
Accurate Decision Trees for Mining High-speed Data
Streams

João Gama
LIACC, FEP, Univ. do Porto

R. do Campo Alegre 823
4150 Porto, Portugal

jgama@liacc.up.pt

Ricardo Rocha
Projecto Matemática Ensino

Departamento de Matemática
3810 Aveiro, Portugal

ricardor@mat.ua.pt

Pedro Medas
LIACC, Univ. do Porto

R. do Campo Alegre 823
4150 Porto, Portugal

pmedas@liacc.up.pt

ABSTRACT
In this paper we study the problem of constructing accu-
rate decision tree models from data streams. Data streams
are incremental tasks that require incremental, online, and
any-time learning algorithms. One of the most successful
algorithms for mining data streams is VFDT. In this paper
we extend the VFDT system in two directions: the ability
to deal with continuous data and the use of more powerful
classification techniques at tree leaves. The proposed sys-
tem, VFDTc, can incorporate and classify new information
online, with a single scan of the data, in time constant per
example. The most relevant property of our system is the
ability to obtain a performance similar to a standard de-
cision tree algorithm even for medium size datasets. This
is relevant due to the any-time property. We study the be-
haviour of VFDTc in different problems and demonstrate its
utility in large and medium data sets. Under a bias-variance
analysis we observe that VFDTc in comparison to C4.5 is
able to reduce the variance component.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
data mining ; I.2.6 [Artificial Intelligence]: Learning—
classifiers design and evaluation

Keywords
Data Streams, Incremental Decision Trees, Functional Leaves

1. INTRODUCTION
Databases are rich in information that can be used in the

decision process. Nowadays, most of the companies and or-
ganizations possess gigantic databases, that grow to a limit
of millions of registers per day. In traditional applications of
data mining the volume of data is the main obstacle to the
use of memory-based techniques due the restrictions in the
computational resources: memory, time or space in hard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

disk. Therefore in most of these systems, the use of all
available data becomes impossible and can result in under
fitting. The construction of KDD systems that use the en-
tire amount of data and keep the accuracy of the traditional
systems becomes problematic.
Decision trees, due to its characteristics, are one of the

most used techniques for data-mining. Decision tree mod-
els are non-parametric, distribution-free, and robust to the
presence of outliers and irrelevant attributes. Tree models
have high degree of interpretability. Global and complex de-
cisions can be approximated by a series of simpler and local
decisions. Univariate trees are invariant under all (strictly)
monotone transformations of the individual input variables.
Usual algorithms that construct decision trees from data use
a divide and conquer strategy. A complex problem is divided
into simpler problems and recursively the same strategy is
applied to the sub-problems. The solutions of sub-problems
are combined in the form of a tree to yield the solution of
the complex problem.
Data streams are, by definition, problems where the train-

ing examples used to construct decision models come over
time, usually one at time. A natural approach for this incre-
mental task is incremental learning algorithms. In the field
of incremental tree induction a successful technique main-
tains at each decision node a set of sufficient statistics and
only make a decision (install a split-test in that node), when
there is enough statistical evidence in favour of a particular
split test. This is the case of [6, 3]. In this paper we argue
that incremental tree induction methods that only install a
split-test when there is enough statistical support, will large
benefit of using more appropriate classification strategies at
tree leaves. This is the main idea behind this paper.
We propose the VFDTc system, which incorporates two

main extensions to the VFDT system: the ability to deal
with numerical attributes and the ability to apply naive
Bayes classifiers in tree leaves. The paper is organized as
follows. The next section describes VFDT and other re-
lated work that is the basis for this paper. The section 3
presents our extensions to VFDT leading to system VFDTc.
We detail the major options that we implemented and the
differences to VFDT and others available systems. The sys-
tem has been implemented and evaluated. Experimental
evaluation is done in Section 4. Last section concludes the
paper, resuming the main contributions of this work.

2. RELATED WORK
In this section we analyse related work in two dimensions.

One dimension is related to the use of more powerful clas-
sification strategies at tree leaves, the other dimension is
related to methods for incremental tree induction.

Functional Tree Leaves
The standard algorithm to construct a decision tree usu-
ally install at each leaf a constant that minimizes a given
loss function. In the classification setting, the constant that
minimizes the 0-1 loss function is the mode of the target at-
tribute of the examples that fall at this leaf. Several authors
have studied the use of other functions at tree leaves [9, 5].
One of the earliest works is the Perceptron tree algorithm
[11] where leaf nodes may implement a general linear dis-
criminant function. Also Kohavi [9] has presented the naive
Bayes tree that uses functional leaves. NBtree is a hybrid
algorithm that generates a regular univariate decision tree,
but the leaves contain a naive Bayes classifier built from
the examples that fall at this node. The approach retains
the interpretability of naive Bayes and decision trees, while
resulting in classifiers that frequently outperform both con-
stituents, especially in large datasets.
In this paper we explore this idea in the context of learning

from data streams. As we show in the experimental section,
there are strong advantages in the performance of resulting
decision models.

Incremental Tree Induction
In many interesting domains, the information required to
learn concepts is rarely available a priori. Over time, new
pieces of information become available, and decision struc-
tures should be revised. This learning mode has been iden-
tified and studied in the machine learning community under
several designations: incremental learning, online learning,
sequential learning, theory revision, etc. In the case of tree
models, we can distinguish two main research lines. The
first one, a tree is constructed using a greedy search. In-
corporation of new information involves the re-structuring
the actual tree. This is the case of systems like ITI [12], or
ID5R[8]. The second research line does not use the greedy
search of standard tree induction. It maintains a set of suf-
ficient statistics at each decision node and only make a de-
cision, i. e., install a split-test at that node when there is
enough statistical evidence in favour of a split test. This is
the case of [6, 3]. A notable example, is the VFDT system
[3]. It can manage thousand of examples using few com-
putational resources with a performance similar to a batch
decision tree given enough examples.
In VFDT a decision tree is learned by recursively replac-

ing leaves with decision nodes. Each leaf stores the sufficient
statistics about attribute-values. The sufficient statistics are
those needed by a heuristic evaluation function that evalu-
ates the merit of split-tests based on attribute-values. When
an example is available, it traverses the tree from the root
to a leaf, evaluating the appropriate attribute at each node,
and following the branch corresponding to the attribute’s
value in the example. When the example reaches a leaf,
the sufficient statistics are updated. Then, each possible
condition based on attribute-values is evaluated. If there
is enough statistical support in favour of one test over the
others, the leaf is changed to a decision node. The new
decision node will have as many descendant leaves as the
number of possible values for the chosen attribute (there-
fore this tree is not necessarily binary). The decision nodes

only maintain the information about the split-test installed
in this node. The initial state of the tree consists of a single
leaf: the root of the tree. The heuristic evaluation function
is the Information Gain (denoted by H(·))1. The sufficient
statistics for estimating the merit of a nominal attribute
are the counts nijk, representing the number of examples
of class k that reach the leaf, where the attribute j takes
the value i. The Information Gain measures the amount
of information that is necessary to classify an example that
reach the node: H(Aj) = info(examples)− info(Aj). The
information of the attribute j is given by: info(Aj) =
∑

i Pi

(

∑

k −Pik log2(Pik)

)

where Pik =
nijk

∑

a najk
, is the

probability of observing the value of the attribute i given

class k and Pi =
∑

a nija
∑

a

∑

b
najb

is the probability of observing

the value of attribute i.
The main innovation of the VFDT system is the use of Ho-

effding bounds to decide how many examples are necessary
to observe before installing a split-test at each leaf. Suppose
we have made n independent observations of a random vari-
able r whose range is R. The Hoeffding bound states, with
probability 1 − δ, that the true average of r, r̄, is at least

r̄ − ε and ε =

√

R2 ln(1

δ
)

2n
.

Let H(·) be the evaluation function of an attribute. For
the information gain, the range R, of H(·) is log2#classes.
Let xa be the attribute with the highest H(·), xb the at-
tribute with second-highest H(·) and ∆H = H(xa)−H(xb),
the difference between the two better attributes. Then if
∆H > ε with n examples observed in the leaf, the Hoeffd-
ing bound states with probability 1− δ that xa is really the
attribute with highest value in the evaluation function. In
this case the leaf must be transformed into a decision node
that splits on xa.
The evaluation of the merit function for each example

could be very expensive. It turns out that it is not effi-
cient to compute H(·) every time that an example arrives.
VFDT only computes the attribute evaluation function H(·)
when a minimum number of examples has been observed
since the last evaluation. This minimum number of exam-
ples is a user-defined parameter. When two or more at-
tributes continuously have very similar values of H(·), even
with a large number of examples, the Hoeffding bound will
not decide between them. To solve this problem the VFDT
uses a constant τ introduced by the user for run-off, e.g.,
if ∆H < ε < τ then the leaf is transformed into a decision
node. The split test is based on the best attribute.

3. THE VFDTC SYSTEM
We implement a system based on the VFDT[3]. It uses

the Information Gain as the evaluation function, deals with
numerical attributes and uses functional leaves to classify
test examples.

Numerical attributes
Most real-world problems contain numerical attributes. Prac-
tical applications of learning algorithms to real-world prob-
lems should address this issue. For batch decision tree learn-
ers, this ability requires a sort operation that is the most

1The original description of VFDT is general enough for
other evaluation functions (e.g. GINI). Without loss of gen-
erality, we restrict here to the information gain.

Figure 1: Algorithm to insert value xj of an example
label with class y into a Binary Tree

Procedure InsertValueBtree(xj,y,Btree)
Begin
if (xj == Btree.i) then

Btree.VE[y]++.
Elseif (xj ≤ Btree.i) then

Btree.VE[y]++.
InsertValueBtree(xj ,y,Btree.Left).

Elseif (xj > Btree.i) then
Btree.VH[y]++.
InsertValueBtree(xj ,y,Btree.Right).

End .

Figure 2: Algorithm to compute #(Aj ≤ i) for a
given attribute j and class k:

Procedure LessThan(i,k,BTree)
Begin
if (BTree == NULL) return 0.
if (BTree.i == i) return V E[k].
if (BTree.i < i) return

V E[k] + LessThan(i, k, BTree.Right).
if (BTree.i>i)

return LessThan(i,k,BTree.Left).
End .

time consuming operation.In this section we provide an ef-
ficient method to deal with numerical attributes in the con-
text of online decision tree learning.
In VFDTc a decision node that contains a split-test based

on a continuous attribute has two descendant branches. The
split-test is a condition of the form attri ≤ cut point. The
two descendant branches corresponds to the values TRUE

and FALSE for the split-test. The cut point is chosen from
all the possible observed values for that attribute. In order
to evaluate the goodness of a split, we need to compute the
class distribution of the examples at which the attribute-
value is less than or greater than the cut point. The counts
nijk are fundamental for compute all necessary statistics.
They are kept with the use of the following data structure:
In each leaf of the decision tree we maintain a vector of the
classes distribution of the examples that reach this leaf. For
each continuous attribute j, the system maintains a binary
tree structure. A node in the binary tree is identified with
a value i (that is the value of the attribute j seen in an
example), and two vectors (of dimension k) used to count
the values that go through that node. These vectors, V E

and V H contain the counts of values respectively≤ i and> i

for the examples labelled with class k. When an example
reaches a leaf, all the binary trees are updated. Figure 1
presents the algorithm to insert a value in the binary tree.
Insertion of a new value in this structure is O(log n) where
n represents the number of distinct values for the attribute
seen so far.
To obtain the Information Gain of a given attribute we use

an exhaustive method to evaluate the merit of all possible
cut points. In our case, any value observed in the examples
so far can be used as cut point.
For each possible cut point, we compute the information

of the two partitions using equation 1.

info(Aj(i)) =

P (Aj ≤ i) ∗ iLow(Aj(i)) + P (Aj > i) ∗ iHigh(Aj(i)) (1)

where i is the split point, iLow(Aj(i)) the information
of Aj ≤ i (equation 2) and iHigh(Aj(i)) (equation 3) the
information of Aj > i. So we choose the split point that
minimizes (1).

iLow(Aj(i)) =

−
∑

K

P (K = k|Aj ≤ i) ∗ log2(P (K = k|Aj ≤ i)) (2)

iHigh(Aj(i)) =

−
∑

K

P (K = k|Aj > i) ∗ log2(P (K = k|Aj > i)) (3)

These statistics are easily computed using the counts nijk,
and using the algorithm presented in figure 2. For each at-
tribute, it is possible to compute the merit of all possible
cut points traversing the binary tree once. A split point
for a numerical attribute is binary. The examples will be
divided into two subsets: one representing the True value
of the split-test and the other the False value of the test
installed at the decision node. VFDTc only considers a pos-
sible cut point if and only if the number of examples in each
of the subsets is higher than pmin

2 percentage of the total
number of examples seen in the node.

Discrete attributes
The VFDTc does not need previous knowledge of all the
possible values of a categorical attribute. The sufficient
statistics for discrete attributes are counters of the num-
ber of occurrences of an observed attribute-value per class.
These statistics are enough to compute H(·). When a test
on a discrete attribute is installed in a leaf, the leaf be-
comes a decision node with as many descendant branches
as the number of observed distinct values 3 plus a branch
that represents other, not yet observed, values and unknown
values. Therefore when an example reaches this node with
an unknown value for this attribute, the example follows the
branch representing other values.

Functional tree leaves
To classify a test example, the example traverses the tree
from the root to a leaf. The example is classified with the
most representative class of the training examples that fall
at that leaf. One of the innovations of our algorithm is the
ability to use the näıve Bayes classifiers at tree leaves. That
is, a test example is classified with the class that maximizes
the posterior probability given by Bayes rule assuming the
independence of the attributes given the class.
There is a simple motivation for this option. VFDT only

changes a leaf to a decision node when there are a sufficient
number of examples to support the change. Usually hun-
dreds or even thousands of examples are required. To clas-
sify a test example, the majority class strategy only use the
information about class distributions and does not look for
the attribute-values. It uses only a small part of the available
information, a crude approximation to the distribution of
the examples. On the other hand, naive Bayes takes into ac-
count not only the prior distribution of the classes, but also

2Where pmin is a user defined constant.
3Known until the moment.

Figure 3: Algorithm to compute P (xj |Ck) for nu-
meric attribute xj and class k at a given leaf.

Procedure PNbc(xj,k,Btree, Xh, Xl,Nj)
Xh the highest value of xj observed at the Leaf
Xl the lowest value of xj observed at the Leaf
Nj the different values of xj observed at the Leaf
Begin
if (BTree==NULL) return 0
nintervals = min(10, Nj). // number of intervals

inc = Xh−Xl

nintervals
. // interval range

Let Counts[nintervals] be the number
of examples between intervals

For i=1 to nintervals
Counts[i] = LessThan(xl + inc ∗ i, k, BTree)
If (i > 1) then
Counts[i]=Counts[i]-Counts[i-1]

If (xj ≤ Xl + inc ∗ i) then

return Counts[i]
Leaf.nrExs[k]

ElseIf ((i==nintervals) then

return Counts[i]
Leaf.nrExs[k]

End

the conditional probabilities of the attribute-values given the
class. In this way, there is a much better exploitation of the
available information at each leaf. Moreover, naive Bayes
is naturally incremental. It deals with heterogeneous data
and missing values. It has been observed [4] that for small
datasets naive Bayes is a very competitive algorithm.
Given the example −→e = (x1, ..., xj) and applying Bayes

theorem, we obtain: P (Ck|
−→e) ∝ P (Ck)

P (−→e)

∏

P (xj |Ck). To

compute the conditional probabilities P (xj |Ck) we should
distinguish between nominal attributes and continuous ones.
In the former the problem is trivial using the sufficient statis-
tics used to compute information gain. In the latter, there
are two usual approaches: or assuming that each attribute
follows a normal distribution or discretizing the attributes.
Assuming a normal distribution, the sufficient statistics can
be computed on the fly. Nevertheless, it is possible to com-
pute the required statistics from the binary-tree structure
stored at each leaf before it comes a decision node. This
is the method implemented in VFDTc. Any numerical at-
tribute is discretized into min(10, Nr. of different values)
intervals. To count the number of examples per class that
fall at each interval we use the algorithm described in figure
3. This algorithm is computed only once in each leaf for
each discretization bin. Those counts are used to estimate
P (xj |Ck).
We should note, that the use of naive Bayes classifiers at

tree leaves doesn’t introduce any overhead in the training
phase. In the application phase and for nominal attributes,
the sufficient statistics constitute (directly) the naive Bayes
tables. For continuous attributes, the naive Bayes contin-
gency tables are efficiently derived from the Btree’s used
to store the numeric attribute-values. The overhead intro-
duced is proportional to depth of the Btree, that is at most
log(n), where n is the number of different values observed
for a given attribute.

4. EVALUATION
In this section we empirically evaluate VFDTc. We con-

sider three dimensions of analysis: error rate, learning time,
and tree size. The main goal of this section is to provide ev-
idence that the use of functional leaves improve the perfor-
mance of VFDT and most important that it improve its any-
time characteristic. In a first set of experiments we analyze
the effects of two different strategies when classifying test
examples: classifying using the majority class (VFDTcMC)
and classifying using naive Bayes (VFDTcNB) at leaves.
The experimental work has been done using the Wave-

form and LED datasets. These are well known artificial
datasets. We have used the two versions of the Waveform

dataset available at the UCI repository [1]. Both versions
are problems with three classes. The first version is defined
by 21 numerical attributes. The second one contains 40 at-
tributes. It is known that the optimal Bayes error is 14%.
The LED problem has 24 binary attributes (17 are irrele-
vant) and 10 classes. The optimal Bayes error is 26%.
The choice of these datasets was motivated by the exis-

tence of dataset generators at the UCI repository. We could
generate datasets with any number of examples and perform
a set of learning curves able to evaluate our claim about the
any-time property of VFDTc.
We have done a set of experiments, using the LED and

Waveform datasets. For all datasets, we generate training
sets of a varying number of examples, starting from 10k till
1000k. The test set contains 250k examples. The VFDTc
algorithm was used with the parameters values δ = 5 ×
10e−6, τ = 5× 10e−3 and nmin = 200.
All algorithms run on a Pentium IV at 1GHz with 256

MB of RAM and using Linux RedHat 7.1. Detailed results
are presented in table 1.

Classi£cation strategy: Majority Class vs. naive Bayes
In this subsection, we compare the performance of VFDTc
using two different classification strategies at the leaves:
naive Bayes and Majority Class. Our goal is to show that
using stronger classification strategies at tree leaves will im-
prove, sometimes drastically, classifier’s performance.
On these datasets VFDTcNB consistently out-performs

VFDTcMC (Figure 4). We should note, with the Waveform

data, as the number of examples increases, the performance
of VFDTcMC approximates VFDTcNB (Figure 4). The
most relevant aspect in all learning curves is that the per-
formance of VFDTcNB is almost constant, independently
of the number of training examples. For example the differ-
ence between the best and worst performance (over all the
experiments) is:

C4.5 VFDTcNB VFDTcMC
Waveform (21 atts) 4.28 2.89 18.54
Waveform (40 atts) 3,97 5 13,65
Led 0.41 0.3 7.97
These experiments support our claim that the use of ap-

propriate classification schemes will improve the any time

property.
With respect to the other dimensions of analysis, the size

of the tree does not depend on the classification strategy.
With respect to the learning times, the use of naive Bayes
classifiers introduces an overhead. The overhead is due to
two factors. The first factor only applies when there are
numeric attributes and is related to the construction of the
contingency tables from the Btrees. The size of these ta-
bles is usually short (in our case 10×#Classes) and inde-
pendent of the number of examples. In our experiments it

Error Rate (%) Learning Times (seconds) Tree Size
Training+Classification Training

Nr. Exs C4.5 VFDTcNB VFDTcMC C4.5 VFDTcNB VFDTcMC VFDTc C4.5 VFDTcNB
Waveform dataset - 21 Attributes

100k 19.98 17.85 25.46 229.2 31.2 23.4 18.3 7901 51
500k 18.96 17.28 21.15 3975.1 116.5 106.9 101.5 37787 249

1000k 18.17 17.15 20.16 14960.8 210.1 201.5 195.3 61323 495
Waveform dataset - 40 Attributes

100k 21.02 18.50 24.82 347.8 64.2 46.2 36.2 9935 51
500k 19.63 17.17 21.29 5570.8 227.4 155.3 195.1 43725 243

1000k 19.12 17.03 19.82 22402.7 431.3 408.2 397.4 80933 491
LED dataset - 24 Attributes

100k 26.53 25.87 74.67 15.1 18.8 6.3 2.2 7923 39
500k 26.39 25.95 73.97 80.6 31.7 19.9 14.1 35413 207

1000k 26.35 26.05 73.98 190.5 59.9 45.3 36.8 65119 403

Table 1: Learning curves for Waveform-21, Waveform-40, and LED datasets. In all the experiments the test
set have 250k examples.

20
25

30
35

Waveform − 21 Atts
Error Rate

Nr.Exs

Er
ro

r R
at

e
(%

)

C4.5
VFDTcMC
VFDTcNB

10k 20k 30k 40k 50k 75k 100k 150k 200k 300k 400k 500k 750k 1000k

Figure 4: Learning Curves of VFDTcMC,
VFDTcNB and C4.5 error-rates on Waveform data
(21 atts).

was the least important factor. The second factor is that
the application of naive Bayes requires the estimation, for
each test example, of #Classes×#Attributes probabilities.
The majority class strategy only requires #Classes proba-
bilities. When the number of test cases is large (as in our
experiments) this is the most relevant factor. Nevertheless
the impact of the overhead shrinks has the training time in-
creases. It is why the overhead is more visible for reduced
number of training examples (Figure 5).
From now on we focus our analysis in VFDTcNB.

C4.5 versus VFDTcNB
In this subsection, we compare VFDTcNB against C4.5 [10].
VFDTc as VFDT was designed for fast induction of inter-
pretable, and accurate models from large data streams using
one scan of the data. The motivation for these experiments
is the comparison of the relative performances of an online
learning algorithm with a standard batch learner. We would
expect, given enough examples, a faster convergence rate of
VFDTcNB in comparison to VFDTcMC. The following ta-
ble shows the mean of the ratios of the error rate (VFDTcNB
/ C4.5) and the p− value of the Wilcoxon test for the three
datasets under study.

0
50

10
0

15
0

20
0

LED Dataset
(Learning Times)

Nr.Examples

Ti
m

e
in

 S
ec

on
ds

C4.5
VFDTcNB
VFDTcMC
VFDTc

10k 20k 30k 40k 50k 75k 100k 150k 200k 300k 500k 750k 1000k

Figure 5: Learning times (train+test) of C4.5,
VFDTcNB, and VFDTcMC as a function of the
number of training examples.

VFDTcNB / C4.5 p− value

Waveform (21 atts) 0.89 0.0011
Waveform (40 atts) 0.90 0.0001
LED 0.98 0.0017
On the LED dataset the performance of both systems are

quite similar unrespectable to the dimension of the training
set. On both Waveform VFDTcNB out-performs C4.5.

Tree size and Learning Times
In this work, we measure the size of tree models as the num-
ber of decision nodes plus the number of leaves. We should
note that VFDTcNB and VFDTcMC generates exactly the
same tree model. In all the experiments we have done,
VFDTc generates decision models that are, at least, one
order of magnitude smaller than those generated by C4.5.
The size of C4.5 trees grows much more with the number of
examples, just as it would expect.
In another dimension, we measured the time needed by

each algorithm to generate a decision model. The analysis
we have done in a previous section, comparing VFDTcNB
versus VFDTcMC applies in the comparison VFDTcNB ver-
sus C4.5. VFDTcNB is very fast in the training phase. It
scans the entire training set once, and the time needed to
process each example is negligible. In the application phase

there is an overhead due to the use of naive Bayes at leaves.
In Figure 5 we plot the learning plus classification time as
a function of the number of training examples. For small
datasets (less than 100k examples) the overhead introduced
in the application phase is the most important factor.

Bias-Variance Decomposition of the Error
An interesting analysis of the classification error is given by
the so-called Bias-Variance decomposition [2]. Several au-
thors refer that there is a trade-off between the systematic
errors due to the representational language used by an algo-
rithm (the bias) and the variance due to the dependence of
the model to the training set. We have used the Waveform

(21 attributes) dataset. The experimental methodology was
as follows: We generate a test set with 50k examples, and 10
independent training sets with 75k. VFDTc and C4.5 learn
the training sets and the corresponding models were used to
classify the test set. The predictions are used to compute the
terms of the bias and variance equations using the definition
presented in [2]. The figures of bias and variance for C4.5
were 15.01 and 4.9 respectively, and for VFDTcNB the bias
is 17.2 and variance 2.4. We observe that while VFDTc ex-
hibits lower variance, C4.5 exhibits lower Bias. With respect
to the variance, these results were the expected. Decision
nodes in VFDTc should be much more stable than greedy
decisions. Moreover, naive Bayes is known to have low vari-
ance. With respect to the bias component, these results
are somewhat surprising. They indicate that sub-optimal
decisions could contribute to a bias reduction.

Other Results on Real data
We have done some experiments on real data. We have used
the Forest CoverType dataset from the UCI KDD archive.
The goal is to predict the forest cover type from cartographic
variables. The problem is defined by 54 variables of differ-
ent types: continuous and categorical. The dataset con-
tains 581012 examples. Published results for this dataset,
using the first 15120 examples for training and the reminder
565892 for test are: 70% accuracy for backpropagation, 58%
for a linear discriminant, and 68.6% for C4.5. Using the
same training and test sets, the accuracy of VFDTcNB 4 is
62.4% and 34.2% for VFDTcMC.

5. CONCLUSIONS
In this paper, we propose two major extensions to VFDT,

one of the most promising algorithms for tree induction from
data streams. The first one is the ability to deal with nu-
merical attributes. The second one is the ability to apply
naive Bayes classifiers in tree leaves. While the former ex-
tends the domain of applicability of the algorithm to het-
erogeneous data, the latter reinforces the any-time charac-
teristic, an important property for any learning algorithm
for data streams. We should note that the extensions we
propose are integrated. In the training phase only the suffi-
cient statistics required to compute the information gain are
stored at each leaf. In the application phase, and for nom-
inal attributes, the sufficient statistics constitute (directly)
the naive Bayes tables. For continuous attributes, naive
Bayes tables are efficiently derived from the Btree used to

4Results obtained with δ = 5 × 10−6, τ = 5 × 10−3 and
nmin = 200.

store the numeric attribute-values. Nevertheless the appli-
cation of naive Bayes introduces an overhead with respect
to the use of the majority class because the former requires
the estimation of much more probabilities than the latter.
VFDTc maintains all the desirable properties of VFDT. It
is an incremental algorithm, new examples can be incorpo-
rated as they arrive, it works online, only see one example
once, and using a small processing time per example. The
experimental evaluation of VFDTc clear illustrates the ad-
vantages of using more powerful classification techniques. In
the datasets under study VFDTcNB is a very competitive
algorithm even in comparison against the state-of-the art
in batch decision tree induction. The bias-variance analy-
sis shows that VFDTcNB generates very stable predictive
models concerning variations of the training set.
In this paper, we do not discuss the problem of time-

changing concepts [7]. Nevertheless, our extensions could
be applied to any strategy that takes into account concept
drift.
Acknowledgments: The authors reveal its gratitude to

the financial support given by the FEDER (Plurianual sup-
port attributed to LIACC), and to project ALES.

6. REFERENCES
[1] C. Blake, E. Keogh, and C. Merz. UCI repository of

Machine Learning databases, 1999.

[2] P. Domingos. A unified bias-variance decomposition
and its applications. In P. Langley, editor, Machine

Learning, Proc. of the 17th International Conference.
Morgan Kaufmann, 2000.

[3] P. Domingos and G. Hulten. Mining high-speed data
streams. In Knowledge Discovery and Data Mining,
pages 71–80, 2000.

[4] P. Domingos and M. Pazzani. On the optimality of the
simple Bayesian classifier under zero-one loss. Machine

Learning, 29:103–129, 1997.

[5] J. Gama. An analysis of functional trees. In
C. Sammut, editor, Machine Learning, Proc. of the

19th Int. Conference. Morgan Kaufmann, 2002.

[6] J. Gratch. Sequential inductive learning. In Proc. of

Thirteenth National Conference on Artificial

Intelligence, volume 1, pages 779–786, 1996.

[7] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Knowledge Discovery

and Data Mining, 2001.

[8] D. Kalles and T. Morris. Efficient incremental
induction of decision trees. Machine Learning,
24(3):231–242, 1996.

[9] R. Kohavi. Scaling up the accuracy of naive Bayes
classifiers: a decision tree hybrid. In Proc. of the 2nd

International Conference on Knowledge Discovery and

Data Mining. AAAI Press, 1996.

[10] R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, Inc., 1993.

[11] P. Utgoff. Perceptron trees - a case study in hybrid
concept representation. In Proc. of the Seventh

National Conference on Artificial Intelligence. Morgan
Kaufmann, 1988.

[12] P. E. Utgoff, N. C. Berkman, and J. A. Clouse.
Decision tree induction based on efficient tree
restructuring. Machine Learning, 29(1):5–44, 1997.

