UPMAIL Technical Report No. 143
April 4, 1997

What You Always Wanted to Know About
Rigid E-Unification

Anatoli Degtyarev*
Andrei Voronkov!

Computing Science Department
Uppsala University
Box 311, S-751 05 Uppsala,
Sweden

email {anatoli,voronkov}@csd.uu.se

*Supported by grants from INTAS, TFR, and the Swedish Royal Academy of Sciences
fSupported by a TFR grant

Abstract

This paper solves an open problem posed by a number of researchers: the construction of a complete
calculus for matrix-based methods with rigid E-unification. The use of rigid E-unification and
simultaneous rigid E-unification for such methods has been proposed by Gallier, Raatz and Snyder
[36]. After our proof of the undecidability of simultaneous rigid E-unification [27] it has become
clear that one should look for more refined techniques to deal with equality in matrix-based methods.
In this article, we define a complete proof procedure for first-order logic with equality based on an
incomplete but terminating procedure for rigid E-unification. Our approach is applicable to the
connection method and the tableau method and illustrated on the tableau method.

1 Section 1. Introduction

Section 1

Introduction

Algorithms for theorem-proving based on matings or tableaux in first-order logic without equality
comprise two kinds of rules. Rules of the first kind construct matrices or tableaux from a given
formula using a suitable amplification. Rules of the second kind try to close paths or branches
using substitutions making the paths or branches inconsistent. These substitutions are unifiers of
some atoms laying on a path or branch. Until recently, most approaches to introducing equality
in such matriz-based methods tried to generalize such algorithms by a suitable modification of the
notion of a unifier.

Such a modification using simultaneous rigid E-unification was introduced by Gallier, Raatz
and Snyder [36] for the method of matings due to Andrews [1] or the connection method due to
Bibel [12]. Tt can easily be represented in the tableau formalism. The method of matings interleaves
two steps: amplification by quantifier duplication and search for mating for a given amplification.
For formulas in disjunctive normal form this method was formulated earlier by Prawitz [59]. In this
case amplification is represented by a matrix and mating is represented by a set of simultaneously
satisfiable substitution conditions (mated pairs). Prawitz proposed a procedure for constructing
substitution conditions one by one, closing the corresponding paths in the matrix through search
with backtracking. Procedures of this kind were used in later formalizations and implementations
of the tableau method, the method of matings or the connection method for formulas without
equality. For example, Fitting [32] formulates this via an inference rule called MGU atomic closure
rule.

Gallier, Raatz and Snyder [36] tried to describe a similar procedure for logic with equality. For
example, Gallier et.al. [34] describe such a procedure in which a substitution condition is formalized
via rigid F-unification, and the set of substitution conditions via simultaneous rigid F-unification.

Simultaneous rigid E-unification can be formulated as follows. Given equations s; ~ t; and finite
sets of equations E;, i € {1,...,n}, find a substitution o such that = (A.c g, eo0) D sio =~ t;0, for all
i (here F means provability in first-order logic with equality). The corresponding instance of the
simultaneous rigid F-unification problem is denoted by the system of rigid equations E; by s; ~ t;.

Example 1.1 In this and further examples we shall often omit parentheses in terms with unary
function symbols, for example we write ffb instead of f(f(b)). Assume that we want to prove
the formula ¢ = Jzyzu((a ~ b D g(x,u,v) ~ gy, fc, fd)) Ne =~ d D g(u,z,y) ~ g(v, fa, fb))).
After several applications of tableau expansion rules to the negation normal form of —¢ (a-, (-
and -rules in the terminology of Smullyan [63] or Fitting [32]) we obtain the following tableau (we
only consider the part of the tableau containing literals, omitting non-literal formulas):

2 A Degtyarev and A.Voronkov. What you always wanted to know about rigid F-unification.

/\

a~b c~d

g(x,u,v) £ g(y, fe, fd) g(u,z,y) # g(v, fa, fb)

Collecting formulas lying on the two branches in this tableau we obtain the following two rigid
equations expressing inconsistency of this tableau:

a~b l_V g(.’I},U,?)) = g(yafca fd)
¢c=dbtyg(u,z,y) = g(v, fa, fb)

This system of rigid equations has one solution {fa/x, fb/y, fc/u, fd/v}. This substitution can be
found by applying the functional reflexivity rule and MGU replacement rule of [32] (in fact, the
reformulation of the paramodulation rule for tableaux). Obviously, this tableau cannot be closed
without the use of the functional reflexivity.'

Since the invention of simultaneous rigid E-unification by Gallier, Raatz and Snyder [36], there were
a number of publications on simultaneous rigid E-unification itself and its use in theorem proving,
for example Gallier et.al. [35, 37, 33, 34], Baumgartner [5], Beckert and Hihnle [11], Becher and
Petermann [8], Beckert [9], Goubault [39] and Petermann [56]. Some of these articles were based on
the conjecture that simultaneous rigid E-unification is decidable. There were several faulty proofs
of the decidability of this problem (e.g. [35, 33, 39]).

The refutation procedure for first-order logic with equality using simultaneous rigid FE-unifi-
cation (e.g. Gallier et.al. [34]) was based on a faulty assumption that solutions to simultaneous
rigid E-unification can be found by consecutive combination of finite complete sets of solutions
for (non-simultaneous) rigid E-unification [33, 35]. Later we [23, 27] proved that simultaneous
rigid F-unification is undecidable, which implied that Gallier et.al.’s procedure cannot, in general,
find solutions to simultaneous rigid E-unification. However, it is not clear whether this implies
incompleteness of this procedure for first-order logic with equality: there are examples when their
procedure cannot find a solution for a given amplification in spite that such a solution exists, but
can find a solution for a bigger amplification. Completeness of Gallier et.al.’s procedure or existence
of a procedure complete for first-order logic with equality based on some set of solutions to rigid
E-unification was an open problem (see e.g. Petermann [56] and Beckert [10]). Our paper gives a
positive solution to this problem.

An advantage of Gallier et.al.’s procedure is that it allows one to extend the proof-search
technology developed for tableaux without equality to the case with equality, using solutions to
rigid E-unification instead of most general unifiers. In particular, for a given amplification Gallier

'The system of clauses corresponding to this example improves a result proved in Plaisted [58] by using a more
complicated example. In this system of clauses

a~bVec~d

a~bVg(u,z,y) # g(v, fa, fb)

c~dVg(z,u,v) # gy, fc, fd)

9(@,u,v) # gy, fe, fd) V g(u, z,y) # g(v, fa, fb)

there is no refutation even by unrestricted rigid paramodulation (i.e. using non-ordered rigid paramodulation and
paramodulation into variables), while Plaisted [58] gives an example showing incompleteness of ordered rigid paramod-
ulation only.

3 Section 1. Introduction

et.al.’s procedure always terminates. A procedure of this kind is used in the theorem prover 374 P
[40] (R.H&ahnle, private communication).

In this paper we define a procedure extending the tableau method to logic with equality based
on an incomplete procedure for rigid E-unification. Nevertheless, our procedure is complete for
first-order logic with equality. Hence, we rehabilitate Gallier et.al.’s program for adding equality
to semantic tableaux. Moreover, our procedure solves rigid equations laying on different tableau
branches independently. This strongly improves Gallier et.al.’s procedure which uses solutions of
some rigid equations to solve rigid equations on other branches.

A similar approach has already been defined by Kanger [41] based on a more straightforward
way of variable instantiation. As a method for finding a closing substitution, Kanger proposed an
algorithm which can now be characterized as an incomplete (but terminating) algorithm for simul-
taneous rigid E-unifiability. Variables in a matrix (or a tableau) could be consecutively substituted
by ground terms already occurring in the matrix. This procedure does not solve simultaneous rigid
E-unifiability, but it gives a procedure complete for first-order logic with equality. In the terminol-
ogy of Fitting [32] it means that a closing substitution can be found after a sufficiently high (but
not necessarily minimal) number of applications of the y-rule. The approach to substitutions based
on this idea has been characterized as minus-normalization in Matulis [49] and Maslov [48].

However, for a language with function symbols minus-normalization is interesting mostly theo-
retically. Even in simplest cases, minus-normalization requires a huge number of instantiations. For
example, in the tableau of Example 1.1, we have to consider 8* possible instantiations of variables
x,y,u,v by terms in the set {a,b, ¢, d, fa, fb, fe, fd}. Moreover, it was proved that the use of minus-
normalization can lead to considerable growth of derivations. Some results on minus-normalization
are proved by Norgela [55].

In this paper we describe a logical calculus BSE for rigid E-unification based on the rigid
basic superposition rule that is an adaptation of basic superposition of Bachmair et.al. [3] and
Nieuwenhuis and Rubio [52], for “rigid” variables. For a given rigid E-unification problem (called
rigid equation in this paper), there is only a finite number of BSE-derivations for this problem.
Thus, BSE gives us an algorithm returning a finite set of solutions to this rigid equation. We use
these solutions to close a tableau branch in the same way as most general unifiers are used to close
a branch in the MGU atomic closure rule of Fitting [32].

4 A Degtyarev and A.Voronkov. What you always wanted to know about rigid F-unification.

Section 2

Preliminaries

We present here a brief overview of notions and preliminary definitions necessary for understanding
the paper. We assume basic knowledge of substitutions and unification.

Let ¥ be a signature, and X be a set of variables. T'(X, X) denotes the set of all terms in the
signature 3 with variables from X. The set of all ground terms in the signature 3 is denoted by
T(%).

A literal is either an atomic formula or a negation of an atomic formula. An equation is a literal
s ~t, where s,t € T(X, X). We do not distinguish equations s ~t and t ~ s. Literals of the form
—(s ~ t) are denoted by s # t and called disequations. For simplicity, we assume that ~ is the
only predicate symbol of our first-order language. As usual, arbitrary first-order languages can be
represented in such language by introducing a sort bool and replacing any non-equational atom A
by A ~ true (for details see e.g. [4]).

By a ground expression (i.e. term or literal) we mean an expression containing no variables. For
any expression F, var(E) denotes the set of all variables occurring in E. For a sequence of variables
z, we shall sometimes denote z also the corresponding set of variables. We write A[s] to indicate
that an expression A contains s as a subexpression and denote by A[t] the result of replacing this
occurrence of s in A by t. By Ao we denote the result of applying the substitution o to A. If A4 is
a formula, we can as usual rename bound variables in A before applying o. We shall denote ¢(z) a
formula ¢ with zero or more free occurrences of a variable x and write ¢(¢) to denote the formula
olt/z}.

A substitution § whose domain is a subset of {z;,...,z,} is denoted by {z10/z1,...,z,0/z,}.
A substitution o is called grounding for a set of variables V iff for every variable v € V the term
vo is ground.

Let 67 and 6, be two substitutions with disjoint domains, The union of 61 and 65, denoted
01 U 65 is the substitution o defined as follows. For every variable v we have

01(v) if v e dom(bh)
o(w) =< Oa(v) ifve dom(by)
v if v & dom(6,) U dom(65)

Note that we use the union notation 67 U 6y only for substitutions with disjoint domains.

The inference systems used in this paper are defined with respect to a reduction ordering,
denoted by > which is total on ground terms. Our results are valid for any such ordering.

A formula is in the Skolem negation normal form iff it is constructed from literals using the
connectives A,V and the quantifier V. There is a satisfiability-preserving structure-preserving trans-
lation of formulas without equivalences into formulas in Skolem negation normal form consisting

5 Section 2. Preliminaries

of the standard skolemization and a translation into negation normal form used e.g. in Andrews
[1]. In order to prove an arbitrary formula ¢, we translate —¢ in Skolem negation normal form
obtaining a formula 1 and try to establish unsatisfiability of ¢. For this reason, theorems in this
paper are formulated in terms of unsatisfiability.

For an equation s ~ ¢ and a multiset of equations F we write £ - s ~ ¢ to denote that the
formula (A,cpe) D s ~ tis provable in first-order logic with equality. For such formulas provability
can be tested by the congruence closure algorithm [62]. For the inclusion of multisets we shall use
notation S; C Ss.

6 A Degtyarev and A.Voronkov. What you always wanted to know about rigid F-unification.

Section 3

Rigid basic superposition

The term “rigid paramodulation” has already been used by Becher and Petermann [8] and Plaisted
[58] for systems of inference rules in which all variables are treated as “rigid”. For example, rigid
clause paramodulation of Plaisted [58] is essentially paramodulation and resolution over a set of
clauses, where all substitutions are applied to the whole set of clauses. A similar system for
resolution has been proposed earlier by Chang [15] as V-resolution and by Chang and Lee [43]
for resolution with paramodulation as V-resolution and V-paramodulation. We shall use the term
“rigid basic superposition” to denote a “rigid” version of basic superposition. We formalize rigid
basic superposition using constraints that is close to the presentation of Nieuwenhuis and Rubio
[54].

Definition 3.1 (Constraints)
By an (ordering) constraint we mean a set of expressions which can be of two kinds: an equality
constraint s ~ t, or an inequality constraint s > t, where s,t are terms. A substitution 6 is a
solution to a constraint s ~ ¢ (respectively, a constraint s >) iff € is grounding for var(s) U var(t)
and sf coincides with t0 (respectively, s > t0).

A substitution 6 is a solution to a constraint C iff 8 is a solution to every equality or inequality
constraint in C. A constraint C is satisfiable iff it has a solution. Constraints C; and Cy are called
equivalent iff they have the same sets of solutions.

We assume that there is an effective procedure for checking constraint satisfiability. For example,
there are efficient methods for solving ordering constraints for lexicographic path orderings given
by Nieuwenhuis [53] and Nieuwenhuis and Rubio [54].

Definition 3.2 A rigid equation is an expression of the form E Fy s ~ ¢, where F is a finite
multiset of equations and s, ¢ are terms. Its solution is any substitution @ such that £6 - s6 ~ tf'.

Below we shall introduce a system BSE for solving rigid equations. The derivable objects of
BSE are constraint rigid equations:

Definition 3.3 (Constraint rigid equation)
A constraint rigid equation is a pair consisting of a rigid equation R and a constraint C. Such a
constraint rigid equation will be denoted R - C.

'The term “rigid equation” could be more adequately expressed as “instance of a (non-simultaneous) rigid E-
unification problem”, but this would be too lengthy.

7 Section 3. Rigid basic superposition

Definition 3.4 (Calculus BS¢E)
The calculus BSE of constraint rigid equations consists of the following inference rules:

Left rigid basic superposition:

EU{l~rspl~t}yve-C
EU{l~rsrl~t}rye-CU{l > r s[p] > 1,1 ~p}

(Irbs)

Right rigid basic superposition:

EUu{l~r}rys[pl=t-C
EU{l~r}rysr]~t-CU{l>r,s[p] >t 1l ~p}

(rrbs)

Equality resolution:

El—vszt-C
Fys~s-CU{s~t}

(er)

Application of all the rules is restricted to the following conditions:

1. The constraint at the conclusion of the rule is satisfiable;

2. The right-hand side of the rigid equation at the premise of the rule does not have the form
q=q.

3. In the basic superposition rules, the term p is not a variable.

4. In the left basic superposition rule, s[r| # t.

The basic restriction in BSE is formalized by representing most general unifiers through equality
constraints. Condition 1 has two purposes. The satisfiability of equations in constraints is needed to
preserve correctness of the method. The satisfiability of inequality constraints is needed to ensure
termination (Theorem 3.9 below). Conditions 3 4 are not essential, they is added as standard
optimizations used in paramodulation-based methods. Condition 2 prohibits to apply any rules to
rigid equations of the form E -y g ~ q.

We denote by R-C ~» R'-C’ the fact that R'-C’ is obtained from R -C by an application of one
of the inference rules of BSE. The symbol ~+* denotes the reflexive and transitive closure of ~.

Example 3.5 Consider the rigid equation ha ~ a,hz ~ a,hb ~ fy v y ~ gfy. The ordering >
is the Knuth-Bendix ordering (see Martin [46]) in which all weights of symbols are equal to 1 and
which uses the precedence relation f > h > b > a. Under this ordering we have ht > a and ft > hb
for every ground term ¢. The following is a BSE-derivation for this rigid equation:

ha ~a,hx ~a,hb~ fytvy ~gfy-0
ha ~ a,hx ~ a,hb ~ fy by y~ghb-{fy = hb,gfy =y, fy =~ fy}

ha ~a,hz ~a,hb~ fybyy>~ga
Afy = hb,gfy =y, fy = fy,hx = a,ghb =y, hx ~ hb}

Fvy ~y-{fy>hbgfy >y, fy~ fy hx > a,ghb >y, hx ~ hb,y ~ ga}

(rrbs)

(rrbs)

(er)

8 A Degtyarev and A.Voronkov. What you always wanted to know about rigid F-unification.

By using constraint simplification, i.e. replacement of constraints by equivalent “more simple”
constraints we can rewrite this derivation as

ha ~a,hz ~a,hb~ fytyy~gfy-0

ha ~ a,hx ~a,hb~ fytyy~ghb-0

ha ~ a,hz ~ a,hb ~ fy vy~ ga-{ghb > y,x ~ b}
Fvy~y-{z~by~ga}

(rrbs)

(rrbs)
(er)

Theorem 3.6 (Soundness of BSE)
Let R-() ~* E+y t ~t-C. Then any substitution satisfying C is a solution to R. In particular, R
is solvable.

Proof. For any constraint C, denote by C~ the constraint obtained from C be removing all inequality
constraints. First we note that for every application of an inference rule of BSE of the form
E) Fy e -Cp ~ Ey Fy eg - Cy we have Ey,—e;,C5 F Ea,—ey. By induction on the number of
inference steps and using the fact C; C C; 1, we prove the same statement for multi-step derivations
E1 |—v €1 -Cl ~* E2 I—v €9 - CQ.

Let R have the form Fy by r ~ s. Applying the obtained statement to multi-step derivations,
we get Fo,r # s,C~ F E.t % t. Hence, Fy,C™ F r ~ s. Let 6 be any solution to C. We have
Ep0,C=0 - rf ~ sf. Any constraint in C=6¢ has the form u ~ u. Hence, g F rf ~ s, i.e. 0 is a
solution to Ey Fy r ~ s. O

This theorem leads to the following definition:

Definition 3.7 (Answer constraint)
A constraint C is called an answer constraint for a rigid equation R iff for some rigid equation
Eryt~twehave R-)~* Ebyt~t-C.

We note that BSE is an incomplete calculus for solving rigid equations. It means that there
are solvable rigid equations R that have no answer constraint. For instance, consider the rigid
equation? z ~ a Fy gz ~ z. It has one solution {ga/z}. However, no rule of BSE is applicable to
r~akygr~x-(.

This means that BSE can yield less solutions to a rigid equation than any other known proce-
dure, for example that of Gallier et.al. [34] because all these procedures are existentially complete.
At the same time, BSE can yield more solutions than the procedure of [34] as the following exam-
ple shows. For the rigid equation a ~ fa Fy x ~ fa the procedure of [34] will find one solution
{a/x}, but there are two answer constraints whose solutions are the substitutions {a/x} and {fa/x}
respectively.

In order to show that there is only finite number of derivations in BSE from a given constraint
rigid equation, we prove an auxiliary statement.

Lemma 3.8 Let tg,%1,... be an infinite sequence of terms in a finite signature all whose variables
belong to a finite set. Then there are numbers 4, j such that 7 < j and the constraint ¢; > ¢; is
unsatisfiable.

Proof. Following Kruskal [42] we introduce a partial ordering > on terms as the smallest reflexive
and transitive relation satisfying

2Suggested by G.Becher (private communication).

9 Section 3. Rigid basic superposition

L. f(s1,...,8n) >s;forallie{l,...,nk
2. if s >t then r[s] > r[t].

By Kruskal’s Tree Theorem [42] there exist i, j such that i < j and #; > #;. It is easy to see that
the constraint ¢; > ¢; is unsatisfiable. O

Similar statements have been proven by Dershowitz [16] and Plaisted [57].

Theorem 3.9 (Termination of BSE)
For any constraint rigid equation R - C, there exists a finite number of derivations from R - C.

Proof. Suppose that there exists an infinite number of derivations from R - C. Then, by Konig’s
lemma there exists an infinite derivation R-C = Ry-Cy ~ R1-Ci ~ ... consisting of superpositions.
Consider any application of superposition R; - C; ~ R;41 - Ci11. Let it have the form

EU{l~rs[p| ~t}ve-C;
EU{l~rs[rl~t}bye-Ciy1

(the case of right rigid basic superposition is similar). We prove that for every n > i + 1 the
constraint C, is equivalent to C,,U{s[p] > s[r]}. Indeed, the constraint C;y; (and hence the constraint
Cn) contains {/ > r,1 ~ p}. By the definition of reduction orderings, if p > r, then s[p] > s[r]. This
implies that C,, is equivalent to C,, U {s[p] > s[r]}.

Since every application of rigid basic superposition replaces a literal s[p] ~ ¢ (or s[p] # t) in
R; by a literal s[r] ~ t (respectively, s[r] # t), there is an infinite sequence of terms tg,t1,. ..
and an increasing sequence of natural numbers ny,no,... with the following property. For every
positive natural number k the constraint C,, U {t;_; > t;} is equivalent to C,,. Since all terms
t are in the same finite signature and have variables in the same finite set, by Lemma 3.8, there
are 4, j such that ¢ < j and the constraint ¢; > ¢; is unsatisfiable. Since C,, C C,, for all £ < j,
the constraint C,; U {ty, = #x} is equivalent to Cp,, for all k& < j. Hence, the constraint C =
Cn; U{ti = tiy1,...,tj1 = t;} is equivalent to Cy,,. Thus, C is satisfiable. But satisfiability of C
implies satisfiability of ¢; > ¢;. Contradiction. O

(Irbs)

Note. In Degtyarev and Voronkov [25] the left rigid basic superposition has been formulated
incorrectly in the following way:
EUu{l~rsp] ~t}Fye-C
EU{l ~rs[p] ~t,s[r]~t}Fye-CU{l > rs[p] =t ~p}

(Irbs)

With this formulation, termination is not guaranteed as the following example shows. Consider
the rigid equation fgzr ~ gz,gx ~ a by a ~ b and arbitrary reduction ordering > total on ground
terms. We have the following is an infinite sequence of applications of (Irbs):

fgr ~gr,gr ~atya~b-0
fgx ~gx,gr ~ a,9x ~ fabya~b - {gz ~ gz, fgr > gx,g9z > a}
fgr ~gr,9x ~a,9v ~ fa,gv ~ ffatya~b-{gv ~ gz, fgx = gx,97 = a, g7 = fa}

(Irbs)

(Irbs)

fgr ~gxr,gr ~a,9x ~ fa,gx ~ ffa,...,gx ~ f"a
Fva~b-{gz =gz, fgr - gz,9% = a,gz > fa,...,gz = f*"la}

10 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

It is easy to see that the constraint {gz ~ gz, fgz = gz,97 = a,gz = fa,...,gr = f* 'a} is satis-
fied by the substitution {f™ 'a/z}.

Inequality constraints are not needed for soundness or completeness of our method. The prag-
matics behind inequality constraints is to ensure that the search for solutions of a rigid equation is
finite. In addition, the use of ordering constraints prunes the search space.

To illustrate this theorem, we consider Example 3.5. The rigid equation of this example has
an infinite number of solutions including {b/x,gh"a/y}, for every natural number n. However, all
possible BSE-derivations starting with ha ~ a,hz ~ a,hb ~ fy by y ~ gfy- 0 give only two answer
constraints, one is

{fy > hb,gfy >y, fy~ fy,ha = a,ghb > y,hx ~ hb,y ~ ga}
shown in Example 3.5, another is { fy = hb,gfy > y, fy ~ fy,y ~ ghb} obtained from the following
derivation:
ha ~a,hx ~a,hb~ fybyy~gfy-0

ha ~ a,hx ~ a,hb ~ fytyy~ghb - {fy = hb,gfy >y, fy~ fy}
Fvy ~y-{fy > hbgfy >y, fy~ fyy~ghb}

This answer constraint can be simplified to {y ~ ghb}.
Theorem 3.9 yields

(rrbs)
(er)

Theorem 3.10 Any rigid equation has a finite number of answer constraints. There is an algorithm
giving by any rigid equation R the set of all answer constraints for R.

11 Section 4. Answer constraints and the tableau method

Section 4

Answer constraints and the tableau
method

In this section we consider how to use the system BSE for theorem proving by the tableau method.
Since we only consider skolemized formulas, we have no d-rules in tableau calculi.

Definition 4.1 (Branch and tableau)

A branch is a finite multiset of formulas. A tableau is a finite multiset of branches. A tableau with
branches I'y,...,T, will be denoted by I'y | ... | I';,. The tableau with n = 0 is called the empty
tableau and denoted by #.

Often, tableaux are presented in the tree form. Representation of tableaux as multisets of
branches is more convenient for us for several reasons. For this representation we introduce a
logical system allowing to ezxpand tableaux:

Definition 4.2 (Tableau expansion rules)
The rules (a), () and () of Figure 4.1 are called tableau expansion rules.

Definition 4.3 Let [be a branch of a tableau. The set of rigid equations on I' is defined in the
following way. A rigid equation F Fy s ~ ¢ is on I' iff £ is the multiset of all equations in I" and

(s#t)el.

We extend the notion of answer constraints to tableau branches:

Cy,pANY | ... | Ty, (@) T,V .. | Ty)
Ti,oNp, 0| ... | Ty Ty, | Ty || Ty
I',Vzp(z)|...| Ty)
D, Vaop(z),o(y) |- | Tn

In the rules () the variable y does not occur in the premise.

Figure 4.1: Tableau Expansion Rules

12 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

Definition 4.4 A constraint C is an answer constraint for a tableau branch T' iff C is an answer
constraint for some rigid equation on I'.

By Theorem 3.10, we obtain

Theorem 4.5 Any tableau branch has a finite number of answer constraints. There is an algorithm
giving by any tableau branch I' the set of all answer constraints for I'.

The following theorem states soundness and completeness of the tableau method with answer
constraints:

Theorem 4.6 (Soundness and completeness)

Let £ be a sentence in Skolem negation normal form. Then ¢ is unsatisfiable iff there is a tableau
T obtained from ¢ by tableau expansion rules with the following property. Let I'y,...,I[,, be all
branches of T'. Then there exist answer constraints Cy,...,C, for I'y,... ', respectively, such that
C1 U...UC(, is satisfiable.

Proof. Soundness follows from soundness of BSE.
The proof of completeness is quite lengthy and is given in Appendix A. It is based on the
completeness of the equality elimination method [19, 21, 26].
O

To illustrate this theorem, consider the formula of Example 1.1. Assume that we want to prove
the formula ¢ = Jzyzu((a ~ b D g(z,u,v) ~ g(y, fe, fd)) A (¢ ~ d D g(u,z,y) ~ g(v, fa, fb))).
The negation normal form of —¢ is Vayzu((a ~ b A g(z,u,v) # gy, fe, fd)) V (¢ =~ d A g(u, x,y) #
9(v. fa, 1))

The ordering > is the lexicographic path ordering (see e.g. [54]) based on the precedence g >
f >a>0b>c>d. For purely illustrative purpose, we shall display tableaux in the tree form.
After one quantifier duplication (application of a 7-rule) and some other tableau expansion rules
we obtain the following tableau:

/\

a~b c~d

g(w,u,v) % gy, fe, fd) g(u,z,y) # g(v, fa, fb)

There is one rigid equation on each branch of the tableau:

(Lﬁbkv g(.’I},U,?)) 2(](’(/,]0(3,]0(1) (41)
c~d l_V g(“‘amay) = g(?),fa,fb)

Rigid basic superposition is applicable to none of this rigid equations. Rigid equation (4.1) has one
answer constraint {g(z,u,v) ~ g(y, fc, fd)} obtained by an application of the equality resolution
rule:

13 Section 4. Answer constraints and the tableau method

a = bl—V g(LE,U,’U) :g(yufcafd) q)
Fv g(z, u,0) = g(z,u,v) - {g(z,u,v) = g(y, fc, fd)}

Similarly, rigid equation (4.2) has one answer constraint {g(u,z,y) ~ g(v, fa, fb)}. The union
of these constraints {g(z,u,v) ~ g(y, fc, fd),g(u,z,y) ~ g(v, fa, fb)} is unsatisfiable. Thus, our
method does not find solution after one quantifier duplication. After three quantifier duplications
and some other tableau expansion steps we obtain the following tableau:

(er)

a~b c~d
g(@1,ur,v) # g(y, fe, fd) g(ur,z1,51) # g(vi, fa, fb)
~b c~d a~b c~d
\
9(w2,u2,v2) # g(y2, fe, fd) 9(us, x3,y3) # g(vs, fa, fb)
g(uz, T2, y2) # g(va, fa, fb) 9(xs, us,v3) # g(ys, fc, fd)

It has four branches:

Iy {a=bax~bg(z,u,v) 29y, fe fd),g(@2,uz,v2) # g(y2, fe, fd)}
Ly {a ~b ¢~ d,g(éC],U],’l)]) ;ﬁ g(yhfcafd)ag(u%x?ay?) ;ﬁ g(vg,fa fb)}
I3t {a~bc~d g(ur,z1,91) # g(vi. fa, fb), g(z3, us,v3) # g(ys. fe, fd)}
Ly {02 d,Cﬁ d,g(U],.’E],y]) ;ﬁg(,l)]afaafb)ag(uﬁ’axﬁ'ay?)) ;/:g(vg,fa fb)}

Consider the following rigid equations R; R4 on the branches I'y Ty, respectively:

Ri: a~bya~bltyg(re,us,ve) ~ g(ya, fc, fd)
Ry: a~bc=dbtyg(xi,ur,v) =gy, fe fd)
Rs: a~bc~dlyg(u,z1,y1) ~ g(vi, fa, fb)
Ry: c~d,c~dbtyg(us,zs,y3) =~ g(vs, fa, fb)

We can apply the following BSE-derivations to Ry Ry:

a=~ba~bkyg(re,us,ve) =~ g(ya, fc, fd) -]
|_V g(mQa“‘QaUQ) = 9(7?2,71‘2,7)2) {(](7'2,112,7)2) = q(U?a f(fd)}

(er)

a~bc~dbyg(zi,u,v) ~ gy, fe, fd) -0
a~bc~dbyg(ri,u,v) ~ gy, fd, fd)
'{C - dag(y]afcafd) - g(x],m,v]),c = C}

l—vg(x],u],v]) —g(QC],U],'U])
de=d,g(y1, fe, fd) = g(w1,ur,v1), ¢ ~ ¢, g(x1,ur,v1) ~ g(y1, fd, fd)}

(rrbs)

(er)

14 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

a~bc~dbyg(ur,z1,y1) ~ g(vi, fa, fb) - 0
a~bc~dbryg(u,z1,91) ~ g(vi, fb, fb)
'{(l - b,g(’l)],f(l,fb) - g(U],LE],y]),a = a’}

Py g(ur, z1,41) = glur, z1,91)
-{(1, - b,g(”lafa‘afb) - g(“‘lamlayl)aa‘ = a‘ag(ulamlayl) = g(?)lﬂfba fb)}

(rrbs)

(er)

Czdchd'_V g(u37$3ay3) :g(vﬁ'afaufb) q)
Fv g(us, 3, y3) =~ g(u3, z3,y3) - {9(u3, ¥3,y3) =~ g(vs, fa, fb)}

(er)

The union of the answer constraints of these derivations is

{9(m2, u2,v2) = g(y2, fc, fd),
c=d, gy, fe, fd) = g(z1,u1,v1),¢ ~ ¢, g(w1,u1,v1) = g(y1, fd, fd),
a > baa = a,g(m,fa,fb) - g(m,x],y]),g(m,x],y]) = g(v]afbufb)a
9(u3, z3,y3) =~ g(vs, fa, fb) }

This constraint is satisfiable. To check this, we can consider the following substitution:

{fb/.’,U],fb/y],fd/U],fd/’U],b/lEQ,b/yQ,fC/UQ,fd/UQ,d/Ug,d/Ug,fa/ng,fb/yg}.

15 Section 5. Tableau basic superposition

Section 5

Tableau basic superposition

As a simple consequence of our results, we prove a completeness result for a paramodulation
rule working on tableaux. A paramodulation rule working directly on tableaux was proposed
by Loveland [45] in the context of model elimination and later by Fitting [32]. However, their
formulations have all disadvantages of the early paramodulation rule of Robinson and Wos [60]:

1. Functional reflexivity rule is used;
2. Paramodulation into variables is allowed;

3. Increasing applications of paramodulation are allowed (for example, z can be rewritten to

)

As a consequence, for a given tableau expansion there may be an infinite sequence of paramodula-

tions, in particular due to the use of functional reflexivity or increasing applications of paramodula-

tion. Since the publication of Loveland’s book [45], no improvements of the paramodulation-based

tableau calculi have been described except for Plaisted [58] who has shown how to transform deriva-

tions with resolution and paramodulation to tableaux by introducing a tableau factoring rule.
Here we show that paramodulation is complete under the following restrictions:

1. No functional reflexivity is needed;
2. Paramodulation into variables is not allowed;
3. Orderings are used so that there are no increasing applications of paramodulation;

4. Basic restriction on paramodulation that allows us to prohibit paramodulation into non-
variables terms introduced by unification.

All these refinements are a consequence of our main result (Theorem 4.6).
In order to formalize the basic strategy, we keep the substitution condition as a set of constraints,
as before. Thus, we work with constraint tableauz:

Definition 5.1 (Constraint tableau)
A constraint tableau is a pair consisting of a tableau T and a constraint C, denoted T - C.

Now we adapt the tableau rules of [32] to the case of constraint tableaux. For simplicity, we only
consider signatures whose only predicate symbol is ~. When we prove a formula ¢, we construct
the Skolem negation normal form % of —¢ and, starting with the constraint tableau v - () try to
derive the empty tableau # with some satisfiable constraint.

16 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

F],(,O/\’l/),(,O,T,b“FnC l F]a‘P|F1a¢“FnC
'y, Vzp(z)|...|Tp-C ™) Iy,s#t|[To|...|Tyn-C (er)
I'y,Vep,p(y) | ... | Ty - C Lyf... | -CU{s~t}
Ty, l~rspl~t|Te|...|T,-C
(Irbs)
ylerysr])~t | Do .. | Tn-CU{l > r sp] =t ~p}
Iy lerspl#gt|Te|...|Tn-C
(rrbs)
Dylersir)#t| Do . | Tn-CU{l > r,s[p] > 1,1 ~p}

In the rules () the variable y does not occur in the premise. The conditions on the rules (Irbs)
and (rrbs) are the same as for the corresponding rules of BSE.

Figure 5.1: Calculus TBSE

Definition 5.2 (Calculus 7TBS¢E)
The free-variable tableau calculus TBSE is shown in Figure 5.1.

Definition 5.3 (Constraint tableau expansion rules)
The rules (@), (8) and () of TBSE are called constraint tableau expansion rules.

The calculus TBSE has the required completeness property:

Theorem 5.4 (Soundness and completeness)
Let ¢ be a formula in the Skolem negation normal form. It is unsatisfiable iff there is a derivation
from the constraint tableau ¢ -} of a constraint tableau # - C.

Proof. Straightforward from Theorem 4.6 by noting that the rules of BSE can be simulated by
the corresponding tableau rules. O

This logical system has one more pleasant property:

Theorem 5.5 (Termination)
For any constraint tableau T - C there is only a finite number of derivations from 7' - C not using
constraint tableau expansion rules.

Proof. Similar to that of Theorem 3.9. O

This means, that for a given amplification, we cannot have infinite search. Infinite search without
any expansion steps is possible in the Fitting’s system.

To illustrate the connection between the tableau rigid basic superposition rule and rules of
BSE, we reconsider the example of Section 4. On the branch containing the literal g(xy,uq,v1) %
g(y1, fe, fd) and the equation ¢ ~ d, we can apply rigid basic superposition that adds g(z1, u1,v1) %
g(y1, fd, fd) to the branch. Similarly, we can apply rigid basic superposition to the branch con-
taining g(u1,z1,y1) # g(v1, fa, fb) and a ~ b, obtaining g(uy,z1,y1) # g(v1, fb, fb). This results
in the following tableau (the picture below does not include the constraint, it is discussed below).

17 Section 5. Tableau basic superposition

a~b c~d
g(flil,?Ll,?)l) ¢ g(ylafa fd) g(“‘l:ml:yl) ¢ g("l:faafb)
a~b c~d a~b c~d
g($27U27'U2) ¢ 9(1127f0= fd) Q(U3=$3=113) ¢ g(vg,fa,fb)
g(u2:$2=y2) ¢ g('Ug,f(Lfb) g(3337U3,1)3) ¢ g(y37fC; fd)
g(@1,ur,v1) # g(n, fd, fd) g(ur,z1,91) # g(vi, b, fb)

After four application of the (er) rules all branches of this tableau become closed. The resulting
constraint of this derivation is the same as the union of the answer constraints shown at the end of
Section 4.

18 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

Section 6

Related work

The problem of extending tableaux with equality rules is crucial for enriching the deductive capabil-
ities of the tableau method. Despite the fact that this problem is attacked by a growing number of
researchers during the last years, known solutions are not yet convincing. At the same time tableau
methods of automated deduction play an important role in various areas of artificial intelligence
and computer science — see e.g. special issues of the Journal of Automated Reasoning, v. 13, no.
2,3, 1994. These issues contain a survey by Schumann [61] of implementations of tableau-based
provers. Among 24 systems mentioned in the survey only two are able to handle equality.

The system PROTEIN [7] (and also KoMeT [13]) implement the modification method of Brand
[14]. This method transforms a set of clauses with equality into a set of clauses without equality.
This transformation usually yields a considerably larger set of clauses. In particular, the symmetry
and the transitivity axioms must be explicitly applied to all positive occurrences of the equality
predicate. Recently, we proposed a new translation method based on the so-called basic folding
demonstrated for Horn clauses in [22].

According to Schumann [61], the system 37" P uses the method of Beckert and Hihnle [11].
Paper [11] claims the completeness of the method, but this claim is not true. The method expands
the tableau using the standard tableau rules, including y-rules. For finding a closing substitution, an
analog of linear paramodulation without function reflexivity has been proposed. As it is well known,
linear paramodulation is incomplete without function reflexivity. The same is true for the method
of Beckert and Héhnle [11], as the following example shows. Suppose that we prove the formula
Jz(a ~ bAg(fa, fb) ~ h(fa, fb) D g(x,x) ~ h(xz,z)). In order to prove it using paramodulation,
we need to paramodulate a ~ b into g(fa, fb) ~ h(fa, fb). The method of Beckert and Hahnle
[11] only allows for paramodulation into copies of g(z,x) ~ h(z,z) obtained by the application of
v-rules. Thus, this (provable) formula cannot be proved using the method of Beckert and Hahnle
[11].

Consider now approaches based on the simultaneous rigid E-unifiability by Gallier et.al. [36, 34]
and related methods. We do not consider numerous works dedicated to the non-simultaneous rigid
E-unifiability. This problem is NP-complete and there exist a number of complete algorithms for
its solution (Gallier et.al. [35, 33], Goubault [38], Becher and Petermann [8], De Kogel [29] and
Plaisted [58]). Since simultaneous rigid E-unification is undecidable (Degtyarev and Voronkov
[23, 27]), their completeness is useless from the viewpoint of general purpose theorem proving as
proposed by Gallier et.al. [36, 34]. Our system BSE can easily be extended to a calculus complete
for rigid F-unifiability, but such completeness was not our aim. We tried to restrict the number of
possible BSE-derivations preserving completeness of the general-purpose method of Section 4.

It is not known whether the procedure described in Gallier et.al. [34] is complete for theorem

19 Section 6. Related work

proving'. Even if it is complete, our procedure based on BSE has some advantages over Gallier
et.al.’s procedure. For example, for every tableau branch with p equations and ¢ disequations, we
consider ¢ rigid equations, while Gallier et.al.’s procedure checks ¢ - 2P rigid equations.

Gallier et.al. [35, 33] introduced the notion of a complete set of solutions for rigid E-unification,
proved finiteness of such sets and gave an algorithm computing finite complete set of solutions.
According to this result, Goubault [39] proposed to solve simultaneous rigid F-unifiability by us-
ing finite complete sets of solutions to the components of the simultaneous problem. Paper [39]
contained faulty results. The undecidability of simultaneous rigid F-unification shows that finite
complete sets of solutions do not give a solution to the simultaneous problem. The reason for this is
that substitutions belonging to complete sets of solutions for different rigid equations are minimal
modulo different congruences.

Petermann [56] introduces a “complete connection calculus with rigid F-unification”. Here the
completeness is achieved by changing the notion of a complete set of unifiers so that solutions to all
subproblems are compared modulo the same congruence (generated by the empty equality theory).
In this case, a non-simultaneous problem can have an infinite number of solutions and no finite
complete set of solutions. For example, for the rigid E-unification problem f(a) ~ a by 2 ~ a
the complete set of solutions in the sense of Gallier et.al. [34] consists of one substitution {a/z}
(and there is only one answer constraint {z ~ a} obtained by our method), but the complete set
of solutions in the sense of Petermann [56] is infinite and consists of substitutions {f"(a)/z}, for
all n € {0,1,...}. This implies that the proof-search by the method of Petermann [56] can be non-
terminating even for a limited number of applications of y-rule (i.e. for a particular tableau), unlike
algorithms based on the finite complete sets of unifiers in the sense of Gallier et.al. [34] or based on
minus-normalization (Kanger [41]). The implementation of the method of [56] uses a completion-
based procedure by Beckert [9] of generation of complete sets of rigid E-unifiers. This procedure is
developed with the aim of solving a more general problem — so-called mized E-unification and has
been implemented as part of the tableau-based theorem prover 374 P. Complete sets of unifiers
both in the sense of Gallier et.al. [34] and in the sense of Petermann [56] can be computed by
this procedure in the case when all variables are treated as rigid. However, the termination is not
guaranteed even for complete sets of rigid E-unifiers in the sense of Gallier et.al. [34].

Plaisted [58] gives “techniques for incorporating equality into theorem proving; these techniques
have a rigid flavor”. His method called path paramodulation guarantees termination for a given
amplification and, in the case of success “solves the simultaneous rigid E-unification problem”, in
a sense. However, this does not solve the problem attacked by a number of researchers: extend the
method of matings to languages with equality by rigid E-unification. First, unlike [34] the search
for solutions for a given amplification is not incremental (the method does not allow “branch-wise”
computation of solutions to rigid E-unification for separate branches). Second, within a given
amplification Plaisted uses factoring rules which involves two branches (paths). As a consequence,
even when the original formula contains no equality, his method results in the standard tableau
calculus plus the factoring rule.

In fact, path paramodulation of Plaisted [58] simulates resolution-paramodulation inference in a
connection-like calculus. Although it is not noted in [58], but this technique has been demonstrated
for resolution in many papers, for example by Bibel [12], Eder [30, 31], Mints [50], Baumgartner
and Furbach [6] and Avron [2]. The generalization of this simulation to paramodulation is straight-
forward.

However, this simulation technique is insufficient for proving results of our paper since, in

'For example, the completeness of Gallier et.al’s procedure does not follow from our method because, as noted
above, our calculus BSE can give more solutions to some rigid equations.

20 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

particular, it gives no insight on how to avoid factoring in tableaux with equality. The use of
factoring prevents not only from the independent search for solutions for tableau branches, but
even from the incremental solving of rigid equations on tableau branches as proposed by Gallier
et.al.

Our equality elimination method [26, 20, 21] is based on extending a tableau prover by a bottom-
up equation solver using basic superposition. Solutions to equations are generated by this solver
and used to close branches of a tableau. Thus, the method combines (non-local) tableau proof
search with the (local) equation solving. Only completely solved equations are used in the tableau
part of the proof, thus reducing non-determinism created by applications of MGU replacement
rule of Fitting [32]. The equation solution is even more restricted by the use of orderings, basic
simplification and subsumption.

A similar idea: combination of proof-search in tableaux with a bottom-up equality saturation
of the original formula, is used in [51] for constructing a goal-directed version of model elimination
and paramodulation.

One of advantages of the tableau method is its applicability to non-classical logics. However,
handling equality in non-classical logics seems to be much more difficult problem than that in
classical logic. For example, it is shown by Voronkov [64] that procedures for intuitionistic logic
with equality must handle simultaneous rigid F-unification. This implies that our method based
on BSE does not give a complete procedure for intuitionistic logic with equality. Other results
on relations between simultaneous rigid E-unification and intuitionistic logic are considered by
Degtyarev and Voronkov [24], Degtyarev, Matiyasevich and Voronkov [18].

21

Section 6. Related work

Bibliography

1]

2]

P.B. Andrews. Theorem proving via general matings. Journal of the Association for Computing
Machinery, 28(2):193 214, 1981.

A. Avron. Gentzen-type systems, resolution and tableaux. Journal of Automated Reasoning,
10:256-281, 1993.

L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposi-
tion. In D. Kapur, editor, 11th International Conference on Automated Deduction, volume 607
of Lecture Notes in Artificial Intelligence, pages 462 476, Saratoga Springs, NY, USA, June
1992. Springer Verlag.

L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basis paramodulation. Information
and Computation, 121:172 192, 1995.

Peter Baumgartner. An ordered theory resolution calculus. In A. Voronkov, editor, Logic
Programming and Automated Reasoning (LPAR’92), volume 624 of Lecture Notes in Computer
Science, pages 119 130, 1992.

P. Baumgartner and U. Furbach. Consolution as a framework for comparing calculi. Journal
of Symbolic Computations, 16:445-477, 1993.

P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension INterface.
In A. Bundy, editor, Automated Deduction CADE-12. 12th International Conference on
Automated Deduction., volume 814 of Lecture Notes in Artificial Intelligence, pages 769 773,
Nancy, France, June/July 1994.

G. Becher and U. Petermann. Rigid unification by completion and rigid paramodulation.
In B. Nebel and L. Dreschler-Fischer, editors, KI-9/: Advances in Artificial Intelligence. 18th
German Annual Conference on Artificial Intelligence, volume 861 of Lecture Notes in Artificial
Intelligence, pages 319 330, Saarbriicken, Germany, September 1994. Springer Verlag.

B. Beckert. A completion-based method for mixed universal and rigid E-unification. In
A. Bundy, editor, Automated Deduction — CADE-12. 12th International Conference on Au-
tomated Deduction., volume 814 of Lecture Notes in Artificial Intelligence, pages 678 692,
Nancy, France, June/July 1994.

B. Beckert. Are minimal solutions to simultaneous rigid E-unification sufficient for adding
equality to semantic tableauxI" Privately circulated manuscript, University of Karlsruhe,
1995.

22

A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

[11]

[12]

[13]

[21]

[22]

B. Beckert and R. Hahnle. An improved method for adding equality to free variable se-
mantic tableaux. In D. Kapur, editor, 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 678 692, Saratoga
Springs, NY, USA. June 1992. Springer Verlag.

W. Bibel. On matrices with connections. Journal of the Association for Computing Machinery,
28(4):633 645, 1981.

W. Bibel. Issues in theorem proving based on the connection method. In P. Baumgartner,
R. Hahnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related
Methods, number 918 in Lecture Notes in Artificial Intelligence, pages 1-16, Schlof3 Rheinfels,
St. Goar, Germany, May 1995.

D. Brand. Proving theorems with the modification method. SIAM Journal of Computing,
4:412-430, 1975.

C.L. Chang. Theorem proving with variable-constrained resolution. Information Sciences,
4:217-231, 1972.

N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17:279
301, 1982.

A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand’s theorem and equational reasoning:
Problems and solutions. UPMAIL Technical Report 128, Uppsala University, Computing
Science Department, September 1996.

A. Degtyarev, Yu. Matiyasevich, and A. Voronkov. Simultaneous rigid F-unification and
related algorithmic problems. In FEleventh Annual IEEE Symposium on Logic in Computer
Science (LICS’96), pages 494 502, New Brunswick, NJ, July 1996. IEEE Computer Society
Press.

A. Degtyarev and A. Voronkov. Equality elimination for semantic tableaux. UPMAIL Technical
Report 90, Uppsala University, Computing Science Department, December 1994.

A. Degtyarev and A. Voronkov. General connections via equality elimination. In M. De Glas
and Z. Pawlak, editors, Second World Conference on the Fundamentals of Artificial Intelligence
(WOCFAI-95), pages 109-120, Paris, July 1995. Angkor.

A. Degtyarev and A. Voronkov. Equality elimination for the inverse method and extension pro-
cedures. In C.S. Mellish, editor, Proc. International Joint Conference on Artificial Intelligence
(IJCAI), volume 1, pages 342-347, Montréal, August 1995.

A. Degtyarev and A. Voronkov. Handling equality in logic programs via basic folding. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Eztensions of Logic Programming
(5th International Workshop, ELP’96), volume 1050 of Lecture Notes in Computer Science,
pages 119-136, Leipzig, Germany, March 1996.

A. Degtyarev and A. Voronkov. Simultaneous rigid FE-unification is undecidable. In
H. Kleine Bining, editor, Computer Science Logic. 9th International Workshop, CSL’95,
volume 1092 of Lecture Notes in Computer Science, pages 178-190, Paderborn, Germany,
September 1995, 1996.

23

Section 6. Related work

[24]

[35]

[36]

A. Degtyarev and A. Voronkov. Decidability problems for the prenex fragment of intuitionistic
logic. In Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS’96), pages
503 512, New Brunswick, NJ, July 1996. IEEE Computer Society Press.

A. Degtyarev and A. Voronkov. What you always wanted to know about rigid E-unification. In
J.J. Alferes, L.M. Pereira, and E. Orlowska, editors, Logics in Artificial Intelligence. FEuropean
Workshop, JELIA’96, volume 1126 of Lecture Notes in Artificial Intelligence, pages 5069,
Evora, Portugal, September/October 1996.

A. Degtyarev and A. Voronkov. Equality elimination for the tableau method. In J. Calmet
and C. Limongelli, editors, Design and Implementation of Symbolic Computation Systems.
International Symposium, DISCO’96, volume 1128 of Lecture Notes in Computer Science,
pages 46—60, Karlsruhe, Germany, September 1996.

A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E-unification. The-
oretical Computer Science, 166(1 2):291 300, 1996.

A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi: a tutorial. Upmail
technical report, Uppsala University, Computing Science Department, August 1996. To appear.

E. De Kogel. Rigid E-unification simplified. In P. Baumgartner, R. Hahnle, and J. Posegga,
editors, Theorem Proving with Analytic Tableaux and Related Methods, number 918 in Lecture
Notes in Artificial Intelligence, pages 17 30, Schlofl Rheinfels, St. Goar, Germany, May 1995.

E. Eder. A comparison of the resolution calculus and the connection method, and a new
calculus generalizing both methods. In E. Borger, G. Jager, H. Kleine Buning, and M.M.
Richter, editors, CSL’88 (Proc. 2nd Workshop on Computer Science Logic), volume 385 of
Lecture Notes in Computer Science, pages 80-98. Springer Verlag, 1988.

E. Eder. Consolution and its relation with resolution. In Proc. International Joint Conference
on Artificial Intelligence (IJCAI), pages 132 136, 1991.

M. Fitting. First Order Logic and Automated Theorem Proving. Springer Verlag, New York,
1990.

J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification: NP-completeness
and applications to equational matings. Information and Computation, 87(1/2):129-195, 1990.

J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equational matings
and rigid E-unification. Journal of the Association for Computing Machinery, 39(2):377 429,
1992.

J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid F-unification is NP-complete. In
Proc. IEEE Conference on Logic in Computer Science (LICS), pages 338 346. IEEE Computer
Society Press, July 1988.

J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification: Equational
matings. In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 338 346.
IEEE Computer Society Press, 1987.

J.H. Gallier, S. Raatz, and W. Snyder. Rigid E-unification and its applications to equational
matings. In H. Ait Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
volume 1, pages 151 216. Academic Press, 1989.

24

A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

[38]

[39]

[40]

[41]

J. Goubault. A rule-based algorithm for rigid E-unification. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Computational Logic and Proof Theory. Proceedings of
the Third Kurt Gddel Colloguium, KGC’93, volume 713 of Lecture Notes in Computer Science,
pages 202 210, Brno, August 1993.

J. Goubault. Rigid E-unifiability is DEXPTIME-complete. In Proc. IEEE Conference on
Logic in Computer Science (LICS). IEEE Computer Society Press, 1994.

R. Hahnle, B. Beckert, and S. Gerberding. The many-valued tableau-based theorem prover
3TAP. Technical Report 30/94, Universitdt Karlsruhe, Fakultit fiir Informatik, November
1994.

S. Kanger. A simplified proof method for elementary logic. In J. Siekmann and G. Wrightson,
editors, Automation of Reasoning. Classical Papers on Computational Logic, volume 1, pages
364 371. Springer Verlag, 1983. Originally appeared in 1963.

J. Kruskal. Well quasi ordering, the tree problem and Vazsonyi’s conjecture. Transactions of
the American Mathematical Society, 95:210-225, 1960.

R.C.T. Lee and C.L. Chang. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1973.

D.W. Loveland. Mechanical theorem proving by model elimination. Journal of the Association

for Computing Machinery, 15:236 251, 1968.

D.W. Loveland. Automated Theorem Proving: a Logical Basis. North Holland, 1978.

U. Martin. How to choose weights in the Knuth-Bendix ordering. In Rewriting Technics and
Applications, volume 256 of Lecture Notes in Computer Science, pages 42-53, 1987.

S.Yu. Maslov. The inverse method of establishing deducibility in the classical predicate calcu-
lus. Soviet Mathematical Doklady, 5:1420 1424, 1964.

S.Yu. Maslov. An invertible sequential variant of constructive predicate calculus (in Russian).
Zapiski Nauchnyh Seminarov LOMI, 4, 1967. English Translation in: Seminars in Mathematics:
Steklov Math. Inst. 4, Consultants Bureau, NY-London, 1969, p.36 42.

V.A. Matulis. On variants of classical predicate calculus with the unique deduction tree (in
Russian). Soviet Mathematical Doklady, 148:768 770, 1963.

G. Mints. Gentzen-type systems and resolution rules. part I. propositional logic. In P. Martin-
Lof and G. Mints, editors, COLOG-88, volume 417 of Lecture Notes in Computer Science,
pages 198 231. Springer Verlag, 1990.

M. Moser, C. Lynch, and J. Steinbach. Model elimination with basic ordered paramodula-
tion. Technical Report AR-95-11, Fakultat fiir Informatik, Technische Universitdt Munchen,
Miinchen, 1995.

R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In ESOP’92, volume 582 of
Lecture Notes in Computer Science, pages 371-389. Springer Verlag, 1992.

R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters,
47:65 69, 1993.

25

Section 6. Related work

[54]

[55]

[56]

[57]

[58]

[59]

R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality constrained clauses.
Journal of Symbolic Computations, 19:321-351, 1995.

S.A. Norgela. On the size of derivations under minus-normalization (in Russian). In V.A.
Smirnov, editor, The Theory of Logical Inference. Institute of Philosophy, Moscow, 1974.

U. Petermann. A complete connection calculus with rigid E-unification. In JELIA 9/, volume
838 of Lecture Notes in Computer Science, pages 152 166, 1994.

D.A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In Proc. 8th
CADE, volume 230 of Lecture Notes in Computer Science, pages 79 88, 1986.

D.A. Plaisted. Special cases and substitutes for rigid E-unification. Technical Report MPI-I-
95-2-010, Max-Planck-Institut fir Informatik, November 1995.

D. Prawitz. An improved proof procedure. In J. Sieckmann and G. Wrightson, editors, Au-
tomation of Reasoning. Classical Papers on Computational Logic, volume 1, pages 162-201.
Springer Verlag, 1983. Originally appeared in 1960.

G. Robinson and L.T. Wos. Paramodulation and theorem-proving in first order theories with
equality. In Meltzer and Michie, editors, Machine Intelligence, volume 4, pages 135—150.
Edinburgh University Press, Edinburgh, 1969.

J. Schumann. Tableau-based theorem provers: Systems and implementations. Journal of
Automated Reasoning, 13(3):409 421, 1994.

R. Shostak. An algorithm for reasoning about equality. Communications of the ACM, 21:583
585, July 1978.

R.M. Smullyan. First-Order Logic. Springer Verlag, 1968.

A. Voronkov. Proof search in intuitionistic logic with equality, or back to simultaneous rigid
FE-unification. In M.A. McRobbie and J.K. Slaney, editors, Automated Deduction — CADE-13,
volume 1104 of Lecture Notes in Computer Science, pages 32 46, New Brunswick, NJ, USA,
1996.

26 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

Appendix A

Proof of the completeness theorem

This appendix proves the completeness part of Theorem 4.6. It is based on the completeness
theorem for the equality elimination method (Degtyarev and Voronkov [19, 20, 21, 26]). We shall
introduce several notions.

A.1 Clauses

Definition A.1 (Clause)
A clause is a finite multiset of literals {L,..., L}, denoted Ly,...,L,. If L is a literal and C a
clause, then L, C denotes the clause {L} U C. The empty clause is denoted by O.

Definition A.2 (Constraint clause)
A constraint clause is a pair consisting of a clause C' and a constraint C. Such a constraint clause
will be denoted C - C.

A.2 The equality elimination method

For the rest of this section we assume that ¢ denotes a closed formula in the Skolem negation normal
form to be checked for unsatisfiability. We assume that all different occurrences of quantifiers in
¢ bind different variables. For example, & cannot have the form VzA A VzB. All formulas in this
section are assumed to be subformulas of the formula ¢&. We shall identify subformulas of ¢ and their
superformulas with their occurrences in . For example, in the formula £ of the form A A (A V B)
the second occurrence of A is considered a subformula of (A V B), but the first occurrence of A is
not.

Definition A.3 (Subformula and fresh-variable subformulas)
The set of subformulas and fresh-variable subformulas of a formula in negation normal form is
defined inductively as follows.

1. Any formula is a subformula and a fresh-variable subformula of itself.

2. Both formulas ¢; and 9 are subformulas and fresh-variable subformulas of ¢; A @9, and
similar for V instead of A.

3. The formula ¢(z) is a subformula of Vzp(x); any formula ¢(y), where y & var(Vzp(x)), is a
fresh-variable subformula of Vze(z), and similar for 3 instead of V.

27 Appendiz A. Proof of the completeness theorem

4. If ¢y is a subformula of 9 and @y is a subformula of @3, then ¢ is a subformula of ¢3, and
similar for fresh-variable subformulas.

Note that we do not consider an atom A to be a subformula of =A. The reason is that we want to
restrict ourselves with only positive subformulas. Also note that a fresh-variable subformula is not
necessarily a subformula.

We shall only deal with some subformulas of ¢ called disjunctive subformulas.

Definition A.4 (Disjunctive subformula)

The occurrence of a subformula ¢ of £ is called disjunctive iff it is an occurrence in a subformula
@V orin V. A disjunctive superformula of ¢ is a superformula' 1 of ¢ that is disjunctive.
The least disjunctive superformula of ¢ is the disjunctive superformula 9 of ¢ such that any other
disjunctive superformula of ¢ is a superformula of 1.

Let us note that disjunctive superformulas do not necessarily exist. For example, ¢ has no
disjunctive superformula. Any formula having a disjunctive superformula has the unique least
disjunctive superformula.

We can enumerate all disjunctive subformulas &1, ..., &, of £, for example in the order of their
occurrences in £. Thus we can unambiguously use “the kth disjunctive (sub)formula” & of £.

Let Ay,..., A, be predicate symbols not occurring in £.

Definition A.5 ({-name of a subformula)
An atomic formula Ag(z1,...,Zy) is the E-name of a subformula ¢ of £ iff

1. The least disjunctive superformula of ¢ is &;

2. x1,...,%y, are all free variables of & in the order of their occurrences in &.

If a é&-name of a formula ¢ exists, then it is unique. Note that different formulas may have the same

&-names. Also note that some subformulas of £ do not have ¢&-names. We can use the set of £-names

of a subformula. The set of {&-names of a formula ¢ is either () or a singleton {Ak(z1,...,2m)}.
Figure A.1 illustrates least disjunctive superformulas and &-names.

Lemma A.6 Let ¢, be subformulas of £ whose sets of £-names coincide, ¢ is a proper subformula
of 9, and ¢’ = ¢, where 1’ is a substitution with dom(n’) = var(). Let ¢’ be a fresh-variable
subformula of v’ which is also a variant of ¢n'.

Let T = T1,¢" | To | ... | Ty such that var(T) N (var(y') \ var(y)’)) = 0. Then there is a
derivation
Uy, | To|... | Ty
LYo [Tl | Ty

consisting only of applications of a- and y-rules of Figure 4.1 such that T'; C T.

Proof. Induction by v'. Note that 1)’ cannot be a disjunction because then the set of {-names
of ¢ and 1 would be different. Hence, there are two possible cases: either 1’ is a conjunction
or begins with a universal quantifier. Let ¢’ = on'{z1/21,...,2m/Tm}, where {z1,...,2,} =
var(pn') \ var(yn'). Consider the two cases mentioned above.

!¢ is a superformula of ¢ iff ¢ is a subformula of ¢ (not necessarily proper).

28 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

Subformula

least disjunctive superformula

(Vz(F(z) V (B(z) ANVyC(z,y))) VVzD(2)) AN E

() AVYClz,y)) v ¥=D(2)
() AVyClz, 1))
VyC(z,y))

1o 0

no @
Va(F(x) vV (B(z) AVyC(z,y))) {Ar}
Va(F(z) vV (B(z) AVyC(z,y))) {A}
F(z) {Az(z)}
B(z) AVyC(z,y) {As(z)}
B(z) AVyC(z,y) {As(z)}
B(z) AVyC(z,y) {As(z)}
B(z) AVyC(z,y) {As(z)}
VzD(z) {A4}
VzD(z) {A4}
no 0

Figure A.1: Least disjunctive superformulas and sets of {-names of subformulas of the formula
(Vz(F(z) V (B(z) AVyC(z,y))) VVzD(2)) NE

1. ' has the form Vax(z). If for some i € {1,...,m} we have z = z;, then we apply the rule

()

Otherwise, choose any fresh variable z and apply the rule

o Vax(xg), x(2) - -

(7)

If x(2z;) (respectively, x(z)) coincides with ¢’, then the required derivation is found. Otherwise,
apply the induction hypothesis to x(z;) (respectively, x(z)).

. ¢/ has the form x; A x2. Then we apply the rule

X1 A X2 ()
X1AXZ XL X2)

If ¢' coincides with x; or xo then the required derivation is found. Otherwise, ¢’ is a fresh-
variable proper subformula of some x;, where i € {1,2}. Then apply the induction hypothesis
to x;.

Lemma A.7 Let T =T | ... | I';, be a tableau obtained from £ by tableau expansions rules and
¢ a proper subformula of £ whose set of y-names is empty. Let ¢’ be a fresh-variable subformula
of ¢ that is also a variant of ¢ such that var(¢’) N var(T) = (. Then there is derivation

29 Appendiz A. Proof of the completeness theorem

[y [Tof... [Ty

L' [Ta|.. | Ty

consisting only of applications of a- and y-rules of Figure 4.1 such that T’y C TY.

Proof. 1If ¢ € Ty, then the claim is immediate by Lemma A.6, where ¢» = ¢ and 7’ is the empty
substitution. Suppose (by contradiction) & ¢ T'y. Evidently, £ is a disjunction. But then & has no
proper subformulas whose sets of é&-names are empty. Contradiction. O

Theorem 4.6 that we prove in this section connects two calculi: (i) calculus BSE of rigid
equations; and (ii) tableau expansion rules for tableaux. The main theorem on the completeness
of the equality elimination method [19, 26] (Theorem A.15 below) also connects two calculi, both
introduced below: (i) the calculus CBSE of constraint clauses; and (ii) £-expansion rules for named
¢-tableaux. Both calculi depend on the goal formula £.

Definition A.8 (Calculus CBSE)
The calculus CBSE of constraint clauses consists of the following inference rules. As usual, we
assume that premises of rules have disjoint variables which can be achieved by renaming variables.

Left rigid basic superposition:

b~r,Ci-C s[p]~1,Cy-Co
s[r] ~t,C1,Co - CLUCo U{l =7, 5[p] = t,1 ~p}

(Irbs)

Right rigid basic superposition:

l~r,Cy-C s[p|£t,Cy-Co
slr] #2t,C1,Cq - Cr UCy U{l = 1, s[p] > t,l ~ p}

(rrbs)

Equality resolution:

s#t,C-C

C-CU{s~t} (e)

Application of all the rules is restricted to the following conditions:

1. The constraint at the conclusion of the rule is satisfiable;
2. In the basic superposition rules, the term p is not a variable.

3. In the left basic superposition rule, s[r| # t.

Definition A.9 (Named ¢-tableau)
A named £-tableau is a tableau all whose formulas are atomic formulas of the form A;(t1,...,tn).

Definition A.10 (Initial named ¢-tableau)
The initial named {-tableau of T¢ is the tableau O which has one branch consisting of the empty
set of formulas.

30 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

Definition A.11 ((-expansion rules)
Let {A4;(z;)},{A;(z;)} and D be the sets of £&-names of ¢, 1) and ¢ V1), where ¢ V1) is a subformula
of £. Then the following are £-expansion rules.

1. if D = () then

Cy1Cyl...|Com
C],Ai(fii) | C],Aj(.’ij) ‘ Oy ‘ ‘ Cm

2. if D = {Ag(z)} then

Cr, Ak(y) | Ca | ... | Cn
(Cr, Ai(Z4), Ak(y) | Cr, Aj(75), Ae(9) | Co | - | Co){Zk/y}

We assume that the variables of the premises are disjoint from the variables of z;, z;, Z).

Definition A.12 (Initial constraint {-clause)
Initial constraint &-clauses are defined as follows:

1. Whenever a literal s % t occurs in £ and C is the set of £&-names of this occurrence of s £ t,
the constraint clause s % ¢,C - {} is an initial constraint ¢-clause.

2. Whenever a literal s ~ ¢ occurs in £ and C is the set of £&-names of this occurrence of s ~ ¢,
the constraint clause s ~ ¢,C - {} is an initial constraint ¢-clause.

Definition A.13 (Solution constraint ¢-clause)
A solution constraint £-clause is any constraint clause C'-C which is derivable from initial constraint
¢-clauses using rules (Irbs), (rrbs) and (er) and such that C' does not contain ~.

Definition A.14 (Answer constraint)

Let C' - C' be a solution constraint ¢-clause and C' be a branch of a named &-tableau, so that
var(C) N (var(C")Uwvar(C")) = (. If 5 is a substitution such that (i) dom(n) = var(C"); (ii) C'n C C
and (iii) C'n is satisfiable, then C'n is an answer constraint for C.

The following theorem is a reformulation of Soundness and Completeness theorems of [19] for
named ¢-tableaux and constraint clauses.

Theorem A.15 The formula £ is unsatisfiable if and only if there exists a named &-tableau C |
... | Cp obtained from the initial named £-tableau by £-expansion rules with the following property.
There exist answer constraints Cy,...,C, for Cy,....C,, respectively, such that C; U ... UC, is
satisfiable.

Definition A.16 (Image)

Let the atomic formula Ag(z1,...,%y,) be the {&-name of a disjunctive subformula ¢(z1,...,zy) of
&. For any terms ty,...,t,, the image of the formula Ag(t1,...,ty,) is the formula o(t1,..., ;).
The image of a named ¢-tableau Cy | ... | C, is the tableau I'y | ... | T’y obtained from C; | ... | C,
by replacing every atomic formula Ag(t1,...,t,) by its image.

Note that the image of a named &-tableau is uniquely defined.

31 Appendiz A. Proof of the completeness theorem

Lemma A.17 Let C; | ... | C, be any named &-tableau obtained from O by &-expansion rules
and I'y | ... | ', be its image. Then there exists a tableau I} | ... | I}, obtained from ¢ by tableau
expansion rules such that T'; C T, for all 7 € {1,...,n}.

Proof. By induction on the number of applications of expansion rules. The basic case is obvious:
we can take £ as the required tableau. Consider the induction step. The following two cases are
possible.

1. The expansion rule has the form

Ci1Cy...|Cy
C],Ai(fii) | C],Aj(.’ij) ‘ Oy ‘ ‘ Ch
Denote the image of Cy | ... | C,, by I'y | ... | I';. By the induction hypothesis, there is a
tableau Iy | ... | T, obtained from £ by tableau expansion rules such that I'; C T, for all

i € {1,...,n}. Let &(z;) be the image of A;(z;) and &;(z;) be the image of A;(z;). Then
(%) V& (7;) has the empty set of {&-names and it is a fresh-variable subformula of £. By the
definition &-expansion rules, variables z;, z; do not occur in C | ... | C),. Evidently, we can
assume that z;,z; do not occur in '} | ... | T}, (we can rename variables in I} distinct from
variables of C1,...,Cy). Applying Lemma A.7 to the tableau T'=T% | ... | I}, and formula
o = &(z;) V &i(x;) we see that there is a tableau I'Y, &(z;) V &(z;) | Ty | ... | '}, obtained
from ¢ be tableau expansion rules such that 'y C T, Applying S-rule

1. 6i(T) VEi(z) | Ty] ... | T,
1,6i(%) | T, &(z) [Ty | ... | T,

we obtain the required tableau.

2. The expansion rule has the form

C1, Ak(y) | Co | ... | Cy
(C1, Ai(7i), Ak(y) | Cry Aj(75), Ak(y) | Co | .. | Co){Zk/y}

Denote the image of Cy | ... | C, by I'1 | ... | T';, and the image of Ag(y) by &x(y). By the
induction hypothesis, there is a tableau I}, & (y) | T4 | ... | I'), obtained from ¢ be tableau
expansion rules such that T'; C I',, for alli € {1,...,n}. Since £ contains no free variables, any
variant of this tableau can also be obtained from & be tableau expansion rules, in particular
the tableau (I, & (y) | T% | ... | T){zx/y}. The formula &(z;) V &;(z;) is a subformula of
£k (Tr), and their sets of é&-names coincide. Then either &;(7;) V €;(;) coincides with, or is a
proper subformula of £ (Zx). Consider the two corresponding cases

(a) &(7:) Vv &(T;) coincides with &, (Zy). Applying B-rule

(U1, &) V &i(75) [Ty |- |) {2 /y}
(P, &) | T, &(25) [Ty |- [D)@/}

we obtain the required tableau.

32 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

(b) &(xi) V &(z;) is a proper subformula of (7). It is also a fresh-variable subformula.
To apply Lemma A.7, we have to guarantee the condition

var((T', &) [Ty |- [To){@e/y}) N (2 Uzy) \ zk) = 0. (A.1)
By the conditions of this lemma, z;,Z; do not occur in I'1,&,(y) | T2 | ... | ['y. Since
in the derivation of I'}, &k (y) | TS | ... | I';, we could introduce fresh variables different

from z;,7;, we have

(7 Uzj) Nvar(T, & (9) 1 TS |- | {2 /y}) € 2

Thus, condition (A.1) can be guaranteed. By Lemma A.7, there is a required derivation
of the form

£
(T &xan) | T | | T (/5
(7, & (Zr), &i(4) ij(i:j) |05 [D) {e/y}
(T, &k (Zr), &i(@a) | T, (), & (25) | TS | | Ty {2k /5}

Lemma A.18 Let C be an answer constraint for a rigid equation R and n be a substitution such
that Cn is satisfiable. Then there exists C' C C such that C'n is an answer constraint for Rr).

Proof. Consider the derivation
R'@ZEO FvSOEtO'Co’\AE] |‘v51 ~ t 'C] M’\»En l—vsnﬁtn'cn (AQ)
such that C,, = C. Consider the figure

(Eo Fv so ~to-Co)n
(E] I—\—/ S1 = t1 - C])’I]

(En by 8n =ty - Co)n (A.3)
The figure

(Ei by si ~t;-Ci)n
(Eit1 Fv sit1 ~ tiv1 - Cit1)n

is not a correct inference rule of BSE in one of the following cases.

1. E;11\ E; contains an equation s[r] ~ ¢ such that s[r]n = #n. In this case condition (4) on
the rules of BSE is violated. Note that s[r] ~ ¢ cannot be used in the inference rules of
(A.2). Indeed, otherwise C would contain either s[r| > ¢ or ¢ > s[r] which contradicts to the
condition Cn is satisfiable. Thus, we can assume without loss of generality that (A.2) does
not contain applications of left basic superposition giving such equations s[r| ~ ¢. Then (A.3)
is a correct BSE-derivation satisfying the conditions.

33 Appendiz A. Proof of the completeness theorem

2. 8;41m = tiy1n, where i + 1 # n. In this case condition (2) on the rules of BSE is violated.
This case is considered similarly.

a

Let 7 be a tree derivation of a solution constraint £-clause C - C. Without loss of generality we
can assume that the leaves of 7 have disjoint variables. Denote by L(7) the multiset of the leaves
of 7.

We shall associate with 7 a rigid equation R, such that C is an answer constraint for R, .

Definition A.19 A rigid equation E Fy s ~ t is associated with 7 if E is the multiset of all
equations occurring in L(7), and s % t is the only disequation occurring in L(7).

We recall that any element of L(7) has either the form p ~ ¢, D - {}, or the form p % ¢,D - {},
where D does not contain equations or disequations.

Lemma A.20 Let F Fy s ~ t is a rigid equation associated with a derivation 7 of a solution
constraint clause C' - C. Then C is an answer constraint for K Fy s ~ t.

Proof. Straightforward. O

Combining Lemmas A.18 and A.20, we obtain

Lemma A.21 Let F Fy s ~ t is a rigid equation associated with a derivation 7 of a solution
constraint clause C' - C' and 7 be a substitution such that C’ - n is satisfiable. Then there exists a
constraint C"” C C' such that C"n is an answer constraint for (E by s ~ t)n.

Definition A.22 (ay-expansion)
Let a tableau T" be obtained from a tableau T' by a sequence of a- and ~y-rules. Then T" is called
an ary-ezxpansion of T.

Lemma A.23 Let I} | ... | ', be an ay-expansion of I'y | ... | T',. Then I'; C T, for all
ie{l,...,n}.
Proof. Obvious. O

Let us introduce a technical definition.
Definition A.24 Let F Fy s ~ t be a rigid equation. Its clause form is the clause F, s % t.
Finally, we come to the proof of the main theorem.

Theorem 4.6 Let £ be a sentence in Skolem negation normal form. Then £ is unsatisfiable iff
there is a tableau T obtained from £ by tableau expansion rules with the following property. Let
I'y,...,I';, be all branches of T'. Then there exist answer constraints Cq,...,C, for I'y,..., T,
respectively, such that C; U ... UC, is satisfiable.

Proof. The soundness part is proven in Section 4. We only prove the completeness part. Let &
be unsatisfiable. By Theorem A.15, there exist a named &-tableau Cy | ... | C, obtained from
the initial named ¢-tableau by é-expansion rules and answer constraints CY,...,C° for Cy,...,C,,
respectively, such that C? U... U CY is satisfiable. By Definition A.14 of answer constraints, there
exist solution constraint ¢-clauses Cf - Cy,...,C} - C) and substitutions n,...,n, such that

34 A Degtyarev and A.Voronkov. What you always wanted to know about rigid E-unification.

1. var(C;) Nwar(C} - Ch) = 0;

2. dom(n;) = var(Cy);
3. Clpi = CY C G

Without loss of generality we can assume that var(C;}-C;) Nvar(C}-C;) = 0, whenever i # j. Hence,
we can introduce the substitution n =n; U... Un,.

Let Iy | ... | I}, be the image of C; | ... | C). By Lemma A.17, there is a tableau I'{ | ... | '},
obtained from ¢ by tableau expansion rules such that I'; C TV, for all s € {1,...,n}.

Let 71,...,7, be derivations of C{ -C{,...,C) - Cl, respectively in the tree form. Let 7 be the
multiset 79,...,7, of trees. Let L(7) be the multiset of leaves in 7. We assume any two members
of L(7) have disjoint sets of variables. Since I'{ | ... | T'! is derived from the closed formula &, we

can also assume that

var(t) Nwar(TY | ... | Th) = 0. (A.4)

Let for all 7 € {1,...,n} the rigid equation E; Fy s; ~ t; be associated with 7; and E;, s; % t; be
its clause form.

Now we shall construct an ay-expansion Ty | ... | T of T | ... | T2 such that (E;, s; % ti)n C Ty,
for all i € {1,...,n}.
Let Ly,...,L; be the multiset of all equations and disequations in the leaves of 7. We shall
construct the required I'y | ... | ', using a sequence of ary-expansions
0 0
YL = réli...ré;
| A IV N P
l I
. P =1)...|T,

During the construction we shall satisfy the following conditions:

1. For every 7,7 with 1 <7 <[l and 1 <j <n, if L; is in the leaf of 7;, then L;n is on the branch
7.

70

2. For every 7 with 1 <7 <[we have

var(CD | TOY M war(Lig, ..., L) =0
(Initially, this condition holds by (A.4).)

It is straightforward to check that the first condition implies that I'y, ..., ', is the required tableau.

Suppose that we have already constructed the tableau ng) | ... 1“,(7,’“) for k < 1. We show how
to construct ngﬂ) | ... 1“51’““). Let Ly, is in the leaf of the tree 7. Then this leaf has the form

Lg11, D - {} such that D C C! and Cln = C? C C;.
There are two possible cases: either D # () or D = ().

1. Let y = var(Lgy1) and & = var(D) and Lgy1(y), D(z)-{} be a variant of an initial constraint
¢-clause Liy1(2), A (Zm)-{}. Then Dn = A,,(zn) C C;. Let &, (zn) be the image of A, (zn).

"

By the construction of I'/, we have &, (zn) € TV since A,,(zn) € C;.

There are two possible cases.

35 Appendiz A. Proof of the completeness theorem

(a) Lk11(2) = &n(Zm). In this case we define ngﬂ) | ... T as ng) | ... Tk,

(b) Lgy1(2) is a proper subformula of &,,(%,,) (whose {-name is Ay, (%,,). Then apply
Lemma A.6. To this end we let

":b = fm('fm)

¢ = Lpy1(2)

Y = &n(Tn) = En(Tm) {20/ Tm }
n' ={zn/Tm}

@' = Lpy1(yn) = Ly (2)1
=1 1P

Let us check that the condition of Lemma A.6

var(T) N (var(y') \ var(y')) =0

is satisfied. Let v be any variable such that v € var(yn) and v € var(zn). If v belongs
to g then v & var(T) since by the construction of T' we have var(T) N var(Lgy1) = 0.
Hence, it is enough to prove that v belongs to g.

Suppose, by contradiction, that v does not belong to y. Using v € var(yn), we obtain
v € var(zn), since dom(n) N (z Uy) = z. This contradicts v & var(zn).

Thus, we can apply Lemma A.6 and deduce the tableau ngﬂ) | ...] Fgﬂ'l).

To guarantee the condition

var(ngH) A NDEDY N var(Lygo, ... L) =0

we can require that variables introduced by vy-rules when we come from ng) | ... 1“5{“)

to F(lkH) | ...] ¥ do not belong to the set var(Lgio,...,L;).

2. Case D = (). Analogous, but using Lemma A.7 instead of Lemma A.6.
Thus, we have constructed an ay-expansion T'y | ... | Ty of TY | ... | T such that (E;,s; %

ti)n C Ty, for all 4 € {1,...,n}. Then the set of rigid equations on I'; contains a rigid equation
E!,Eintv (si ~ t;)n, where E! is a multiset of equations. Evidently, the set of answer constraints
for E!, E;n Fy (s; ~ t;)n contains all answer constraints for E;n by (s; ~ ¢;)n. By Lemma A.20,
C} is an answer constraint for F; by s; ~ t;. Since C)n is satisfiable, by Lemma A.21 there exists
a constraint C;' C C; such that C;'n is an answer constraint for (E; Fy s; ~ t;)n. Hence, C;'n is an
answer constraint for I';. Since U,eq1,..) Cjn is satisfiable, then ;e) Ci'n is also satisfiable.
Evidently, the constraints C; = C{n,...,C, = Cl/n satisfy the claim of the theorem. O

