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However, it is not always possible to e�ciently exploit all available processors.The nature of the problems to be solved, the architectural characteristics of theparallel system (e.g., topology, interconnection network, memory architecture),the application's computation and communication requirements, are among thefactors that limit the e�cient use of massively parallel systems. Multiprogram-ming is a viable way to improve system utilization while preserving individualapplication performance. However, multiprogramming complicates schedulingsince an allocation policy is needed to determine the number of processors whichshould be allocated to each parallel program.Preemptive or non-preemptive [SRDS93] processor allocation policies havebeen proposed. Preemptive policies [Oust82, MEB88, PD89, FR90, DCDP90,LV90, ZM90, MVZ93, CMV94, MZ94] allow processor redistribution upon jobarrivals and departures or when a time quantum expires. Processors may bereclaimed from an executing job's assignment and distributed to newly ar-rived jobs, or additional processors may be added to an executing job's as-signment when processors become available. Dynamic space-sharing policies andtime-sharing policies are considered preemptive. Non-preemptive policies [Sev89,ZM90, GST91, MEB91, RSDSC94, Sev94, CMV94] keep the number of proces-sors assigned to a job constant during execution. Processor allocation decisionsoccur only before execution starts. Static and adaptive space-sharing policiesare considered non-preemptive. Non-preemptive policies are characterized bylow overhead and easy implementation.In this paper, the focus is on non-work-conserving adaptive space-sharingpolicies for general purpose multiprocessor systems4. These are policies thatkeep processors idle even in the presence of jobs waiting for service or policiesthat set aside processors for anticipated job arrivals. Traditionally, processorscheduling policies are devised with the goal of maximizing system utilizationby assigning all available processors as soon as possible [ZM90, GST91, CMV94].Work-conserving policies are natural in uniprocessors where there is no advan-tage from keeping the processor idle. When there are multiple processors, non-work-conserving policies may be e�ective.A number of non-work-conserving policies have appeared in the literatureand have proved to perform well. Restricting the number of processors assignedto a job up to the job's maximum parallelism has been used in the run-to-completion (RTC) policy presented in [ZM90]. The concept of processor work-ing set (PWS) is used as a con�guration parameter for several adaptive policies[GST91]. Among them, two non-work-conserving policies (FF and FF+LA) re-strict the number of allocated processors allocated to the jobs' PWS. A policythat restricts the number of processors as a function of the average, minimum,and maximum parallelism of the application and the variance in parallelism hasbeen proposed in [Sev89]. Three families of non-work-conserving policies havebeen presented in [RSDSC94]: the insurance policies (IP) that always attemptto \save" a �xed percentage of the free processors for anticipated future arrivals,4 Dedicated supercomputers are not the target machines of the policies investigatedhere. In these systems, policies that maximize throughput are commonly used.



the equal-partitioning-with-maximum (EPM) policies that restrict the numberof processors assigned to each job according to a prede�ned MAX parameter,and the adaptive policies (AP) that resort to non-work-conserving decisions de-pending on limited knowledge of the system history. A uniform comparison ofthe adaptive space-sharing policies that appeared in the literature has been pre-sented in [CMV94]. From this comparison, the ASP-MAX policy is distinguished.The ASP-MAX policy resorts to non-work-conserving scheduling decisions by us-ing the available parallelism of each parallel application and a �xed percentageparameter.A preliminary study of the advantages of leaving idle processors has beenconducted in [SRSDS95]. In this work, the properties of one speci�c non-work-conserving strategy were investigated. It was found that performance improve-ments can occur from using a non-work-conserving policy when: 1) the workloaddoes not scale linearly, 2) there exists a large variability in the workload inter-arrival times, and 3) the workload is comprised of multiple classes with di�erentcomputational requirements.This paper focuses on the potential bene�ts of two classes of non-work-conserving scheduling policies. The performance of these policies for variousexecution time distributions and for bursty arrivals is studied. The impact onperformance of non-work-conserving decisions in the presence of processor fail-ures is also explored. Measures to assess the degree of non-work-conservingnessfor each policy (e.g., the number of processors left idle with respect to the currentassignment) are presented.The paper is organized as follows. Non-work-conserving policies are describedin Section 2. Section 3 illustrates the results of performance analysis for variableexecution time distributions, arrival bursts, and processor failures. In Section 4quantitative measures of the degree to which a policy is non-work-conserving arepresented. Section 5 concludes the paper and summarizes the �ndings.2 Non-Work-Conserving PoliciesIn this section the concept of non-work-conserving policies is illustrated. Twofamilies of non-work-conserving space sharing policies found in the literatureare described. In both cases, the policies schedule jobs in FIFO order, apply-ing di�erent non-work-conserving strategies for processor allocation, and haveminimum overhead since they are of space sharing type.In classical scheduling theory, non-work-conserving policies keep the resourceidle or partially idle in the presence of work to be done. In uniprocessor systems,such a characteristic is harmful to performance when the cost of waiting fordata (e.g., from cache) exceeds the cost of context switching. In multiprocessorsystems, scheduling the available processors is a more di�cult problem. Underspace-sharing, multiple programs can execute simultaneously on disjoint subsetsof processors called partitions. Unlike uniprocessor systems, not all availableprocessors have to be assigned to achieve performance improvements.



At each scheduling round, a non-work-conserving decision is made when someof the available processors are not assigned and either 1) there are jobs stillwaiting for service in the queue or 2) the waiting queue is empty but the newlyallocated partitions have been restricted such that some processors are left idle.The system is said to be in a non-work-conserving state if a non-work-conservingdecision has just been made. Not all states with unallocated processors are con-sidered to be non-work-conserving. For example, when processors become idleafter a job �nishes execution and the waiting queue is empty, the released pro-cessors are unallocated and are not redistributed among the executing jobs. Suchsystem states are considered work-conserving since they are not the consequenceof a non-work-conserving decision but rather of the non-preemptive characteris-tic of the policy. In contrast to non-work-conserving strategies, a work-conservingpolicy does not leave processors idle if there are jobs waiting for service. Thenumber of scheduled jobs as well as the job partition size depend upon theprocessor allocation algorithm.Prior work suggests that non-work-conserving policies may performwell whenthe system and workload behavior is irregular. These cases include:{ limited workload scalability (i.e., workloads with non-linear speedups),{ uctuations in the arrival process of the parallel jobs, especially when thearrival process is bursty,{ multiclass workloads, composed of parallel applications which impose di�er-ent demands on the system, and{ unstable systems where processor failures are possible.In real environments, the interarrival time distribution of arriving jobs can beirregular. Arrival bursts can occur when users submit batches of jobs to the mul-tiprocessor. In environments that su�er from processor failures, the interruptedjobs must be rescheduled. Recovery from processor failures allows the newly re-covered processors to be reallocated. Multiclass workloads can place di�erentdemands on the system. Thus, wide variability exists and it is this variabilitythat can be exploited by non-work-conserving policies.The idea of keeping some processors idle is not new. However, it has not beenanalyzed in detail. In this paper, two families of non-work-conserving policiesare examined. They represent two distinct ways of making non-work-conservingdecisions.2.1 The ASP-MAX FamilyThe ASP-MAX (Adaptive Static Partitioning with a Maximum) family of poli-cies o�ers a complete range of policies whose performance is a function of theMAX parameter [CMV94]. The goal of the policy is to equally distribute all freeprocessors to the jobs waiting in the queue. One constraint applies: the numberof processors assigned to the job must be less than or equal to the minimum ofthe job's available parallelism and the parameter MAX. The parameter MAXis a fraction p% of the system size. When a job's available parallelism (i.e., the



maximumnumber of processors the job can e�ectively use) is equal to the systemsize, the range of policies de�ned by the parameter MAX spans from non-work-conserving (when MAX < 100%) to work-conserving (when MAX = 100%). Thepolicy performance is sensitive to the selection of the parameter MAX. It hasbeen shown that an e�ective rule of thumb is to set MAX to 20% [CMV94].If a job arrives at an empty system and its available parallelism is equal to thesystem size then the job is assigned a number of processors MAX�system size.Non-work-conserving decisions are made every time the system empties out anda new job arrives with an available parallelism equal to the system size. Inthe analysis presented in this paper, it is assumed that the the jobs' speedupcurves are monotonically increasing. Therefore, the jobs' available parallelismexceeds the system size. The policy performance with various distributions of theavailable parallelism has been analyzed in [CMV94]. With ASP-MAX policies,the number of processors kept idle can be considerable (e.g., up to 80% of thesystem size when MAX = 20%). Such a situation does not occur if there are jobswaiting for service in the queue. All waiting jobs are scheduled as long as thereis a su�cient number of processors.2.2 The PSA FamilyAn alternative way of being non-work-conserving is implemented by the PSA(Processor Saving Adaptive) policy [SRSDS95]. This policy does not force any apriori constraint on the size of the partition. Non-work-conserving decisions aremade based upon the recent past system behavior.At each scheduling round, the policy tries to maintain an equipartitioningscheme. The number of partitions is computed as a function of the number of jobswaiting in the queue. The partition size assigned to a waiting job is determinedby the total system size divided by the number of partitions. If the number offree processors is smaller than the computed partition size, then a non-work-conserving decision is made. No job is scheduled and the free processors are keptidle. As the waiting queue increases, the partition size decreases proportionally.If the queue length is smaller than the current number of partitions and thereare at least two free partitions of the previously computed partition size, thenthe partition size is increased. An exception is given by the case when the systembecomes completely idle. As an illustration, consider the case when a single jobis executing in the system. If the number of processors allocated to the a job issmaller than the whole system and the job completes before an arrival occurs,then the policy \remembers" that the system has been divided into more thanone partition but only one was used. The new job that arrives will not be assignedthe whole system, even though the whole machine is idle. This is in anticipationof another job arriving shortly, as occurred in the recent past. If no arrivalsoccur during the execution of the newly arrived job, the next incoming job (i.e.,in the next scheduling round) will be assigned the entire system and the entirepast history is erased. A detailed algorithmic description of the PSA policy ispresented in [SRSDS95]. Under the PSA policy, memory of the system historyis kept for one scheduling round. The severity of non-work-conserving decisions



can be extended by increasing the number of scheduling rounds that keep trackof the system history.The focus of this paper is to investigate the impact of the di�erent non-work-conserving strategies on system performance. The ASP-MAX and the PSApolicies are analyzed. The next section identi�es the conditions under which non-work-conserving policies perform well.3 Performance AnalysisIn this section, the performance of the ASP-MAX and PSA policies is investi-gated. The performance metric adopted is the response time ratio, de�ned asthe ratio of the average response time under a given policy to the average re-sponse time under a reference policy [CMV94]. The absolute comparison of theASP-MAX and PSA policies is not the purpose of this paper5. Since the goalof the paper is to study the impact of non-work-conserving decisions, the ef-fects of such decisions must be isolated from those due to a di�erent allocationstrategy by using a di�erent reference policy for each policy family. For eachpolicy analyzed (i.e., ASP-MAX 20% and PSA), the reference policy consid-ered is the corresponding work-conserving version (i.e., ASP-MAX 100% andthe work-conserving PSA version).Particular interest is devoted to policy performance under irregular workloadbehavior. Apart from the base case where exponential assumptions are madefor the workload interarrival and service time, cases are analyzed where there issigni�cant variability in the workload arrival and service processes. The results ofbursty arrivals and limited availability in the processor set are also investigated.A simulation study of systems with various sizes, namely 32, 64, 128, and256 processors, is conducted. The size of the systems, as well as the policycomplexity, prohibits the use of analytic models. Results are reported here forthe 64 processor case only because they are representative of all system sizes. Aset of 5 workloads with di�erent speedups, spanning from nearly linear to almostat is considered. Intermediate speedups are referred to as concave m% where mis the workload e�ciency for the given system size. As an illustration, on a systemwith 128 processors, a concave 75% workload has a maximum speedup of 96.The maximum speedup is achieved with the total number of system processors(i.e., the speedup is monotonically increasing).3.1 The Base CaseFor the base case experiment, exponential distributions for the job interarrivaland service times are assumed. In this experiment, the system does not su�er5 Because of the way partition size is computed, the ASP-MAX and PSA policies makenon-work-conserving decisions di�erently. The ASP-MAX policies distribute the freeprocessors to the jobs waiting in the queue under the constraint of a maximumpartition size. Unequal partition sizes are allowed to co-exist. The PSA policiescompute the partition size as the total number of system processors divided by thenumber of waiting jobs to limit the coexistence of unequal partition sizes.



from processor failures. Figure 1 plots the response time ratio as a function ofthe system utilization for the ASP and PSA policies. For the ASP policy, theparameter MAX is set to 20%. Experiments have been conducted with variousMAX parameters but the results are not reported here for the sake of brevity.Curves above the reference line (dashed line) indicate that the work-conservingpolicy is better. Curves below the dashed horizontal line indicate that the non-work-conserving policy is better. Five workload types are used, spanning fromat (concave 10%) to linear. The policy performance depends upon the sys-tem load and the workload speedup characteristics. If the workload scales well(i.e., above concave 50%), a �xed constraint such as the one imposed by theASP-MAX policy hurts performance signi�cantly. Non-work-conserving deci-sions yield an arti�cial ination of response time since a possibly considerableamount of resources is wasted due to the MAX constraint. PSA yields betterperformance relative to its work-conserving counterpart. When the workloadsdo not scale well (i.e., concave 10% and concave 25%), a clear bene�t is noted.The ASP-MAX policy can reach a performance gain of about 50%.
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Fig. 1. Response time ratio for the ASP-MAX 20% and PSA policies with respect tothe relative work-conserving policy for various workloads.These workloads can take limited advantage from extra processors. In suchcases, it is better to keep idle processors for future arriving jobs. At mediumload, the PSA gain over its work conserving counterpart is around 20% andincreases up to about 40% as the system utilization increases. Since the amountof processors kept free with ASP-MAX is larger than with PSA, the e�ects aremore dramatic in terms of both losses and gains for all workload types.



3.2 Arrival and Departure ProcessesNon-work-conserving policies are expected to perform well in cases when irreg-ularities are present in the workload behavior. To validate such a hypothesis,the coe�cients of variation (CV) of the distributions of the job interarrival andexecution time are varied. For the �rst sensitivity analysis experiment, the dis-tribution of the workload execution time is assumed exponential. The impactof various interarrival time distributions is investigated for CV's in the rangeof [0.15, 25]. The second sensitivity analysis experiment assumes exponentialinterarrival times for the incoming jobs while the coe�cient of variation of theexecution time is varied over the range [0.5, 10].In Figure 2 the response time ratio of the two policies is reported as a func-tion of the coe�cient of variation of the arrival process for a �xed system uti-lization (50%). Although production systems usually operate at high utilization,a medium utilization level was selected to be able to observe the e�ects of non-work-conserving decisions. Since at high utilization non-work-conserving deci-sions seldom apply, their e�ects are more pronounced when the system does notoperate close to saturation. For the sake of clarity, three representative speedupswere selected out of the �ve speedups used in the base case experiment.
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Fig. 2. Response time ratio for the ASP-MAX 20% and PSA policies w.r.t. the cor-responding work-conserving policy versus the CV of the interarrival time distributionfor various speedups. The system utilization is set to 50%.As the �gure shows, the increase in the arrival process variability (i.e., higherCV's) positively a�ects performance under the ASP-MAX policy and for work-loads that scale well. As the CV of the arrival process increases, ASP-MAX ismore likely to outperform the work-conserving case (i.e., dashed reference line).When the CV is small, the arrival process is more regular and the performance



of the ASP-MAX policy is not good for workloads that scale well. When theworkload scales poorly (at speedup), the performance is a�ected in a negativeway as the arrival process CV increases. Under the PSA policy the performanceis relatively insensitive to the speedup characteristics of the workload. Perfor-mance improves (relative to the work-conserving case) as the CV increases butthe gain is minimal. For CV=25, the curves start increasing. In this case, thePSA policy is not able to absorb the high variability of the arrival process. Theamount of processors saved for future arrivals is not enough to accommodate theincoming requests.For the second sensitivity experiment, the impact of di�erent computationalrequirements from the submitted jobs is investigated by changing the coe�cientof variation of the execution time distribution over the range [0:5; 10]. The ar-rival process is assumed exponential. In Figure 3 the response time ratios of theASP-MAX and PSA policies are reported as a function of the CV of the work-load execution time. The system utilization is �xed at 50%. Consistent with
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3.3 Performance Analysis with Arrival BurstsIn this section the policy behavior with respect to bursty arrivals is analyzed.At each arrival time, an arrival burst of a given size or a single arrival can oc-cur with probability p and 1 � p, respectively. Bursts of size 2, 5, and 10, eachwith probability 0.1, 0.5, and 0.9, are considered. Figure 4 plots the responsetime ratios for the ASP-MAX policy as a function of the burst size for the threeprobability values considered. As in the previous experiments, the system uti-
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Fig. 4. Response time ratios for the ASP-MAX 20% policy with arrival bursts anddi�erent burst probabilities at system utilization 50%.lization is �xed at 50%. With a burst size equal to 0, only single arrivals areallowed. In this experiment, the workload interarrival and service times are ex-



ponential. A trade-o� is observed among the burst size, the burst probability,and the performance improvement. Figure 4 indicates that small burst sizes areabsorbed easily by the ASP-MAX policy. The large number of unassigned pro-cessors can be employed to handle such bursts. As the bursts become larger,the non-work-conserving choice remains preferable although its advantages aresigni�cantly reduced.The same experiments were conducted with the PSA policy. In Figure 5 theresponse time ratios at system utilization 50% for the PSA policy as a function
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Fig. 5. Response time ratios for the PSA policy with arrival bursts and di�erent burstprobabilities at system utilization 50%.of di�erent burst sizes are reported. The maximumperformance improvement isachieved with the largest burst size and burst probability. The trend is similar for



all workload types and it is monotonic across the range of burst sizes. The basicconclusion is that as burst size increases, or as the burst probability increases,the e�ectiveness of non-work-conserving policies improves.3.4 Performance Analysis with Processor FailuresIn this section the system behavior in the presence of processor failures is inves-tigated. If a processor fails while a job is in execution, the job must be restartedon a new set of processors. Two alternatives are possible: the job can be eitherrestarted on the portion of partition that is still operating or can be rescheduledas if it had just entered the system. While the �rst alternative is not a�ectedby the allocation policy types, the second alternative is expected to yield bet-ter performance under a non-work-conserving policy. If an interrupted job is tobe rescheduled on a new set of processors, processors left idle during previousscheduling rounds can be e�ectively used for the job's new allocation.In this analysis simultaneous multiple processor failures are not allowed. Pro-cessors fail according to a Poisson process and return to operating conditionafter an exponentially distributed repair time. Idle and allocated processors areequally likely to fail. When a processor fails, the number of free processors andthe system size are decreased accordingly and the partition size is computedusing these new values. If an idle processor fails, it is immediately removed fromthe set of available processors and it is assigned only after it has been repaired.In Figure 6 the response time ratios for the ASP and PSA policies are re-
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As in the previous experiments, the system utilization is set to 50%. Under thepresence of processor failures, both ASP-MAX 20% and PSA perform well con-sistently. With ASP-MAX 20%, the performance improves for all workload typesas the failure to repair ratio increases. The e�ect is more pronounced for work-loads that scale well. With the PSA policy, performance improves across theentire range of failure to repair rate ratio regardless of the workload type. Athigh ratios, the gains are consistently in the 40% to 50% improvement range.4 ObservationsIt has been shown that under irregular workload and system behavior non-work-conserving policies can yield better performance than their work-conservingcounterparts. The results suggest that as the workload behavior becomes moreirregular, non-work-conserving policies improve performance. Yet, there are spe-ci�c cases where work-conserving policies are best (e.g., when the arrival processis hypoexponential or the workload scales well).In Section 2 two distinct non-work-conserving policies are presented. TheASP-MAX policies make non-work-conserving allocations based on the parame-ter MAX. The PSA policy is non-work-conserving because it never assigns fewerprocessors than the computed size if such a number is not available. The PSAdecisions are made based on the knowledge of previous system states. The twodi�erent strategies yield non-work-conserving states of di�erent type and sever-ity. Keeping many processors idle can be useful under certain circumstances.However, under other circumstances, it is better to adjust the number of idleprocessors according to the system state. To quantify such di�erences, vari-ous non-work-conserving indices are measured. The probability of being in anon-work-conserving state (i.e., the percentage of time spent in a non-work-conserving state), is an overall policy measure that captures the degree to whicha policy is non-work-conserving.Figure 7 illustrates the percentage of time spent in non-work-conservingstates for ASP-MAX 20% and PSA as a function of the system utilization for thebase case experiment of Section 3.1. As the �gure shows, at low loads the ASPpolicy spends more time than the PSA policy in non-work-conserving states sinceit keeps many processors idle. At low loads, the PSA policy tends to assign theentire system to a single job rather than keeping some processors idle. However,as the load increases, small numbers of processors are left idle. At medium tohigh load, few processors can be left idle more frequently since the partition sizeis neither the largest possible (i.e., the whole system), nor has reached the min-imum size (i.e., 1). This accounts for the higher percentage of time at mediumload that the PSA policy is observed to be in a non-work-conserving state.An important factor is the number of processors left idle with respect tothe current partition size. If the average partition size is much larger than thenumber of free processors, the system performance is not hurt. On the otherhand, keeping one processor free when the current partition size is 2 processorscan seriously impact performance because the system is in a high load situation.
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Fig. 8. Ratio of the average number of free processors to the average partition size innon-work-conserving states for the ASP-MAX 20% and PSA policies versus the systemutilization for various workload types.is greater than 1 at medium low loads since the system is likely to have only oneor two jobs executing simultaneously. With a maximum allocation of 20% of the



system size, the number of idle processors is likely to be larger than the averageassignment.As the system utilization increases, the number of idle processors decreasesbecause of the higher arrival rate. Even though the maximumpartition size doesnot change, more parallel jobs are in execution and less processors are left idle.The opposite trend is observed for the PSA policy. Since the partition size iscomputed based on the queue length, at low loads the number of free processorsrelative to the partition size is small. Most jobs execute on the entire system oron half of it. The percentage of free processors relative to the partition size isnever greater than 0.5, since only fragments of partitions are kept idle. Overall,Figure 8 indicates that the PSA policy is more conservative than ASP-MAXwith respect to non-work-conserving decisions. This is especially true at low tomedium system loads. As the system load increases, the PSA policy resorts tonon-work-conserving decisions more often.5 ConclusionsIn this paper, the concept of non-work-conserving adaptive space-sharing poli-cies for general purpose multiprocessor systems is presented. Two families ofpolicies are investigated which represent two distinct ways of making non-work-conserving decisions. For the ASP-MAX policy, non-work-conserving decisionsare made based on the parameter MAX. The PSA policy \saves" processors ac-cording to some knowledge of previous system history. By means of a simulationstudy, the e�ectiveness of these policies are analyzed. Conditions are identi�edunder which non-work-conserving policies are useful. Non-work-conserving poli-cies are e�ective when:{ the workloads that do not scale well (i.e., workload speedup curve is sublin-ear),{ high variance exists in the arrival process of the workload to the system,{ high variance exists in the workload execution time (e.g., multiclass work-loads),{ the workload is susceptible to bursty arrivals, and/or{ the systems is prone to processor failures.Future work includes experimentation on a real system using real workloads.This would allow the study of the impact of factors such as memory and I/Obandwidth restrictions when non-work-conserving policies are used.References[AMV93] R. Agrawal, R.K. Mansharamani, M.K. Vernon, \Response time bounds forparallel processor allocation policies," Technical Report # 1152, ComputerScience Dept., Univeristy of Wisconsin, Madison, WI, June 1993.
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