Research Track Poster

Parallel Mining of Closed Sequential Patterns

Shengnan Cong

Jiawei Han

David Padua

Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801, USA

{cong, hanj, padua}@cs.uiuc.edu

ABSTRACT

Discovery of sequential patterns is an essential data mining
task with broad applications. Among several variations of
sequential patterns, closed sequential pattern is the most
useful one since it retains all the information of the com-
plete pattern set but is often much more compact than it.
Unfortunately, there is no parallel closed sequential pattern
mining method proposed yet. In this paper we develop
an algorithm, called Par-CSP (Parallel Closed Sequential
Pattern mining), to conduct parallel mining of closed se-
quential patterns on a distributed memory system. Par-CSP
partitions the work among the processors by exploiting the
divide-and-conquer property so that the overhead of inter-
processor communication is minimized. Par-CSP applies
dynamic scheduling to avoid processor idling. Moreover,
it employs a technique, called selective sampling, to address
the load imbalance problem. We implement Par-CSP using
MPI on a 64-node Linux cluster. Our experimental results
show that Par-CSP attains good parallelization efficiencies
on various input datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—data mining; D.1 [Pro-
gramming Techniques]: Concurrent programming—parallel
programming

General Terms: Algorithms, Experimentation, Performance

Keywords: parallel algorithms, load balancing, sampling

1. INTRODUCTION

The objective of sequential pattern mining is to discover
frequent subsequences in a dataset [1]. Sequential pattern
mining has numerous applications, including the discovery
of motifs in DNA sequences, the analysis of web log and cus-
tomer shopping sequences, the study of XML query access
patterns, and the investigation of scientific or medical pro-
cesses. Many efficient sequential pattern mining algorithms
have been proposed in the literature [1, 8, 2, 5, 7, 12].

Since a long sequence contains a combinatorial number

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

KDD'’ 05, August 21-24, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

562

of subsequences, sequential pattern mining generates an ex-
plosive number of frequent subsequences for long patterns,
which is prohibitively expensive in both time and space.
Therefore, instead of mining the complete set of sequen-
tial patterns, an alternative but equally powerful solution is
to mine closed sequential patterns only. A closed sequen-
tial pattern is a sequential pattern which has no super-
sequence with the same occurrence frequency. Two algo-
rithms have been proposed for mining closed sequential pat-
terns: CloSpan [10] and BIDE [9]. The former follows a
candidate maintenance-and-test paradigm over the set of al-
ready mined closed sequential pattern candidates. It uses
this set to prune the search space and check if a newly
found sequential pattern is likely to be closed. Since a large
number of closed sequential patterns (or just candidates)
would occupy much memory and create a large space for
the search of new patterns, using CloSpan for mining long
sequences or mining with very low support thresholds tends
to be prohibitively expensive. The second algorithm (BIDE)
adopts a closure checking scheme, called BI-Directional Fx-
tension, which mines closed sequential patterns without can-
didate maintenance. Performance studies [9] have shown
that BIDE is more efficient than CloSpan.

To make sequential pattern mining practical for large data
sets, the mining process must be efficient, scalable, and have
a short response time. Moreover, since sequential pattern
mining requires iterative scans of the sequence dataset with
numerous data comparison and analysis operations, it is
computationally intensive. Furthermore, many applications
are time-critical and involve huge volumes of data. Such
applications demand more mining power than serial algo-
rithms can provide. Thus, it is clearly important to study
parallel sequential-pattern mining algorithms that take ad-
vantage of the computation and I/O power of distributed
memory systems as well as their aggregate memory spaces.

Although a significant amount of research results have
been reported on serial implementations of sequential pat-
tern mining, there is still much room for improvement in its
parallel implementation. Previous work on parallel sequential-
pattern mining has focused on mining the complete set of
sequential patterns [11, 3] and, to the best of our knowledge,
there is no parallel algorithm that targets closed sequential-
pattern mining. Since targeting closed sequential patterns
is often more efficient, we decided to follow this approach in
the study reported here.

In this paper we develop an algorithm, called Par-CSP
(Parallel Closed Sequential Pattern mining), to conduct par-
allel mining for closed sequential patterns on a distributed
memory system. Par-CSP:

1. is the first parallel algorithm to mine closed sequential
patterns;

2. is based on the most efficient serial algorithm BIDFE to
mine the closed sequential patterns without candidate
maintenance;

. is designed for execution on a distributed memory sys-
tem. Our implementation, achieves good speedups on
various datasets.

. partitions the work into independent tasks so that the
overhead of interprocessor communication is minimized;

5. uses dynamic scheduling to reduce processor idle time.

. uses a technique called selective sampling for load bal-
ancing. Selective sampling accurately predicts the rel-
ative times of the subtasks and in this way enables an
even distribution of work across processors;

The remainder of the paper is organized as follows. In
Section 2, we present a few basic concepts and the serial
algorithm on which Par-CSP is based. In Section 3, we
describe Par-CSP in detail. The experimental results are
presented in Section 4 and in section 5 we discuss related
work. Section 6 presents our conclusions.

2. BACKGROUND
2.1 Problem Definition

Let I = {i1,42,...,in} be a set of items. A sequence s
is a tuple, denoted as (T1,7%, ..., T1), where T;(1 < j < 1),
called events (or itemsets). Each event is a set denoted
as (z1,x2,...,tm) where zx(1 < k < m) is an item. For
brevity, the brackets are omitted if an element has only one
item. A sequence dataset S is a set of sequences. The
total number of items in a sequence is called the length of the
sequence and a sequence with length [is called an l-sequence.
A sequence « (a1,az2...an) is called a subsequence of
another sequence 8 = (b1,bz...bym), denoted as a C 3, if
there exist integers 1 < j1 < j2 < ... < jn < m such that
a1 C bj,, a2 C bj,,...,an C bj,. If a is a subsequence of 3,
we say that [contains . The support of a sequence «
in a sequence dataset S, denoted support(«), is the number
of sequences in the dataset containing a. Given a minimum
support threshold, min_sup, the set of sequential pattern,
SP, is the set of all the subsequences whose support values
are no less than min_sup. The set of closed sequential
patterns, CSP is defined as CSP ={a|a € SP and 33 €
SP such that o T 8 and support(a) = support(8)}. The
problem of closed sequential pattern mining is to find
CSP with support value no less than a minimum support
threshold.

2.2 Sequential Algorithm - BIDE

We use BIDE [9] as the base serial algorithm for our par-
allel closed sequential-pattern mining algorithm. We choose
BIDE for two reasons. First, BIDE is the most efficient
serial algorithm available today to mine closed sequential-
patterns. Second, BIDE searches the space without main-
taining a set of candidates, which facilitates its paralleliza-
tion.

The BIDE algorithm only mines sequence dataset consist-
ing of events containing a single item and our parallel algo-
rithm, derived from BIDE, targets the same type of datasets.

563

Research Track Poster

Extensions have been proposed [9] to make BIDE capable of
mining patterns with subsets of items. These extensions can
be directly applied to our algorithm because they do not af-
fect the parallel framework proposed in this paper. Focusing
on single-item events simplifies our presentation and enables
us to focus on the methodology.

Next, we present a brief description of the BIDE algo-
rithm. Let DB be a sequence dataset. The algorithm starts
with a scan of DB to identify the frequent 1-sequences.
Then, a second scan of DB constructs the projected datasets
for the frequent 1-sequences. Let ¢ be a sequence, a projec-
tion ¢ of DB, denoted as P(i, DB), is a set of subsequences,
which are made up of the sequences in DB containing ¢ after
deleting the events appearing before the first occurrences of
¢ within each sequence.

For instance, Figure 1 shows a simple sequence dataset.
With the support threshold as 2, the projected dataset for
sequence ABis {C,CB,C, BCA}.

Sequence_id Sequence
10 CAABC
20 ABCB
30 CABC
40 ABBCA

Figure 1: An example dataset for BIDE

After the projected datasets are built, BIDE searches each
projected dataset and enumerates the sequential-patterns
following a pattern-growth strategy [4]. Upon getting a
sequential-pattern, BIDE applies a closure checking scheme,
called BI-Directional Extension [9], to check whether the se-
quential pattern is closed.

If S is a sequence and i is a 1-sequence, i © S represents
the concatenation of i and S. Let { X1, X2, ..., X»n } be a set of
sequences, then: i0{X1, Xo2,...,Xn} = {i0oX1,i0X2,...,i0
Xn}.

The mining of DB with BIDE can be defined as func-
tion F() below where freq(DB) represents the frequent 1-
sequences in DB. Function Check(S) returns the sequences
in S which can pass the BI-Directional Extension closure
checking (closed patterns). We do not describe this check
here for lack of space. The reader can find this check in [9].
The closed sequential patterns are stored in set C.

function F(DB)
begin
if (DB is a set of empty sets) return NULL;
else {
S = Use preaoim (i © F(P(i, DB))) U {i})
C = C U Check(S);
return(S)

end

3. THE PAR-CSP ALGORITHM

In this section, we introduce an algorithm called Par-CSP
to mine the closed sequential-patterns in parallel. We ad-
dress the following questions: How to decompose BIDE into
tasks? How to schedule the resulting tasks? How to balance
the load?

3.1 Task Decomposition
BIDE follows three steps:

e Step 1: Identify the frequent 1-sequences

Research Track Poster

e Step 2: Project the dataset along each frequent 1-
sequence;

e Step 3: Mine each resulting projected dataset.

The projected datasets of the frequent 1-sequences are in-
dependent. Given a 1l-sequence, say i, only the suffixes
that follow the first occurrences of i in each sequence are
the projection of the dataset along i. Therefore, the closed
sequential-patterns mined from the dataset projection along
i1 all start with i1 as the prefix while the patterns discovered
from i2’s projections all start with iz.

A partition strategy like the one just described is conve-
nient for task decomposition. Since the projected datasets
are independent, they can be assigned to different proces-
sors. Then, each processor can mine the assigned projected
datasets independently by using the conventional BIDE al-
gorithm. No inter-processor communication is needed dur-
ing the local mining. Our strategy for the parallel mining of
closed sequential-patterns is as follows:

1. Each processor counts the occurrence of 1-sequences in
a different part of the dataset. A global add reduction
is executed to obtain the overall counts. The frequent
1-sequences, those that occur at least min_sup (the
support threshold) times, are identified.

For each frequent 1l-sequence a very compact repre-
sentation of the dataset projections, called pseudo-
projections, is built. This is done in parallel by as-
signing a different part of the dataset to each proces-
sor. The pseudo-projections are communicated to all
processors via an all-to-all broadcast.

Dynamic scheduling to distribute the processing of the
projections across processors.

To facilitate dynamic scheduling, we assume that the com-
plete dataset is accessible to all processors. In the second
step, each processor applies the pseudo-projection method
[9] to construct the projected datasets. A pseudo-projection
consists of a set of pointers to the starting positions within
the dataset of each sequence conforming the projected dataset.
After constructing the pseudo-projections, they are broad-
cast to all processors. In our implementation, we found that
it is more efficient to carry out the broadcast using a virtual
ring structure where processor I only receives the package
from Processor ((I — 1) mod N) and only sends the pack-
age to Processor ((I 4+ 1) mod N). Thus, assume there are
total N processors, the all-to-all broadcast is carried out in
(N — 1) send-receive steps which collectively consume no
more than 0.5% of the mining time.

3.2 Task Scheduling

Next, we discuss the mechanism that we use to assign
projections to processors.

To reduce load imbalance, Par-CSP uses dynamic schedul-
ing. In our implementation, there is a master processor
which maintains a queue of pseudo-projection identifiers.
Each of the other processors is initially assigned a projec-
tion. After a processor completes the mining of a projec-
tion, it sends a request to the master processor for another
projection. The master processor replies with the index of
the next projection in the queue and removes it from the
queue. This process continues until the queue of projections
is empty. The requests and replies to and from the master

564

processor are short messages and, therefore, the communi-
cation time is usually negligible relative to the mining time.

Dynamic scheduling is quite effective when the subtasks
are of similar size and are numerous. However, in many
cases, dynamic scheduling cannot achieve load balancing.
For example, if the largest subtask takes 25% of the total
mining time, the best possible speedup is only 4 regardless
of the number of processors available.

For the datasets we used in our experiments, the cost of
mining the projections may vary greatly. Figure 2 shows
the average and maximum mining time of the projected
datasets along frequent 1-sequences for all the datasets we
tested (described in Section 4). The relatively large min-
ing time of some projected datasets may result in extremely
imbalanced workload. Our experiments prove that the scal-
ability of the parallelization can be greatly improved if the
largest projected datasets are partitioned into smaller ones.

C100S100N5| C100S50N10 C200S25N9 Gazelle

(sup=0.01%) (sup=0.01%) (sup=0.01%) (sup=0.2%)
Average 0.387 0.052 1.726 0.102
Maximum 8.442 4.259 349.643 11.663

Figure 2: Mining time distributions

3.3 Relative Mining Time Estimation

Our approach to improving the effectiveness of dynamic
scheduling is to identify which projections require long min-
ing time and to further decompose them. To this end, we
need to estimate the relative mining time of the projections.

Our strategy to estimate mining time is to use run-time
sampling. By mining a small sample of the original dataset
and timing the mining time of the projected databases of
the sample, we should be able to identify the projections
whose mining time is longer. We evaluate sampling strate-
gies by the accuracy of their estimation and the overhead
they introduce.

The most natural sampling strategy is random sampling
which proceeds by collecting a randomly selected subset of
the sequences in the dataset, computes the projections, and
uses the mining time of this subset to estimate the mining
time of each projection. However, we found that random
sampling is not accurate if the overhead, which is determined
by the size of the subset, is kept small.

We developed an alternative sampling technique, called
selective sampling, which has proved to be quite accurate
in identifying the projections requiring longer mining times.
Instead of randomly selecting a subset of sequences from the
dataset, selective sampling potentially uses components of
every sequence in the dataset.

Selective sampling first discards all infrequent 1-sequences
and then discards the last [frequent 1-sequences of each se-
quence. The number [is computed by multiplying a given
fraction ¢ by the average length of the sequences in the
dataset. For example, assume (A : 4),(B : 4),(C : 4),(D :
3),(E : 3),(F : 3),(G : 1) are the 1-sequences and their
counts in the database. Let the support threshold be 4 and
the average length of the sequences in the dataset be 4. Sup-
pose ¢ equals to 75% so that [is 3 (4 *.75). Then A, B and
C are frequent because their support values are no less than
the threshold. Given a sequence as (AABCACDCFDB),
selective sampling will reduce this sequence to (AABCA).
The suffix (...CDCFDB) is discarded because it contains
the last ! frequent 1-sequences of the sequence (D and F do
not count because they are infrequent 1-sequences.).

Figure 3 uses dataset C200S525N9 (described in Section 4)

to compare the mining times obtained with selective sam-
pling with the mining times of the original dataset. The
graph shows the mining time of the projections along the
frequent 1-sequences for both the complete data set and the
dataset resulting from selective sampling. The left vertical
scale represents the values for the whole dataset while the
one on the right represents the times resulting after selective
sampling. The average sequence length of C200525N9 is 16
and we set ¢t to 75% so that [is 12. As we can see that
the two curves match each other fairly well so that the pro-
jections requiring long mining times after selective sampling
are also the projections requiring long mining times for the
original dataset. The accuracy of selective sampling for all
other datasets we studied was similar.

450 T T 0.45
Whole dataset —e—
Selective sample —=—
400 - 41 04
=
2 350 1035 g
£ 300 4 o3 8
g £
£ 2
£ E
E k=
% 15
=)
i) £
S =1
@
£ 5

: Lo Lo il - °
(0] 1000 2000 3000 4000 5000
Index of projections

Figure 3: Selective sampling (The large subtasks in the selec-
tive sample are also the large subtasks in the whole datasets. The
estimation is accurate.)

In our implementation, we carry out the mining of the
dataset resulting from selective sampling in parallel follow-
ing the same strategy that we apply to the complete dataset.

As you may expect, there is a trade-off between the ac-
curacy and the overhead of selective sampling. The more
frequent 1-sequences we discard, the less accurate selective
sampling will be and the less overhead will be introduced by
sampling. According to our experiments, 75% is a reason-
able value for t for the datasets we considered. For example,
with ¢ equal to 75%, the overhead of selective sampling in
Figure 3 costs only 0.53% of the serial mining time while
it still provides accurate information for the relative min-
ing time estimation. Figure 4 lists the percentage of mining
time of selective sampling with ¢ being 75% versus the serial
mining time of the whole database.

C100S100N5 C100S50N10 C200S25N9| Gazelle
Overhead 1.32% 3.97% 0.53% 2.12%

Figure 4: Overhead of selective sampling

Let us now discuss why selective sampling works. When
building the projection along a frequent 1-sequence, only
the suffixes (with the 1-sequence as prefix) will be collected.
The frequent 1-sequences in the tail of a sequence will ap-
pear in every projection of their prefixes. Therefore, by
removing these frequent 1-sequences, the sequences in most
of the projections become shorter and therefore, the mining
time can be greatly reduced compared to the mining time
of the original dataset. At the same time, the suffixes of
the frequent 1-sequences in the tails are shorter so that the
mining time of their projections will not be time consuming

Research Track Poster

and, thus, we can safely remove these 1-sequences without
significantly affecting the relative times.

3.4 The par-csp Algorithm

In this subsection, we describe Par-CSP, the parallel al-
gorithm to mine closed sequential-patterns.

Algorithm 1 is the Par-CSP algorithm which is presented
in SPMD form. In the first important operation (line 1)
each processor counts the l-sequences for the part of the
dataset assigned to it. We assume that the database is par-
titioned into N subsets and that the subset assigned to pro-
cessor [is denoted DBy. In (line 2) an all-to-all reduction is
performed to compute the global counts (stored in variable
GLOBAL_-COUNTS in each processor) and the frequent
1-sequences are identified and stored into variable F'1. Next
(line 3), each processor builds pseudo-projections for the fre-
quent 1-sequences within the assigned portion of the dataset.
The pseudo-projections are broadcast to all the processors
(line 4). Before scheduling the projections, Par-CSP applies
selective_sampling to estimate the relative mining time of
these projections (line 5).

Algorithm 1 Par-CSP(I, DBy, min_sup, CSPr)

Input: I is the processor ID, DBy is a portion of the dataset
assigned to processor I, min_sup is the minimum support
threshold

Output: CSP; is a portion of closed sequential-patterns

1: Cr = number_of -1-sequences(DBy);
: GLOBAL_.COUNTS = alltoall_sum(Cr);F1 =
frequent_1-sequences(GLOBAL_-COUNTS);
PSP = pseudo_projection(F1, DBy);
: GLOBAL_PSP = all_to_all_broadcast(PSP);
: S_.RESULT = selective_sampling(F1,1, DB, min_sup);
: F2 = partition(F1,S_RESULT); // Partition the most
time consuming projections and assign the new set of
projections to F'2.
: if (I ==0) then
8: accept requests from slave nodes and reply to each
request with a different identifier from set F'2 until all
projections have been assigned;

[\V)

U W

N

9: else
10: send request for a projection identifier to the master
node;

11: stop if all projections have been assigned;

12: apply BIDE algorithm to element of GLOBAL_PSP
assigned by the master processor;

13: accumulate the closed sequential-patterns into C'S Py
and go back to send request operation;

14: end if

The function selective_sampling() implements the pro-
cess of mining the selective sample which is analog to the
process of mining the whole database. But instead of pro-
ducing the closed sequential patterns, it records the mining
time for the projections of all frequent 1-sequences. Variable
S_RESULT is assigned these relative mining times.

After the sampling, the top time-consuming projections
are partitioned into smaller ones (line 6). In our experi-
ments, we selected those projections whose mining time is
more than 3% of the total mining time. For example, if
the projection along A is one of the top time consuming
projections, it will be partitioned into the projections along

Research Track Poster

AB, AC and so on. Then the master node schedules these
projections as subtasks by maintaining a task queue (line
8). The projections estimated to take longer time in sam-
pling are to be scheduled earlier. Those very small projec-
tions can be scheduled in chunks to avoid communication
contention. Processor 0 is treated as the master node and
taking charge of the task scheduling while all the other pro-
cessors (slave processors) mine the assigned projections inde-
pendently without communication to each other. Whenever
a slave processor finishes the assigned subtask, it sends a
request to the master node for another one until the task
queue is empty (line 10-13). Each slave processor outputs
the closed sequential patterns in a file. The total closed se-
quential patterns are simply the concatenation of these files.

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup

Our performance study includes both synthetic and real
datasets. We used three synthetic datasets generated by
the IBM dataset generator [6] and a real dataset, Gazelle,
which comes from click-stream data provided by Blue Mar-
tini company. In Gazelle, we consider different products as
different items and the page views as events. We treat 10
consecutive Web click-stream as a sequence from one cus-
tomer'. The characteristics of these datasets are shown in
Figure 5.

Dataset #seq. #items Ave.seg.len. |Max.seq.len.
C100S50N10 100,000 6,044 31 56
C100S100N5 100,000 4,162 62 101
C200S25N9 178,742 5,661 16 39

Gazelle 2,937 1,423 29 1,443

Figure 5: Datasets for experiments

All of our experiments were performed on a Linux cluster
consisting of 64 nodes. Each node has a 1GHz Pentium III
processor and 1GB main memory. We used MPICH-GM
1.2.4..8a in the implementation of our parallel algorithm.
MPICH-GM is a portable implementation of MPI that runs
over Myrinet. The operating system is Redhat Linux 7.2
and we used the GNU g++ 2.96 compiler.

4.2 Experimental Results

We first examine the parallel performance of the Par-CSP
algorithm. Figure 6 shows the total execution time and the
speedup for each dataset. Execution time is measured in sec-
onds throughout this paper. We ran the sequential BIDE
algorithm? (seq in the figures) and Par-CSP on 4, 8, 16, 32
and 64 processors. As the charts indicate, Par-CSP achieves
fairly good performance for all the tested datasets. Par-CSP
substantially reduces the mining time comparing to the se-
quential algorithm. Datasets C100S100N5 and C200525N9

Support threshold

Performance of various support threshold
010044

 m2xes
‘ ‘ ‘ ‘ ‘ ‘ ‘ mes77.7

] mI5746

O without sampling
Bith sampling

0.005%

0.01%

0.04%

0.08%

0 100 200 300 400 50 600 700 800 900 1000
Executiont time

Figure 7: Influence of chang-
ing minimum support

whose sequential mining times are larger achieve better speedups

than C'100550N10 and Gazelle.

Another factor that limits the speedups in Gazelle is load
imbalance. The mining time of some tasks are so large that
the subtasks derived from them are still much bigger than
the small tasks. The solution to this problem is to apply

"'We made this choice because the average length of one web
click stream is only 3, which makes the serial mining time
too short to take advantage of parallelism.

2The implementation of BIDE was provided by the algo-
rithm inventor [9].

566

Figure 8: Effectiveness of se-
lective sampling

multi-level task partition. The selective sampling technique
can be extended to accomplish this multi-level partitioning.
In addition to just recording the mining time corresponding
to the frequent 1-sequences during sampling, selective sam-
pling could also record the mining time of their subtasks to
identify those which need to be further partitioned.

Next, we discuss the influence of changing minimum sup-
port threshold on the performance of Par-CSP. The results
are shown in Figure 7. In the figure, we use the dataset
C1005100N5 with the minimum support threshold varying
from a high of 0.08% to a low of 0.005%. We tested Par-CSP
on 4, 8, 16, 32 and 64 processors and compared the per-
formance with sequential BIDE algorithm. Par-CSP shows
stable parallel performance with different support threshold.
Similar results can be obtained for the other datasets.

To test the effectiveness of the selective sampling tech-
nique, we compared the performance of Par-CSP when se-
lective sampling is enabled with the performance when it is
disabled (Figure 8). We used the dataset C200S25N9 with
0.01% as the support threshold. When the number of pro-
cessors is small, the sampling technique does not show much
advantage. This is because when there are only a few pro-
cessors, the number of subtasks assigned to each processor
is large enough so that it tends to balance the load. How-
ever, when the number of processors grows larger, the sam-
pling technique can greatly improve the performance. On 64
processors, the performance can be improved by more than
50%.

Previous studies [10, 9] have shown that a serial closed
sequential-pattern mining (CSP) algorithm may outperform
the serial algorithms for mining all sequential-patterns (ASP)
by over one order of magnitude. We performed experiments
to compare the parallel performance of mining CSP with
the mining of ASP. PrefizSpan [7] has been proved to be one
of the most efficient sequential algorithms to mine ASP. We
implemented an algorithm, Par-ASP, based on PrefixSpan,
to mine ASP in parallel. We compare the parallel perfor-
mance of Par-ASP to that of Par-CSP. Here we only show
the experimental results for the dataset C100S100N5 with
the support threshold as 0.01% and 0.005% due to space
limitations (Figure 9). The results for the other datasets
are similar. In Figures 9(a)(b) we use 0.01% and 0.005%
as support threshold respectively. Par-CSP demonstrates a
steadily better performance than Par-ASP. It proves that
CSPs not only represent more compact results than ASPs
but also can lead to better efficiency.

5. RELATED WORK

Although there have been numerous studies on sequential-

Research Track Poster

C100S100N5

g

[execution time
(support=0.005%) | —+—speedup

60

350

C100S50N10 B execution time
(support=0.01%) | —+— speedup

6000 / 50 300 50

£ 5000 2 20

£ “g £ g
£ 4000 E] c E]
g / 09 2 / 0g
3 a0 2 3 150 2
9 20 % 2 20 %
5 200 X 100

0 50 0

8

0 0 0
seq 4 8 16 2 64 seq 4 8 16 2 64

Processor # Processor #

Execution time

C200525N9

[execution time
(support=0.01%) |- speedup

10000

Gazelle

= executon tme
(SUPPOTt=0.2%) |—e—speedup

9000
2000 2 1= 120 50
o
1
7000 N EW 0o
6000 i) 2
5000 ©% 2 0 g
4000 £ a 3 &
0® g 4 200

3000 5w
2000 0 2 0
1000

0 o 0 0

Processor # processor #

6000

5000

4000

3000

Erecution time

Execution tire

2000

1000

Figure 9: Comparison of Par-CSP with Par-ASP

pattern mining, the study on parallel sequential-pattern min-
ing is still limited and is only confined to mining the com-
plete set of sequential patterns.

In [11], Zaki presents a parallel sequential-pattern min-
ing algorithm, called pSPADE, for discovering the set of
all frequent subsequences. Different from the Par-CSP al-
gorithm proposed in this paper, pSPADE is targeting a
shared-memory system. In a shared memory system, all
the processors can access the same global memory space,
which makes the proposed recursive dynamic load balanc-
ing strategy easy to be implemented. However, applying
such a strategy in a distributed memory system, which is
typical in a computer cluster environment, is too expensive
to be practical. Recently, Guralnik and Karypis [3] pre-
sented some parallel sequential-pattern mining algorithms
toward a distributed-memory system for mining the com-
plete set of sequential-patterns. These parallel algorithms
are based on a tree-projection-based sequential algorithm,
which is intrinsically similar to the PrefixSpan algorithm [7].
To attack the load balancing problem, the authors proposed
a dynamic load-balancing strategy which allows an idle pro-
cessor to join the busy ones. This strategy involves much
more inter-processor communication than our selective sam-
pling approach and the interruption of the busy processors
may cause more overhead during mining.

Both of these two parallel formulations still retain the
computation efficiency of the underlying serial algorithm to
mine the complete set of sequential-patterns. However, min-
ing the complete set of sequential-patterns is usually less effi-
cient than mining the closed sequential-patterns, especially
in mining long patterns and with low support threshold,
when parallel processing is in greater demand.

6. CONCLUSIONS

In this paper, we propose a parallel closed sequential-
pattern mining algorithm Par-CSP. It is the first parallel so-
lution for the closed pattern mining problem. We exploit the
divide-and-conquer property to minimize the inter-processor
communications. We apply dynamic scheduling for task as-

567

Figure 6: Execution time and speedups of Par-CSP

signment. Furthermore, we devise a technique, called selec-
tive sampling, to estimate the relative mining time of the
subtasks and to achieve load balancing. Our experimental
results show that Par-CSP attains good parallelization effi-
ciencies on various input datasets.

7. ACKNOWLEDGMENTS

We are grateful to Dr. Jianyong Wang for providing us
the source code of BIDE.

This material is based upon work supported by the Na-
tional Science Foundation under Grant NGS-0103610 and
1IS-0209199. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

8 REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
Eleventh International Conference on Data Engineering,
pages 3—14, Taipei, Taiwan, 1995.

M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
Sequential pattern mining with regular expression
constraints. In The VLDB Journal, pages 223-234, 1999.
[3] V. Guralnik and G. Karypis. Parallel tree-projection-based
sequence mining algorithms. Parallel Comput.,
30(4):443-472, 2004.

J. Han and J. Pei. Mining frequent patterns by
pattern-growth: methodology and implications. SIGKDD
Explor. Newsl., 2(2):14-20, 2000.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and
M.-C. Hsu. Freespan: frequent pattern-projected sequential
pattern mining. In KDD’00, pages 355-359. ACM Press.
IBM datset generator forsequential patterns.
http://www.almaden.ibm.com/software/quest/Resources.
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,

U. Dayal, and M.-C. Hsu. PrefixSpan mining sequential
patterns efficiently by prefix projected pattern growth. In
ICDE’01, pages 215-226.

R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In

P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors,
Proc. 5th Int. Conf. Extending Database Technology,
EDBT, volume 1057, pages 3—17. Springer-Verlag.

J. Wang and J. Han. BIDE efficient mining of frequent
closed sequences. In ICDE’04, pages 79-91.

[10] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed
sequential patterns in large datasets. In SDM’03, 2003.

M. J. Zaki. Parallel sequence mining on shared-memory
machines. Journal of Parallel and Distributed Computing,
61(3):401-426, 2001.

M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1-2):31-60, 2001.

[2]

[4]

[5]

[6]

(8]

[9)

(11]

(12]

