
CACTUS–Clustering Categorical Data Using Summaries

Venkatesh Ganti� Johannes Gehrke Raghu Ramakrishnan

Department of Computer Sciences, University of Wisconsin-Madisonfvganti,johannes,raghug@cs.wisc.edu

Abstract

Clustering is an important data mining problem. Most of the earlier work on clustering focussed on

numeric attributes which have a natural ordering on their attribute values. Recently, clustering data with

categorical attributes, whose attribute values do not havea natural ordering, has received some attention.

However, previous algorithms do not give a formal description of the clusters they discover and assume

that the user post-processes the output of the algorithm to identify the final clusters.

In this paper, we introduce a novel formalization of a cluster for categorical attributes by generalizing

a definition of a cluster for numerical attributes. We then describe a very fast summarization-based

algorithm called CACTUS that discovers exactly such clusters in the data. CACTUS has two important

characteristics. First, the algorithm requires only two scans of the dataset, and hence is very fast and

scalable. Our experiments on a variety of datasets show thatCACTUS outperforms previous work by a

factor of3 to 10. Second, CACTUS can find clusters in subsets of all attributes and can thus perform a

subspace clustering of the data. This feature is important if clusters do not span all attributes, a likely

scenario if the number of attributes is very large. In a thorough experimental evaluation we study the

performance of CACTUS on real and synthetic datasets.

1 Introduction

Clustering is an important data mining problem. The goal of clustering, in general, is to discover dense and

sparse regions in a dataset. Most previous work in clustering focussed on numerical data whose inherent

geometric properties can be exploited to naturally define distance functions between points. However, many

datasets also consist of categorical attributes1 on which distance or similarity functions are not naturally

defined. Recently, the problem of clustering categorical data started receiving interest [GKR98, GRS99].

As an example, consider theMUSHROOM dataset in the popular UCI Machine Learning repository

[CBM98]. Each tuple in the dataset describes a sample of gilled mushrooms using22 categorical attributes.

For instance, thecap color attribute can take values from the domainfbrown, buff, cinnamon,� Contact author.1Attributes whose domain is totally ordered are callednumeric, whereas attributes whose domain is not ordered are called

categorical(sometimes, also callednominal).

1

gray, green, pink, purple, red, white, yellowg. It is hard to reason that one color is

“like” or “unlike” another color in a way similar to real numbers.

An important characteristic of categorical domains is thatthey typically have a small number of attribute

values. For instance, the largest domain for a categorical attribute of any dataset in the UCI Machine Learn-

ing repository consists of100 attribute values (for an attribute of thePendigits dataset). Categorical

attributes with large domain sizes typically do not containinformation that may be used to group tuples into

classes. For instance, theCustomerId attribute in the TPC-D database benchmark [Cou95] may consist

of millions of values; given that a record (or a set of records) takes a certainCustomerId value (or a set of

values), we cannot infer any information that is useful for classifying the records. Therefore, it is different

from the age or geographical location attributes which can be used to group customers based on their age

or location or both. Typically, relations contain10 to 50 attributes; hence, even though the size of each

categorical domain is small, the cross product of all their domains and hence the relation itself can be very

large.

In this paper, we introduce a new algorithm calledCACTUS2 for clustering categorical data.CACTUS is a

fast summarization-based algorithm that exploits the small domain sizes of categorical attributes. The central

idea inCACTUS is that summary information constructed from the dataset issufficient for discovering well-

defined clusters. The properties that the summary information typically fits into main memory, and that it can

be constructed efficiently using a single scan of the datasetresult in significant performance improvements|
a factor of3 to 10 times over one of the previous algorithms. Our main contributions in this paper are:

1. We formalize the concept of a cluster over categorical attributes (Section 3).

2. We introduce a fast summarization-based algorithmCACTUS for clustering categorical data (Sec-

tion 4).

3. We then extend (CACTUS) to discover clusters in subspaces, especially useful whenthe data consists

of a large number of attributes (Section 5). Due to space constraints, we describe the extension in

Appendix B.

4. In an extensive experimental study, we evaluateCACTUSand compare it with earlier work on synthetic

and real datasets (Section 6).

2 Related Work

In this section, we discuss two previous algorithmsSTIRR andROCK for clustering categorical data.

Gibson et al. introduceSTIRR [GKR98], an iterative algorithm based on non-linear dynamical systems.

They represent each attribute value as a weighted vertex in agraph. (Edges between vertices|derived from

tuples in the dataset|are not explicitly maintained.) Multiple copiesb1; : : : ; bm, calledbasins, of this set

of weighted vertices are maintained; the weights on any given vertex may differ across basins.b1 is called2CAtegoricalClusTeringUsingSummaries

2

theprincipal basin;b2; : : : ; bm are callednon-principalbasins. Starting with a set of weights on all vertices

(in all basins), the system is “iterated” until a fixed point is reached. In each iteration, the dataset is scanned

once; for each tuplet = ht1; : : : ; tni, the weight in basinbi on the vertextj is incremented by a function

(called thecombining function) of the set of weights inbi on vertices other thantj in t. At the end of each

iteration, the sets of weights of attribute values on the same attribute across basins are normalized using

the Gram-Schmidt orthonormalization [DER86]. For certaintypes of combining functions (e.g., sum), the

authors showed that the fixed point will be reached.

Gibson et al. argue that when the fixed point is reached, the weights in one or more of the basinsb2; : : : ; bm isolate two groups of attribute values on each attribute: the first with large positive weights and

the second with small negative weights, and that these groups correspond intuitively to projections of clusters

on the attribute. However, the automatic identification of such sets of closely related attribute values from

their weights is an instance of the1-dimensional clustering problem, and hence requires a non-trivial post-

processing step; such a post-processing step was not addressed in their work. Moreover, the post-processing

step will also determine what “clusters” are output. In Section 3.2, we also show that certain classes of

clusters cannot be discovered bySTIRR.

Guha et al. [GRS99] introduceROCK, an adaptation of an agglomerative hierarchical clustering algo-

rithm, which heuristically optimizes a criterion functiondefined in terms of the number of “links” between

tuples. Informally, the number of links between two tuples is the number of common “neighbors” they have

in the dataset. Given asimilarity function, two tuples in the dataset are said to beneighborsif the similarity

between them is greater than a certain threshold. Starting with each tuple in its own cluster, they repeatedly

merge the two “closest” clusters till the required number (say,K) of clusters remain. The closeness between

two clusters is defined to be the sum of the number of links between all pairs of tuples|one in each cluster.

Since the complexity of this hierarchical algorithm isquadratic in the number of tuples in the dataset, they

cluster a sample randomly drawn from the dataset, and then partition the entire dataset based on the clusters

from the sample. Beyond that the set of all “clusters” together may optimize a criterion function, the set of

tuples in each individual cluster is not characterized.

Like STIRR, our algorithmCACTUS does not require the number of clusters as an input parameter. We

define each cluster in terms of the attribute values rather than as a subset of the tuples in the dataset (like in

ROCK). Thus, in a broad sense, our approach is closer to that ofSTIRR than to that ofROCK.

3 Definitions

In this section, we formally define the concept of a cluster over categorical attributes, and other concepts

used in the remainder of the paper. We then compare the class of clusters allowed by our definition with

those discovered bySTIRR.

3

3.1 Cluster Definition

Intuitively, a cluster on a set of numeric attributes identifies a “dense region” in the attribute space. That

is, the region consists of a significantly larger number of tuples than expected. We generalize this intuitive

notion for the class of hyper-rectangular clusters to the categorical domain.3
As an illustrative example, consider a dataset with three categorical attributesA,B, andC with domainsDA, DB , andDC , respectively. LetA0, B0, andC 0 be three numeric attributes. The class of rectangular

regions in the space spanned byA0; B0; C 0 can be expressed as the cross product[a1; a2℄�[b1; b2℄�[1; 2℄ of

intervals[a1; a2℄, [b1; b2℄, and[1; 2℄ onA0; B0, andC 0, respectively. Since domains of categorical attributes

are not ordered, the concept of an interval does not exist. However, a straightforward generalization of the

concept of an interval to the categorical domain is asetof attribute values. Consequently, the generalization

of a rectangular region onA0; B0; C 0 to the categorical attributesA;B;C is the cross productS1 � S2 � S3
of three setsS1; S2; S3 of attribute values such thatS1 � DA, S2 � DB, andS3 � DC . We call such

regionsinterval regions.

Intuitively, a cluster consists of a significantly larger number of tuples than the number expected if all

attributes were independent. In addition to the significantly larger number, a cluster also extends to as large

a region as possible. We now formalize this notion for categorical domains by first defining the notion of a

tuple belongingto a region, and then thesupportof a region, which is the number of tuples in the dataset

that belong to the region.

Definition 3.1 LetA1; : : : ; An be a set of categorical attributes with domainsD1; : : : ;Dn, respectively. Let

the datasetD be a set of tuples where each tuplet: t 2 D1 � � � � � Dn. We callS = S1 � � � � � Sn an

interval regionif for all i 2 f1; : : : ; ng, Si � Di. Let ai 2 Di andaj 2 Dj , i 6= j. Thesupport�D(ai; aj)
of the attribute value pair(ai; aj) with respect toD is defined as follows:�D(ai; aj) def= jft 2 D : t:Ai = ai andt:Aj = ajgjjDj
A tuple t = ht:A1; : : : ; t:Ani 2 D is said tobelongto the regionS if for all i 2 f1; : : : ; ng, t:Ai 2 Si. The

support�D(S) of S is the number of tuples inD that belong toS.

If all attributesA1; : : : ; An are independent (henceforth referred to as theattribute-independenceas-

sumption) then theexpected supportE[�D(S)℄ of a regionS = S1 � � � � � Sn is jDj � jS1j�����jSnjjD1j�����jDnj ; the

expected support of(ai; aj) E[�D(ai; aj)℄ is jDj � 1jDij�jDj j . Since the datasetD is understood from the

context, we write�(S) instead of�D(S), and�(ai; aj) instead of�D(ai; aj).
Intuitively, �(ai; aj) captures the co-occurence, and hence the similarity, of attribute valuesai andaj.

Valuesai andaj are said to bestrongly connectedif their co-occurrence (�(ai; aj)) is significantly higher (by3Classes of clusters that correspond to arbitrarily shaped regions in the numeric domain cannot be generalized as cleanly to the

categorical domain because the categorical attributes do not have a natural ordering imposed on their domains. Therefore, we only

consider the class of hyper-rectangular regions.

4

some factor�) than the value expected under the attribute-independence.4 We now define�� to formalize

this intuition, and then give a formal definition of a cluster.

Definition 3.2 Let ai 2 Di, aj 2 Dj , and� > 1. The attribute valuesai andaj arestrongly connectedwith

respect toD if �D(ai; aj) > � � jDjjDij�jDjj . The function��D(ai; aj) is defined as follows:��D(ai; aj) def= 8<: �D(ai; aj); if ai andaj are strongly connected0; otherwise

Let Si � Di andSj � Dj, i 6= j, be two sets of attribute values. An elementai 2 Si is strongly connected

with Sj if, for all x 2 Sj, ai andx are strongly connected.Si andSj are said to be strongly connected if

eachai 2 Si is strongly connected withSj and eachaj 2 Sj is strongly connected withSi.
Definition 3.3 For i = 1; : : : ; n, letCi � Di, jCij > 1, and� > 1. ThenC = hC1; : : : ; Cni is acluster

overfA1; : : : ; Ang if the following three conditions are satisfied. (1) For alli; j 2 f1; : : : ; ng; i 6= j, Ci
andCj are strongly connected. (2) For alli; j 2 f1; : : : ; ng, i 6= j, there exists noC 0i � Ci such that for

all j 6= i, C 0i andCj are strongly connected. (3) The support�D(C) of C is at least� times the expected

support ofC under the attribute-independence assumption.

We callCi thecluster-projectionofC onAi. C is called asub-clusterif it satisfies conditions (1) and (3).

A clusterC over a subset of all attributesS � fA1; : : : ; Ang is called asubspace clusteronS; if jSj = k
thenC is called ak-cluster.

We now extend our notion of similarity to attribute value pairs on the same attribute. Leta1; a2 2 Di andx 2 Dj. If (a1; x) and(a2; x) are strongly connected then(a1; a2) are “similar” to each other with respect

toAj. The level of similarity is the number of such distinct attribute valuesx 2 Dj. We now formalize this

intuition.

Definition 3.4 Let a1; a2 2 Di. Thesimilarity j(a1; a2) betweena1 anda2 with respect toAj (j 6= i) is

defined as follows. j(a1; a2) def= jfx 2 Dj : ��(a1; x) > 0 and��(a2; x) > 0gj
Below, we define the summary information which we need later to describe theCACTUS algorithm. The

summary information is of two types: (1)inter-attributesummaries and (2)intra-attributesummaries. The

inter-attribute summaries consist of all strongly connected attribute value pairs where each pair has attribute

values from different attributes; the intra-attribute summaries consist of similarities between attribute values

of the same attribute.4Because a deviation of2 or 3 times the expected value is quite significant [BD76], typical values of� are between2 and3.

5

Definition 3.5 LetA1; : : : ; An be a set of categorical attributes with domainsD1; : : : ;Dn respectively, and

let D be a dataset. Theinter-attribute summary�IJ is defined as:�IJ def= f�ij : i; j 2 f1; : : : ; ng; i 6= jg
where �ij def= f(ai; aj ; ��D(ai; aj)) : ai 2 Di; aj 2 Dj; and��D(ai; aj) > 0g
The intra-attribute summary�II is defined as:�II def= f�jii : i; j 2 f1; : : : ; ng andi 6= jg where�jii def= f(ai1; ai2; j(ai1; ai2)) : ai1; ai2 2 Di; andj(ai1; ai2)) > 0g
Let G = hV; Ei be a graph such thatV = [ni=1Di and(ai; aj) 2 E iff ��D(ai; aj) > 0. The graphG is called

the similarity graphonA1; : : : ; An with respect to the datasetD. Let Gji = hDi; Ejii be a graph such that(ai1; ai2) 2 Ejii iff j(ai1; ai2)) > 0. The graphGji is called thesimilarity graphonAi with respect toAj .
3.2 Discussion

We now compare the class of clusters allowed by our definitionwith the clusters discovered bySTIRR. For

the comparison, we generate test data using the data generator developed by Gibson et al. for evaluating

STIRR [GKR98]. We consider three datasets shown in Figures 1, 2, and 3. Each dataset consists of100000
tuples. DS1 andDS2 have two attributes,DS3 has three attributes where each attribute consists of100
attribute values. We control the location and the size of clusters in each dataset by distributing an additional

number of tuples (5% of the total number in the dataset) in regions designated to be clusters thus increasing

their supports above the expected value under the attribute-independence assumption. The remaining tuples

are distributed over all attribute values on each attributeaccording to the attribute-independence assumption.

In Figures 1, 2, and 3, the cluster-projection of each cluster is shown within an ellipse. The boundaries of the

cluster-projections (ellipses) of a cluster are connectedby lines of the same type (e.g., solid, dashed etc.).

10

19

10

9

19

0

9

0

20 20

99 99

10 10

9

19

0

9

0

20

7

17

18

99 99

10 10

9

0

19 19

0

9

0

20 20

99 99 99

20

19

10

Figure 1: DS1 Figure 2: DS2 Figure 3: DS3

We ranSTIRR on the datasets shown in Figures 1, 2, and 3, and manually selected the basin that assigns

positive and negative weights respectively to attribute values in different cluster-projections. To identify the

cluster projections, we observe the weights allocated bySTIRR and split them into two groups of positive

and negative weights. The cluster-projections identified by STIRR are shown in Figures 4, 5, and 6.

6

10

19

10

9

19

0

9

0

20 20

99 99

10

9

19

0

9

0

20

7

99 99

17

10

18

10 10

9

0

19 19

0

9

0

20 20

99 99 99

20

19

Figure 4: DS1:STIRR’s O/P Figure 5: DS2:STIRR’s O/P Figure 6: DS3:STIRR’s O/P

The cluster-projections forDS1 were recognized bySTIRR on the first non-principal basin (b2) on

every attribute (as shown in Figure 4). When run on the dataset DS2, the first non-principal basin (b2) onA1
identifies the two groups:f0; : : : ; 9g andf10; : : : ; 17g (as shown in Figure 5). The second non-principal

basin (b3) onA1 identifies the following two groups:f0; : : : ; 6g andf7; : : : ; 17g. Thus, no basin identifies

the overlap between the cluster-projections. It may be possible to identify such overlaps through a non-

trivial post processing step. However, it is not clear how many basins are required and how to recognize that

cluster-projections overlap from the weights on attributevalues. Moreover, we believe that any such post-

processing step itself will be similar to theCACTUS algorithm. The result of runningSTIRR on the dataset

DS3 is shown in Figure 6.STIRR merged the two cluster-projections on the second attribute, possibly

because one of the cluster-projections participates in more than one cluster.

From these experiments, we conclude thatSTIRR fails to discover the following classes of clusters:

(1) clusters consisting of overlapping cluster-projections on any attribute, (2) clusters where two or more

clusters share the same cluster-projection. However, intuitively, these two classes of clusters are valid

classes of clusters, and our cluster definition includes these classes.CACTUS correctly discovers all the

implanted clusters from the datasetsDS1, DS2, andDS3. Thus, our definition of a cluster and henceCAC-

TUS, which discovers all clusters allowed by our definition, seems to identify a broader class of clusters

than that discovered bySTIRR. Since it is not possible to characterize clusters discovered bySTIRR, we

could not construct any example datasets from whichCACTUS does not retrieve the expected clusters and

STIRR does.

4 CACTUS

In this section, we describe our three-phase clustering algorithm CACTUS. The central idea behindCAC-

TUS is that a summary of the entire dataset is sufficient to compute a set of “candidate” clusters which can

then be validated to determine the actual set of clusters.CACTUS consists of three phases:summarization,

clustering, andvalidation. In the summarization phase, we compute the summary information from the

dataset. In the clustering phase, we use the summary information to discover a set of candidate clusters. In

7

4b

A B C

4a

3a

2a

1a

1b

3b

2b

4c

3c

2c

1c

Figure 7: Similarity Graph onA;B;C
A w.r.t. B B w.r.t. C C w.r.t. Ba1; a2: 2 b1; b2: 2 1; 2: 3a1; a3: 2 b1; b3: 2 1; 3: 2a1; a4: 2 b2; b3: 2a2; a3: 2a2; a4: 2a3; a4: 2

Figure 8: Intra-attribute Summaries

the validation phase, we determine the actual set of clusters from the set of candidate clusters. We introduce

a hypothetical example which we use throughout the paper to illustrate the successive phases in the algo-

rithm. Consider a dataset with three attributesA;B, andC with domainsfa1; a2; a3; a4g, fb1; b2; b3; b4g,

andf1; 2; 3; 4g, respectively. Let the similarity graph derived from the dataset be as shown in Figure 7.

4.1 Summarization Phase

In this section, we describe the summarization phase ofCACTUS. We show how to efficiently compute the

inter-attribute and the intra-attribute summaries, and then describe the resource requirements for maintaining

these summaries.

Categorical attributes usually havesmalldomains. Typical categorical attribute domains considered for

clustering consist of less than a hundred or, rarely, a thousand attribute values.5 An important implication of

the compactness of categorical domains is that the inter-attribute summary�ij for any pair of attributesAi
andAj fits into main memory because the number of all possible attribute value pairs fromAi andAj equalsjDij � jDj j. For the rest of this section, we assume that the inter-attribute summary of any pair of attributes

fits easily into main memory. (We will give an example later tosupport this assumption, and to show that

typically inter-attribute summaries for many pairs of attributes together fit into main memory.) However, for

the sake of completeness, we extend our techniques in Section 5 to handle cases where this trait is violated.

The same argument holds for the intra-attribute summaries as well.

4.1.1 Inter-attribute Summaries

We now discuss the computation of the inter-attribute summaries. Consider the computation of�ij, i 6= j.
We initialize a counter to zero for each pair of attribute values(ai; aj) 2 Di � Dj , and start scanning5For instance, the maximum number of values assumed by a categorical attribute of any dataset in the popular UCI Machine

Learning test suite is100 (for thePendigits dataset) [CBM98].

8

the datasetD. For each tuplet 2 D, we increment the counter for the pair(t:Ai; t:Aj). After the scan

of D is completed, we compute�� by setting to zero all counters whose value is less than the threshold�ij = � � jDjjDij�jDjj . Thus, counts of only the strongly connected pairs are retained. The number of strongly

connected pairs is usually much smaller thanjDij � jDj j. Therefore, the set of strongly connected pairs can

be maintained in specialized data structures designed for sparse matrices [DER86].6
We now present a hypothetical example to illustrate the resource requirements of the simple strategy

described above. Consider a dataset with50 attributes each consisting of100 attribute values. With100 MB

of main memory (easily available on current desktop systems), assuming that each counter requires4 bytes

we can maintain counters for2500 = 100�106100�100�4 attribute pairs simultaneously. With50 attributes, we have

to evaluate1225 attribute pairs. Therefore, we can compute all inter-attribute summaries together in just one

scan of the dataset. The computational and space requirements here are similar to that of obtaining counts

of pairs of items while computing frequent itemsets [AMS+96].

Quite often, a single scan is sufficient for computing�IJ . In some cases, we may need to scanD
multiple times|each scan computing�ij for a (different) set of(i; j) pairs. The computation of the inter-

attribute summaries is CPU-intensive, especially when thenumber of attributes is high, because for each

tuple in the dataset, we have to incrementn(n�1)2 counters wheren is the number of attributes. Even if we

require multiple scans of the dataset, the I/O time for scanning the dataset goes up but the total CPU time|
for incrementing the counters|remains the same. Since the CPU time dominates the overall summary-

construction time, the relative increase due to multiple scans is not significant. For instance, consider a

dataset of1 million tuples defined on50 attributes, each consisting of100 attribute values. Experimentally,

we found that the total time for computing the inter-attribute summaries of the dataset with1 million tuples

is 1040 seconds, whereas a scan of the dataset takes just28 seconds. Suppose we partition all the1225
pairs of attributes into three groups consisting of408, 408, and409 pairs respectively. The computation

of the inter-attribute summaries of attribute pairs in eachgroup requires a scan of the dataset. The total

computation time is around1096 seconds, which is only slightly higher than the time for a single scan.

4.1.2 Intra-attribute Summaries

In this section, we describe the computation of the intra-attribute summaries. We again exploit the char-

acteristic that categorical domains are very small and thusassume that the intra-attribute summary of any

attributeAi fits in main memory. Our procedure for computing�jii reflects the evaluation of the following

SQL query:

Select T1:A; T2:B; ount(�)
From �ij as T1(A,B),�ij as T2(A,B)

Where T1.A6= T2.A and T1.B = T2.B

Group by T1.A, T2.A

Having ount > 0;6In our current implementation, we maintain the counts of strongly connected pairs in an array and do not optimize for space.

9

The above query joins�ij with itself to compute the set of attribute value pairs ofAi strongly connected

to each other with respect toAj .7 Since�ij fits in main memory the self-join and hence the computation

of �jii is very fast. We will observe in the next section that, at any stage of our algorithm, we only require�jii for a particular pair of attributesAi andAj . Therefore, we compute�jii, (j 6= i), for each(i; j) pair

whenever it is required.

Consider the example shown in Figure 7. (We use the notation�XY to denote the inter-attribute sum-

mary between attributesX andY .) The inter-attribute summaries�AB , �BC , and�AC correspond to the

edges of the similarity graph onA;B;C shown in the figure. The intra-attribute summaries�BAA, �CBB ,�BCC are shown in Table 8.

4.2 Clustering Phase

In this section, we describe the two-step clustering phase of CACTUS that uses the attribute summaries to

compute candidate clusters in the data. In the first step, we analyze each attribute to compute all cluster-

projections on it. In the second step, we synthesize, in a level-wise manner, candidate clusters on sets of

attributes from the cluster-projections on individual attributes. That is, we determine candidate clusters on

a pair of attributes, then extend the pair to a set of three attributes, and so on. We now describe each step in

detail.

4.2.1 Computing Cluster-Projections on Attributes

LetA1; : : : ; An be the set of attributes with domainsD1; : : : ;Dn respectively. The central idea for comput-

ing all cluster-projections on an attribute is that a cluster hC1; : : : ; Cni over the set of attributesfA1; : : : ; Ang
induces a sub-cluster over any attribute pairs(Ai; Aj), i 6= j. In addition, the cluster-projectionCi onAi
of the clusterC is the intersection of a set of cluster-projections onAi of 2-clusters over attribute pairs(Ai; Aj), j 6= i. For example, the cluster-projectionfb1; b2g on the attributeB in Figure 7 is the inter-

section offb1; b2; b3g (the cluster-projection onB of the2-clusterhfb1; b2; b3g; f1; 2gi) andfb1; b2g (the

cluster-projection onB of the2-clusterhfa1; a2; a3; a4g; fb1; b2gi). We formalize the idea in the following

lemma.

Lemma 4.1 LetC = hC1; : : : ; Cni be a cluster on the set of attributesfA1; : : : ; Ang. Then, the following

properties are true.

(1) For all i 6= j, i; j 2 f1; : : : ; ng, hCi; Cji is a sub-cluster over the pair of attributes(Ai; Aj).
(2) There exists a setfCji : j 6= i andhCji ; Ciji is a 2-cluster over(Ai; Aj)g such thatCi = \j 6=iCji .

Lemma 4.1 motivates the following two-step approach. In thefirst pairwise cluster-projectionstep, we

cluster each attributeAi with respect to every other attributeAj , j 6= i to find all cluster-projections onAi
of 2-clusters over(Ai; Aj). In the secondintersectionstep, we compute all the cluster-projections onAi of

clusters overfA1; : : : ; Ang by intersecting sets of cluster-projections from2-clusters computed in the first7For an exposition of join processing, see any standard textbook on database systems, e.g., [Ram97].

10

a1 a2 a3 a4

b1

b2

b3

b4

A

B

Figure 9: Extendingfa1; a2g w.r.t. B
step. However, the problem of computing cluster-projections of2-clusters in the pairwise cluster-projection

step is at least as hard as the NP-completeclique problem [GJ79].8 The following lemma formalizes the

computational complexity. The proof is given in Appendix A.

Lemma 4.2 LetAi andAj be two attributes. LetGji be the similarity graph onAi with respect toAj . The

problem of computing all cluster-projections onAi of 2-clusters over(Ai; Aj) is NP-complete.

To reduce the computational complexity of the cluster-projection problem, we exploit the following

property which, we believe, is usually exhibited by clusters in the categorical domain. If a cluster-projectionCi onAi of one (or more) cluster(s) is larger than a fixed positive integer, called thedistinguishing number

(denoted�), then it consists of a small identifying set|which we call thedistinguishing set|of attribute

values such that they will nottogetherbe contained in any other cluster-projection onAi. Thus, the dis-

tinguishing set distinguishesCi from other cluster-projections onAi. Note that a proper subset of the

distinguishing set may still belong to another cluster-projection, and that two distinct clusters may share an

identical cluster-projection (as in Figure 1).

We believe that the distinguishing subset assumption holdsin almost all cases. Even for the most re-

strictive version, which occurs when the distinguishing number is1 and all cluster-projections of the set of

clusters are distinct, the assumption only requires that each cluster consist of a set of attribute values|one

on each attribute|that does not belong to any other cluster. For the example in Figure 7, the setsfa1g orfa2g identify the cluster-projectionfa1; a2g on the attributeA. We now formally state the assumption.

Distinguishing Subset Assumption: Let Ci andC 0i each of size greater than� be two distinct cluster-

projections on the attributeAi. Then there exist two setsSi andS0i such thatjSij � �; Si � Ci; jS0ij � �; S0i � C 0i; andSi 6� C 0i; S0i 6� Ci
We call� thedistinguishing number.8A clique in Gji is a set of vertices that are connected to each other by edges with non-zero weights. Given a graphG = hV; Ei
and a constantJ , the clique problem determines ifG consists of a clique of size at leastJ .

11

Pairwise Cluster-Projections

The procedure for computing cluster-projections onAi of 2-clusters over the attribute pair(Ai; Aj) con-

sists of two steps. In the first step, we find all possible distinguishing sets (of size less than or equal to�) on Ai. In the second step, we extend with respect toAj some of these distinguishing sets to com-

pute cluster-projections onAi. In this section, we sometimes write “cluster-projection on Ai” instead of a

“cluster-projection onAi of a2-cluster over(Ai; Aj).”
Distinguishing Set Computation: In the first step, we rely on the following two properties to find all

possible distinguishing sets onAi. (1) A distinguishing set is a clique in the similarity graphGji . (2) Any

subset of a clique is also a clique (monotonicity property). These two properties allow a level-wise clique

generation similar to the candidate generation in apriori [AMS+96]. That is, we first compute all cliques of

size2, which are then used to compute cliques of size3, and so on until all cliques of size less than or equal

to � are computed.

LetCk denote the set of all cliques of size less than or equal tok. We give an inductive description of the

procedure to generate the setCk. The base caseC2 whenk = 2 consists of all pairs of strongly connected

attribute values inDi. These pairs can easily be found from�jii. The setCk+1 is computed from the setCk
(k � 2) by “joining” Ck with itself. The join is the subset join|used in the candidate generation step of the

apriori algorithm for frequent itemset computation [AMS+96]. We also remove all the candidates inCk+1
that contain a properk-subset not inCk (a la subset pruning in apriori).

Extension Operation: In the second step, we “extend” with respect toAj some of the candidate distin-

guishing sets computed in the first step to compute cluster-projections onAi. The intuition behind the

extension operation is illustrated in Figure 9. Suppose we want to extendfa1; a2g on A with respect toB. We compute the setfb1; b2g of attribute values onB strongly connected withfa1; a2g. We then extendfa1; a2g with the set of all other valuesfa3; a4g onA that is strongly connected withfb1; b2g.

Informally, the extension of a distinguishing setS � Di adds toS all attribute values inDi that are

strongly connected with the set of all attribute values inDj that S is strongly connected with. We now

introduce some terminology to formally describe the extension operation.

Definition 4.1 Let Ai andAj be two attributes with domainsDi andDj . Let DSji be a set of candidate

distinguishing sets, with respect toAj , on attributeAi. Let CSji be the set of cluster-projections onAi of2-clusters over(Ai; Aj). The sibling setSij of Si 2 DSji with respect to the attributeAj is defined as

follows: Sij = faj 2 Dj : for all ai 2 Si; ��(ai; aj) > 0gjSji j is called thesibling strengthwith respect toAj of the distinguishing setSi.
Thesubset flagof Si 2 DSji with respect a collection of setsCs is said to beset(to 1) if there exists a setS 2 Cs such thatSi � S. Otherwise, the subset flag ofSi is not set.

Theparticipation countof Si 2 DSji with respect toCs is the sum of the sibling strengths with respect toAj of all supersets ofSi in Cs.
12

Informally, the subset flag and the participation count serve the following two purposes. First, a cluster-

projection may consist of more than one distinguishing set inDSji . Therefore, if we extend each set inDSji
a particular cluster-projection may be generated several times, once for each distinguishing set it contains.

To avoid the repeated generation of the same cluster-projection, we associate with each distinguishing set

a subset flag. The subset flag indicates whether the distinguishing set is a subset of an existing cluster-

projection inCSji . Therefore, if the subset flag is set then the distinguishingset need not be extended. For

the example shown in Figure 7, the distinguishing setsfa1g andfa2g on A can both be extended to the

cluster-projectionfa1; a2g. Second, the distinguishing subset assumption applies only to cluster-projections

of size greater than�. Therefore, a clique of size less than or equal to� may be a cluster-projection on

its own even though it may be a subset of some other cluster-projection. To recognize such small cluster-

projections, we associate a participation count with each distinguishing set. If the participation count of a

distinguishing set with respect toCSji is equal to its sibling strength then it cannot be a cluster-projection on

its own. Otherwise, it may be a small cluster-projection.

Algorithm 4.1 Extend(DSji ;�ij)
/* Output: CSji */

begin

/* Initialization */CSji = �
Reset the subset flags and the participation counts of all distinguishing sets inDSji to zero

foreachSi 2 DSji
if the subset flag ofSi is not set then

ExtendSi toCSi
Set the subset flags and increment by the sibling strength ofSi the participation counts of

all subsets ofCSi in DSji .
end /*if*/

end /*for*/

Identify and add small cluster-projections (of size� �) to CSji
end

The pseudocode for the computation ofCSji is shown in Figure 4.1. Below, we describe each step in

detail.

Initialization: The first three steps initialize the procedure: we setCSji = �, and all distinguishing sets inDSji have their subset flags and their participation counts resetto zero.

ExtendingSi: LetSji be the sibling set ofSi with respect toAj . LetCSi be the sibling set ofSji with respect

toAi. Then, we extendSi to the cluster-projectionCSi . AddCSi to CSji .
13

Prune subsets ofCSi : SupposeCSi was extended fromSi. Then, by definition, subsets ofCSi cannot be the

distinguishing sets of other cluster projections onAi. Therefore, we set (to1) all subset flags of subsets ofCSi (includingSi) in DSji . The participation count of each of these subsets is also increased byjSji j|the

sibling strength ofSi.
Identifying small cluster-projections: While extending distinguishing sets, we only choose sets whose

subset flags are not set. We check if each unextended distinguishing setSi whose subset flag is set can be a

small (of size less than�) cluster-projection. If the participation count ofSi equals its sibling strength, thenSi cannot be a cluster-projection on its own. Otherwise,Si may be a cluster-projection. Therefore, we addSi to CSji .
Note that the computation of cluster-projections onAi requires only the inter-attribute summary�ij and

the intra-attribute summary�jii. Since�ij and�jii fit into main memory, the computation is very fast.

Intersection of Cluster-projections

Informally, the intersection step computes the set of cluster-projections onAi of clusters overfA1; : : : ; Ang
by successively joining sets of cluster-projections onAi of 2-clusters over attribute pairs(Ai; Aj), j 6= i.
For describing the procedure, we require the following definition.

Definition 4.2 LetS1 andS2 be two collections of sets of attribute values onAi. We define theintersection

join S1 u S2 betweenS1 andS2 as follows:S1 u S2 = fs : there exists1 2 S1 ands2 2 S2 such thats = s1 \ s2 andjsj > 1g
Let CSji be the set of cluster-projections onAi with respect toAj , j 6= i. Let j1 = 1 if i > 1, elsej1 = 2. Starting withS = CSj1i , the intersection step executes the following operation for all k 6= i.S = S u CSki ; if k 6= i
The resulting setS is the set of cluster-projections onAi of clusters overfA1; : : : ; Ang. Besides being

a main-memory operation, the number of cluster-projections onAi with respect to any other attributeAj is

usually small; therefore, the intersection step is quite fast.

Further optimizations are possible over the basic strategydescribed above for computing cluster pro-

jections. For instance, we can combine the computation ofCSji and that ofCSij because, for each cluster-

projection inCSji , we compute its sibling set which is a cluster-projection inCSij. The second optimization

improves the computation of cluster-projections. Insteadof computing cluster-projections on the attributeAi with respect to every other attribute it may, in practice, besufficient to do so with respect to a few at-

tributes. However, we do not consider such optimizations because the clustering phase takes a small fraction

(less than10%) of the time taken by the summarization phase. (Our experiments in Section 6 confirm this

observation.)

14

4.2.2 Level-wise Synthesis of Clusters

In this section, we describe the synthesis of candidate clusters from the cluster-projections on individual

attributes (computed as described in Section 4.2). The central idea is that a cluster on a set of attributes

induces a sub-cluster on any subset of the attributes (monotonicity property). The monotonicity property

follows directly from the definition of a cluster. We also exploit the fact that we want to compute clusters

over the set of all attributesfA1; : : : ; Ang. Informally, we start with cluster-projections onA1 and then

extend them to clusters over(A1; A2), then to clusters over(A1; A2; A3), and so on.

Let Ci be the set of cluster-projections on the attributeAi, i = 1; : : : ; n. Let Ck denote the set of

candidate clusters defined over the set of attributesA1; : : : ; Ak. Therefore,C1 = C1. We successively

generateCk+1 from Ck until Cn is generated orCk+1 is empty for somek + 1 < n. The generation ofCk+1 from Ck proceeds as follows. SetCk+1 = �. For each elementk = h1; : : : ; ki 2 Ck, we attempt

to augmentk with a cluster projectionk+1 on the attributeAk+1. If for all i 2 f1; : : : ; kg, hi; k+1i is

a sub-cluster on(Ai; Ak+1)|which can be checked by looking up�i(k+1)|we augmentk to generatek+1 = h1; : : : ; k+1i and addk+1 to Ck+1.
For the example in Figure 7, the computation of the set of candidate clusters proceeds as follows. We

start with the setfa1; a2g onA. We then find the candidate2-clusterfhfa1; a2g; fb1; b2gig over the attribute

pair (A;B), and then the candidate3-clusterfhfa1; a2g; fb1; b2g; f1; 2gig overfA;B;Cg.

4.3 Validation

We now describe a procedure to compute the set of actual clusters from the set of candidate clusters. Some

of the candidate clusters may not have enough support because some of the2-clusters that combine to form

a candidate cluster may be due to different sets of tuples. Torecognize such false candidates, we check if

the support of each candidate cluster is greater than the required threshold. Only clusters whose support onD passes the threshold requirement are retained.

After setting the supports of all candidate clusters to zero, we start scanning the datasetD. For each

tuple t 2 D, we increment the support of the candidate cluster to whicht belongs. (Because the set of

clusters correspond to disjoint interval regions,t can belong to at most one cluster.) At the end of the scan,

we delete all candidate clusters whose support in the dataset D is less than the required threshold:� times

the expected support of the cluster under the attribute-independence assumption.

By construction,CACTUS discovers all clusters that satisfy our cluster definition,and hence the follow-

ing theorem follows.

Theorem 4.1 Given that the distinguishing subset assumption holds,CACTUS finds all and only those clus-

ters that satisfy Definition 3.3.

15

5 Extensions to Large Attribute Value Domains

In this section, we extendCACTUS to handle unusually large attribute value domains.9 Until now, we

assumed that the domains of categorical attributes are suchthat the inter-attribute summary of any pair of

attributes and the intra-attribute summary of any attribute fits in main memory. Even though we argued with

compelling examples (UCI Machine Learning repository) that most real datasets satisfy this assumption,

for the sake of completeness, we modify the summarization phase ofCACTUS to handle arbitrarily large

domain sizes.

Recall that we are only interested in strongly connected pairs of attribute value pairs in the summary

information. For large domain sizes, the number of stronglyconnected (with respect to another attributeAj) attribute value pairs of an attributeAi relative to the the number of all possible attribute value pairs is

very small. We exploit this observation to collapse disjoint sets of attribute values into a single attribute

value thus creating a new transformed domain with a reduced domain size. The intuition is that if a pair of

attribute values in the original domain are strongly connected, then the corresponding pair of transformed

attribute values are also strongly connected provided the threshold for strong connectivity between attribute

values involving the tranformed domain is the same as that ofusing the original domain.

Let Ai be an attribute with an unusually large domainDi. Without loss of generality, letDi be the

set f1; : : : ; jDijg. Let M < jDij be the maximum number of attribute values per attribute so that the

inter-attribute summaries and the intra-attribute summaries involving any attribute fit in main memory. Let = d jDijM e. We constructD0i of sizeM from Di by mapping for a givenx 2 f0; : : : ;M � 1g, the set of

attribute valuesfx � + 1; : : : ; x � + g to the valuex+ 1. Formally,D0i = ff(1); : : : ; f(jDij)g; wheref(i) = b ik + 1
We set the threshold for the strong connectivity involving attribute values inD0i to the exact same value

if Di was being used. We then compute the inter-attribute summaries involvingAi using the transformed

domainD0i instead ofDi. For each attribute valuea0i 2 D0i that participates in a strongly connected pair(a0i; aj) (aj 2 Dj, j 6= i), we expanda0i to the set of all attribute valuesfa0i � + 1; : : : ; a0i � + g � Di
that map intoa0i and form the pairs(a0i � + 1; aj); : : : ; (a0i � + ; aj). We then scan the datasetD to

count the supports of all these pairs, and select the strongly connected pairs among them; they constitute the

inter-attribute summary�ij.
The number of new pairs whose supports are to be counted is less than or equal to � j�ijj wherej�ij j

represents the number of strongly connected pairs inDi � Dj . If this set of pairs is still larger than main

memory, we can repeat the above transformation trick. However, we believe that such a repeated application

will rarely be necessary.9Due to space constraints, we describe the extension to find clusters in subspaces in Appendix B.

16

6 Performance Evaluation

In this section, we show the results of a detailed evaluationof the speed and scalability ofCACTUS on

synthetic and real datasets and we examined whether the clusters discovered where intuitive and sensible.

We also compared the performance ofCACTUS with the performance ofSTIRR.10 Our results show that

CACTUS is very fast and scalable; it outperformsSTIRR by a factor between3 and10.

6.1 Synthetic Datasets

We first used synthetic datasets for our experiments. The test datasets were generated using the data gen-

erator developed by Gibson et al. [GKR98] to evaluateSTIRR. (See Section 3.2 for a description of the

data generator.) We set the number of tuples to1 million, the number of attributes to10 and the number of

attribute values for each attribute to100. In all datasets, the cluster-projections on each attribute were[0; 9℄
and[10; 19℄ (as shown in Figure 1). Unless otherwise mentioned, we set the value of� at 3, and the value

of the distinguishing number� to 2. ForSTIRR, we fixed the number of iterations to be10|as suggested

by Gibson et al. [GKR98].

As discussed in Section 3.2,CACTUSdiscovers a broader class of clusters thanSTIRR, and our experi-

ments confirmed this.

Figure 10 shows the scalability ofCACTUS andSTIRR while increasing the number of tuples from1 to 5 million. In Figure 11, the number of attributes is increasedfrom 4 to 50. For the results shown in

Figure 12, the number of attribute values is increased from50 to1000 while fixing the number of attributes at4. While varying the number of attribute values, we assumed that until500 attribute values, the inter-attribute

summaries would fit into main memory; for a larger number of attribute values we took the multi-layered

approach described in Section 5. In all cases,CACTUS is 3 to 10 faster thanSTIRR, despite scanning the

dataset two times for constructing the inter-attribute summaries in some cases.

0

500

1000

1500

2000

1 2 3 4 5

T
im

e
(in

 s
ec

on
ds

)

#tuples (in Millions)

Time vs. #tuples

CACTUS
STIRR

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

T
im

e
(in

 s
ec

on
ds

)

#Attributes

Time vs. #Attributes

CACTUS
STIRR

0

50

100

150

200

250

0 200 400 600 800 1000

T
im

e
(in

 s
ec

on
ds

)

#Attribute values

Time vs. #Attribute Values

CACTUS
STIRR

Figure 10: Time vs. #Tuples Figure 11: Time vs. #Attributes Figure 12: Time vs. #Attr-values10We intend to compareCACTUS andROCK after our ongoing implementation ofROCK is complete.

17

First Author First Author (contd.) Second Author Second Author (contd.)

Katz, Stonebraker, Wong Ceri, Navathe Katz, Wong Ceri, Navathe

DeWitt, Hsiao Abiteboul, Grumbach DeWitt, David Vianu, Grumbach

DeWitt, Ghandeharizadeh Korth, Levy DeWitt, Ghandeharizadeh Silbershatz, Levy

Kanellakis, Beeri, Vardi Agrawal, Gehani Abiteboul, Beeri Jagadish, Gehani

Ramakrishnan, Beeri Chen, Hua, Su Beeri, Srivastava Su, Chen, Chu

Bancilhon, Kifer Chen, Hua, Lam Ramakrishnan, Kim Su, Lee

Afrati, Cosmadakis Collmeyer, King, Shemer Papadimitriou, Cosmadakis Collmeyer, Shemer

Alonso, Barbara, GarciaMolina Copeland, Lipovski, Su GarciaMolina, Barbara Su, Lipovski, Copeland

Devor, Elmasri Cornell, Dan, Iyer, Yu Devor, ElMasri, Weeldreyer Yu, Dias

Barsolou, Keller, Wiederhold Chang, Gupta Keller, Wiederhold Lee, Cheng

Barsalou, Keller, Shalom Fischer, Griffeth, Lynch Keller, Wiederhold Griffeth, Fischer

Table 1:2-clusters on the pair of first author and second author attributes

ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Record

ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMP,LIBTR, SICOMP, TCS, TR

PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCT, SICOMP, STOC

Table 2: Cluster-projections on Conference w.r.t. the First Author

6.2 Real Datasets

In this section, we discuss an application ofCACTUS to a combination of two sets of bibliographic entries.

The results from the application show thatCACTUS finds intuitively meaningful clusters from the dataset

thus supporting our definition of a cluster.

The first set consists of7766 bibliographic entries for articles related to database research [Wie] and

the second set consists of30919 bibliographic entries for articles related to TheoreticalComputer Science

and related areas [Sei]. For each article, we use the following four attributes: the first author, the second

author, the conference or the journal of publication, and the year. If an article is singly-authored then the

author’s name is repeated as the second author as well. The sizes of the first author, the second author, the

conference, and the year attribute domains for the database-related, the theory-related, and the combined

sets aref3418; 3529; 1631; 44g, f8043; 8190; 690; 42g, andf10212; 10527; 2315; 52g respectively. Note

that for these domains, some of the inter-attribute summaries and the intra-attribute summaries|especially

those involving the first author and the second author dimensions|do not fit in main memory. However, we

choose this particular dataset because it is easier to judgethe validity of the resulting clusters (than for some

other publicly available datasets, e.g., theMUSHROOM dataset from the UCI Machine Learning repository).

We combine the two sets together to check ifCACTUS is able to identify the differences and the overlap

18

between the two communities.

We now discuss an important implication of the unusually large domains of some of the categorical

attributes and the relatively small number of tuples in thisdataset. Because of the large domain sizes, the

expected support under the attribute-independence assumption for any pair of attribute values from two

different attributes is almostzero: the maximum is0:32 for the (conference, year) pair. Therefore, for a

tuplet = ha1; a2; ; yi in the dataset, the pairs(a1; a2); (a1;); (a1; y); (a2;); (a2; y); (; y) are all strongly

connected. This property has two implications. First, the strong-connectedness relation between attribute

values is an equivalence relation. Second, the cluster-projections on any attribute are determined by the2-

clusters involving at least one of the first author and the second author attributes. Therefore, we first present

the cluster-projections of2-clusters over the (first author, second author) attribute pair. Then, we present

cluster-projections on the conference and the year attributes with respect to the first author attribute.

Table 6.1 shows some of the2-clusters on the first author and the second author attributepair. We only

present the database-related cluster-projections to illustrate thatCACTUS identifies the differences between

the two communities. We verified the validity of each cluster-projection by querying on theDatabase

Systems and Logic Programmingbibliography at the web site maintained by Michael Ley [Ley]. Similar

cluster-projections identifying groups of theory-related researchers as well as groups that contribute to both

fields also exist. We show some cluster-projections corresponding to the latter two types in Appendix C.

Table 2 shows some of the cluster-projections on the conference attribute computed with respect to

the first author attribute. The first row consists exclusively of a group of database-related conferences,

the second consists exclusively of theory-related conferences, and the third a mixture of both reflecting a

considerable overlap between the two communities.

7 Conclusions and Future Work

In this paper, we formalized the definition of a cluster when the data consists of categorical attributes, and

then introduced a fast summarization-based algorithmCACTUS for discovering such clusters in categorical

data. We then evaluated our algorithm against both synthetic and real datasets.

In future, we intend to extendCACTUS in the following three directions. First, we intend to relax

the cluster definition by allowing sets of attribute values on each attribute which are “almost” strongly

connected to each other. That is, each attribute value is strongly connected to a large percentage, say90%,

of the attribute values in the sets on other attributes. Second, motivated by the observation that inter-attribute

summaries can be incrementally maintained under addition and deletion of tuples, we intend to derive an

incremental clustering algorithm fromCACTUS. Third, we intend to “rank” the clusters based on a measure

of interestingness, say, some function of the support of a cluster.

Acknowledgements:We thank Prabhakar Raghavan for sending us the bibliographic data.

19

References

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic subspace

clustering of high dimensional data for data mining. InProceedings of the ACM SIGMOD Conference on

Management of Data, 1998.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant,Hannu Toivonen, and A. Inkeri Verkamo. Fast

Discovery of Association Rules. In Usama M. Fayyad, GregoryPiatetsky-Shapiro, Padhraic Smyth, and

Ramasamy Uthurusamy, editors,Advances in Knowledge Discovery and Data Mining, chapter 12, pages

307–328. AAAI/MIT Press, 1996.

[BD76] Peter J. Bickel and Kjell A. Doksum.Mathematical Statistics: Basic Ideas and Selected Topics. Prentice

Hall, 1976.

[CBM98] E. Keogh C. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[Cou95] Transaction Processing Performance Council, May 1995. http://www.tpc.org.

[DER86] I.S. Duff, A.M. Erisman, and J.K. Reid.Direct Methods for Sparse Matrices. Oxford University Press,

1986.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability — A guide to the theory of NP-

completeness.Freeman; Bell Lab, Murray Hill NJ, 1979.

[GKR98] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Clustering categorical data: An approach based

on dynamical systems. InProceedings of the 24th International Conference on Very Large Databases,

pages 311–323, New York City, New York, August 24-27 1998.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering algorithm for categorical

attributes. InProceedings of the IEEE International Conference on Data Engineering, Sydney, March

1999.

[Ley] Michael Ley. Computer science bibliography. http://www.informatik.uni-trier.de/ ley/db/index.html.

[Ram97] Raghu Ramakrishnan.Database Management Systems. McGraw Hill, 1997.

[Sei] J. Seiferas. A large bibliography on theory/foundations of computer science.

http://liinwww.ira.uka.de/bibliography/Theory/Seiferas.

[Wie] G. Wiederhold. Bibliography on database systems.

http://liinwww.ira.uka.de/bibliography/Database/Wiederhold.

20

A Proofs

Proof for Lemma 4.1

Proof: Property (1) follows trivially from the definition of a cluster. We now prove Property (2). From

Property (1), we observe thatCi � \j 6=iCji . Suppose the equality does not hold in the above relationship,

i.e.,Ci � \j 6=iCji . LetC 0i = \j 6=iCji . From the definition of a cluster, we observe thatCi can be augmented

with at least one attribute value inC 0i � Ci. Therefore,C is a sub-cluster but not a cluster. 2
Proof for Lemma 4.2

Proof: The proof follows from the construction of an instance of thecluster-projection problem from an

instance of the clique problem. LetG = hV; Ei be a graph. Create two attributesAi andAj each with

domainV . For each edgee = (v1; v2) 2 E , we makev1 onAi andv2 onAj strongly connected, andv2
onAi andv1 onAj strongly connected. This construction yields a similaritygraph onAi andAj which

satisfies the following condition. IfC is a clique inG thenC is a cluster-projection onAi with respect toAj,
and vice-versa. Therefore, any algorithm for computing cluster-projections also solves the clique problem.

Hence, the cluster-projection problem is NP-complete. 2
B Clusters in Subspaces

We extend theCACTUS algorithm to find clusters in subspaces. Recall that a subspace cluster is a cluster

on a subsetS of the set of all attributesfA1; : : : ; Ang. TheCACTUS algorithm does not discover clusters in

subspaces for the following two reasons. First, a subspace clusterC does not span the set of all attributes.

Second, the orderA1; : : : ; An in which cluster-projections on individual attributes arecombined may not be

the right order to findC. For instance, ifC spans the subspace defined by a set of attributesfA2; A3; A4g
(whenn � 4) then the level-wise synthesis described in Section 4.2.2 will not find C.

The central idea behind the extension ofCACTUS to find subspace clusters is that they satisfy the mono-

tonicity property. That is, a cluster in a subspaceS induces a cluster on any subset ofS. The monotonicity

property motivates the apriori-style level-wise synthesis of candidate clusters from the cluster-projections on

individual attributes. However, we skip the intersection of cluster-projections on an attributeAi with respect

to every other attributeAj for the following two reasons. First, a cluster in subspaceS may not induce a2-cluster on a pair of attributes not inS, and hence the intersection of cluster-projections on an attribute inS with respect to every other attribute returns an empty set. Second, the intersection may cause the loss

of maximality (condition (2) in Definition 3.3) of a subspacecluster. For instance, a cluster-projection onAi with respect toAj corresponds to a2-cluster over(Ai; Aj) which, by definition, is a subspace clus-

ter; truncating such a cluster-projection in the intersection step will no longer yield a maximal cluster on(Ai; Aj).
Let Ci be the set of cluster-projections on the attributeAi, i = 1; : : : ; n with respect to every attributeAj 6= Ai. Let Ck denote the set of candidate clusters defined on any set ofk-attributes (not necessarilyfA1; : : : ; Akg). C1 = [ni=1Ci. UsingC1, we generateC2, and so on. We first describe the computation ofC2

21

because it is different from that ofCk, (k > 2).

For each possible pair(i; j) (i 2 Ci; j 2 Cj), we check if(i; j) is a sub-cluster on the attribute pair(Ai; Aj) by confirming, using�ij, that all attribute value pairs ini � j are strongly connected. If(i; j)
is a sub-cluster, then it is inserted in the set of2-clustersC2.

We computeCk+1 from Ck, k � 2, by “joining” Ck with itself. The join is a prefix join similar to the

apriori candidate generation [AMS+96]. We successively generateCk+1 from Ck until Ck+1 is empty for

somek + 1 < n orCn is generated. For each newly generated candidate, we check that all its subsets are

also candidate clusters; candidates that do not pass this check are pruned out. (We omit the details of the

prefix join and subset pruning, and refer the reader to the original paper [AMS+96].)

For a cluster 2 Ck in a subspace consisting ofk attributes, the above procedure examines2k� (k+1)
candidates. Depending on the value ofk (say, larger than15), the number of candidate clusters can be

prohibitively high. The problem of examining a large numberof candidate clusters has been addressed

by Agrawal et al. [AGGR98]. They use theminimum description lengthprinciple to prune the number of

candidate clusters. Their techniques are directly applicable in our scenario as well. Therefore, we do not

address this problem; instead, we refer the reader to the original paper [AGGR98].

C Results from the Bibliographic Data

First Author Second Author

Abiteboul, Kolaitis Vardi, Papadimitriou

Papadimitriou, Vazirani Yannakakis, Vazirani

Sudarshan, GopalakrishnanRamakrishnan, Rangan

Edelsbrunner, Chazelle Welzl, Preparata, Sharir, Guibas

Allender, Book Wilson, Watanabe

Table 3:2-clusters on the pair of first author and second author attributes

22

