optimiz-
ing Fortran[4]. On the other hand, not only portability
suffers, because it only speeds up program on a par-
ticular platform, but it becomes more difficult to im-
plement the dynamic aspects of Java, such as dynamic
loading, security checks, reflection, etc. In fact, as far
as we know both compilers do not support the official
full Java spec in this respect.

Automated translation from other program-
ming languages to Java: There are several tools
that translate existing code in traditional HPC lan-
guages, such as Fortran, into Java. An example is
£2j[7], where Fortran LAPACK is automatically trans-
lated into Java in a source-to-source fashion. How-
ever, in order to implement Fortran semantics, the
translated source embodies various artifacts such as
“pseudo-gotos”, and as a result, becomes rather diffi-
cult to understand for further tuning. Moreover, as it
does not take into account specific Java features, per-
formance for pure Java code is low compared to the
original native Fortran.

Manual Tuning: We tune a particular Java HPC
code at either source- or bytecode level by hand, leav-
ing the low-level optimization to the JIT compiler.
Examples include the evaluation of Daxpy and other
BLAS implementations by Pozo[8]. Although porta-
bility is quite high with this approach, there is no
guarantee that performance portability is achieved on
different platforms, due to the divergent nature of Java
platform implementations as mentioned above.

In order to achieve performance portability of Java nu-
merical code, we are investigating the construction of a self-
tuning library and compilation framework for Java. Basi-
cally, we obtain best performance on each Java execution
platform by automatically tuning for that particular plat-
form at the source- and bytecode level. This allows leverag-
ing of existing JVMs and JIT compilers, while still obtaining
the best speed achievable for that particular platform. More
concretely, we implement the compiler/code-generator, per-
formance monitor, code tester, and the high-level glue li-
brary, etc. entirely in Java, and when a particular library is
downloaded over the network for the first time, not only the
library class file itself but the entire self-tuning framework is
downloaded, and optimization will occur either on the spot
or off-line when the machine utilization is low. Moreover,
we define or generate parallel multithreaded code when pos-
sible, thanks to the portability of Java threads. Although
a similar strategy has been attempted in various settings,
more recently in efforts such as ATLAS and PhiPAC we de-
scribe below, with Java it would be easy to make the entire
process automated, without user intervention. Furthermore,
self-tuning library is more significant for Java, again due to
relatively divergent performance characteristics of Java ex-
ecution environment.

On the other hand, there are several technical challenges
that are open questions, mainly regarding the feasibility of
the approach:

e Ubiquitous Effectiveness of Self-tuning on Var-
ious Java Platforms:

Although previous work on adaptive compilation, as
well as more aggressive self-tuning libraries have shown

141

success for Fortran or C such as PhiPAC[9] and AT-
LAS(10], often achieving the performance of vendor-
tuned libraries, it is not clear whether the same strat-
egy would be effective for Java platforms. In fact, there
are various possibilities where traditional optimization
strategies applicable to Fortran and C would not be
effective, we must investigate whether self-tuning will
(or will not) perform well under different Java plat-
forms. A partial study for the Ll-blocked BLAS core
has been done in [1}, but a study using a larger-grained
library with parallel execution is required.

Effective Architecture for Self-tuning Libraries:
Since libraries are somewhat persistent and used mul-
tiple times over different applications, it could afford
longer time durations for tuning. However, when li-
braries are huge, tuning time may still outweigh the
gain in execution time of the application utilizing the
library. Thus, as is with traditional libraries, the tun-
ing architecture would ideally identify the kernel rou-
tines that would be most beneficial, and leave the non-
kernel, higher-level routines to standard JIT compiler
optimization. It is not clear, however, how much the
slower execution of higher-level routines due to-Java
(such as non-aliasable, non-contiguous array seman-
tics often requiring array copies) would penalize the
overall library performance.

Use of Java Threads for Large-scale HPC:

Also, although Java is multithreaded at the program-
ming language level, it is not clear how much paral-
lel multithreading will scale, especially w.r.t. numer-
ical computation. FEarly versions of Java only sup-
ported “green threads” which were merely coroutines.
Many recent versions of Java are truly multithreaded
(native threads), but various research has shown the
substantial overhead associated with multithreading in
Java, and proposed various solutions (Six papers on
Java thread synchronization appeared in recent OOP-
SLA’1999{11]). All such research we know to date,
however, optimize cases where the threads do NOT
synchronize, eliminating or minimizing the cost of syn-
chronization. It is not clear how scalable Java perfor-
mance is for highly-tuned numerical code, especially
for code which DO synchronize, and will suffer from
other overheads such as thread scheduling.

In order to investigate whether downloadable self-tuning
libraries are feasible for attaining performance portability,
we are constructing AJaPACK, a prototype self-tuning lin-
ear algebra package for dense matrices, as a proof-of-concept
experimentation. AJaPACK employs our pure-Java port of
ATLAS(10}], called ATLAS for Java. ATLAS for Java, as is
with the original ATLAS, allows generation of optimized L1-
blocked small-matrix kernel Level 3 BLAS code for each Java
platform. Experiments show that, on various platforms, AT-
LAS for Java benefits from the L1 blocking optimization,
and exhibits 1/2 to 1/4 the speed of C-version of ATLAS on
the best JIT compilers for the particular hardware.

In order to implement a higher-level linear-algebra rou-
tine on top of ATLAS for Java, we modified and extended
JLAPACK/Harpoon[12] significantly, as well as paralleliz-
ing some of the routines, notably gemm(). This allowed
several factors of performance increase compared to the orig-
inal JLAPACK /Harpoon implementation. Parallelization of

gemm() was done in several ways, including static and dy-
namic job partitioning and thread allocation, and tested its
scalability on several different large SMP platforms. Bench-
mark results show that, with static parallelization, we obtain
high scalability of gemm{() code on some platforms; however,
dynamic job allocation did not scale as well. Moreover, we
found that some platforms have relatively poor support for
multithreading, resulting in performance loss due to paral-
lelization. We believe this is because Java in general is still
in development stage for scalable parallel programming—as
such, support for low-overhead context switching, effective
memory management in the context of parallel processing
including parallel garbage collection, etc. will need ubiqui-
tous deployment on all Java platforms.

2. AJAPACK: AUTOMATIC PARALLEL
TUNING LIBRARY FOR PARALLEL
BLAS IN JAVA

2.1 Overview of Downloadable Self-Tuning Li-
brary and AJaPACK

We first overview the general architecture of downloadable

self-tuning library; as seen in Figure 1 this is composed of

five components, all written in Java.

Performance

Monitor LAPACK]

result
J ?enerated
Driver Kernel

ATLAS for Java

s S R

" AJaPA

A B S g T N RS S

Figure 1: Overview of Downloadable Self-tuning Li-
brary in Java

e Code Generator/Compiler: Generates performance crit-

ical portion of the library. Ideally, we employ gen-
eral compiler framework such as our OpenJIT[13] for
this purpose as a toolkit framework to easily construct
a customized code generator for each library. Since
AJaPACK is a proof-of-concept prototype, however,
we directly targeted dense linear algebra computation,
using the code generator of ATLAS for Java as well as
additional code for feasibility experimentation.

Generated Kernel: The numerical kernel generated by
the code generator. The driver tests the performance
and the optimal one is automatically embedded into
the higher-level library classes.

Driver: The driver module that tests the performance
of the Generated Kernel. Reports the measured per-
formance to the performance monitor.

142

e Performance Monitor: Receives report from the driver
on performance of each generated kernel routine, and
feeds back performance to the code generator, guid-
ing generation of additional test kernel code. As such
the performance monitor is parameterized by a search
heuristics, and guides the pruned search of possibly
optimal kernel code.

Higher-Level Library Classes: Parts of libraries that
Provide higher-level APIs, but are not on the
performance-critical path of the library. By embed-
ding the generated kernel tuned to the particular Java
platform, the library executes at the optimal perfor-
mance possible.

‘We owe much of the higher-level architecture as a gener-
alization of ATLAS. Again, we do feel that automated code
tuning has more than the importance that ATLAS had for
C/Fortran for several reasons including those mentioned ear-
lier, namely:

1. Automated downloading and execution of the entire

self-tuning library is easy because of Java portability.

. Java platform is much more divergent, and perfor-
mance portability is more difficult to achieve with mere
static code optimization.

. As mentioned earlier, manual tuning of Java numeric
code is difficult due to language design and implemen-
tation features, and it is better to resort to automated
means.

. As the tuning occurs at source-code or bytecode level,
it can readily adapt to cases where the underlying ar-
chitecture changes, for with Java it is easy to maintain
the downloaded code in portable format.

. Since the validity of the generated kernel code is checked
by the Java security checker, the user will have better
confidence that whatever code dynamically generated
will be safer than Fortran or C code.

In AJaPACK, each component has the following imple-
mentation with respect to the systems we have ported or
developed (to be described in detail later):

e Code Generator/Compiler: The code generator por-
tion ATLAS for Java, namely parts of xemit.java and

xmmsearch we see in Figure 2.

e Generated Kernel: The small L1 cache-blocked Level 3

" BLAS in Java which xemit.java generates. Currently,
we emit the source file which is compiled by javac,
although in principle direct generation of bytecode is
also possible.

Driver: Corresponds to fc.java of ATLAS for Java.

Performance Monitor: Corresponds to parts of xmm-
search.java in ATLAS for Java.

Higher-Level Library Classes: As mentioned earlier,
we employed JLAPACK /Harpoon[12] by Chatterjee et
al., to work with ATLAS for Java, and furthermore
parallelized the BLAS routine. We describe the de-
tails of parallelization and their implications in later
sections.

2.2 Overview of the Original ATLAS

The original ATLAS(Automatically Tuned Linear Algebra
Software) {10] is a source-level automated tuning tool for
BLAS, being developed by Whaley and Dongarra at Uni-
versity of Tennessee. ATLAS searches for and finds the
most appropriate L1 cache blocking factor, number of un-
rolls, software pipelining latencies, and generates the best
C-based BLAS Level 3 code for a given platform.

Paramater Searcher
(ammsearch)

Atias for

Figure 2: Architecture of ATLAS (v.1.0)

The parameters employed in ATLAS v.1.0! are basically
muladd, NB, MU, NU, KU, and LAT. Muladd indicates
where fused multiply-add is available. NB is the L1 cache
blocking size, and MU, NU, and KU are number of unrolls
for each loop, and LAT is the latency factor for software
pipelining. Given such parameter space, ATLAS generates
the kernel cache-blocked code for each parameter, tests the
performance, and finally outputs the one with the best per-
formance. In order to prune the search space, ATLAS em-
ploys a prescribed search strategy[10].

Although the search space is considerably pruned, ATLAS
execution is still quite expensive, and such extensive opti-
mization is difficult to embed in a compiler. However, for
libraries, such cost could be amortized over multiple execu-
tion of the library, and in fact it is reported that ATLAS gen-
erated code matches the best results by the vendor-supplied
optimized BLAS library.

We also note here that ATLAS represents all matrices
in one-dimensional form, as required by LAPACK. This is
an advantage for Java, as it avoids several overhead issues
relevant to performance of array accesses, including non-
rectangular representation of multi-dimensional arrays, and
requirement to check array bounds for each dimension.

2.3 ATLAS for Java

ATLAS for Java is a port of ATLAS v.1.0 onto Java. Be-
cause we have the Java VM intervene between the native
CPU and ATLAS, what we obtain by automated tuning is
the best possible performance for the particular Java plat-
form, and not for that particular hardware architecture.
Still, this in a sense satisfies performance portability, as it
is the best performance that the particular Java platform

1The current version of ATLAS is 3.0.

143

class mm{
void dNBmm(myarray ma, int ldc){
do /* N-loop */{
do /* M-loop */{
indexb = indexB;
c00_0 = 0.0;
b0 = ma.B[indexb];
a0 = ma.A[indexA];
/% Start floating point pipe */
mQ = a0 * b0,

b0 = ma.B[indexb + 1];
a0 = ma.A[indexA + 1];
/* easy loop to unroll =/
for (k=0; k > 0; k—-) {
indexA++;
indexb++;}
/* Do last iteration of K-loop, and drain the pipe */
c00_0 += mO;
m0 = a0 * b0;
c00_0 += mO;
indexA += 2;
ma.CO[COindex] += c00_0;
COindex ++;}
while(indexA !'= stM);
indexA = ma.indexa;
COindex += incC;
indexB += 2;}
while(indexB != stN);}

Figure 3: Sample code generated by ATLAS for Java
(Not Optimal)

can produce without resorting to non-portable means such
as native methods.

ATLAS for Java is entirely written in Java to work portably
across all standard JDK environments that facilitate stan-
dards tools such as javac. It basically employs the same
search algorithm as the original ATLAS, employing cache
blocking, loop unrolling and software pipelining.

The original ATLAS makes extended usage of pointer
passing for arrays and scalars. Because Java does not have
pointers to scalars or array interiors, we defined a wrapper
class which embodies the array indices as well as the con-
tents of the array in one-dimensional form. As objects are
passed by reference, we can pass all the arguments at once.
We also performed initial analysis to verify that use of ob-
ject field access was being compiled away and not causing
overhead. The same applies for normal scalars, where the
argument is being used as an in-out parameter; again, we
defined wrapper classes, and made sure that no overhead
will occur due to this indirection.

Figure 3 illustrates the sample code generated by ATLAS
for Java. We note that arrays are referenced via fields, but
otherwise local variables are employed exclusively in hopes
that it will be mapped to registers, just as is with C and
Fortran. We also note that the parameters for this code is far
from the optimal actually found; on modern-day processors
with deep pipelining and large L1 caches, inner loops are
unrolled over 30 times, and the generated classfile typically
exceeds 200 Kilobytes.

2.4 AJaPACK High-Level Library Class —
JLAPACK/Harpoon

For AJaPACK’s high-level library class API, we considered

the available LAPACKSs in Java. In order to achieve portable

performance, we also undertook parallelizing the code so

that multiprocessing platforms can automatically take ad-

vantage of parallel Java threads.
We found two good Java LAPACKS available; one me-

chanically converts the LAPACK written in Fortran into
equivalent Java code(7]. Thus, the resulting code is not
object-oriented, but rather, Java is employed as an interme-
diate target language. We considered this to be somewhat
inappropriate, as it is difficult to have clean API between
the optimized kernel versus the higher-level classes. More-
over, as far as we found not all of LAPACK routines execute
correctly, likely due to mechanical translation.

The other one we considered is the JLAPACK/Harpoon.
Its architecture is well-designed with appropriate object en-
capsulation of array types and operations. The problem is
that only a very few LAPACK routines are actually imple-
mented (gesv, getrf, getrs, getf2, and laswp; by contrast, f2j
implements all 288 LAPACK routines). For the purpose of
our research on producing an prototype proof-of-concept, we
decided to use JLAPACK, due to its clean object-oriented
API, plus stable and correct operations.

The original JLAPACK consists of the 3 packages below:

o JLAPACK
¢ JBLAS

¢ JLASTRUCT
Packages JLAPACK and JBLAS are port of LAPACK into
Java, and the BLAS into Java, respectively. Package JLAS-
TRUCT adds various helper and glue methods where a mere
port of the Fortran LAPACK is insufficient.

For AJaPACK, we reimplemented JBLAS so that JLA-
PACK calls the optimized kernel generated by ATLAS for
Java. More concretely, we changed the xBLAS classes (where
xis D, C, etc.), in particular the xgemm() methods so that it
performs optimized blocking, and calls the kernel routines.
Moreover, we wrote glue code so that the kernel routines pro-
duce appropriate the descriptor object for arrays employed
by JLAPACK. This turned out to be not trivial, as consid-
erable modifications were required for ATLAS for Java, as
well as requiring good amount of glue code for interfaces.

We also are writing additional routines available in LA-
PACK, such as LU decomposition as well as parallelizing
gemm() and additional algorithms. For LU, we are imple-
menting both sequential and parallel versions of blocked LU
(dgetrf) and recursive algorithm by Gustavson([14] (rgetf2).
Both employ gemm() for blocked operations.

There are several minor notes in the implementation. First,
the the blocked subarrays always need to be copied, as no
aliasing is possible with Java. Instead of generating new
submatrices every time (typically about 36 by 36), we try to
reuse the submatrices avoiding object allocation and deallo-
cation 2. Another minor note is when arrays do not exactly
match the block size. In order to always employ the fast
kernel code, we fill the non-used portion with 0. A simple
strategy is to dynamically determine this, but instead we
generate the boundary blocks once, and cache them. Al-
though this uses O(n) memory for n x n arrays, in our
benchmarks this strategy was 10-30% faster, but in some
cases the inverse was seen. We do provide a switch so that
dynamic filling can be used for memory-tight situations.

3. PARALLELIZING AJAPACK

The advantage of Java for performance portability is mul-
tithreading at the language level. In fact, it is not just the

?Note that this does preclude the exploitation of Java se-
mantics for the 0 filling, as newly allocated arrays are guar-
anteed to contain 0

144

language specification itself, but also that the entire system,
including the run-time system, the libraries, profilers and
debuggers, etc. assume that the language is multithreaded.
This is important for ubiquitous multi-threaded parallel ex-
ecution e.g., the libraries and JVMs are designed to be reen-
trant. Inherent support for parallelism is what distinguishes
Java from C or Fortran, where parallel execution is added
as an afterthought, and its safety is not at all guaranteed
across all systems, libraries, compilers, etc.

In order to achieve good performance in a portable way,
downloadable self-tuning libraries should exploit the avail-
ability of multiple CPUs on SMPs wherever possible. On
the other hand, characteristics of truly parallel execution on
all Java platforms, especially their scalability on intensive
scientific code, have not been well-established.

We explored whether parallelization of AJaPACK would
be feasible using Java threads across all platforms. Paral-
lelization for BLAS is well known, especially with subar-
ray blocking, since if A X B is performed as summation of
Aij X Bjk, then each Ay; x Bjx can be executed indepen-
dently in parallel. The question is rather, what style or a
method of parallel programming would be appropriate for
achieving proper scalability. So, for BLAS we implemented
three most likely styles for multithreaded parallelism, and
compared their performance on SMPs ranging from 2 to 60
processors on various Java platforms:

Fine-grained Master-Worker (FMW)

We generate a prescribed number of worker threads
(typically number of processors + 1-2), and each worker
thread on each iteration requests work from the mas-
ter worker queue, computes the product, stores the
result, and repeats the sequence until all the work are
exhausted. For fine-grained we allocate a single small
blocked matrix multiply per each worker. Although
this seems too fine-grained, it eliminates various over-
head, as in Java the arrays must be copied up-front as
there is no aliasing. Synchronization occurs on fetch-
ing work from the master queue, and when the result
is written back to the product matrix.

Coarse-Grained Master-Worker (CMW)

Similar to FMW, but the worker acquires multiple
tasks at once, increasing granularity. In order to re-
duce synchronization costs, we stage the execution into
three phases, namely array copying, matrix multiply,
and writing back of all the results. Although this may
seem more efficient than FMW, in practice it could
add overhead due to the extra complexity involved.

Statically-Decomposed Fork-Join (SFJ)

Since matrix multiply is deterministic, we decompose
the outermost I-loop, and allocate tasks to each forked
worker in a balanced fashion. The program needs no
synchronization for blocked distribution except for the
outermost fork-join, as writebacks into the product ar-
ray are independent.

More sophisticated strategies such as workstealing amongst
multiple work queues, are possible. Of the current three,
Master-Worker parallelization may incur more overhead, es-
pecially for BLAS where it is relatively easy to perform static
decomposition, but for arbitrary problems load balancing
occurs naturally, and is thus more flexible. Since it was
obvious that SFJ would win out, we compared FMW and

CMW against SFJ to see if they would scale equivalently
or not, exhibiting the cost of Java multithreading overhead.
These will become apparent in the next section.

4. PERFORMANCE BENCHMARK

We measure the performance of AJaPACK, how the kernel
tuned by ATLAS for Java compare against the C kernels
tuned by the original ATLAS (v.2.0), and also explore how
much overhead the higher-level library APIs will sacrifice
performance, for each platform. We also investigate how
much of the performance could be recovered by parallel ex-
ecution, and how they scale. We also explore what style of
parallelism is effective for implementing BLAS, as well as
LU factorization.

4.1 Evaluation Environment and Methodolo-
1€S

Our pr%vious work([1] showed that x86 platforms exhibited
the best sequential performance for Java. We re-tested sev-
eral JIT compilers, and chose the IBM JDK 1.1.8 which
includes a tuned and heavily modified version of the Sun’s
original JVM, and also a high-performance JIT compiler,
which exhibited the best performance in our initial tests.

For Sparcs, we employed Sun’s Research VM (Solaris 7
Production Release JVM), and turned on the flag to enable
the optimizing JIT compiler, which is claimed to be faster
than the default JIT (java -Xoptimize). According to our
measurements, Sun’s Hotspot was much slower with respect
to numerical code, and in fact the adaptive compilation in
the new release failed to get turned on in ATLAS for Java,
resulting in performance around 1MFlops.

We also tested several SMP and CC-NUMA platforms,
namely the Ultra Enterprise Servers, and the Origin 2000s.
As mentioned above, these are shown not to have the best
sequential numerical execution speed, especially in compari-
son to the C counterparts. On the other hand, they claim to
support high-performance native threads, which the JVMs
should be exploiting for server-style applications.

o PC Platforms

— Dual PIII PC (Pentium IIT 450MHz x 2) procs +
Linux Redhat 6.0
* L1 Cache Inst-16KB + Data-16KB
*x L2 Cache 512KB
* IBM JDK-1.1.8 JVM with optimizing JIT com-
piler
~ Athlon PC (Athlon 600MHz) + Linux Redhat 6.0
* L1 Cache Inst-64KB + Data-64KB
* L2 Cache 512KB
* IBM JDK-1.1.8 JVM with optimizing JIT com-
piler
o SMP Platforms
— Sun Enterprise4000(UltraSPARC 300MHz x 8 procs)
+ Solaris 2.6
* L1 Cache Inst-16KB + Data-16KB
* L2 Cache 1IMB
% Solaris Production Release JVM 1.2 with opti-
mizing JIT compiler (JBE)
— Sun Enterprise 10000(StarFire))(UltraSparc 250Mhz
x 60 procs) + Solaris 2.6
* L1 Cache Inst-16KB 4 Data-16KB
* L2 Cache 4MB

* Solaris Production Release JVM 1.2 with opti-
mizing JIT compiler (JBE)

145

— SGI Origin2000(R10000 250Mhz x 16 procs) + IRIX
- % L1 Cache Inst-32KB + Data-32KB

* L2 Cache 4MB

x SGI JDK 1.2.1

For all the platforms, we performed the benchmarks with
the following methodologies:

e We tested the basic kernel performance as reported by
xmmsearch, the gemm/() performance and the perfor-
mances of blocked and blocked recursive LU.

As a reference, we tested C performance for the orig-
inal ATLAS and the ATLAS-enhanced C-LAPACK
against AJaPACK.

For Java gemm() and LU factorizations, we tested se-
quential and parallel versions. For gemm(), we test the
three methodologies for parallelization, namely SFIJ,
FMW, and CMW. (The parallel LU factorization is in
early development, and is not fully optimized as we see
in the benchmarks.)

For all benchmarks, we vary the sizes of the problem
matrices. For parallel benchmarks, we also vary the
number of threads. The reported performance are the
best scores achieved for respective parameters. For ex-
ample, when we vary the matrix size for the parallel
versions, the reported score is the best amongst differ-
ent number of threads benchmarked.

4.2 Overview of Results

Table 1 shows the peak performance achieved by each li-
brary. As we see, sequential performance differs for the type
of CPU, and the Java platform employed. On Athlon, we
obtain the best score for xmmsearch.java, where we record
nearly 300MFlops, which is approximately about 1/2 of C
performance. The same is true for Pentium III, but the per-
formance is lower, although still being 1/2 of C. However,
for SPARCs, the Java score is lower relative to C, being
approximately 1/3 of C performance. Similar phenomenon
was seen for the Origin 2000.

We also see a sharp decline in performance when we move
to higher-level class libraries, in contrast to C. In fact, we
observe approximately 40-60% performance drop compared
to xmmsearch performance, whereas for C, we observe much
smaller or very little performance penalty. Preliminary in-
vestigation for the cause revealed that, this is attributable to
overhead imposed by the the object-oriented nature of the
library. Because gemm() generally accepts various forms of
underlying data representations of the matrix (such as be-
ing transposed), copying of the portions of the matrix to
Ll-blocked subarray requires sophisticated translations. In
fact, the current version of AJaPACK employs element-wise
copying by specifying higher-level matrix {not array) indices,
incurring invocation of the accessor method for each element
copied. We initially assessed that the copying cost would be
considerably smaller compared to actual computation of the
L1-blocked subarray, and that the compiler would compile
away the method call and and the overhead, but this was
not the case. For future versions we plan to add methods to
copy the subarray all at once, according to each underlying
matrix data representation.

For blocked LU, we see that for C the Gustavson’s re-
cursive algorithm is generally superior to standard, non-
recursive algorithm. On the other hand, for Java, the re-

Table 1: Summary of Peak Performances Achieved by Each Library

Peak{MFlops) | E4AKC E4KJ | EIOKC EI10KJ [PIIC PIILJ | AthlIC AthlJ O2KC O2KJ I
xmmsearch 401.9 132.9 281.2 1104 | 375.6 171.7 | 570.5 296.0 | 330.5 81.95
GEMM seq. 321.5 52.10 286.0 52.6 | 325.0 102.6 | 555.7 165.1 | 340.9 43.04
GEMM par. — 3499 — 1365.4 — 773 — 1125 — 4873
LU block seq. 216.2 4725 — — | 216.6 87.40 | 298.5 140.9 — —
LU block par. — 152.9 — — — 98.0 — — — —
LU recur. seq. | 250.8 34.23 — — [2731 36.70 | 399.8 86.40 — -
LU recur par. — 58.85 — — — 794 — — — —

E4K = Sun Enterprise 4000 (UltraSparc 300MHz x 8)

E10K = Sun Enterprise 10000 (UltraSparc 250MHz x 60)

PIII = Dual Pentium III PC (Pentium III 450MHz x 2)

Athl = Athlon PC (Athlon 600MHz x 1)

02K = Origin 2000 (R10000 250Mhz x 16)

C and J denote C and Java, respectively.

“_” indicates benchmark not yet performed due to time restrictions.

Athlon 600MHz Spesdtp

Figure 4: Athlon PC (600MHz x 1) Gemm Perfor-
mance with Varying Matrix Sizes

cursive algorithm is slower; our preliminary profiling analy-
sis has revealed that this is probably due to the BLAS L1
and L2 operations not being appropriately cache-blocked.
In fact, as recursion becomes deeper, the blocksize of the
ATLAS for Java-generated multiply routine turned out to
be excessively large. Still, more investigation is needed.

Parallel execution on the SMP platforms scaled well, but
not so on a PC, where practically no benefit and even per-
formance loss is incurred with parallelization.

4.3 Detailed Results for Each Platform
Figures 4 through 16 describe detailed performance mea-
surements for each platform.

Athlon PC

Athlon is a uniprocessor machine, as there is no current
chipsets that support a multiprocessor configuration. We
nevertheless tested Athlon under multiprocessing setting to
investigate whether the parallelized code would penalize per-
formance and if so, by how much.

As mentioned earlier, the performance of Athlon is quite

impressive, with xmmsearch reaching nearly 300MFlops. How-

ever, whereas the C ATLAS incurs very little penalty for
gemm(), we are impacted with nearly 45% overhead for Java,
likely due to subarray coping overhead. For blocked LU,

Number of Threads

Figure 5: Athlon PC (600MHz x 1) Gemm Perfor-
mance with Varying Num. of Threads

we again only reach approximately 50% of C performance
due to similar reasons. Parallelization also penalizes perfor-
mance, as we see in Table and Figures 4-6, especially for
master-worker parallelism. This shows that the portable li-
brary must judge the number of CPUs available, and employ
the sequential version if only a single CPU is available.

Dual Pentium III PC

The dual processor should give us twice the performance,
since there should be little sequential overhead for such a
low-parallel machine. However, this is not necessarily the
case—here, the sequential speed outclasses all parallel ver-
sions. Close examination of the graph in Figure 8 reveals
that, the performance saturates at threads = 2. Another
anomaly is seen Figure 7, where the master-worker perfor-
mance suddenly drops at matrix size = 500. These suggest
that, although IBM JDK 1.1.8 is a native threads implemen-
tation, there seem to be anomalies which precludes smooth
parallel operations, especially on Linux. We plan to investi-
gate the phenomenon on a larger Pentium Xeon machines.

Enterprise 4000 and 10000

Here we observe the parallel speedup Figures 10-14. For
relatively lower number of processors (For Enterprise 4000
and Also Enterprise 10000 with number of threads < 20),

146

AMD ATHLON Linux IBM JDK1.1.8

MFLOPS

100

Figure 6: Athlon PC (600MHz x 1) LU Performance
with Varying Matrix Sizes

PC dual CPU Machine IBM JDK
350 T T T T

B e ;M;N
Sl

MFLOPS

1200

Figure 7: Dual Pentium III PC Gemm Performance
(450Mhz x 2) with Varying Matrix Sizes

gemm() does scale well for static fork-join, whereas master-
worker seems to incur some overhead. However, when we
increase the number of threads beyond 20 (Figure 14), we
start observing the dropoff in scalability even for static de-
composition. Still, we reach maximum performance when
number of threads reaches the number of processors for each
machine (Figures 11 and 14). This suggests that, with bet-
ter JIT compilers tuned for better numerical performance,
we could obtain significant performance with SMPs for Java
numerical computing.

Origin 2000

We observe similar behavior to Enterprise server for Origin
2000 (Figure 15-16). At 16 processors, it does not seem to
have reached the limits of scalable Java parallel execution.
The difference is, however, that the fine-grain multithread-
ing has very little scalability, and exhibits extremely poor
performance compared to static fork-join. This could be at-
tributed to the difference in thread scheduling and mutual
exclusion in the operating system, the JVM, or both.

5. RELATED WORK

There have been recent surge of efforts of implementing nu-
merical libraries in pure Java. A notable example the Java
Array Package in Java by IBM[5], where a flexible Java ar-
ray class is defined so that it could be run as pure Java code

147

PC dual CPU Machine 1BM JDK SpeedUp

MFLOPS

Number of Threads

10

Figure 8: Dual Pentium III PC Gemm Performance
(450Mhz x 2) with Varying Num. of Threads

Dual Pentium 1] 450MHz

MFLOPS

1000 1100

Matrix Size

Figure 9: Dual Pentium III PC LU Performance
(450Mhz x 2) with Varying Matrix Sizes

or subject to optimization by a special optimizing compiler.
Another is Java Numerical computing in Java[8], by where it
supports standard linear algebra operations such as BLAS,
LU-decomposition, QR-decomposition, etc. B. Blount [12]
and f2j are the efforts of porting JLAPACK to Java. Pozo
et. al. have proposed SciMark as a benchmark for Java in
numerical computing 3.

These efforts and others, especially those by the Java-
Grande Numerics Working Group are quite significant in
attempting to make Java applicable to hard-core numerical
computing traditionally dominated by C and Fortran. How-
ever, although optimizing individual Java compilers have
been investigated, especially in the context of the Java ar-
ray package and the IBM HPCJ[4], achieving performance
portable numerical code, and their implications especially
for parallel machines, have not been well investigated.

Both PHiPAC[9] and ATLAS are numerical kernel gen-
erators for optimized blocked GEMM. Although they have
very similar objectives, while ATLAS aims to tune the BLAS
kernel for each platform, PHIPAC aims to be more general;
however, search time on PHIiPAC takes considerably longer,
reportedly requiring several days.

MTTLI{15] and BLITZ([16] are portable matrix and lin-
ear algebra libraries in C++. By extensive use of C++

Shttp://gams.nist.gov/javanumerics/

Enlemnase 4000

L .
ST AN s AR
T MYy s,

MFLOPS

800 1000 1200

600
mauix

Figure 10: Enterprise 4000 Gemm Performance with
Varying Matrix Sizes

Enterprise 4000 EVM SpoedUp
300 L
i
pib-paa
= S/
JR——
4
9 150
f
3
100
s}
° N " " "
[2 4 8) ° 2 “ 16
Number of Threads

Figure 11: Enterprise 4000 Gemm Performance with
Varying Num. of Threads

templates allowing template metaprogramming technique,
both allow extensive optimizations such as loop unrolls and
some loop restructuring that traditionally compilers had
performed for C and Fortran. This allows performance near-
ing or matching that of Fortran-optimized code or even ven-
dor libraries, just as is with PHiPAC or ATLAS. However,
they do not offer any support of “tuning” the parameters
for loop unrolls etc; thus, they need to integrate the tun-
ing techniques of, say, ATLAS to be truly portable. For
Java, it becomes more difficult due to the lack of compile-
time template support; rather, source-code generation tools
in Java such as EPP{17] or OpenJIT could be used in place
of templates.

What we really propose is to not only to follow the foot-
steps of Fortran and C and create “static” libraries, but
exploit the characteristics of Java, such as dynamic compila-
tion, portable code, automatic downloading, security checks,
etc. to aggressively optimize Java libraries automatically for
each Java platform. This is more difficult with non-portable
languages such as C or Fortran, where such infrastructures
are not provided.

6. CONCLUSION

We have introduced AJaPACK, a self-tuning parallel lin-
ear algebra package for dense matrices for Java. AJaPACK
tunes itself to respective Java platforms using the ATLAS

148

250 -

° : N " . n a
100 200 300 400 00 600
Matix Size

700 800 200 1000 100

Figure 12: Enterprise 4000 LU Performance with
Varying Matrix Sizes

- T
N
;7] A |
g /A —

matrs

Figure 13: Enterprise 10000 Gemm Performance
with Varying Matrix Sizes

technology, and utilizes the parallel threads which is natively
provided by Java platform running on SMPs. Benchmarks
show that AJaPACK reaches approximately 50%-25% per-
formance of ATLAS-based C library, and with paralleliza-
tion, exceeds that performance. It is substantially superior
to tested figures for f2j and JLAPACK/Harpoon on the same
platforms.

On the other hand, AJaPACK is still somewhat reliant
on the quality of both the JVM and the JIT compiler, the
former for multithreading performance, and the latter for
code quality. We see substantial overhead for higher-level
libraries; this is due to object-oriented data encapsulation
and also that it is difficult to alias Java subarrays, requiring
element-wise array copies to incur method invocation on ev-
ery copy. We need to add considerable code to AJaPACK
to cope with optimal copying of subarrays, and is a subject
of immediate future work.

Thread parallelization scaled well for Solaris and O2K,
both server platforms; this was somewhat negated by rel-
atively underperforming JIT compiler for numerical com-
puting purposes. On the other hand, for PCs/Linux dual
processor, although the JIT compiler was superb, it did not
have proper multithreading support.

Future work includes identifying other overhead of higher-
level libraries. Also, for AJaPACK in particular, we need
to improved the search strategy; for this purpose, we are

StarFire

MFLOPS

0 1 N L " 1
30
Number of Threads

Figure 14: Enterprise 10000 Gemm Performance

with Varying Num. of Threads

MFLOPS

Figure 15: Origin 2000 Gemm Performance with
Varying Matrix Sizes

looking at the newly released Atlas 3.0. We would like to,
however, generalize our framework by not directly relying
on the ATLAS for Java, but rather coming up with a more
generalized toolkit for code transformation and generation
based on OpenJIT. This will allow us to expand the domain
of applicability to other numerical algorithms, as well as
allowing other people to construct their own libraries. Ide-
ally, coding a library plus a small effort, such as annotating
the core elements and/or following a certain design pattern,
based on such a framework, will allow users to code a wide
range of performance portable parallel libraries for Java.

Acknowledgments

We deeply thank Jack Dongarra, Clint Whaley, and Sid
Chatterjee for the development of their respective libraries
which we have substantially employed as a basis, and also
their valuable feedback on our work. We also thank the De-
partment of Information Science, the University of Tokyo,
and Electrotechnical Laboratory, especially Kenjro Taura
and Osamu Tatebe, who have made our usage of E10000
and Origin 2000 possible.

REFERENCES

{1} Satoshi Matsuoka and Shigeo Itou. Towards Performance
Evaluation of High-Performance Computing on Multiple Java
Platforms. Proceedings of ICS’99 workshop on Java for

149

Origin 2000 Speedip

MFLOPS

0 L z s
10

Number of Threads

Figure 16: Origin 2000 Gemm Performance with
Varying Num. of Threads

High-Performance Computing, Rhodes, Greece, July, 1999.

(http://wuw.csrd.uiuc. edu/ics99/workshops.html)

Sava Mintchev and Vladimir Getov. Automatic Binding of

Native Scientific Libraries to Java. Proceedings of ISCOPE’97,

Springer LNCS 1343, pp. 129-136.

Paul Gray and Vaidy Sunderam. The IceT Environment for

Parallel and Distributed Computing. Proceedings of

ISCOPE’97, Springer LNCS 1343, pp. 275-282.

J. E. Moreira, S. P. Midkiff, and M. Gupta. From flop to

Megaflops: Java for technical computing. In Proceedings of the

11th International Workshop on Languages and Compilers for

Parallel Computing, LCPC ’98, 1998. IBM Research Report

21166.

J. E. Moreira S. P. Midkiff M. Gupta R. Lawrence. High

Performance Computing with the Array Package for Java: A

Case Study using Data Mining. Proceedings of

Supercomputing’99, Portland, Oregon, 1999 (CD-ROM

proceedings).

The J-Accelerator and HBC (High-Speed Bytecode Compiler).

http://www.fujitsu.co.jp/hypertext/
softinfo/product/use/jac/.

David M. Dootlin, Jack Dongarra, and Keith Seymour.

JLAPACK-Compiling LAPACK FORTRAN to Java. Technical

Report ut-¢s-98-390, University of Tennessee, 1998.

Ronald F.Boisvert, Jack Dongarra, Roldan Pozo, Karin

Remington, and G. W. Stewart. Developing Numerical

Libraries in Java. Proceedings of ACM 1998 Workshop on Java

for High-Performance Network Computing, 1998.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim

Demmel. Optimizing Matrix Multiply Using PhiPAC: a

Portable, High-Performance, ANSI C Coding Methodology.

Proceedings of ACM International Conference on

Supercomputing, July 1997.

R. Clint Whaley and Jack Dongarra. Automatically Tuned

Linear Algebra software. Proceeding of IEEE/ACM

Supercomputing ’98, Nov. 1998.

Proceedings of OOPSLA’'99, Denver, Colorado, The ACM

Press, November 1999. p

Brian Blount and Sid Chatterjee. An evaluation of Java for

numerical computing. Proceedings of ISCOPE’98, Springe

LNCS 1505, 1998, pp. 35-46.

Satoshi Matsuoka et. al. The OpenJIT Project,

http://www.openjit.org.

Fred G. Gustavson. Recursion leads to automatic variable

blocking for dense linear-algebra algorithms IBM Journal of

Research and Development Vol.41, No.6, 1997 p.737

Jeremy Siek and Andrew Lumsdaine. The Matrix Template

Library: A Generic Programming Approach to

High-Performance Numerical Linear Algebra. Proceedings of

ISCOPE’98, Springer LNCS 1505, 1998, pp. 59-70.

Todd Veldhuizen. Arrays in Blitz++. Proceedings of

ISCOPE’98, Springer LNCS 1505, 1998, pp. 223-230.

Yuuji Ichisugi and and Yves Roudier. Extensible Java

Preprocessor Kit and Tiny Data-Parallel Java. Proceedings of

ISCOPE’97, Springer LNCS 1343, 1997, pp. 153-160.

(2]

3

(4]

(10]

(11]

(12]

(13]

{14]

[15]

(16}

(17)

