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ABSTRACT

We give a statistical interpretation of Proximal Support Vec-
tor Machines (PSVM) proposed at KDD2001 as linear ap-
proximaters to (nonlinear) Support Vector Machines (SVM).
We prove that PSVM using a linear kernel is identical to
ridge regression, a biased-regression method known in the
statistical community for more than thirty years. Tech-
niques from the statistical literature to estimate the tuning
constant that appears in the SVM and PSVM framework
are discussed. Better shrinkage strategies that incorporate
more than one tuning constant are suggested. For nonlin-
ear kernels, the minimization problem posed in the PSVM
framework is equivalent to finding the posterior mode of a
Bayesian model defined through a Gaussian process on the
predictor space. Apart from providing new insights, these
interpretations help us attach an estimate of uncertainty
to our predictions and enable us to build richer classes of
models. In particular, we propose a new algorithm called
PSVMMIX which is a combination of ridge regression and a
Gaussian process model. Extension to the case of continu-
ous response is straightforward and illustrated with example
datasets.

Categoriesand Subject Descriptors

G.3 [Probability and Statistics]: Correlation and regres-
sion analysis, Stochastic processes.

General Terms
Algorithms.

Keywords

Bayesian models, classification, correlation, kernel, bias-variance

tradeoff, regression.
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Fung and Mangasarian[13] introduced proximal support
vector machine (PSVM) classification as a variation on clas-
sical support vector machines (SVM). Their method is based
on replacing an inequality by an equality in the defining
structure of the SVM framework, and also on replacing ab-
solute error by squared error in the defining minimization
problem. The result of these changes is to replace a non-
linear algorithm with complexity similar to that of linear
programming to a linear least squares algorithm. The au-
thors claim that this great decrease in computing complexity
is achieved with no discernible loss of classification accuracy
and robustness. The standard SVM has both “linear” and
“nonlinear” variants, where in the latter the matrix product
AB is replaced by a nonlinear kernel function K (A, B) in
part of the defining framework. They also provide a nonlin-
ear variant of PSVM that can accept an arbitrary kernel K ()
but still computes as a noniterative least squares algorithm.

In this paper we show that PSVM with a linear kernel
is equivalent to ridge regression, a technique that has been
extensively studied by statisticians [4, 7, 17, 19, 28]. With
nonlinear kernels, we show PSVM is equivalent to a Bayesian
model defined through a Gaussian process on the predictor
space with the kernel determining the correlation function
of the process. The separating hyperplane in this case is
given by the posterior predictive distribution of the foregoing
Bayesian model.

These statistical interpretations provide evidence that some
commonly used data mining algorithms are simple shrinkage
estimation techniques used in statistics. Shrinkage estima-
tion is known to be a powerful variance reduction technique
and has been successfully applied to data mining problems
(see [10] for an example). Some other commonly used vari-
ance reduction techniques are bagging [5] and boosting (See
[12] and references therein). All these methods inflate bias
and work well when the reduction in variance is substan-
tial compared to the increase in bias, leading to an over-
all reduction in mean squared error. Moreover, working in
a statistical framework enables us to attach a measure of
uncertainty to our predictions. In particular, we can ob-
tain 95% predictive intervals for each point in our test set.
This can potentially help the data analyst build better al-
gorithms. For instance, if most predictive intervals of mis-
classified points are statistically significant, it is perhaps in-
dicative of overfitting. On the other hand, if most of these
predictive intervals are insignificant, it perhaps means we
require a better algorithm or need to explore the predictor
space more thoroughly.



Another benefit of our statistical interpretation is that
it provides guidance into building richer classes of models.
By using combinations of linear and nonlinear kernels, we
introduce a new algorithm, PSVMMIX, and indicate how
it could be implemented by a slight modification of PSVM.
Similarly we show how the methodology easily extends itself
to regression with continuous response variables.

The paper is organized as follows: In Section 2 we prove
the equivalence of PSVM with linear kernel and ridge regres-
sion and discuss some commonly used statistical methods
used to determine the tuning parameter [17, 28] which may
prove useful when implementing SVMs or PSVMs for data
mining tasks. In Section 3 we show that the minimization
task posed by PSVM with nonlinear kernels is equivalent to
finding the posterior mode of a Bayesian model. Section 4
discusses PSVMMIX followed by data examples in Section
5. Section 6 concludes the paper with some discussion and
scope for future work.

A word about our notation. All vectors will be column
vectors. The transpose of a matrix or a vector will be indi-
cated by the superscript ‘T”. For an mxn matrix A and nxk
matrix B, K(A, B) is an mx k matrix. In particular, if x and
y are vectors, K (z7,y) is a real number, K (7, AT) is a row
vector and K (A, AT) is an mxm matrix. For a matrix A, A;.
and A ; will denote the ith row and jth column respectively.
All probability distributions will be denoted by a single func-
tion f(.). For example, f(y) will denote the probability dis-
tribution of a random variable Y, f(y;z,w) will denote the
conditional distribution of Y given (Z,W). E(.) and V(.)
will denote the expectation and variance of a probability
distribution respectively. So E(g(Y); Z,W) denotes the ex-
pectation [ g(y)f(y; 2, w)dy and V(g(Y); Z, W) denotes the
variance [(g(y) — E(g(Y); Z,W))? f (y; 2, w)dy of g(Y') with
respect to the conditional distribution of Y given (Z, W).
For any two random variables (X,Y’), marginalizing over Y’
will mean obtaining the marginal density f(z) by integrating
out y from the joint density f(z,y). X ~ N(m,V) means
the random variable X follows a normal or Gaussian prob-
ability distribution with expectation m, dispersion matrix
V and density given by f(z) = 1/,/((27)?|V|)exp(—3(z —
m)TV =1 (z —m)), where p is the dimension of X. For each
z, |z| will denote the euclidean distance of x from the origin.

2. PSVM WITH LINEAR KERNELS ARE
RIDGE REGRESSIONS

The following development shows that the linear version of
PSVM is equivalent to ridge regression where the dependent
variable, z, is defined as +1 or -1 depending on the class
assignment of each of the m items in the training set. From
equation (9) of [13], the objective is to minimize,

vyl y/2 + (whw +4%) /2, (1)
subject to D(Aw —evy)+y = e,
where,
D is a diagonal m X m matrix with diag(D) = z;
A is the m X n matrix of numeric predictors (features);
e is an m X 1 vector of all 1’s;
w is an n X 1 vector of coefficients, one for each feature, to
be determined;
v is a scalar, to be determined;
v is an arbitrary positive tuning constant for the algorithm
that plays a role whenever perfect classification is impossi-

ble;
y is an m X 1 vector of absolute “residuals” where the ele-
ments of y are defined implicitly by the equality in equation

(1).

We convert this into the statisticians’ notation for ridge
regression using the following equivalencies. Let
r = Dy (interpreted as signed residuals);
rTr =yTy (since D? =1);
z = De (e is a vector of 1s);
Aw + ey + r = z **(multiply both sides of equality in (1)
by D; p= —v);
X =[e A] (prepend a column of 1s to A);
B =[u w] (uis the coefficient of the constant term);
X3 =eu+ Aw (from the previous two definitions);
r =z — Xf (from ** justifying calling r the signed resid-
ual);
8T8 = wTw + p? (squared length of coefficient vector).

Finally, we see that the entire objective in (1) can be
written as a ridge regression:

minimize rTr + BTB/Z/, subject to r =z — X 3.

A Bayesian interpretation of ridge regression is given by
the following model:

f(z;8) ~ N(XB,0°1); f(B) ~ N(0,v0°I); (2)

where o2 is the variance of the residuals and T is an identity
matrix. Note that the minimization problem posed in (1) is
exactly equivalent to finding the posterior mode of 3 in (2).
In fact, the posterior distribution of § is given by

F(Bs2v.0%) ~ N(LX"2,0°L), (3)

where L = (XTX +11)7".

The separating hyperplane for a point xo not in the train-
ing sample is 2§ B(3;2) = 3 (X" X +11)7' X" 2 and hence
the predictive variance V (zo) at xo is given by

V(xo) = o’xy LXT X Lao. (4)

Note that the predictive variance involves an unknown pa-
rameter o2 which can be estimated quite reliably in data
mining applications by the predictive mean squared error
for the test dataset. Due to the Gaussian assumption, a
95% predictive confidence interval at x¢ is given by

28 B(B; 2)+1.961/(V (20)).

The prior precision k = 1/v is sometimes called the “ridge
parameter” and determines by how much the least squares
coefficients are shrunk toward 0. If v — oo (or equivalently
k — 0), we have a diffuse prior on 3 and ridge regression co-
incides with ordinary least squares. On the other extreme,
if v — 0 (or equivalently kK — oc), 8 — 0 and hence the
predictors don’t play any role at all in classification result-
ing in a totally useless classifier. A Bayesian might even
have a subjective prior distribution for 3, perhaps leading
to shrinkage toward values other than 3 = 0. Also, the
magnitude of shrinkage for all parameters need not be the
same. For instance, if the matrix of numeric predictors is
composed of all possible terms defined by a polynomial of
degree p (p > 1), we may want to shrink the higher or-
der terms more than the lower order terms. In most data
mining applications, the foregoing Bayesian interpretation
allows the analyst the flexibility to try different shrinkage



strategies perhaps based on domain knowledge instead of
using just one tuning parameter. Such strategies are effec-
tive if the data is linearly separable but contaminated with
a lot of noise. As an extreme case, we can have a different
ridge parameter for each predictor. However, this will lead
to an algorithm with too many tuning constants that will
be difficult to implement in practice. In a Bayesian frame-
work one can assume the ridge parameters have a common
probability law i.e. 8 ~ N(0,c02diag(v1,--- ,vn)) and the
vis are shrunken further by assuming they are identically
and independently distributed with common distribution
f(v;a) where a is known. For instance, a possible choice
of f(v;a = {C1,C2}) is a uniform distribution on [C1, C?]
or even a uniform distribution on a unidimensional grid.

Finally we remark that extension to the case of continu-
ous response variable is trivial in the statistical framework.
Ridge regression was originally invented by statisticians as
an alternative to ordinary least squares. They argued that
even though the ridge estimator was biased, a small bias can
often be compensated by much lower variance, such that the
overall mean square error of the ridge estimator is smaller
than it’s ordinary least squares counterpart. Ridge estima-
tion has been generalized for binary response data by [21,
20]. References [23, 27, 25] extend it further for generalized
linear models. These models are fitted by means by an it-
erative procedure which is computationally more intensive.
A subtle point to remember while implementing ridge re-
gression for continuous response is to make sure that the
response variable is centered at zero. An alternate strategy
is to assume [ : w] ~ N((a,0)T,v0?I) where o is some
measure of central tendency of the response variable (gen-
erally the sample mean or sample median).

2.1 Estimating the tuning parameter

In most data mining applications, the ridge parameter v is
chosen by cross-validation, in which some part of the train-
ing sample is held back and the value that best predicts this
held-back data is our estimate. While there’s nothing wrong
with this grid search in low dimensions, getting the right
scale for the parameter (or the interval of grid search) might
turn out to be a difficult task in most data mining applica-
tions. The ridge regression literature discusses a plethora of
methods to estimate v from the training data. In practice,
it may be a good idea to use them first to get the correct
scale for the parameter followed by cross-validation. We dis-
cuss some of these methods now and point out the relevant
literature.

The simplest method is to graph the coefficients as func-
tions of the ridge parameter k leading to a choice of v that
seem to give “sensible” coefficient estimates. See [30] for fur-
ther discussion on these plots called “ridge trace plots” in the
statistics literature. For data mining applications, although
these trace plots may not give us the exact estimate of v, it
certainly helps us to decide on a sensible range [C1,C2] in
which to confine our grid search to. While [13] mention esti-
mating v by using a validation sample, they do not say how
they conduct the grid search. The authors in [7] compare
several methods of estimating & through a simulation study.
Their RIDGM method uses an empirical Bayes approach to
estimate k. Efron and Morris in their discussion of [7] sug-
gest a further refinement based on EBMLE discussed in [11].
Reference [17] compares ten different methods of estimating
k using a Monte Carlo study and identify three estimators

- HKB, RIDGM, and GHW as giving the best overall per-
formance. We give a brief description of these estimators
below.

2.2 Hoerl, Kennard and Baldwin estimator
If n is the number of predictors, the HKB estimator is
given by k = no?/BT3. Let § denote the ordinary least
squares (OLS) estimator of 8 and o2 = (2 — X3)T(z —
Xf)/(n —m — 1), an estimate of o2. Let 8(k*) denote
the ridge estimate of B at k = k™. At the ¢th iteration,
- A T A amn
ki = no2/B(ki—1) B(ki—1) with ko = no2/BT3. The iter-
ated algorithm has been implemented by applying a 10™*
convergence criterion to successive k values and defaulting
to least squares estimator if convergence is not obtained in
30 iterations.

2.3 RIDGM estimator

Let GTXTXG = diag(\1, -+ - , An) denote the spectral de-
composition of XTX and v = GT3. The RIDGM approach
is to choose k so that

S 2/(1/k +1/A) = a2n, (5)

where 4 = GTB. In practice, the solution is obtained by
computing the left hand side of equation (5) for a mesh of
k values.

2.4 Golub, Heath, and Wahba estimator

Both HKB and RIDGM estimators depend explicitly on
least squares estimates of 8 which may not be available in
practice due to singularity of the feature matrix. GHW es-
timator is attractive in the sense that it does not depend
on the OLS estimates. A solution for k is determined by
minimizing

V(k) = |[I — C(k)]2|*/(trace[l — C(K)])?, 6)
where C(k) = X(XTX + k)7 XT,

In practice, the minimization is implemented by evaluating
V(k) for a mesh of k values. The computations are facili-
tated by the fact that (XTX + kI)™' = XG(diag(1/(\ +
k), -+ ,1/(An + k)))GT X7 requiring just one matrix inver-
sion for all values of k.

2.5 Bayesianestimate

Finally, it is possible to get a Bayesian estimate by putting
a prior on v and carrying out the estimation process us-
ing Markov Chain Monte Carlo (MCMC) algorithms. The
MCMC algorithm most commonly used in statistics is Gibbs
sampling, popularized by [15]. Such an approach can easily
incorporate richer shrinkage strategies as discussed earlier
in Section 2. However, MCMC algorithms are iterative in
nature and it may be hard to scale them up to massive
data mining tasks. With linear kernels, the complexity of
MCMC depends mainly on n (the number of predictors).
If n is not too large (say < 200), it is feasible to run an
MCMC algorithm on the entire training dataset to estimate
all the shrinkage parameters in the model. Needless to say,
one should only consider taking such an approach if the
number of tuning parameters involved is large. For large
number of predictors, if one has to rely on MCMC tech-
niques, it should be done after marginalizing over 3 in (2)
ie. z ~ N(0,0%(I +vXXT)). Since the dispersion matrix



is of order m x m, for large m the MCMC algorithm should
be implemented on a small subsample of the training set.

3. PSVM WITH NONLINEAR KERNELS

We now give a statistical interpretation of PSVM with
nonlinear kernels. From equation (18) of [13], the objective
is to minimize (w.r.t. u, u)

vrTr/2 + (uTu + p?)/2, 1)
subject to 7 =2z — AAT Du — pe.

Fung and Mangasarian[13] convert this into an algorithm
for nonlinear kernel K by replacing AAT with K (A, AT) in
equation (7). Motivated by [22, 24], a more general version
of this minimization problem can be obtained by replacing
uTu in equation(7) with u” Hu, where H is a positive defi-
nite matrix. In fact, if we replace w in equation (9) of [13]
by AT Du in their equation (18), we should have u” DAAT
in equation (7). We restate the general version of the mini-
mization problem: minimize(w.r.t. w, u)

vrTr/2 4+ (uf DTHDu + p?)/2, ()
subject to r =2z — KDu — pe.

Consider the transformation §(A) = K (A, AT)Du. Then
equation (8) can be rewritten in terms of # as minimize
(w.r.t. 6, p)

vrTr/2 + (0(A)TK=HA, AT)HK ~1(A, ATY0 + 1?)/2,
subject to r =2z —60 — pe.
(9)
This is immediately seen to be equivalent to finding the pos-
terior mode of the following Bayesian model:

f(z:0(A), 1) ~ N(pe + 0(A),0°I);
FOCA), 1) = TS 1): "
f(6(A)) ~ N(0,v0” K(A,ATYHT'K (A, A™));
f(p) ~ N(0,v5”).

If we assume H = K ' (we will get this with PSVM if we
make the correction to equation (18) of [13] as discussed
earlier), 0 is a mean zero Gaussian process on the predictor
space X with correlation between any two points z,y € X
given by K (zT,y). We will stick to this formulation in the
rest of the paper unless mentioned otherwise. The tuning
parameter v has a different interpretation in this context
which we explain. For simplicity, let’s assume that K (27, z)
is constant for each x € X. This is true for all kernels
K(2T,y) which depend on z and y only through |z — y|.
Then the variance of the Gaussian process is vo? where ¢
is the variance of the residuals. Thus, v is the ratio of the
variance of the Gaussian process to that of the residuals. In
fact, obtaining better performance with a small value of v
would indicate the Gaussian process fails to explain most of
the variability in the data indicating that we need a better
model. Note that the constant term p also shrinks toward
zero as in ridge regression. This motivates us to replace pe
with M (3 in the foregoing model where M is a known feature
matrix and 8 ~ N(0,v0?I). With this extension, large val-
ues of v combine nonlinearity with ordinary least squares.
With small values of v, the effect of the Gaussian process
weakens and ridge regression takes over. If we always want
ridge regression to work irrespective of the influence of the
Gaussian process (e.g. if M is nearly singular), we need to
introduce an additional tuning constant into our algorithm

by assuming 3 ~ N (0, vvgol). We will discuss fitting these
richer classes of models later in the paper. To obtain the sep-
arating hyperplane at a point  not in the training sample,
note that marginalizing over (6, i), we obtain

f(z(z),2z) ~ N(0, 1/02(%[ + K(B,BT) + eeT)),

(11)
where BT = (2T : AT).
Hence, the separating hyperplane and the predictive vari-
ance at x are given by the following equations:

E(z(z);2) = K(z7, AT)v + €T,

where v = (11 + K(A,AT)+ee”) 7'z

V(z(x);2) = (1 + 2v — v(((K (27, AT) + &)

(I/v+ K(A,AT) + eeT)" (K (2, A) + ¢€))).

(12)

A conservative estimate of ¢® can be obtained by taking
the ratio of predictive MSE to (1 + 2v) enabling us to com-
pute predictive confidence intervals. Note that we only need
to perform an extra matrix multiplication to compute the
predictive variance.

3.1 Richer classef models: PSVMMIX

As discussed earlier, we can enrich the class of statistical
models by replacing pe in equation (10) with M3, where M
is a known feature matrix of order m x L and assuming (3 ~
N(0,vgv0°I). Note that the predictors used in forming M
may or may not overlap with those used to form K. We shall
call this the PSVMMIX(v3) model. A special important
case is the PSVMMIX(1) model in which the shrinkage of
the linear and nonlinear terms are controlled by a single
tuning constant v. With M = e, PSVMMIX(1) reduces to
PSVM with nonlinear kernel. The separating hyperplane
and the predictive variance at a point x not in the training
sample are given as follows:

Let zonm and zox denote subsets of x that enter the linear
and nonlinear part of the algorithm respectively. Then,

B(2(2);2) = K(20x, AT)v + vgagy M o,

where v = (11 + K +vgMM™) 2.

V(z(x);2) = 0?(1 + vvgalyzom +v (13)
—vkT(IJv+ K + vgMMT) 'k,

where k7 = K(z5x, AT) + vgaly M™.

Fitting PSVMMIX requires an additional tuning parameter
vg. ldeally, if we have | tuning parameters, they should be
estimated in one sweep by conducting a grid search in an [
dimensional space. In practice, it may be a good idea to first
fit PSVMMIX(1) followed by a one dimensional grid search
for vg in a neighborhood of v optimal for PSVMMIX(1). So
far, the latter has worked well for us.

4. FITTING PSVMMIX TO A LARGE TRAIN-
ING SET

Computing the separating hyperplane from equation (13)
requires the inversion of an m x m matrix V' = (%I + K +
MMT). For large values of m the inversion of @ = (114 K)
is usually facilitated by using compactly supported kernel
functions (See [16] and references therein). These kernels
make K a sparse matrix with a much smaller bandwidth
b, than m enabling us to compute the inverse using mb2,
flops. However, the presence of MM7T completely destroys
this sparsity. We now express F(z(x); z) and V(2(x);z) in



terms of ) enabling us to exploit the sparsity of K for large
m. Equation (13) can be rewritten as follows:

E(z(x); 2) = E(E(2(x); 2,8); 2) =

et E(z:8) + K (27, AT)Q ™" (= = ME(2; ),

where E(z ) = (MTQ™'M + ;-1) " M"Q 'z,

and

V(z(2);2) = E(V(2(2);2.8),2) + V(E(2(2); 2, B), 2).

(14)

Assuming the number of predictors L involved in M is small,
the expressions in (14) can be evaluated easily once we have
inverted @ using efficient inversion routines for sparse ma-
trices (See [18] for details on using these routines in MAT-
LAB). The limit on the size of L is not too restrictive for
practical applications. Using a very large L would kill the
contribution of the Gaussian process to a large extent and
we may end up approximately implementing a linear version
of PSVM. On the other hand, if we shrink the linear terms
too much by making vg small, we end up approximately im-
plementing a nonlinear version of PSVM and unnecessarily
wasting computational time in the process.

4.1 Implementation Details

Since Q is positive definite, the actual estimation process
is carried out by using a sparse Cholesky decomposition of
Q; i.e. Q = GGT where G is a lower triangular matrix and
solving a system of linear equation Qx = b for a bunch of
unknown b’s. Once the factorization is known, solving this
system for any known b involves m forward substitutions
followed by m backward substitutions. All our computa-
tions were done on an SGI server with 195 MHz processor
using sparse matrix routines in the meschach library, a nu-
merical library of C routines for performing calculations on
matrices and vectors [29]. A pseudo code for implement-
ing PSVMMIX for known values of v, s (tuning parameter
associated with the kernel) and v at a point xo not in the
training sample is given below. The two main functions used
are spCHfactor(P) (returns the Cholesky factorization of a
sparse input matrix P) and spCHsolve(W, w) (returns the
solution of Px = w using the sparse Cholesky factorization
W = spCHfactor(P) of P). The corresponding functions for
dense matrices are CHfactor and CHsolve. %*% will denote
matrix multiplication and t(.) will denote the transpose op-
erator for vectors and matrices.

1. G = spCHfactor(Q);

2. xx = t(M)%*%spCHsolve(G,z);

3. for(i in 1:L) OUT ; = spCHsolve(G,M ,);

4. WORK = t(M)%*%OUT + (1/v)*1;

5. temp = CHfactor(WORK);

6. Betaest = CHsolve(temp,xx);

7. ee = z - M%*%Betaest;

8. xx = spCHsolve(G,ee);

9. kk = K(zZ, AT);

10. Predictor = t(zon)% * %Betaest + kk% * %xx;

Note that in step 5 we have to do a Cholesky factoriza-
tion of an L X L dense matrix. This shows clearly why we
can’t afford to use too many predictors in the linear part of
PSVMMIX. To implement a grid search for (v, s, v3), note
that at each fixed value of (v,s), steps 1 to 3 are imple-
mented once followed by looping steps 4 to 10 over values of
vg.

Memory requirements for the algorithm are facilitated by

Table 1: Training and ten-fold cross validation ac-
curacy for the Ionosphere dataset for two different
models

Model Training Test
set accuracy | set accuracy
PSVM 93.73% 89.14%
PSVM2 94.59% 90.57%

use of sparse kernels. Instead of storing an m X m matrix @
we have to only store the non-zero entries of the sparse ma-
trix @ which is of order O(mb., ). Loosely speaking, we can
think of b,, as the maximum number of nearest neighbors
used by the training algorithm. Storing the dense matrix M
is of order O(mL) and hence the total memory requirement
is of order O(m max(L, by )). The main computationally in-
tensive tasks performed by the algorithm are the inversion
of @ which is of order O(mb2) and inversion of the L x L
dense matrix in step 5 of the psuedo-code which is of order
O(L®). Hence, for small values of b,, and L, the algorithm
scales linearly both in space and time approximately. Note
that the predictors used in the nonlinear part only enter
the algorithm through the pairwise distance matrix used to
compute the kernel matrix K which is computed at the be-
ginning. Thus, we can have a very large number of predic-
tors in the nonlinear part without affecting the performance
of the algorithm both in terms of time and space. In sec-
tion 5.6 we illustrate the performance of the algorithm on a
dataset consisting of large number of observations. We have
recently applied the algorithm to a dataset consisting of a
large number of predictors (1200 approximately). However,
we won’t report that analysis here due to space constraint
but can provide details on request.

5. DATA EXAMPLES

5.1 lonosphere Data

This publicly available dataset from the UCI Machine
Learning Repository [26] consists of 351 observations and
34 predictors. All the predictors are continuous. The re-
sponse variable is binary. We fitted a PSVM model with
linear kernel using 69 predictors [1, 1, , L34, T2, ,X34].
The value of v was estimated by doing a grid search for
k € {1,2,--- ,50}. Our final estimator was v = 1/37. We
also computed the GHW estimate for v which was 1/14 in
this case. Figure 1 shows separate ridge trace plots (3 vs
k =1/v). The trace plots for the linear and quadratic terms
are different. The latter looks like a funnel with a bigger
radius indicating it may require more shrinkage. We fit-
ted a second model which we call PSVM2 with two distinct
shrinkage parameters v1 and vy for the linear and quadratic
terms. The parameters were estimated by means of a two
dimensional grid search. The estimated values in this case
were v1 = 1/5, vo = 1/25 indicated by vertical lines in figure
1. The ten-fold cross-validation accuracy was computed by
randomly dividing the entire data into 10 random subsets of
equal size (one of them had an extra observation) and con-
glomerating 9 parts into a training set while the 10th part
was used as a test set. This was done 10 times (each part
taken as a test set once) and the average accuracy reported
in table 1. PSVM2 gives us better test set accuracy than
the PSVM model in this case.
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Figure 1: Ridge Trace Plots for the Ionosphere
Data. Estimated shrinkage parameters are indicated
by vertical lines.

5.2 Adult dataset

We analyzed the “Adult” dataset, which is publicly avail-
able from the Silicon Graphics website [1]. Before pro-
ceeding with the analysis, all records with missing informa-
tion were removed. A 2/3,1/3 training and test data split
was used as discussed in [1]. Our training set consisted of
30161 observations while the test dataset consisted of 15060
records. A total of 96 predictors were used. We performed a
fully Bayesian analysis with a linear kernel assuming a sepa-
rate shrinkage parameter for each component of 3. A priori,
we assumed the common distribution of v/s is uniform on
a grid spanning from .01 to 6 with intervals of length .01
between .01 and 1 and of length .1 between 1 and 6. The
grid design was constructed after examining the ridge trace
plots of the predictors. Figure 2 shows the histogram of the
posterior medians of v;’s. In 95% of the cases, the medi-
ans were between .3 and .53, indicating there is not much
variability among the v;’s and we would not gain much by
using a different shrinkage parameter for each component of
3. This was further endorsed by the test accuracy which
was 83.84%, close to those reported for SVM, PSVM and
other standard classifiers (Table 1 in [13])

5.3 Spiral Dataset

We analyzed the spiral dataset [16] using a Gaussian ker-
nel K (27, y) = exp(—s|z —y|?). The dataset consists of 194
black and white points intertwined in the shape of a spi-
ral. All accuracy results for this dataset are reported using
the leave-one-out method. Private communication with the
authors of [13] led us to use v = 10° and s = 4.0. This
gave us a classification accuracy of 76.3% which is quite
poor compared to the performance of some other data min-
ing algorithms on this dataset. For instance, [14] report
an accuracy of 88.14%. On reducing the value of s to .4,
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Figure 2: Posterior median of v’s for the adult

dataset

the accuracy went up to 98.97%. Intuitively, since K (27, )
denotes the correlation between = and y (which is a decreas-
ing function of |z —yl|), reducing the value of s is equivalent
to increasing the number of nearest neighbors. Thus, re-
ducing s from 4.0 to .4 is roughly equivalent to a 3 fold
increase in the number of nearest neighbors. On reducing
s to .04 (approximately 10 fold increase in the number of
nearest neighbors compared to s = 4.0), the accuracy drops
down to 46.39%. Apart from inducing positive association
between like colored points, such a small value of s also in-
duce positive association between opposite colored points
resulting in degraded performance. With s = .4, there is
strong correlation between like colored points and negligible
correlation between points of different colors. This simple
dataset is a good example where statistical intuition helps us
better understand a problem and achieve excellent perfor-
mance. Figure 3 shows the 95% predictive intervals for each
of the 194 points. None of the predictive intervals contain
0 showing that all our predictions are statistically signifi-
cant. Also, as we move away from the centroid (0, 0) of the
dataset, predictive variability tends to become larger. This
is a common phenomenon in most stat estimation problems
- accuracy diminishes near the boundary of the predictor
space.

5.4 Bostonhousingdata

To illustrate the extension of PSVM to continuous re-
sponse data, we analyzed the Boston housing data publicly
available from UCI machine learning repository [26]. This
data was also analyzed in [8] using Support vector regres-
sion machines. Our response variable here is MEDV, median
house price. The dataset consists of 12 continuous predictors
and one nominal valued predictor called CHAS which indi-
cates the proximity of a house to Charles river. The latter
was not used by [8] in their analysis. We randomly parti-
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Figure 3: 95% predictive confidence intervals for spi-
ral data. Horizontal axis denotes the observation id
sorted in descending order by distance from the cen-
troid (0,0).

tioned the database consisting of 506 records into a training
sample (401 records), validation sample(80 records) and test
sample (25 records) as in [8]. All continuous predictors were
centered at 0 and scaled by its standard deviation. We first
fit PSVM using only the continuous valued predictors and a
Gaussian kernel. Values of (v, s) were chosen by considering
a mesh of values { 10,20, 30,---,100 }x {.005,.01,---,1 }
and choosing the pair that gives the minimum prediction er-
ror on the validation sample. For PSVM excluding CHAS,
our estimates were (40,.085). Next, we centered CHAS at
0 and scaled it to have a standard deviation of 1. We now
fit PSVM with all 13 predictors. Estimates of v and s in
this case were 40 and .035 respectively. We fit another
version of PSVM without centering or scaling CHAS. Our
parameter estimates in this case were 40 and .045 respec-
tively. Finally, we fit PSVMMIX by putting CHAS in the
linear part and the continuous predictors in the nonlinear
part. We centered our response variable at 0. On conduct-
ing cross-validation on the validation set we observed that
for each fixed (v,s), the value of vg was almost equal to
0 showing that presence of CHAS in the linear part does
not help much. We tried another version without center-
ing the response variable. Our estimates in this case were
v = 50,s = .085 and vg = .015. Table 2 report training
and test MSE’s for all the models. PSVM without CHAS
does better than SVR. On introducing CHAS (centered and
scaled) into PSVM, the performance deteriorates. Without
any transformation, PSVM with CHAS does well compared
to PSVM without CHAS. PSVMMIX (response centered at
0) gives results almost identical to PSVM (without CHAS)
as discussed above. In all cases, the MSE on the training set
is smaller than the test set which is expected. However, the
training MSE relative to test MSE for PSVM without CHAS

Table 2: Predictive and Training set MSE’s for the
Boston housing data

Model TrainMSE | Pred MSE
SVR - 7.2
PSVM(w/o CHAS) 2.423 6.359
PSVM(with CHAS) 4.152 6.659
centered and scaled
PSVM(with CHAS) 3.671 5.548
(original scale)
PSVMMIX 2.423 6.106
(response centered)
PSVMMIX 3.964 2.457
(response on
original scale)

Table 3: BUPA Liver data
Model Training set | Test set
accuracy accuracy
PSVM 78.95% 72.65%
PSVMMIX 78.95% 72.46%

is smaller compared to PSVM’s with CHAS. The training
MSE for SVR was not reported by [8] for comparison. Sur-
prisingly, we get better performance on the test set shrinking
the response toward 0.

5.5 BUPA Liver Dataset

The BUPA Liver Disorders dataset from Irvine Machine
Learning Database Repository [26] consists of 345 data points
with 6 continuous predictors and a selector field used to split
the data into 2 sets with 145 and 200 instances respectively.
We fitted two models to this dataset, PSVM with a Gaussian
kernel and PSVMMIX with all the 6 predictors in the linear
and nonlinear part. Tuning parameters were all selected by
means of a small validation set. In table 3 we report the ten-
fold cross validation accuracy for the two models. Adding
all the predictors both in the linear and nonlinear part does
not help much here. We get almost identical accuracies but
end up wasting computational time fitting PSVMMIX since
it involves an additional Cholesky decomposition of an L x L
matrix with L = 7 (6 predictors and one intercept).

5.6 PSVMMIX on alarge dataset

To exemplify fitting PSVMMIX to large datasets, we used
a database consisting of 15277 transactions of single-family
homes sold in Dallas, Texas during 1996. The primary
source of information is the Dallas Central Appraisal Dis-
trict (DCAD). Attached to each house in Dallas are its
structural characteristics and address. The addresses were
geocoded enabling us to attach a latitude and longitude to
each house in our database. Each house was assigned to an
independent school district (ISD). The data had a total of 13
ISD’s. The natural logarithm of selling price of houses was
used as our response variable since it looked more Gaussian
than the raw selling price verified using quantile plots (See
figure 4). We give a list of predictors in our database with
a brief description of each:

Continuous predictors:
1)LAT and LONG -  Geocoded  co-ordinates.
2)LIVAREA - total living area in square feet.
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Figure 4: qqgplots for selling price on the original
and log scale for Dallas data

3)AGE - Age of the dwelling in decades.
4)BATHS - Number of baths in the house. Two half bath-
rooms are counted as one.
Nominal predictors:
5) ISD - Independent School District to which the house be-
longs. There are 13 such districts in the database.
6) pool - A 0/1 valued variable with 1 denoting the presence
of a pool in the house.
T)wetbar - A 0/1 valued variable with 1 denoting presence.
Thus, including a dummy variable for each school district,
we have a total of 20 predictors in our database. All con-
tinuous predictors were centered at zero and scaled by their
respective standard deviation. Motivated by [2], we decided
to use LAT and LONG in the nonlinear part of PSVMMIX
with the remaining 18 predictors used in the linear part.
To make Q sparse, we worked with the following compactly
supported kernel [16]

R(2™,y) = eap(—s|z — y2)max((1 — 21)? o)

(15)
where # > (n+1)/2 and 6 > 0. Note that smaller values of
6 will encourage sparsity. The value of ¥ controls the rate
at which the correlations approach zero.

To fit PSVMMIX using kernel defined by equation (15) re-
quires estimating constants v, s, U, 6 and vg. Fitting PSVM-
MIX to several small subsamples from the training and val-
idation set using a Gaussian kernel helped us narrow down
our grid search for v,s and vg. For the current dataset,
we decided to use s € {.1,.6,.9,1.0}, v € {20,50,100} and
vg € {.3,.7,1.0}. Since we have n = 2 predictors in the non-
linear part, 7 must be > 1.5. We used ¥ = 2. If N; denotes
the number of non-zero correlations of the ith data point in
the training set (i.e. number of non-zero entries in the ith
row of K (A, AT) or the number of nearest neighbors for the

Table 4: Predictive MSE and computational time in
seconds for_different bandwidths for Dallas data.

6/D | by, | predMSE | time

.025 | 349 .196 752.77
.020 | 257 217 392.19
.015 | 162 243 142.58
.01 88 275 44.56
.005 | 38 317 16.53
.001 27 1.333 15.1

Table 5: Predictive MSE for test and training
dataset for Dallas data

Model Training set | Test set
accuracy accuracy
PSVMMIX(vg = .3) .0013 .1655

ith data point), bandwidth b,, is given by b, = max; N;. The
computational time required to do a Cholesky factorization
of Q increases approximately quadratically with b,,. Also,
the memory requirement is proportional to the number of
non-zero entries in Q. From equation (15), it’s clear that 6 is
an increasing function of b,,. Higher values of 6 would give
us good predictions but increase computational time. We
divided our dataset into three random subsets viz a training
set consisting of 10000 points, a test set consisting of 3277
points and a validation set consisting of 2000 points. With
6 = .001D (where D is the maximum pairwise distance), the
value of b, was 27. Our grid search for s, and vg on the
validation set was done for this value of b, to speed up com-
putations and we finally decided to use s = .1,v = 50 and
vg = .3. Fixing s,v,vg and ¥ at .1,50,.3 and 2 respectively,
we conducted a grid search to select a “sensible” value of 6.
Table 4 reports the predictive mse and computational time
for different values of b, computed for ghe validation set.
Based on the results, we decided to use # = .02D. In table
5 we report the predictive MSE for PSVMMIX(rv3). Table
6 gives coefficient estimates and p-values for some impor-
tant predictors in the linear part. Increase in living area,
presence of more bathrooms and presence of a pool all lead
to an increase in house price. On the other hand, house
prices tend to depreciate with age. Wetbar turns out to be
statistically insignificant.

Table 6: Coefficient estimates for PSVMMIX for
Dallas data. Numbers in parantheses are estimated
standard deviations rounded to three decimal places

coeff estimate | p-value

LIVAREA .198 0.000
(.002)

AGE -.030 0.00
(.002)

BATH .044 0.00
(.003)

POOL .086 0.00
(.003)

WETBAR -.002 .559
(.004)




6. DISCUSSIONAND FUTURE WORK

We have given a statistical interpretation of PSVM with
linear and nonlinear kernels. These interpretations provide
further evidence that shrinkage estimators are perhaps the
best data mining tools around. The equivalence of ridge
regression and PSVM with linear kernels enable us to take
advantage of the rich statistics literature to estimate the tun-
ing parameter more effectively, an issue that was ignored
in earlier work. Better shrinkage strategies to control the
bias-variance tradeoff in our predictions can be considered
by increasing the number of tuning parameters. This may
lead to better classification as illustrated by the Ionosphere
dataset. With a small number of predictors, the tuning con-
stants could be estimated using MCMC methods as illus-
trated with the adult dataset. With nonlinear kernels, we
showed PSVM is equivalent to a Bayesian model defined
through a Gaussian process on the predictor space with the
correlations determined by the kernel. We then introduced
a new class of models called PSVMMIX that were combina-
tions of linear and nonlinear PSVM’s. We demonstrated how
these models could be fitted to large datasets by exploiting
the sparsity in K (A, AT). However, more methodological re-
search is needed to efficiently choose the tuning parameters
for very large datasets. This is an issue that pops up even in
the context of PSVM'’s and SVM’s and needs further investi-
gation. For instance, [9] report on an empirical study where
they compare several functionals that were used to tune the
parameters (called hyperparameters by them) for SVM’s. In
our case, we used the cross-validation MSE to tune the pa-
rameters which is an expensive functional to compute. We
are currently investigating proxies that are cheap to com-
pute and would enable us to estimate the tuning constants
quicker for large datasets. One possibility is to use Ker-
nelized Locally Linear Embeddings (KLLE) proposed in [6].
Although not exemplified, extension to the case of multi-
category data with nominal categories is trivial. With k
categories (k > 2), the classification problem is solved by
implementing k 2-class problems. With ordinal categories
(e.g. User satisfaction on a 3 point scale: bad, satisfactory
and good) the classification problem could be solved using
an ordinal response model (see [3] and references therein).

Another issue is selecting predictors to go in the linear
part and nonlinear part of PSVMMIX. Putting everything
in the linear and nonlinear part may not help much as il-
lustrated with the BUPA dataset. Increasing the number
of predictors L that goes in the linear part increases com-
putational time cubicly in L since the algorithm involves a
Cholesky decomposition of an L X L dense matrix. In gen-
eral, if there are predictors that are known to have a casual
relationship with the response variable, our recommendation
is to put them in the linear part. The coefficient estimates
which we obtain at the end of the day would enable us to
check whether the causality is respected by the algorithm
or not. If we have a combination of nominal valued and
continuous valued predictors (very common in data min-
ing applications), our recommendation is to put all nominal
valued predictors in the linear part. Centering and scaling
predictors may sometime lead to bad performance as seen
in the Boston Housing data example. On the other hand,
it is known to work well in many situations. In complex
multivariate problems, this is always an issue that pops up
and there isn’t any clear answer to this problem. The best
thing is to try both versions and see the difference. In all

our data examples with PSVMMIX(vg), we assumed vg is a
scalar. However, as with the linear case, this could very well
be a vector. Further research would be needed to figure out
an efficient method to estimate the extra tuning parameters.
We are currently working on this and hope to report on this
at KDD2003.

Next, we showed that the statistical interpretations enable
us to extend methodologies from the classification literature
to the regression scenario without any extra effort. We also
demonstrate the usefulness of attaching an estimate of vari-
ability to our predictions.

To sum up, we feel the fundamental contribution of this
paper is to show that some well known KDD algorithms
turn out to be equivalent to some commonly used shrinkage
estimation techniques used in statistics. This equivalence
opens up new research opportunities both for statisticians
and computer scientists. The challenge to the statistical
community is to develop methodologies that can work for
massive datasets by taking advantage of the KDD litera-
ture. On the other hand, the statistical insights should help
the computer science community better understand their al-
gorithms and improve upon them.
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