
UPMAIL Technical Report No. 143April 4, 1997

What You Always Wanted to Know AboutRigid E-Uni�cation
Anatoli Degtyarev�Andrei VoronkovyComputing Science DepartmentUppsala UniversityBox 311, S-751 05 Uppsala,Swedenemail fanatoli,voronkovg@csd.uu.se

�Supported by grants from INTAS, TFR and the Swedish Royal Academy of SciencesySupported by a TFR grant



AbstractThis paper solves an open problem posed by a number of researchers: the construction of a completecalculus for matrix-based methods with rigid E-uni�cation. The use of rigid E-uni�cation andsimultaneous rigid E-uni�cation for such methods has been proposed by Gallier, Raatz and Snyder[36]. After our proof of the undecidability of simultaneous rigid E-uni�cation [27] it has becomeclear that one should look for more re�ned techniques to deal with equality in matrix-based methods.In this article, we de�ne a complete proof procedure for �rst-order logic with equality based on anincomplete but terminating procedure for rigid E-uni�cation. Our approach is applicable to theconnection method and the tableau method and illustrated on the tableau method.



1 Section 1. Introduction
Section 1IntroductionAlgorithms for theorem-proving based on matings or tableaux in �rst-order logic without equalitycomprise two kinds of rules. Rules of the �rst kind construct matrices or tableaux from a givenformula using a suitable ampli�cation. Rules of the second kind try to close paths or branchesusing substitutions making the paths or branches inconsistent. These substitutions are uni�ers ofsome atoms laying on a path or branch. Until recently, most approaches to introducing equalityin such matrix-based methods tried to generalize such algorithms by a suitable modi�cation of thenotion of a uni�er.Such a modi�cation using simultaneous rigid E-uni�cation was introduced by Gallier, Raatzand Snyder [36] for the method of matings due to Andrews [1] or the connection method due toBibel [12]. It can easily be represented in the tableau formalism. The method of matings interleavestwo steps: ampli�cation by quanti�er duplication and search for mating for a given ampli�cation.For formulas in disjunctive normal form this method was formulated earlier by Prawitz [59]. In thiscase ampli�cation is represented by a matrix and mating is represented by a set of simultaneouslysatis�able substitution conditions (mated pairs). Prawitz proposed a procedure for constructingsubstitution conditions one by one, closing the corresponding paths in the matrix through searchwith backtracking. Procedures of this kind were used in later formalizations and implementationsof the tableau method, the method of matings or the connection method for formulas withoutequality. For example, Fitting [32] formulates this via an inference rule called MGU atomic closurerule.Gallier, Raatz and Snyder [36] tried to describe a similar procedure for logic with equality. Forexample, Gallier et.al. [34] describe such a procedure in which a substitution condition is formalizedvia rigid E-uni�cation, and the set of substitution conditions via simultaneous rigid E-uni�cation.Simultaneous rigidE-uni�cation can be formulated as follows. Given equations si ' ti and �nitesets of equations Ei, i 2 f1; : : : ; ng, �nd a substitution � such that ` (Ve2Ei e�) � si� ' ti�, for alli (here ` means provability in �rst-order logic with equality). The corresponding instance of thesimultaneous rigid E-uni�cation problem is denoted by the system of rigid equations Ei `8 si ' ti.Example 1.1 In this and further examples we shall often omit parentheses in terms with unaryfunction symbols, for example we write ffb instead of f(f(b)). Assume that we want to provethe formula ' = 9xyzu((a ' b � g(x; u; v) ' g(y; fc; fd)) ^(c ' d � g(u; x; y) ' g(v; fa; fb))).After several applications of tableau expansion rules to the negation normal form of :' (�-, �-and 
-rules in the terminology of Smullyan [63] or Fitting [32]) we obtain the following tableau (weonly consider the part of the tableau containing literals, omitting non-literal formulas):



2 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.��������� PPPPPPPPPa ' b c ' dg(x; u; v) 6' g(y; fc; fd) g(u; x; y) 6' g(v; fa; fb)Collecting formulas lying on the two branches in this tableau we obtain the following two rigidequations expressing inconsistency of this tableau:a ' b `8 g(x; u; v) ' g(y; fc; fd)c ' d `8 g(u; x; y) ' g(v; fa; fb)This system of rigid equations has one solution ffa=x; fb=y; fc=u; fd=vg. This substitution can befound by applying the functional re
exivity rule and MGU replacement rule of [32] (in fact, thereformulation of the paramodulation rule for tableaux). Obviously, this tableau cannot be closedwithout the use of the functional re
exivity.1Since the invention of simultaneous rigid E-uni�cation by Gallier, Raatz and Snyder [36], there werea number of publications on simultaneous rigid E-uni�cation itself and its use in theorem proving,for example Gallier et.al. [35, 37, 33, 34], Baumgartner [5], Beckert and H�ahnle [11], Becher andPetermann [8], Beckert [9], Goubault [39] and Petermann [56]. Some of these articles were based onthe conjecture that simultaneous rigid E-uni�cation is decidable. There were several faulty proofsof the decidability of this problem (e.g. [35, 33, 39]).The refutation procedure for �rst-order logic with equality using simultaneous rigid E-uni�-cation (e.g. Gallier et.al. [34]) was based on a faulty assumption that solutions to simultaneousrigid E-uni�cation can be found by consecutive combination of �nite complete sets of solutionsfor (non-simultaneous) rigid E-uni�cation [33, 35]. Later we [23, 27] proved that simultaneousrigid E-uni�cation is undecidable, which implied that Gallier et.al.'s procedure cannot, in general,�nd solutions to simultaneous rigid E-uni�cation. However, it is not clear whether this impliesincompleteness of this procedure for �rst-order logic with equality: there are examples when theirprocedure cannot �nd a solution for a given ampli�cation in spite that such a solution exists, butcan �nd a solution for a bigger ampli�cation. Completeness of Gallier et.al.'s procedure or existenceof a procedure complete for �rst-order logic with equality based on some set of solutions to rigidE-uni�cation was an open problem (see e.g. Petermann [56] and Beckert [10]). Our paper gives apositive solution to this problem.An advantage of Gallier et.al.'s procedure is that it allows one to extend the proof-searchtechnology developed for tableaux without equality to the case with equality, using solutions torigid E-uni�cation instead of most general uni�ers. In particular, for a given ampli�cation Gallier1The system of clauses corresponding to this example improves a result proved in Plaisted [58] by using a morecomplicated example. In this system of clausesa ' b _ c ' da ' b _ g(u; x; y) 6' g(v; fa; fb)c ' d _ g(x; u; v) 6' g(y; fc; fd)g(x; u; v) 6' g(y; fc; fd) _ g(u; x; y) 6' g(v; fa; fb)there is no refutation even by unrestricted rigid paramodulation (i.e. using non-ordered rigid paramodulation andparamodulation into variables), while Plaisted [58] gives an example showing incompleteness of ordered rigid paramod-ulation only.



3 Section 1. Introductionet.al.'s procedure always terminates. A procedure of this kind is used in the theorem prover 3TAP[40] (R.H�ahnle, private communication).In this paper we de�ne a procedure extending the tableau method to logic with equality basedon an incomplete procedure for rigid E-uni�cation. Nevertheless, our procedure is complete for�rst-order logic with equality. Hence, we rehabilitate Gallier et.al.'s program for adding equalityto semantic tableaux. Moreover, our procedure solves rigid equations laying on di�erent tableaubranches independently. This strongly improves Gallier et.al.'s procedure which uses solutions ofsome rigid equations to solve rigid equations on other branches.A similar approach has already been de�ned by Kanger [41] based on a more straightforwardway of variable instantiation. As a method for �nding a closing substitution, Kanger proposed analgorithm which can now be characterized as an incomplete (but terminating) algorithm for simul-taneous rigid E-uni�ability. Variables in a matrix (or a tableau) could be consecutively substitutedby ground terms already occurring in the matrix. This procedure does not solve simultaneous rigidE-uni�ability, but it gives a procedure complete for �rst-order logic with equality. In the terminol-ogy of Fitting [32] it means that a closing substitution can be found after a su�ciently high (butnot necessarily minimal) number of applications of the 
-rule. The approach to substitutions basedon this idea has been characterized as minus-normalization in Matulis [49] and Maslov [48].However, for a language with function symbols minus-normalization is interesting mostly theo-retically. Even in simplest cases, minus-normalization requires a huge number of instantiations. Forexample, in the tableau of Example 1.1, we have to consider 84 possible instantiations of variablesx; y; u; v by terms in the set fa; b; c; d; fa; fb; fc; fdg. Moreover, it was proved that the use of minus-normalization can lead to considerable growth of derivations. Some results on minus-normalizationare proved by Norgela [55].In this paper we describe a logical calculus BSE for rigid E-uni�cation based on the rigidbasic superposition rule that is an adaptation of basic superposition of Bachmair et.al. [3] andNieuwenhuis and Rubio [52], for \rigid" variables. For a given rigid E-uni�cation problem (calledrigid equation in this paper), there is only a �nite number of BSE-derivations for this problem.Thus, BSE gives us an algorithm returning a �nite set of solutions to this rigid equation. We usethese solutions to close a tableau branch in the same way as most general uni�ers are used to closea branch in the MGU atomic closure rule of Fitting [32].



4 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.
Section 2PreliminariesWe present here a brief overview of notions and preliminary de�nitions necessary for understandingthe paper. We assume basic knowledge of substitutions and uni�cation.Let � be a signature, and X be a set of variables. T (�;X) denotes the set of all terms in thesignature � with variables from X. The set of all ground terms in the signature � is denoted byT (�).A literal is either an atomic formula or a negation of an atomic formula. An equation is a literals ' t, where s; t 2 T (�;X). We do not distinguish equations s ' t and t ' s. Literals of the form:(s ' t) are denoted by s 6' t and called disequations. For simplicity, we assume that ' is theonly predicate symbol of our �rst-order language. As usual, arbitrary �rst-order languages can berepresented in such language by introducing a sort bool and replacing any non-equational atom Aby A ' true (for details see e.g. [4]).By a ground expression (i.e. term or literal) we mean an expression containing no variables. Forany expression E, var(E) denotes the set of all variables occurring in E. For a sequence of variables�x, we shall sometimes denote �x also the corresponding set of variables. We write A[s] to indicatethat an expression A contains s as a subexpression and denote by A[t] the result of replacing thisoccurrence of s in A by t. By A� we denote the result of applying the substitution � to A. If A isa formula, we can as usual rename bound variables in A before applying �. We shall denote '(x) aformula ' with zero or more free occurrences of a variable x and write '(t) to denote the formula'ft=xg.A substitution � whose domain is a subset of fx1; : : : ; xng is denoted by fx1�=x1; : : : ; xn�=xng.A substitution � is called grounding for a set of variables V i� for every variable v 2 V the termv� is ground.Let �1 and �2 be two substitutions with disjoint domains, The union of �1 and �2, denoted�1 [ �2 is the substitution � de�ned as follows. For every variable v we have�(v)*) 8><>: �1(v) if v 2 dom(�1)�2(v) if v 2 dom(�2)v if v 62 dom(�1) [ dom(�2)Note that we use the union notation �1 [ �2 only for substitutions with disjoint domains.The inference systems used in this paper are de�ned with respect to a reduction ordering,denoted by � which is total on ground terms. Our results are valid for any such ordering.A formula is in the Skolem negation normal form i� it is constructed from literals using theconnectives ^;_ and the quanti�er 8. There is a satis�ability-preserving structure-preserving trans-lation of formulas without equivalences into formulas in Skolem negation normal form consisting



5 Section 2. Preliminariesof the standard skolemization and a translation into negation normal form used e.g. in Andrews[1]. In order to prove an arbitrary formula ', we translate :' in Skolem negation normal formobtaining a formula  and try to establish unsatis�ability of  . For this reason, theorems in thispaper are formulated in terms of unsatis�ability.For an equation s ' t and a multiset of equations E we write E ` s ' t to denote that theformula (Ve2E e) � s ' t is provable in �rst-order logic with equality. For such formulas provabilitycan be tested by the congruence closure algorithm [62]. For the inclusion of multisets we shall usenotation S1 v S2.



6 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.
Section 3Rigid basic superpositionThe term \rigid paramodulation" has already been used by Becher and Petermann [8] and Plaisted[58] for systems of inference rules in which all variables are treated as \rigid". For example, rigidclause paramodulation of Plaisted [58] is essentially paramodulation and resolution over a set ofclauses, where all substitutions are applied to the whole set of clauses. A similar system forresolution has been proposed earlier by Chang [15] as V-resolution and by Chang and Lee [43]for resolution with paramodulation as V-resolution and V-paramodulation. We shall use the term\rigid basic superposition" to denote a \rigid" version of basic superposition. We formalize rigidbasic superposition using constraints that is close to the presentation of Nieuwenhuis and Rubio[54].De�nition 3.1 (Constraints)By an (ordering) constraint we mean a set of expressions which can be of two kinds: an equalityconstraint s ' t, or an inequality constraint s � t, where s; t are terms. A substitution � is asolution to a constraint s ' t (respectively, a constraint s � t) i� � is grounding for var(s)[ var(t)and s� coincides with t� (respectively, s� � t�).A substitution � is a solution to a constraint C i� � is a solution to every equality or inequalityconstraint in C. A constraint C is satis�able i� it has a solution. Constraints C1 and C2 are calledequivalent i� they have the same sets of solutions.We assume that there is an e�ective procedure for checking constraint satis�ability. For example,there are e�cient methods for solving ordering constraints for lexicographic path orderings givenby Nieuwenhuis [53] and Nieuwenhuis and Rubio [54].De�nition 3.2 A rigid equation is an expression of the form E `8 s ' t, where E is a �nitemultiset of equations and s; t are terms. Its solution is any substitution � such that E� ` s� ' t�1.Below we shall introduce a system BSE for solving rigid equations. The derivable objects ofBSE are constraint rigid equations:De�nition 3.3 (Constraint rigid equation)A constraint rigid equation is a pair consisting of a rigid equation R and a constraint C. Such aconstraint rigid equation will be denoted R � C.1The term \rigid equation" could be more adequately expressed as \instance of a (non-simultaneous) rigid E-uni�cation problem", but this would be too lengthy.



7 Section 3. Rigid basic superpositionDe�nition 3.4 (Calculus BSE)The calculus BSE of constraint rigid equations consists of the following inference rules:Left rigid basic superposition:E [ fl ' r; s[p] ' tg `8 e � CE [ fl ' r; s[r] ' tg `8 e � C [ fl � r; s[p] � t; l ' pg (lrbs)Right rigid basic superposition:E [ fl ' rg `8 s[p] ' t � CE [ fl ' rg `8 s[r] ' t � C [ fl � r; s[p] � t; l ' pg (rrbs)Equality resolution: E `8 s ' t � C`8 s ' s � C [ fs ' tg (er)Application of all the rules is restricted to the following conditions:1. The constraint at the conclusion of the rule is satis�able;2. The right-hand side of the rigid equation at the premise of the rule does not have the formq ' q.3. In the basic superposition rules, the term p is not a variable.4. In the left basic superposition rule, s[r] 6= t.The basic restriction in BSE is formalized by representing most general uni�ers through equalityconstraints. Condition 1 has two purposes. The satis�ability of equations in constraints is needed topreserve correctness of the method. The satis�ability of inequality constraints is needed to ensuretermination (Theorem 3.9 below). Conditions 3{4 are not essential, they is added as standardoptimizations used in paramodulation-based methods. Condition 2 prohibits to apply any rules torigid equations of the form E `8 q ' q.We denote by R � C ; R0 � C0 the fact that R0 � C0 is obtained from R � C by an application of oneof the inference rules of BSE . The symbol ;� denotes the re
exive and transitive closure of ;.Example 3.5 Consider the rigid equation ha ' a; hx ' a; hb ' fy `8 y ' gfy. The ordering �is the Knuth-Bendix ordering (see Martin [46]) in which all weights of symbols are equal to 1 andwhich uses the precedence relation f > h > b > a. Under this ordering we have ht � a and ft � hbfor every ground term t. The following is a BSE-derivation for this rigid equation:ha ' a; hx ' a; hb ' fy `8 y ' gfy � ;ha ' a; hx ' a; hb ' fy `8 y ' ghb � ffy � hb; gfy � y; fy ' fyg (rrbs)ha ' a; hx ' a; hb ' fy `8 y ' ga�ffy � hb; gfy � y; fy ' fy; hx � a; ghb � y; hx ' hbg (rrbs)`8 y ' y � ffy � hb; gfy � y; fy ' fy; hx � a; ghb � y; hx ' hb; y ' gag (er)



8 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.By using constraint simpli�cation, i.e. replacement of constraints by equivalent \more simple"constraints we can rewrite this derivation asha ' a; hx ' a; hb ' fy `8 y ' gfy � ;ha ' a; hx ' a; hb ' fy `8 y ' ghb � ; (rrbs)ha ' a; hx ' a; hb ' fy `8 y ' ga � fghb � y; x ' bg (rrbs)`8 y ' y � fx ' b; y ' gag (er)Theorem 3.6 (Soundness of BSE)Let R � ;;� E `8 t ' t � C. Then any substitution satisfying C is a solution to R. In particular, Ris solvable.Proof. For any constraint C, denote by C' the constraint obtained from C be removing all inequalityconstraints. First we note that for every application of an inference rule of BSE of the formE1 `8 e1 � C1 ; E2 `8 e2 � C2 we have E1;:e1; C'2 ` E2;:e2. By induction on the number ofinference steps and using the fact Ci � Ci+1, we prove the same statement for multi-step derivationsE1 `8 e1 � C1 ;� E2 `8 e2 � C2.Let R have the form E0 `8 r ' s. Applying the obtained statement to multi-step derivations,we get E0; r 6' s; C' ` E; t 6' t. Hence, E0; C' ` r ' s. Let � be any solution to C. We haveE0�; C'� ` r� ' s�. Any constraint in C'� has the form u ' u. Hence, E0� ` r� ' s�, i.e. � is asolution to E0 `8 r ' s. 2This theorem leads to the following de�nition:De�nition 3.7 (Answer constraint)A constraint C is called an answer constraint for a rigid equation R i� for some rigid equationE `8 t ' t we have R � ;;� E `8 t ' t � C.We note that BSE is an incomplete calculus for solving rigid equations. It means that thereare solvable rigid equations R that have no answer constraint. For instance, consider the rigidequation2 x ' a `8 gx ' x. It has one solution fga=xg. However, no rule of BSE is applicable tox ' a `8 gx ' x � ;.This means that BSE can yield less solutions to a rigid equation than any other known proce-dure, for example that of Gallier et.al. [34] because all these procedures are existentially complete.At the same time, BSE can yield more solutions than the procedure of [34] as the following exam-ple shows. For the rigid equation a ' fa `8 x ' fa the procedure of [34] will �nd one solutionfa=xg, but there are two answer constraints whose solutions are the substitutions fa=xg and ffa=xgrespectively.In order to show that there is only �nite number of derivations in BSE from a given constraintrigid equation, we prove an auxiliary statement.Lemma 3.8 Let t0; t1; : : : be an in�nite sequence of terms in a �nite signature all whose variablesbelong to a �nite set. Then there are numbers i; j such that i < j and the constraint ti � tj isunsatis�able.Proof. Following Kruskal [42] we introduce a partial ordering � on terms as the smallest re
exiveand transitive relation satisfying2Suggested by G.Becher (private communication).



9 Section 3. Rigid basic superposition1. f(s1; : : : ; sn) � si for all i 2 f1; : : : ; ng;2. if s � t then r[s] � r[t].By Kruskal's Tree Theorem [42] there exist i; j such that i < j and tj � ti. It is easy to see thatthe constraint ti � tj is unsatis�able. 2Similar statements have been proven by Dershowitz [16] and Plaisted [57].Theorem 3.9 (Termination of BSE)For any constraint rigid equation R � C, there exists a �nite number of derivations from R � C.Proof. Suppose that there exists an in�nite number of derivations from R � C. Then, by K�onig'slemma there exists an in�nite derivation R �C = R0 �C0 ; R1 �C1 ; : : : consisting of superpositions.Consider any application of superposition Ri � Ci ; Ri+1 � Ci+1. Let it have the formE [ fl ' r; s[p] ' tg `8 e � CiE [ fl ' r; s[r] ' tg `8 e � Ci+1 (lrbs)(the case of right rigid basic superposition is similar). We prove that for every n � i + 1 theconstraint Cn is equivalent to Cn[fs[p] � s[r]g. Indeed, the constraint Ci+1 (and hence the constraintCn) contains fl � r; l ' pg. By the de�nition of reduction orderings, if p � r, then s[p] � s[r]. Thisimplies that Cn is equivalent to Cn [ fs[p] � s[r]g.Since every application of rigid basic superposition replaces a literal s[p] ' t (or s[p] 6' t) inRi by a literal s[r] ' t (respectively, s[r] 6' t), there is an in�nite sequence of terms t0; t1; : : :and an increasing sequence of natural numbers n1; n2; : : : with the following property. For everypositive natural number k the constraint Cnk [ ftk�1 � tkg is equivalent to Cnk . Since all termstk are in the same �nite signature and have variables in the same �nite set, by Lemma 3.8, thereare i; j such that i < j and the constraint ti � tj is unsatis�able. Since Cnk � Cnj for all k � j,the constraint Cnj [ ftk1 � tkg is equivalent to Cnj , for all k � j. Hence, the constraint C =Cnj [ fti � ti+1; : : : ; tj�1 � tjg is equivalent to Cnj . Thus, C is satis�able. But satis�ability of Cimplies satis�ability of ti � tj . Contradiction. 2Note. In Degtyarev and Voronkov [25] the left rigid basic superposition has been formulatedincorrectly in the following way:E [ fl ' r; s[p] ' tg `8 e � CE [ fl ' r; s[p] ' t; s[r] ' tg `8 e � C [ fl � r; s[p] � t; l ' pg (lrbs)With this formulation, termination is not guaranteed as the following example shows. Considerthe rigid equation fgx ' gx; gx ' a `8 a ' b and arbitrary reduction ordering � total on groundterms. We have the following is an in�nite sequence of applications of (lrbs):fgx ' gx; gx ' a `8 a ' b � ;fgx ' gx; gx ' a; gx ' fa `8 a ' b � fgx ' gx; fgx � gx; gx � ag (lrbs)fgx ' gx; gx ' a; gx ' fa; gx ' ffa `8 a ' b � fgx ' gx; fgx � gx; gx � a; gx � fag (lrbs)...fgx ' gx; gx ' a; gx ' fa; gx ' ffa; : : : ; gx ' fna`8 a ' b � fgx ' gx; fgx � gx; gx � a; gx � fa; : : : ; gx � fn�1ag...



10 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.It is easy to see that the constraint fgx ' gx; fgx � gx; gx � a; gx � fa; : : : ; gx � fn�1ag is satis-�ed by the substitution ffn�1a=xg.Inequality constraints are not needed for soundness or completeness of our method. The prag-matics behind inequality constraints is to ensure that the search for solutions of a rigid equation is�nite. In addition, the use of ordering constraints prunes the search space.To illustrate this theorem, we consider Example 3.5. The rigid equation of this example hasan in�nite number of solutions including fb=x; ghna=yg, for every natural number n. However, allpossible BSE-derivations starting with ha ' a; hx ' a; hb ' fy `8 y ' gfy � ; give only two answerconstraints, one isffy � hb; gfy � y; fy ' fy; hx � a; ghb � y; hx ' hb; y ' gagshown in Example 3.5, another is ffy � hb; gfy � y; fy ' fy; y ' ghbg obtained from the followingderivation: ha ' a; hx ' a; hb ' fy `8 y ' gfy � ;ha ' a; hx ' a; hb ' fy `8 y ' ghb � ffy � hb; gfy � y; fy ' fyg (rrbs)`8 y ' y � ffy � hb; gfy � y; fy ' fy; y ' ghbg (er)This answer constraint can be simpli�ed to fy ' ghbg.Theorem 3.9 yieldsTheorem 3.10 Any rigid equation has a �nite number of answer constraints. There is an algorithmgiving by any rigid equation R the set of all answer constraints for R.



11 Section 4. Answer constraints and the tableau method
Section 4Answer constraints and the tableaumethodIn this section we consider how to use the system BSE for theorem proving by the tableau method.Since we only consider skolemized formulas, we have no �-rules in tableau calculi.De�nition 4.1 (Branch and tableau)A branch is a �nite multiset of formulas. A tableau is a �nite multiset of branches. A tableau withbranches �1; : : : ;�n will be denoted by �1 j : : : j �n. The tableau with n = 0 is called the emptytableau and denoted by #.Often, tableaux are presented in the tree form. Representation of tableaux as multisets ofbranches is more convenient for us for several reasons. For this representation we introduce alogical system allowing to expand tableaux:De�nition 4.2 (Tableau expansion rules)The rules (�), (�) and (
) of Figure 4.1 are called tableau expansion rules.De�nition 4.3 Let � be a branch of a tableau. The set of rigid equations on � is de�ned in thefollowing way. A rigid equation E `8 s ' t is on � i� E is the multiset of all equations in � and(s 6' t) 2 �.We extend the notion of answer constraints to tableau branches:�1; ' ^  j : : : j �n�1; ' ^  ;';  j : : : j �n (�) �1; ' _  j : : : j �n�1; ' j �1;  j : : : j �n (�)�1;8x'(x) j : : : j �n�1;8x'(x); '(y) j : : : j �n (
)In the rules (
) the variable y does not occur in the premise.Figure 4.1: Tableau Expansion Rules



12 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.De�nition 4.4 A constraint C is an answer constraint for a tableau branch � i� C is an answerconstraint for some rigid equation on �.By Theorem 3.10, we obtainTheorem 4.5 Any tableau branch has a �nite number of answer constraints. There is an algorithmgiving by any tableau branch � the set of all answer constraints for �.The following theorem states soundness and completeness of the tableau method with answerconstraints:Theorem 4.6 (Soundness and completeness)Let � be a sentence in Skolem negation normal form. Then � is unsatis�able i� there is a tableauT obtained from � by tableau expansion rules with the following property. Let �1; : : : ;�n be allbranches of T . Then there exist answer constraints C1; : : : ; Cn for �1; : : : ;�n, respectively, such thatC1 [ : : : [ Cn is satis�able.Proof. Soundness follows from soundness of BSE .The proof of completeness is quite lengthy and is given in Appendix A. It is based on thecompleteness of the equality elimination method [19, 21, 26]. 2To illustrate this theorem, consider the formula of Example 1.1. Assume that we want to provethe formula � = 9xyzu((a ' b � g(x; u; v) ' g(y; fc; fd)) ^ (c ' d � g(u; x; y) ' g(v; fa; fb))).The negation normal form of :� is 8xyzu((a ' b ^ g(x; u; v) 6' g(y; fc; fd)) _ (c ' d ^ g(u; x; y) 6'g(v; fa; fb)))The ordering � is the lexicographic path ordering (see e.g. [54]) based on the precedence g >f > a > b > c > d. For purely illustrative purpose, we shall display tableaux in the tree form.After one quanti�er duplication (application of a 
-rule) and some other tableau expansion ruleswe obtain the following tableau: ��������� PPPPPPPPPa ' b c ' dg(x; u; v) 6' g(y; fc; fd) g(u; x; y) 6' g(v; fa; fb)There is one rigid equation on each branch of the tableau:a ' b `8 g(x; u; v) ' g(y; fc; fd) (4.1)c ' d `8 g(u; x; y) ' g(v; fa; fb) (4.2)Rigid basic superposition is applicable to none of this rigid equations. Rigid equation (4.1) has oneanswer constraint fg(x; u; v) ' g(y; fc; fd)g obtained by an application of the equality resolutionrule:



13 Section 4. Answer constraints and the tableau methoda ' b `8 g(x; u; v) ' g(y; fc; fd) � ;`8 g(x; u; v) ' g(x; u; v) � fg(x; u; v) ' g(y; fc; fd)g (er)Similarly, rigid equation (4.2) has one answer constraint fg(u; x; y) ' g(v; fa; fb)g. The unionof these constraints fg(x; u; v) ' g(y; fc; fd); g(u; x; y) ' g(v; fa; fb)g is unsatis�able. Thus, ourmethod does not �nd solution after one quanti�er duplication. After three quanti�er duplicationsand some other tableau expansion steps we obtain the following tableau:�������� PPPPPPPP���� QQQQa ' b c ' dg(x1; u1; v1) 6' g(y1; fc; fd) g(u1; x1; y1) 6' g(v1; fa; fb)��� QQQa ' b c ' dg(x2; u2; v2) 6' g(y2; fc; fd)g(u2; x2; y2) 6' g(v2; fa; fb)
��� QQQ c ' da ' b g(u3; x3; y3) 6' g(v3; fa; fb)g(x3; u3; v3) 6' g(y3; fc; fd)It has four branches:�1 : fa ' b; a ' b; g(x1; u1; v1) 6' g(y1; fc; fd); g(x2; u2; v2) 6' g(y2; fc; fd)g�2 : fa ' b; c ' d; g(x1; u1; v1) 6' g(y1; fc; fd); g(u2; x2; y2) 6' g(v2; fa; fb)g�3 : fa ' b; c ' d; g(u1; x1; y1) 6' g(v1; fa; fb); g(x3; u3; v3) 6' g(y3; fc; fd)g�4 : fc ' d; c ' d; g(u1; x1; y1) 6' g(v1; fa; fb); g(u3; x3; y3) 6' g(v3; fa; fb)gConsider the following rigid equations R1{R4 on the branches �1{�4, respectively:R1 : a ' b; a ' b `8 g(x2; u2; v2) ' g(y2; fc; fd)R2 : a ' b; c ' d `8 g(x1; u1; v1) ' g(y1; fc; fd)R3 : a ' b; c ' d `8 g(u1; x1; y1) ' g(v1; fa; fb)R4 : c ' d; c ' d `8 g(u3; x3; y3) ' g(v3; fa; fb)We can apply the following BSE-derivations to R1{R4:a ' b; a ' b `8 g(x2; u2; v2) ' g(y2; fc; fd) � ;`8 g(x2; u2; v2) ' g(x2; u2; v2) � fg(x2; u2; v2) ' g(y2; fc; fd)g (er)a ' b; c ' d `8 g(x1; u1; v1) ' g(y1; fc; fd) � ;a ' b; c ' d `8 g(x1; u1; v1) ' g(y1; fd; fd)�fc � d; g(y1; fc; fd) � g(x1; u1; v1); c ' cg (rrbs)`8 g(x1; u1; v1) ' g(x1; u1; v1)�fc � d; g(y1; fc; fd) � g(x1; u1; v1); c ' c; g(x1; u1; v1) ' g(y1; fd; fd)g (er)



14 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.a ' b; c ' d `8 g(u1; x1; y1) ' g(v1; fa; fb) � ;a ' b; c ' d `8 g(u1; x1; y1) ' g(v1; fb; fb)�fa � b; g(v1; fa; fb) � g(u1; x1; y1); a ' ag (rrbs)`8 g(u1; x1; y1) ' g(u1; x1; y1)�fa � b; g(v1; fa; fb) � g(u1; x1; y1); a ' a; g(u1; x1; y1) ' g(v1; fb; fb)g (er)c ' d; c ' d `8 g(u3; x3; y3) ' g(v3; fa; fb) � ;`8 g(u3; x3; y3) ' g(u3; x3; y3) � fg(u3; x3; y3) ' g(v3; fa; fb)g (er)The union of the answer constraints of these derivations isfg(x2; u2; v2) ' g(y2; fc; fd);c � d; g(y1; fc; fd) � g(x1; u1; v1); c ' c; g(x1; u1; v1) ' g(y1; fd; fd);a � b; a ' a; g(v1; fa; fb) � g(u1; x1; y1); g(u1; x1; y1) ' g(v1; fb; fb);g(u3; x3; y3) ' g(v3; fa; fb) gThis constraint is satis�able. To check this, we can consider the following substitution:ffb=x1; fb=y1; fd=u1; fd=v1; b=x2; b=y2; fc=u2; fd=v2; d=u3; d=v3; fa=x3; fb=y3g:



15 Section 5. Tableau basic superposition
Section 5Tableau basic superpositionAs a simple consequence of our results, we prove a completeness result for a paramodulationrule working on tableaux. A paramodulation rule working directly on tableaux was proposedby Loveland [45] in the context of model elimination and later by Fitting [32]. However, theirformulations have all disadvantages of the early paramodulation rule of Robinson and Wos [60]:1. Functional re
exivity rule is used;2. Paramodulation into variables is allowed;3. Increasing applications of paramodulation are allowed (for example, x can be rewritten tof(x).As a consequence, for a given tableau expansion there may be an in�nite sequence of paramodula-tions, in particular due to the use of functional re
exivity or increasing applications of paramodula-tion. Since the publication of Loveland's book [45], no improvements of the paramodulation-basedtableau calculi have been described except for Plaisted [58] who has shown how to transform deriva-tions with resolution and paramodulation to tableaux by introducing a tableau factoring rule.Here we show that paramodulation is complete under the following restrictions:1. No functional re
exivity is needed;2. Paramodulation into variables is not allowed;3. Orderings are used so that there are no increasing applications of paramodulation;4. Basic restriction on paramodulation that allows us to prohibit paramodulation into non-variables terms introduced by uni�cation.All these re�nements are a consequence of our main result (Theorem 4.6).In order to formalize the basic strategy, we keep the substitution condition as a set of constraints,as before. Thus, we work with constraint tableaux:De�nition 5.1 (Constraint tableau)A constraint tableau is a pair consisting of a tableau T and a constraint C, denoted T � C.Now we adapt the tableau rules of [32] to the case of constraint tableaux. For simplicity, we onlyconsider signatures whose only predicate symbol is '. When we prove a formula ', we constructthe Skolem negation normal form  of :' and, starting with the constraint tableau  � ; try toderive the empty tableau # with some satis�able constraint.



16 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.�1; ' ^  j : : : j �n � C�1; ' ^  ;';  j : : : j �n � C (�) �1; ' _  j : : : j �n � C�1; ' j �1;  j : : : j �n � C (�)�1;8x'(x) j : : : j �n � C�1;8x'; '(y) j : : : j �n � C (
) �1; s 6' t j �2 j : : : j �n � C�2 j : : : j �n � C [ fs ' tg (er)�1; l ' r; s[p] ' t j �2 j : : : j �n � C�1; l ' r; s[r] ' t j �2 j : : : j �n � C [ fl � r; s[p] � t; l ' pg (lrbs)�1; l ' r; s[p] 6' t j �2 j : : : j �n � C�1; l ' r; s[r] 6' t j �2 j : : : j �n � C [ fl � r; s[p] � t; l ' pg (rrbs)In the rules (
) the variable y does not occur in the premise. The conditions on the rules (lrbs)and (rrbs) are the same as for the corresponding rules of BSE.Figure 5.1: Calculus T BSEDe�nition 5.2 (Calculus T BSE)The free-variable tableau calculus T BSE is shown in Figure 5.1.De�nition 5.3 (Constraint tableau expansion rules)The rules (�), (�) and (
) of T BSE are called constraint tableau expansion rules.The calculus T BSE has the required completeness property:Theorem 5.4 (Soundness and completeness)Let ' be a formula in the Skolem negation normal form. It is unsatis�able i� there is a derivationfrom the constraint tableau ' � ; of a constraint tableau # � C.Proof. Straightforward from Theorem 4.6 by noting that the rules of BSE can be simulated bythe corresponding tableau rules. 2This logical system has one more pleasant property:Theorem 5.5 (Termination)For any constraint tableau T � C there is only a �nite number of derivations from T � C not usingconstraint tableau expansion rules.Proof. Similar to that of Theorem 3.9. 2This means, that for a given ampli�cation, we cannot have in�nite search. In�nite search withoutany expansion steps is possible in the Fitting's system.To illustrate the connection between the tableau rigid basic superposition rule and rules ofBSE, we reconsider the example of Section 4. On the branch containing the literal g(x1; u1; v1) 6'g(y1; fc; fd) and the equation c ' d, we can apply rigid basic superposition that adds g(x1; u1; v1) 6'g(y1; fd; fd) to the branch. Similarly, we can apply rigid basic superposition to the branch con-taining g(u1; x1; y1) 6' g(v1; fa; fb) and a ' b, obtaining g(u1; x1; y1) 6' g(v1; fb; fb). This resultsin the following tableau (the picture below does not include the constraint, it is discussed below).



17 Section 5. Tableau basic superposition�������� PPPPPPPP���� QQQQa ' b c ' dg(x1; u1; v1) 6' g(y1; fc; fd) g(u1; x1; y1) 6' g(v1; fa; fb)��� QQQa ' b c ' dg(x2; u2; v2) 6' g(y2; fc; fd)g(u2; x2; y2) 6' g(v2; fa; fb)g(x1; u1; v1) 6' g(y1; fd; fd)
��� QQQ c ' da ' b g(u3; x3; y3) 6' g(v3; fa; fb)g(x3; u3; v3) 6' g(y3; fc; fd)g(u1; x1; y1) 6' g(v1; fb; fb)After four application of the (er) rules all branches of this tableau become closed. The resultingconstraint of this derivation is the same as the union of the answer constraints shown at the end ofSection 4.



18 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.
Section 6Related workThe problem of extending tableaux with equality rules is crucial for enriching the deductive capabil-ities of the tableau method. Despite the fact that this problem is attacked by a growing number ofresearchers during the last years, known solutions are not yet convincing. At the same time tableaumethods of automated deduction play an important role in various areas of arti�cial intelligenceand computer science | see e.g. special issues of the Journal of Automated Reasoning, v. 13, no.2,3, 1994. These issues contain a survey by Schumann [61] of implementations of tableau-basedprovers. Among 24 systems mentioned in the survey only two are able to handle equality.The system PROTEIN [7] (and also KoMeT [13]) implement the modi�cation method of Brand[14]. This method transforms a set of clauses with equality into a set of clauses without equality.This transformation usually yields a considerably larger set of clauses. In particular, the symmetryand the transitivity axioms must be explicitly applied to all positive occurrences of the equalitypredicate. Recently, we proposed a new translation method based on the so-called basic foldingdemonstrated for Horn clauses in [22].According to Schumann [61], the system 3TAP uses the method of Beckert and H�ahnle [11].Paper [11] claims the completeness of the method, but this claim is not true. The method expandsthe tableau using the standard tableau rules, including 
-rules. For �nding a closing substitution, ananalog of linear paramodulation without function re
exivity has been proposed. As it is well known,linear paramodulation is incomplete without function re
exivity. The same is true for the methodof Beckert and H�ahnle [11], as the following example shows. Suppose that we prove the formula9x(a ' b ^ g(fa; fb) ' h(fa; fb) � g(x; x) ' h(x; x)). In order to prove it using paramodulation,we need to paramodulate a ' b into g(fa; fb) ' h(fa; fb). The method of Beckert and H�ahnle[11] only allows for paramodulation into copies of g(x; x) ' h(x; x) obtained by the application of
-rules. Thus, this (provable) formula cannot be proved using the method of Beckert and H�ahnle[11].Consider now approaches based on the simultaneous rigid E-uni�ability by Gallier et.al. [36, 34]and related methods. We do not consider numerous works dedicated to the non-simultaneous rigidE-uni�ability. This problem is NP-complete and there exist a number of complete algorithms forits solution (Gallier et.al. [35, 33], Goubault [38], Becher and Petermann [8], De Kogel [29] andPlaisted [58]). Since simultaneous rigid E-uni�cation is undecidable (Degtyarev and Voronkov[23, 27]), their completeness is useless from the viewpoint of general purpose theorem proving asproposed by Gallier et.al. [36, 34]. Our system BSE can easily be extended to a calculus completefor rigid E-uni�ability, but such completeness was not our aim. We tried to restrict the number ofpossible BSE-derivations preserving completeness of the general-purpose method of Section 4.It is not known whether the procedure described in Gallier et.al. [34] is complete for theorem



19 Section 6. Related workproving1. Even if it is complete, our procedure based on BSE has some advantages over Gallieret.al.'s procedure. For example, for every tableau branch with p equations and q disequations, weconsider q rigid equations, while Gallier et.al.'s procedure checks q � 2p rigid equations.Gallier et.al. [35, 33] introduced the notion of a complete set of solutions for rigid E-uni�cation,proved �niteness of such sets and gave an algorithm computing �nite complete set of solutions.According to this result, Goubault [39] proposed to solve simultaneous rigid E-uni�ability by us-ing �nite complete sets of solutions to the components of the simultaneous problem. Paper [39]contained faulty results. The undecidability of simultaneous rigid E-uni�cation shows that �nitecomplete sets of solutions do not give a solution to the simultaneous problem. The reason for this isthat substitutions belonging to complete sets of solutions for di�erent rigid equations are minimalmodulo di�erent congruences.Petermann [56] introduces a \complete connection calculus with rigid E-uni�cation". Here thecompleteness is achieved by changing the notion of a complete set of uni�ers so that solutions to allsubproblems are compared modulo the same congruence (generated by the empty equality theory).In this case, a non-simultaneous problem can have an in�nite number of solutions and no �nitecomplete set of solutions. For example, for the rigid E-uni�cation problem f(a) ' a `8 x ' athe complete set of solutions in the sense of Gallier et.al. [34] consists of one substitution fa=xg(and there is only one answer constraint fx ' ag obtained by our method), but the complete setof solutions in the sense of Petermann [56] is in�nite and consists of substitutions ffn(a)=xg, forall n 2 f0; 1; : : :g. This implies that the proof-search by the method of Petermann [56] can be non-terminating even for a limited number of applications of 
-rule (i.e. for a particular tableau), unlikealgorithms based on the �nite complete sets of uni�ers in the sense of Gallier et.al. [34] or based onminus-normalization (Kanger [41]). The implementation of the method of [56] uses a completion-based procedure by Beckert [9] of generation of complete sets of rigid E-uni�ers. This procedure isdeveloped with the aim of solving a more general problem | so-called mixed E-uni�cation and hasbeen implemented as part of the tableau-based theorem prover 3TAP . Complete sets of uni�ersboth in the sense of Gallier et.al. [34] and in the sense of Petermann [56] can be computed bythis procedure in the case when all variables are treated as rigid. However, the termination is notguaranteed even for complete sets of rigid E-uni�ers in the sense of Gallier et.al. [34].Plaisted [58] gives \techniques for incorporating equality into theorem proving; these techniqueshave a rigid 
avor". His method called path paramodulation guarantees termination for a givenampli�cation and, in the case of success \solves the simultaneous rigid E-uni�cation problem", ina sense. However, this does not solve the problem attacked by a number of researchers: extend themethod of matings to languages with equality by rigid E-uni�cation. First, unlike [34] the searchfor solutions for a given ampli�cation is not incremental (the method does not allow \branch-wise"computation of solutions to rigid E-uni�cation for separate branches). Second, within a givenampli�cation Plaisted uses factoring rules which involves two branches (paths). As a consequence,even when the original formula contains no equality, his method results in the standard tableaucalculus plus the factoring rule.In fact, path paramodulation of Plaisted [58] simulates resolution-paramodulation inference in aconnection-like calculus. Although it is not noted in [58], but this technique has been demonstratedfor resolution in many papers, for example by Bibel [12], Eder [30, 31], Mints [50], Baumgartnerand Furbach [6] and Avron [2]. The generalization of this simulation to paramodulation is straight-forward.However, this simulation technique is insu�cient for proving results of our paper since, in1For example, the completeness of Gallier et.al.'s procedure does not follow from our method because, as notedabove, our calculus BSE can give more solutions to some rigid equations.



20 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.particular, it gives no insight on how to avoid factoring in tableaux with equality. The use offactoring prevents not only from the independent search for solutions for tableau branches, buteven from the incremental solving of rigid equations on tableau branches as proposed by Gallieret.al.Our equality elimination method [26, 20, 21] is based on extending a tableau prover by a bottom-up equation solver using basic superposition. Solutions to equations are generated by this solverand used to close branches of a tableau. Thus, the method combines (non-local) tableau proofsearch with the (local) equation solving. Only completely solved equations are used in the tableaupart of the proof, thus reducing non-determinism created by applications of MGU replacementrule of Fitting [32]. The equation solution is even more restricted by the use of orderings, basicsimpli�cation and subsumption.A similar idea: combination of proof-search in tableaux with a bottom-up equality saturationof the original formula, is used in [51] for constructing a goal-directed version of model eliminationand paramodulation.One of advantages of the tableau method is its applicability to non-classical logics. However,handling equality in non-classical logics seems to be much more di�cult problem than that inclassical logic. For example, it is shown by Voronkov [64] that procedures for intuitionistic logicwith equality must handle simultaneous rigid E-uni�cation. This implies that our method basedon BSE does not give a complete procedure for intuitionistic logic with equality. Other resultson relations between simultaneous rigid E-uni�cation and intuitionistic logic are considered byDegtyarev and Voronkov [24], Degtyarev, Matiyasevich and Voronkov [18].



21 Section 6. Related work
Bibliography[1] P.B. Andrews. Theorem proving via general matings. Journal of the Association for ComputingMachinery, 28(2):193{214, 1981.[2] A. Avron. Gentzen-type systems, resolution and tableaux. Journal of Automated Reasoning,10:256{281, 1993.[3] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposi-tion. In D. Kapur, editor, 11th International Conference on Automated Deduction, volume 607of Lecture Notes in Arti�cial Intelligence, pages 462{476, Saratoga Springs, NY, USA, June1992. Springer Verlag.[4] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basis paramodulation. Informationand Computation, 121:172{192, 1995.[5] Peter Baumgartner. An ordered theory resolution calculus. In A. Voronkov, editor, LogicProgramming and Automated Reasoning (LPAR'92), volume 624 of Lecture Notes in ComputerScience, pages 119{130, 1992.[6] P. Baumgartner and U. Furbach. Consolution as a framework for comparing calculi. Journalof Symbolic Computations, 16:445{477, 1993.[7] P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension INterface.In A. Bundy, editor, Automated Deduction | CADE-12. 12th International Conference onAutomated Deduction., volume 814 of Lecture Notes in Arti�cial Intelligence, pages 769{773,Nancy, France, June/July 1994.[8] G. Becher and U. Petermann. Rigid uni�cation by completion and rigid paramodulation.In B. Nebel and L. Dreschler-Fischer, editors, KI-94: Advances in Arti�cial Intelligence. 18thGerman Annual Conference on Arti�cial Intelligence, volume 861 of Lecture Notes in Arti�cialIntelligence, pages 319{330, Saarbr�ucken, Germany, September 1994. Springer Verlag.[9] B. Beckert. A completion-based method for mixed universal and rigid E-uni�cation. InA. Bundy, editor, Automated Deduction | CADE-12. 12th International Conference on Au-tomated Deduction., volume 814 of Lecture Notes in Arti�cial Intelligence, pages 678{692,Nancy, France, June/July 1994.[10] B. Beckert. Are minimal solutions to simultaneous rigid E-uni�cation su�cient for addingequality to semantic tableaux? Privately circulated manuscript, University of Karlsruhe,1995.



22 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.[11] B. Beckert and R. H�ahnle. An improved method for adding equality to free variable se-mantic tableaux. In D. Kapur, editor, 11th International Conference on Automated Deduc-tion (CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 678{692, SaratogaSprings, NY, USA, June 1992. Springer Verlag.[12] W. Bibel. On matrices with connections. Journal of the Association for Computing Machinery,28(4):633{645, 1981.[13] W. Bibel. Issues in theorem proving based on the connection method. In P. Baumgartner,R. H�ahnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and RelatedMethods, number 918 in Lecture Notes in Arti�cial Intelligence, pages 1{16, Schlo� Rheinfels,St. Goar, Germany, May 1995.[14] D. Brand. Proving theorems with the modi�cation method. SIAM Journal of Computing,4:412{430, 1975.[15] C.L. Chang. Theorem proving with variable-constrained resolution. Information Sciences,4:217{231, 1972.[16] N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17:279{301, 1982.[17] A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand's theorem and equational reasoning:Problems and solutions. UPMAIL Technical Report 128, Uppsala University, ComputingScience Department, September 1996.[18] A. Degtyarev, Yu. Matiyasevich, and A. Voronkov. Simultaneous rigid E-uni�cation andrelated algorithmic problems. In Eleventh Annual IEEE Symposium on Logic in ComputerScience (LICS'96), pages 494{502, New Brunswick, NJ, July 1996. IEEE Computer SocietyPress.[19] A. Degtyarev and A. Voronkov. Equality elimination for semantic tableaux. UPMAIL TechnicalReport 90, Uppsala University, Computing Science Department, December 1994.[20] A. Degtyarev and A. Voronkov. General connections via equality elimination. In M. De Glasand Z. Pawlak, editors, Second World Conference on the Fundamentals of Arti�cial Intelligence(WOCFAI-95), pages 109{120, Paris, July 1995. Angkor.[21] A. Degtyarev and A. Voronkov. Equality elimination for the inverse method and extension pro-cedures. In C.S. Mellish, editor, Proc. International Joint Conference on Arti�cial Intelligence(IJCAI), volume 1, pages 342{347, Montr�eal, August 1995.[22] A. Degtyarev and A. Voronkov. Handling equality in logic programs via basic folding. InR. Dyckho�, H. Herre, and P. Schroeder-Heister, editors, Extensions of Logic Programming(5th International Workshop, ELP'96), volume 1050 of Lecture Notes in Computer Science,pages 119{136, Leipzig, Germany, March 1996.[23] A. Degtyarev and A. Voronkov. Simultaneous rigid E-uni�cation is undecidable. InH. Kleine B�uning, editor, Computer Science Logic. 9th International Workshop, CSL'95,volume 1092 of Lecture Notes in Computer Science, pages 178{190, Paderborn, Germany,September 1995, 1996.



23 Section 6. Related work[24] A. Degtyarev and A. Voronkov. Decidability problems for the prenex fragment of intuitionisticlogic. In Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS'96), pages503{512, New Brunswick, NJ, July 1996. IEEE Computer Society Press.[25] A. Degtyarev and A. Voronkov. What you always wanted to know about rigid E-uni�cation. InJ.J. Alferes, L.M. Pereira, and E. Orlowska, editors, Logics in Arti�cial Intelligence. EuropeanWorkshop, JELIA'96, volume 1126 of Lecture Notes in Arti�cial Intelligence, pages 50{69,�Evora, Portugal, September/October 1996.[26] A. Degtyarev and A. Voronkov. Equality elimination for the tableau method. In J. Calmetand C. Limongelli, editors, Design and Implementation of Symbolic Computation Systems.International Symposium, DISCO'96, volume 1128 of Lecture Notes in Computer Science,pages 46{60, Karlsruhe, Germany, September 1996.[27] A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E-uni�cation. The-oretical Computer Science, 166(1{2):291{300, 1996.[28] A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi: a tutorial. Upmailtechnical report, Uppsala University, Computing Science Department, August 1996. To appear.[29] E. De Kogel. Rigid E-uni�cation simpli�ed. In P. Baumgartner, R. H�ahnle, and J. Posegga,editors, Theorem Proving with Analytic Tableaux and Related Methods, number 918 in LectureNotes in Arti�cial Intelligence, pages 17{30, Schlo� Rheinfels, St. Goar, Germany, May 1995.[30] E. Eder. A comparison of the resolution calculus and the connection method, and a newcalculus generalizing both methods. In E. B�orger, G. J�ager, H. Kleine B�uning, and M.M.Richter, editors, CSL'88 (Proc. 2nd Workshop on Computer Science Logic), volume 385 ofLecture Notes in Computer Science, pages 80{98. Springer Verlag, 1988.[31] E. Eder. Consolution and its relation with resolution. In Proc. International Joint Conferenceon Arti�cial Intelligence (IJCAI), pages 132{136, 1991.[32] M. Fitting. First Order Logic and Automated Theorem Proving. Springer Verlag, New York,1990.[33] J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-uni�cation: NP-completenessand applications to equational matings. Information and Computation, 87(1/2):129{195, 1990.[34] J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equational matingsand rigid E-uni�cation. Journal of the Association for Computing Machinery, 39(2):377{429,1992.[35] J.H. Gallier, P. Narendran, D. Plaisted, andW. Snyder. Rigid E-uni�cation is NP-complete. InProc. IEEE Conference on Logic in Computer Science (LICS), pages 338{346. IEEE ComputerSociety Press, July 1988.[36] J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-uni�cation: Equationalmatings. In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 338{346.IEEE Computer Society Press, 1987.[37] J.H. Gallier, S. Raatz, and W. Snyder. Rigid E-uni�cation and its applications to equationalmatings. In H. A��t Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,volume 1, pages 151{216. Academic Press, 1989.



24 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.[38] J. Goubault. A rule-based algorithm for rigid E-uni�cation. In Georg Gottlob, AlexanderLeitsch, and Daniele Mundici, editors, Computational Logic and Proof Theory. Proceedings ofthe Third Kurt G�odel Colloquium, KGC'93, volume 713 of Lecture Notes in Computer Science,pages 202{210, Brno, August 1993.[39] J. Goubault. Rigid �E-uni�ability is DEXPTIME-complete. In Proc. IEEE Conference onLogic in Computer Science (LICS). IEEE Computer Society Press, 1994.[40] R. H�ahnle, B. Beckert, and S. Gerberding. The many-valued tableau-based theorem prover3TAP . Technical Report 30/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, November1994.[41] S. Kanger. A simpli�ed proof method for elementary logic. In J. Siekmann and G. Wrightson,editors, Automation of Reasoning. Classical Papers on Computational Logic, volume 1, pages364{371. Springer Verlag, 1983. Originally appeared in 1963.[42] J. Kruskal. Well quasi ordering, the tree problem and Vazsonyi's conjecture. Transactions ofthe American Mathematical Society, 95:210{225, 1960.[43] R.C.T. Lee and C.L. Chang. Symbolic Logic and Mechanical Theorem Proving. AcademicPress, 1973.[44] D.W. Loveland. Mechanical theorem proving by model elimination. Journal of the Associationfor Computing Machinery, 15:236{251, 1968.[45] D.W. Loveland. Automated Theorem Proving: a Logical Basis. North Holland, 1978.[46] U. Martin. How to choose weights in the Knuth-Bendix ordering. In Rewriting Technics andApplications, volume 256 of Lecture Notes in Computer Science, pages 42{53, 1987.[47] S.Yu. Maslov. The inverse method of establishing deducibility in the classical predicate calcu-lus. Soviet Mathematical Doklady, 5:1420{1424, 1964.[48] S.Yu. Maslov. An invertible sequential variant of constructive predicate calculus (in Russian).Zapiski Nauchnyh Seminarov LOMI, 4, 1967. English Translation in: Seminars in Mathematics:Steklov Math. Inst. 4, Consultants Bureau, NY-London, 1969, p.36{42.[49] V.A. Matulis. On variants of classical predicate calculus with the unique deduction tree (inRussian). Soviet Mathematical Doklady, 148:768{770, 1963.[50] G. Mints. Gentzen-type systems and resolution rules. part I. propositional logic. In P. Martin-L�of and G. Mints, editors, COLOG-88, volume 417 of Lecture Notes in Computer Science,pages 198{231. Springer Verlag, 1990.[51] M. Moser, C. Lynch, and J. Steinbach. Model elimination with basic ordered paramodula-tion. Technical Report AR-95-11, Fakult�at f�ur Informatik, Technische Universit�at M�unchen,M�unchen, 1995.[52] R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In ESOP'92, volume 582 ofLecture Notes in Computer Science, pages 371{389. Springer Verlag, 1992.[53] R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters,47:65{69, 1993.



25 Section 6. Related work[54] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality constrained clauses.Journal of Symbolic Computations, 19:321{351, 1995.[55] S.A. Norgela. On the size of derivations under minus-normalization (in Russian). In V.A.Smirnov, editor, The Theory of Logical Inference. Institute of Philosophy, Moscow, 1974.[56] U. Petermann. A complete connection calculus with rigid E-uni�cation. In JELIA'94, volume838 of Lecture Notes in Computer Science, pages 152{166, 1994.[57] D.A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In Proc. 8thCADE, volume 230 of Lecture Notes in Computer Science, pages 79{88, 1986.[58] D.A. Plaisted. Special cases and substitutes for rigid E-uni�cation. Technical Report MPI-I-95-2-010, Max-Planck-Institut f�ur Informatik, November 1995.[59] D. Prawitz. An improved proof procedure. In J. Siekmann and G. Wrightson, editors, Au-tomation of Reasoning. Classical Papers on Computational Logic, volume 1, pages 162{201.Springer Verlag, 1983. Originally appeared in 1960.[60] G. Robinson and L.T. Wos. Paramodulation and theorem-proving in �rst order theories withequality. In Meltzer and Michie, editors, Machine Intelligence, volume 4, pages 135{150.Edinburgh University Press, Edinburgh, 1969.[61] J. Schumann. Tableau-based theorem provers: Systems and implementations. Journal ofAutomated Reasoning, 13(3):409{421, 1994.[62] R. Shostak. An algorithm for reasoning about equality. Communications of the ACM, 21:583{585, July 1978.[63] R.M. Smullyan. First-Order Logic. Springer Verlag, 1968.[64] A. Voronkov. Proof search in intuitionistic logic with equality, or back to simultaneous rigidE-uni�cation. In M.A. McRobbie and J.K. Slaney, editors, Automated Deduction | CADE-13,volume 1104 of Lecture Notes in Computer Science, pages 32{46, New Brunswick, NJ, USA,1996.



26 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.
Appendix AProof of the completeness theoremThis appendix proves the completeness part of Theorem 4.6. It is based on the completenesstheorem for the equality elimination method (Degtyarev and Voronkov [19, 20, 21, 26]). We shallintroduce several notions.A.1 ClausesDe�nition A.1 (Clause)A clause is a �nite multiset of literals fL1; : : : ; Lng, denoted L1; : : : ; Ln. If L is a literal and C aclause, then L;C denotes the clause fLg [ C. The empty clause is denoted by 2.De�nition A.2 (Constraint clause)A constraint clause is a pair consisting of a clause C and a constraint C. Such a constraint clausewill be denoted C � C.A.2 The equality elimination methodFor the rest of this section we assume that � denotes a closed formula in the Skolem negation normalform to be checked for unsatis�ability. We assume that all di�erent occurrences of quanti�ers in� bind di�erent variables. For example, � cannot have the form 8xA ^ 8xB. All formulas in thissection are assumed to be subformulas of the formula �. We shall identify subformulas of � and theirsuperformulas with their occurrences in �. For example, in the formula � of the form A ^ (A _B)the second occurrence of A is considered a subformula of (A _ B), but the �rst occurrence of A isnot.De�nition A.3 (Subformula and fresh-variable subformulas)The set of subformulas and fresh-variable subformulas of a formula in negation normal form isde�ned inductively as follows.1. Any formula is a subformula and a fresh-variable subformula of itself.2. Both formulas '1 and '2 are subformulas and fresh-variable subformulas of '1 ^ '2, andsimilar for _ instead of ^.3. The formula '(x) is a subformula of 8x'(x); any formula '(y), where y 62 var(8x'(x)), is afresh-variable subformula of 8x'(x), and similar for 9 instead of 8.



27 Appendix A. Proof of the completeness theorem4. If '1 is a subformula of '2 and '2 is a subformula of '3, then '1 is a subformula of '3, andsimilar for fresh-variable subformulas.Note that we do not consider an atom A to be a subformula of :A. The reason is that we want torestrict ourselves with only positive subformulas. Also note that a fresh-variable subformula is notnecessarily a subformula.We shall only deal with some subformulas of � called disjunctive subformulas.De�nition A.4 (Disjunctive subformula)The occurrence of a subformula ' of � is called disjunctive i� it is an occurrence in a subformula' _  or in  _ '. A disjunctive superformula of ' is a superformula1  of ' that is disjunctive.The least disjunctive superformula of ' is the disjunctive superformula  of ' such that any otherdisjunctive superformula of ' is a superformula of  .Let us note that disjunctive superformulas do not necessarily exist. For example, � has nodisjunctive superformula. Any formula having a disjunctive superformula has the unique leastdisjunctive superformula.We can enumerate all disjunctive subformulas �1; : : : ; �n of �, for example in the order of theiroccurrences in �. Thus we can unambiguously use \the kth disjunctive (sub)formula" �k of �.Let A1; : : : ;An be predicate symbols not occurring in �.De�nition A.5 (�-name of a subformula)An atomic formula Ak(x1; : : : ; xm) is the �-name of a subformula ' of � i�1. The least disjunctive superformula of ' is �k;2. x1; : : : ; xm are all free variables of �k in the order of their occurrences in �k.If a �-name of a formula ' exists, then it is unique. Note that di�erent formulas may have the same�-names. Also note that some subformulas of � do not have �-names. We can use the set of �-namesof a subformula. The set of �-names of a formula ' is either ; or a singleton fAk(x1; : : : ; xm)g.Figure A.1 illustrates least disjunctive superformulas and �-names.Lemma A.6 Let '; be subformulas of � whose sets of �-names coincide, ' is a proper subformulaof  , and  0 =  �0, where �0 is a substitution with dom(�0) = var( ). Let '0 be a fresh-variablesubformula of  0 which is also a variant of '�0.Let T = �1;  0 j �2 j : : : j �n such that var(T ) \ (var('0) n var( 0)) = ;. Then there is aderivation �1;  0 j �2 j : : : j �n...�01;  0; '0 j �2 j : : : j �nconsisting only of applications of �- and 
-rules of Figure 4.1 such that �1 v �01.Proof. Induction by  0. Note that  0 cannot be a disjunction because then the set of �-namesof ' and  would be di�erent. Hence, there are two possible cases: either  0 is a conjunctionor begins with a universal quanti�er. Let '0 = '�0fz1=x1; : : : ; zm=xmg, where fx1; : : : ; xmg =var('�0) n var( �0). Consider the two cases mentioned above.1' is a superformula of  i�  is a subformula of ' (not necessarily proper).



28 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.Subformula least disjunctive superformula(8x(F (x) _ (B(x) ^ 8yC(x; y))) _ 8zD(z)) ^E no ;8x(F (x) _ (B(x) ^ 8yC(x; y))) _ 8zD(z) no ;8x(F (x) _ (B(x) ^ 8yC(x; y))) 8x(F (x) _ (B(x) ^ 8yC(x; y))) fA1gF (x) _ (B(x) ^ 8yC(x; y)) 8x(F (x) _ (B(x) ^ 8yC(x; y))) fA1gF (x) F (x) fA2(x)gB(x) ^ 8yC(x; y) B(x) ^ 8yC(x; y) fA3(x)gB(x) B(x) ^ 8yC(x; y) fA3(x)g8yC(x; y) B(x) ^ 8yC(x; y) fA3(x)gC(x; y) B(x) ^ 8yC(x; y) fA3(x)g8zD(z) 8zD(z) fA4gD(z) 8zD(z) fA4gE no ;Figure A.1: Least disjunctive superformulas and sets of �-names of subformulas of the formula(8x(F (x) _ (B(x) ^ 8yC(x; y))) _ 8zD(z)) ^E1.  0 has the form 8x�(x). If for some i 2 f1; : : : ;mg we have x = xi, then we apply the rule: : : 8xi�(xi) : : :: : : 8xi�(xi); �(zi) : : : (
)Otherwise, choose any fresh variable z and apply the rule: : : 8xi�(xi) : : :: : : 8xi�(xi); �(z) : : : (
)If �(zi) (respectively, �(z)) coincides with '0, then the required derivation is found. Otherwise,apply the induction hypothesis to �(zi) (respectively, �(z)).2.  0 has the form �1 ^ �2. Then we apply the rule: : : �1 ^ �2 : : :: : : �1 ^ �2; �1; �2 : : : (
)If '0 coincides with �1 or �2 then the required derivation is found. Otherwise, '0 is a fresh-variable proper subformula of some �i, where i 2 f1; 2g. Then apply the induction hypothesisto �i. 2Lemma A.7 Let T = �1 j : : : j �n be a tableau obtained from � by tableau expansions rules and' a proper subformula of � whose set of 
-names is empty. Let '0 be a fresh-variable subformulaof � that is also a variant of ' such that var('0) \ var(T ) = ;. Then there is derivation



29 Appendix A. Proof of the completeness theorem�1 j �2 j : : : j �n...�01; '0 j �2 j : : : j �nconsisting only of applications of �- and 
-rules of Figure 4.1 such that �1 v �01.Proof. If � 2 �1, then the claim is immediate by Lemma A.6, where  = � and �0 is the emptysubstitution. Suppose (by contradiction) � 62 �1. Evidently, � is a disjunction. But then � has noproper subformulas whose sets of �-names are empty. Contradiction. 2Theorem 4.6 that we prove in this section connects two calculi: (i) calculus BSE of rigidequations; and (ii) tableau expansion rules for tableaux. The main theorem on the completenessof the equality elimination method [19, 26] (Theorem A.15 below) also connects two calculi, bothintroduced below: (i) the calculus CBSE of constraint clauses; and (ii) �-expansion rules for named�-tableaux. Both calculi depend on the goal formula �.De�nition A.8 (Calculus CBSE)The calculus CBSE of constraint clauses consists of the following inference rules. As usual, weassume that premises of rules have disjoint variables which can be achieved by renaming variables.Left rigid basic superposition:l ' r; C1 � C1 s[p] ' t; C2 � C2s[r] ' t; C1; C2 � C1 [ C2 [ fl � r; s[p] � t; l ' pg (lrbs)Right rigid basic superposition:l ' r; C1 � C1 s[p] 6' t; C2 � C2s[r] 6' t; C1; C2 � C1 [ C2 [ fl � r; s[p] � t; l ' pg (rrbs)Equality resolution: s 6' t; C � CC � C [ fs ' tg (er)Application of all the rules is restricted to the following conditions:1. The constraint at the conclusion of the rule is satis�able;2. In the basic superposition rules, the term p is not a variable.3. In the left basic superposition rule, s[r] 6= t.De�nition A.9 (Named �-tableau)A named �-tableau is a tableau all whose formulas are atomic formulas of the form Ai(t1; : : : ; tm).De�nition A.10 (Initial named �-tableau)The initial named �-tableau of T� is the tableau 2 which has one branch consisting of the emptyset of formulas.



30 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.De�nition A.11 (�-expansion rules)Let fAi(�xi)g; fAj(�xj)g and D be the sets of �-names of '; and '_ , where '_ is a subformulaof �. Then the following are �-expansion rules.1. if D = ; then C1 j C2 j : : : j CmC1;Ai(�xi) j C1;Aj(�xj) j C2 j : : : j Cm2. if D = fAk(�xk)g then C1;Ak(�y) j C2 j : : : j Cm(C1;Ai(�xi);Ak(�y) j C1;Aj(�xj);Ak(�y) j C2 j : : : j Cm)f�xk=�ygWe assume that the variables of the premises are disjoint from the variables of �xi; �xj ; �xk).De�nition A.12 (Initial constraint �-clause)Initial constraint �-clauses are de�ned as follows:1. Whenever a literal s 6' t occurs in � and C is the set of �-names of this occurrence of s 6' t,the constraint clause s 6' t; C � fg is an initial constraint �-clause.2. Whenever a literal s ' t occurs in � and C is the set of �-names of this occurrence of s ' t,the constraint clause s ' t; C � fg is an initial constraint �-clause.De�nition A.13 (Solution constraint �-clause)A solution constraint �-clause is any constraint clause C �C which is derivable from initial constraint�-clauses using rules (lrbs); (rrbs) and (er) and such that C does not contain '.De�nition A.14 (Answer constraint)Let C 0 � C0 be a solution constraint �-clause and C be a branch of a named �-tableau, so thatvar(C)\ (var(C 0)[ var(C0)) = ;. If � is a substitution such that (i) dom(�) = var(C 0); (ii) C 0� v Cand (iii) C0� is satis�able, then C0� is an answer constraint for C.The following theorem is a reformulation of Soundness and Completeness theorems of [19] fornamed �-tableaux and constraint clauses.Theorem A.15 The formula � is unsatis�able if and only if there exists a named �-tableau C1 j: : : j Cn obtained from the initial named �-tableau by �-expansion rules with the following property.There exist answer constraints C1; : : : ; Cn for C1; : : : ; Cn, respectively, such that C1 [ : : : [ Cn issatis�able.De�nition A.16 (Image)Let the atomic formula Ak(x1; : : : ; xm) be the �-name of a disjunctive subformula '(x1; : : : ; xm) of�. For any terms t1; : : : ; tm, the image of the formula Ak(t1; : : : ; tm) is the formula '(t1; : : : ; tm).The image of a named �-tableau C1 j : : : j Cn is the tableau �1 j : : : j �n obtained from C1 j : : : j Cnby replacing every atomic formula Ak(t1; : : : ; tm) by its image.Note that the image of a named �-tableau is uniquely de�ned.



31 Appendix A. Proof of the completeness theoremLemma A.17 Let C1 j : : : j Cn be any named �-tableau obtained from 2 by �-expansion rulesand �1 j : : : j �n be its image. Then there exists a tableau �01 j : : : j �0n obtained from � by tableauexpansion rules such that �i v �0i, for all i 2 f1; : : : ; ng.Proof. By induction on the number of applications of expansion rules. The basic case is obvious:we can take � as the required tableau. Consider the induction step. The following two cases arepossible.1. The expansion rule has the form C1 j C2 j : : : j CnC1;Ai(�xi) j C1;Aj(�xj) j C2 j : : : j CnDenote the image of C1 j : : : j Cn by �1 j : : : j �n. By the induction hypothesis, there is atableau �01 j : : : j �0n obtained from � by tableau expansion rules such that �i v �0i, for alli 2 f1; : : : ; ng. Let �i(�xi) be the image of Ai(�xi) and �j(�xj) be the image of Aj(�xj). Then�i(�xi)_ �j(�xj) has the empty set of �-names and it is a fresh-variable subformula of �. By thede�nition �-expansion rules, variables �xi; �xj do not occur in C1 j : : : j Cn. Evidently, we canassume that �xi; �xj do not occur in �01 j : : : j �0n (we can rename variables in �0k distinct fromvariables of C1; : : : ; Cn). Applying Lemma A.7 to the tableau T = �01 j : : : j �0n and formula' = �i(�xi) _ �j(�xj) we see that there is a tableau �001; �i(�xi) _ �j(�xj) j �02 j : : : j �0n obtainedfrom � be tableau expansion rules such that �01 v �001. Applying �-rule�001 ; �i(�xi) _ �j(�xj) j �02 j : : : j �0n�001 ; �i(�xi) j �001 ; �j(�xj) j �02 j : : : j �0nwe obtain the required tableau.2. The expansion rule has the form C1;Ak(�y) j C2 j : : : j Cn(C1;Ai(�xi);Ak(�y) j C1;Aj(�xj);Ak(�y) j C2 j : : : j Cn)f�xk=�ygDenote the image of C1 j : : : j Cn by �1 j : : : j �n and the image of Ak(�y) by �k(�y). By theinduction hypothesis, there is a tableau �01; �k(�y) j �02 j : : : j �0n obtained from � be tableauexpansion rules such that �i v �0i, for all i 2 f1; : : : ; ng. Since � contains no free variables, anyvariant of this tableau can also be obtained from � be tableau expansion rules, in particularthe tableau (�01; �k(�y) j �02 j : : : j �0n)f�xk=�yg. The formula �i(�xi) _ �j(�xj) is a subformula of�k(�xk), and their sets of �-names coincide. Then either �i(�xi) _ �j(�xj) coincides with, or is aproper subformula of �k(�xk). Consider the two corresponding cases(a) �i(�xi) _ �j(�xj) coincides with �k(�xk). Applying �-rule(�01; �i(�xi) _ �j(�xj) j �02 j : : : j �0n)f�xk=�yg(�01; �i(�xi) j �01; �j(�xj) j �02 j : : : j �0n)f�xk=�ygwe obtain the required tableau.



32 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.(b) �i(�xi) _ �j(�xj) is a proper subformula of �k(�xk). It is also a fresh-variable subformula.To apply Lemma A.7, we have to guarantee the conditionvar((�01; �k(�y) j �02 j : : : j �0n)f�xk=�yg) \ ((�xi [ �xj) n �xk) = ;: (A.1)By the conditions of this lemma, �xi; �xj do not occur in �1; �k(�y) j �2 j : : : j �n. Sincein the derivation of �01; �k(�y) j �02 j : : : j �0n we could introduce fresh variables di�erentfrom �xi; �xj , we have(�xi [ �xj) \ var((�01; �k(�y) j �02 j : : : j �0n)f�xk=�yg) � �xkThus, condition (A.1) can be guaranteed. By Lemma A.7, there is a required derivationof the form �...(�01; �k(�xk) j �02 j : : : j �0n)f�xk=�yg...(�001; �k(�xk); �i(�xi) _ �j(�xj) j �02 j : : : j �0n)f�xk=�yg(�001 ; �k(�xk); �i(�xi) j �001; �k(�xk); �j(�xj) j �02 j : : : j �0n)f�xk=�yg 2Lemma A.18 Let C be an answer constraint for a rigid equation R and � be a substitution suchthat C� is satis�able. Then there exists C0 v C such that C0� is an answer constraint for R�.Proof. Consider the derivationR � ; = E0 `8 s0 ' t0 � C0 ; E1 `8 s1 ' t1 � C1 ; : : :; En `8 sn ' tn � Cn (A.2)such that Cn = C. Consider the �gure (E0 `8 s0 ' t0 � C0)�(E1 `8 s1 ' t1 � C1)�...(En `8 sn ' tn � Cn)� (A.3)The �gure (Ei `8 si ' ti � Ci)�(Ei+1 `8 si+1 ' ti+1 � Ci+1)�is not a correct inference rule of BSE in one of the following cases.1. Ei+1 n Ei contains an equation s[r] ' t such that s[r]� = t�. In this case condition (4) onthe rules of BSE is violated. Note that s[r] ' t cannot be used in the inference rules of(A.2). Indeed, otherwise C would contain either s[r] � t or t � s[r] which contradicts to thecondition C� is satis�able. Thus, we can assume without loss of generality that (A.2) doesnot contain applications of left basic superposition giving such equations s[r] ' t. Then (A.3)is a correct BSE-derivation satisfying the conditions.



33 Appendix A. Proof of the completeness theorem2. si+1� = ti+1�, where i + 1 6= n. In this case condition (2) on the rules of BSE is violated.This case is considered similarly. 2Let � be a tree derivation of a solution constraint �-clause C � C. Without loss of generality wecan assume that the leaves of � have disjoint variables. Denote by L(�) the multiset of the leavesof � .We shall associate with � a rigid equation R� such that C is an answer constraint for R� .De�nition A.19 A rigid equation E `8 s ' t is associated with � if E is the multiset of allequations occurring in L(�), and s 6' t is the only disequation occurring in L(�).We recall that any element of L(�) has either the form p ' q;D � fg, or the form p 6' q;D � fg,where D does not contain equations or disequations.Lemma A.20 Let E `8 s ' t is a rigid equation associated with a derivation � of a solutionconstraint clause C � C. Then C is an answer constraint for E `8 s ' t.Proof. Straightforward. 2Combining Lemmas A.18 and A.20, we obtainLemma A.21 Let E `8 s ' t is a rigid equation associated with a derivation � of a solutionconstraint clause C 0 � C0 and � be a substitution such that C0 � � is satis�able. Then there exists aconstraint C00 v C0 such that C00� is an answer constraint for (E `8 s ' t)�.De�nition A.22 (�
-expansion)Let a tableau T 0 be obtained from a tableau T by a sequence of �- and 
-rules. Then T 0 is calledan �
-expansion of T .Lemma A.23 Let �01 j : : : j �0n be an �
-expansion of �1 j : : : j �n. Then �i v �0i, for alli 2 f1; : : : ; ng.Proof. Obvious. 2Let us introduce a technical de�nition.De�nition A.24 Let E `8 s ' t be a rigid equation. Its clause form is the clause E; s 6' t.Finally, we come to the proof of the main theorem.Theorem 4.6 Let � be a sentence in Skolem negation normal form. Then � is unsatis�able i�there is a tableau T obtained from � by tableau expansion rules with the following property. Let�1; : : : ;�n be all branches of T . Then there exist answer constraints C1; : : : ; Cn for �1; : : : ;�n,respectively, such that C1 [ : : : [ Cn is satis�able.Proof. The soundness part is proven in Section 4. We only prove the completeness part. Let �be unsatis�able. By Theorem A.15, there exist a named �-tableau C1 j : : : j Cn obtained fromthe initial named �-tableau by �-expansion rules and answer constraints C01 ; : : : ; C0n for C1; : : : ; Cn,respectively, such that C01 [ : : : [ C0n is satis�able. By De�nition A.14 of answer constraints, thereexist solution constraint �-clauses C 01 � C01; : : : ; C 0n � C0n and substitutions �1; : : : ; �n such that



34 A.Degtyarev and A.Voronkov. What you always wanted to know about rigid E-uni�cation.1. var(Ci) \ var(C 0i � C0i) = ;;2. dom(�i) = var(C 0i);3. C 0i�i = C0i v Ci.Without loss of generality we can assume that var(C 0i � C0i)\var(C 0j � C0j) = ;, whenever i 6= j. Hence,we can introduce the substitution � = �1 [ : : : [ �n.Let �01 j : : : j �0n be the image of C1 j : : : j Cn. By Lemma A.17, there is a tableau �001 j : : : j �00nobtained from � by tableau expansion rules such that �0i v �00i , for all i 2 f1; : : : ; ng.Let �1; : : : ; �n be derivations of C 01 � C01; : : : ; C 0n � C0n, respectively in the tree form. Let � be themultiset �1; : : : ; �n of trees. Let L(�) be the multiset of leaves in � . We assume any two membersof L(�) have disjoint sets of variables. Since �001 j : : : j �00n is derived from the closed formula �, wecan also assume that var(�) \ var(�001 j : : : j �00n) = ;: (A.4)Let for all i 2 f1; : : : ; ng the rigid equation Ei `8 si ' ti be associated with �i and Ei; si 6' ti beits clause form.Now we shall construct an �
-expansion �1 j : : : j �n of �001 j : : : j �00n such that (Ei; si 6' ti)� v �i,for all i 2 f1; : : : ; ng.Let L1; : : : ; Ll be the multiset of all equations and disequations in the leaves of � . We shallconstruct the required �1 j : : : j �n using a sequence of �
-expansions�001 j : : : j �00n = �(0)1 j : : : j �(0)n�(1)1 j : : : j �(1)n� � ��(l)1 j : : : j �(l)n = �1 j : : : j �nDuring the construction we shall satisfy the following conditions:1. For every i; j with 1 � i � l and 1 � j � n, if Li is in the leaf of �j, then Li� is on the branch�(i)j ;2. For every i with 1 � i < l we havevar(�(i)1 j : : : j �(i)n ) \ var(Li+1; : : : ; Ll) = ;(Initially, this condition holds by (A.4).)It is straightforward to check that the �rst condition implies that �1; : : : ;�n is the required tableau.Suppose that we have already constructed the tableau �(k)1 j : : : j �(k)n for k < l. We show howto construct �(k+1)1 j : : : j �(k+1)n . Let Lk+1 is in the leaf of the tree �i. Then this leaf has the formLk+1;D � fg such that D v C 0i and C 0i� = C0i v Ci.There are two possible cases: either D 6= ; or D = ;.1. Let �y = var(Lk+1) and �x = var(D) and Lk+1(�y);D(�x) � fg be a variant of an initial constraint�-clause Lk+1(�z);Am(�xm)�fg. ThenD� = Am(�x�) v Ci. Let �m(�x�) be the image of Am(�x�).By the construction of �00i , we have �m(�x�) 2 �00i since Am(�x�) 2 Ci.There are two possible cases.



35 Appendix A. Proof of the completeness theorem(a) Lk+1(�z) = �m(�xm). In this case we de�ne �(k+1)1 j : : : j �(k+1)n as �(k)1 j : : : j �(k)n .(b) Lk+1(�z) is a proper subformula of �m(�xm) (whose �-name is Am(�xm). Then applyLemma A.6. To this end we let = �m(�xm)' = Lk+1(�z) 0 = �m(�x�) = �m(�xm)f�x�=�xmg�0 = f�x�=�xmg'0 = Lk+1(�y�) = Lk+1(�z)�0T = �(k)1 j : : : j �(k)nLet us check that the condition of Lemma A.6var(T ) \ (var('0) n var( 0)) = ;is satis�ed. Let v be any variable such that v 2 var(�y�) and v 62 var(�x�). If v belongsto �y then v 62 var(T ) since by the construction of T we have var(T ) \ var(Lk+1) = ;.Hence, it is enough to prove that v belongs to �y.Suppose, by contradiction, that v does not belong to �y. Using v 2 var(�y�), we obtainv 2 var(�x�), since dom(�) \ (�x [ �y) = �x. This contradicts v 62 var(�x�).Thus, we can apply Lemma A.6 and deduce the tableau �(k+1)1 j : : : j �(k+1)n .To guarantee the conditionvar(�(k+1)1 \ : : : \ �(k+1)n ) \ var(Lk+2; : : : ; Ll) = ;we can require that variables introduced by 
-rules when we come from �(k)1 j : : : j �(k)nto �(k+1)1 j : : : j �(k+1)n do not belong to the set var(Lk+2; : : : ; Ll).2. Case D = ;. Analogous, but using Lemma A.7 instead of Lemma A.6.Thus, we have constructed an �
-expansion �1 j : : : j �n of �001 j : : : j �00n such that (Ei; si 6'ti)� v �i, for all i 2 f1; : : : ; ng. Then the set of rigid equations on �i contains a rigid equationE0i; Ei� `8 (si ' ti)�, where E0i is a multiset of equations. Evidently, the set of answer constraintsfor E0i; Ei� `8 (si ' ti)� contains all answer constraints for Ei� `8 (si ' ti)�. By Lemma A.20,C0i is an answer constraint for Ei `8 si ' ti. Since C0i� is satis�able, by Lemma A.21 there existsa constraint C00i v C0i such that C00i � is an answer constraint for (Ei `8 si ' ti)�. Hence, C00i � is ananswer constraint for �i. Since Si2f1;:::;ng C0i� is satis�able, then Si2f1;:::;ng C00i � is also satis�able.Evidently, the constraints C1 = C001�; : : : ; Cn = C00n� satisfy the claim of the theorem. 2


