CACTUS—Clustering Categorical Data Using Summaries

Venkatesh Ganti  Johannes Gehrke Raghu Ramakrishnan
Department of Computer Sciences, University of Wiscorndadison
{vganti,johannes,ragh@cs.wisc.edu

Abstract

Clustering is an important data mining problem. Most of thdier work on clustering focussed on
numeric attributes which have a natural ordering on theiitatte values. Recently, clustering data with
categorical attributes, whose attribute values do not hav&tural ordering, has received some attention.
However, previous algorithms do not give a formal desanpwf the clusters they discover and assume
that the user post-processes the output of the algorithdretatify the final clusters.

In this paper, we introduce a novel formalization of a clufecategorical attributes by generalizing
a definition of a cluster for numerical attributes. We thesalibe a very fast summarization-based
algorithm called CACTUS that discovers exactly such clissie the data. CACTUS has two important
characteristics. First, the algorithm requires only twarss of the dataset, and hence is very fast and
scalable. Our experiments on a variety of datasets showh@TUS outperforms previous work by a
factor of3 to 10. Second, CACTUS can find clusters in subsets of all attribated can thus perform a
subspace clustering of the data. This feature is imporfattisters do not span all attributes, a likely
scenario if the number of attributes is very large. In a thigito experimental evaluation we study the
performance of CACTUS on real and synthetic datasets.

1 Introduction

Clustering is an important data mining problem. The goalla$tering, in general, is to discover dense and
sparse regions in a dataset. Most previous work in clugidorussed on numerical data whose inherent
geometric properties can be exploited to naturally defis&adice functions between points. However, many
datasets also consist of categorical attributess which distance or similarity functions are not naturally
defined. Recently, the problem of clustering categorictd gtarted receiving interest [GKR98, GRS99].

As an example, consider tHdJSHROOM dataset in the popular UCI Machine Learning repository
[CBM98]. Each tuple in the dataset describes a sample @dyithushrooms usingR categorical attributes.
For instance, theap col or attribute can take values from the domébr own, buff, ci nnanon,

* Contact author.
! Attributes whose domain is totally ordered are caltedneric whereas attributes whose domain is not ordered are called

categorical(sometimes, also callatbminal)



gray, green, pink, purple, red, white, yellow}. Itis hard to reason that one color is
“like” or “unlike” another color in a way similar to real nuneis.

An important characteristic of categorical domains is thay typically have a small number of attribute
values. For instance, the largest domain for a categoritrdate of any dataset in the UCI Machine Learn-
ing repository consists of00 attribute values (for an attribute of tieendi gi t s dataset). Categorical
attributes with large domain sizes typically do not confafiormation that may be used to group tuples into
classes. For instance, t@ist oner | d attribute in the TPC-D database benchmark [Cou95] may sbnsi
of millions of values; given that a record (or a set of recdtdkes a certaiQust oner | d value (or a set of
values), we cannot infer any information that is useful fiassifying the records. Therefore, it is different
from the age or geographical location attributes which camu$ed to group customers based on their age
or location or both. Typically, relations contaird to 50 attributes; hence, even though the size of each
categorical domain is small, the cross product of all theimdins and hence the relation itself can be very
large.

In this paper, we introduce a new algorithm cal@&CTUS? for clustering categorical dat&ACTUSis a
fast summarization-based algorithm that exploits the kdeahain sizes of categorical attributes. The central
idea inCACTUS is that summary information constructed from the datasstfficient for discovering well-
defined clusters. The properties that the summary infoonayipically fits into main memory, and that it can
be constructed efficiently using a single scan of the datasatt in significant performance improvements
a factor of3 to 10 times over one of the previous algorithms. Our main contrdms in this paper are:

1. We formalize the concept of a cluster over categoricaibaties (Section 3).

2. We introduce a fast summarization-based algori®ACTUS for clustering categorical data (Sec-
tion 4).

3. We then extendGACTUS) to discover clusters in subspaces, especially useful wedata consists
of a large number of attributes (Section 5). Due to spacetrints, we describe the extension in
Appendix B.

4. In an extensive experimental study, we eval@ETUS and compare it with earlier work on synthetic
and real datasets (Section 6).

2 Related Work

In this section, we discuss two previous algorith81d RR andROCK for clustering categorical data.
Gibson et al. introduc8Tl RR[GKR98], an iterative algorithm based on non-linear dynaahsystems.
They represent each attribute value as a weighted vertegragh. (Edges between vertieederived from
tuples in the datasetare not explicitly maintained.) Multiple copiés, ..., b,,, calledbasins of this set
of weighted vertices are maintained; the weights on anyrgiartex may differ across basink, is called

2CAtegoricalClusT ering Using Summaries



theprincipal basin;b,, . .. , b, are calledhon-principalbasins. Starting with a set of weights on all vertices
(in all basins), the system is “iterated” until a fixed poimteéached. In each iteration, the dataset is scanned
once; for each tuple = (¢1,...,t,), the weight in basib; on the vertex; is incremented by a function
(called thecombining functiopof the set of weights ib; on vertices other thaty in ¢. At the end of each
iteration, the sets of weights of attribute values on theesattribute across basins are normalized using
the Gram-Schmidt orthonormalization [DER86]. For certgipes of combining functions (e.g., sum), the
authors showed that the fixed point will be reached.

Gibson et al. argue that when the fixed point is reached, thghtgein one or more of the basins
ba, ..., by, isolate two groups of attribute values on each attribute:fitst with large positive weights and
the second with small negative weights, and that these grompespond intuitively to projections of clusters
on the attribute. However, the automatic identification witssets of closely related attribute values from
their weights is an instance of thedimensional clustering problem, and hence requires atriaa} post-
processing step; such a post-processing step was not addiiesheir work. Moreover, the post-processing
step will also determine what “clusters” are output. In 8et3.2, we also show that certain classes of
clusters cannot be discovered §yI RR.

Guha et al. [GRS99] introdud@OCK, an adaptation of an agglomerative hierarchical clusgealgo-
rithm, which heuristically optimizes a criterion functiaefined in terms of the number of “links” between
tuples. Informally, the number of links between two tupkeghie number of common “neighbors” they have
in the dataset. Givensimilarity function two tuples in the dataset are said tort@eghborsif the similarity
between them is greater than a certain threshold. Startitigeach tuple in its own cluster, they repeatedly
merge the two “closest” clusters till the required numbaeiy(%) of clusters remain. The closeness between
two clusters is defined to be the sum of the number of links etvwall pairs of tuples one in each cluster.
Since the complexity of this hierarchical algorithmgsadraticin the number of tuples in the dataset, they
cluster a sample randomly drawn from the dataset, and theiitigrathe entire dataset based on the clusters
from the sample. Beyond that the set of all “clusters” togetiay optimize a criterion function, the set of
tuples in each individual cluster is not characterized.

Like STI RR, our algorithmCACTUS does not require the number of clusters as an input paranvgeer
define each cluster in terms of the attribute values ratter #s a subset of the tuples in the dataset (like in
RCOCK). Thus, in a broad sense, our approach is closer to th&TbRRthan to that oROCK.

3 Definitions

In this section, we formally define the concept of a clustegraategorical attributes, and other concepts
used in the remainder of the paper. We then compare the dadssters allowed by our definition with
those discovered bgTI RR.



3.1 Cluster Definition

Intuitively, a cluster on a set of numeric attributes idées a “dense region” in the attribute space. That
is, the region consists of a significantly larger number plé¢a than expected. We generalize this intuitive
notion for the class of hyper-rectangular clusters to thegmical domairt.

As an illustrative example, consider a dataset with thréegmaical attributesi, B, andC with domains
Da, Dg, andDc, respectively. Letd’, B’, andC’ be three numeric attributes. The class of rectangular
regions in the space spannedAby B’, C' can be expressed as the cross proftuctas | x [by, bo| X [¢1, ¢2] Of
intervals|a, az], [b1, b2, and[c1, 2] on A’ B', andC”, respectively. Since domains of categorical attributes
are not ordered, the concept of an interval does not existveider, a straightforward generalization of the
concept of an interval to the categorical domain setof attribute values. Consequently, the generalization
of a rectangular region oA’, B, C’ to the categorical attributed, B, C' is the cross product; x Sy x Ss3
of three setsS, Ss, S3 of attribute values such tha&t; C Dy, So C D, andS3 C D. We call such
regionsinterval regions

Intuitively, a cluster consists of a significantly largemnier of tuples than the number expected if all
attributes were independent. In addition to the signifigalarger number, a cluster also extends to as large
a region as possible. We now formalize this notion for categbdomains by first defining the notion of a
tuple belongingto a region, and then th&upportof a region, which is the number of tuples in the dataset
that belong to the region.

Definition 3.1 Let A4, ..., A, be a set of categorical attributes with domalns . .., D,,, respectively. Let
the dataseD be a set of tuples where each tupilet € Dy x --- x D,,. We callS§ = 57 x --- x S, an
interval regionif forall i € {1,...,n}, S; C D;. Leta; € D; anda; € D;, i # j. Thesupportop(a;, a;)
of the attribute value paifa;, a;) with respect taD is defined as follows:

def Ht € D :t.A; = q; andt. A; = a;
oplai,a;) = I ! |DZ\ J il

Atuplet = (t.A,,...,t.A,) € D is said tobelongto the regionS if forall i € {1,...,n},t.A; € S;. The
supportop(S) of S is the number of tuples i® that belong taS.

If all attributes A4, ..., A, are independent (henceforth referred to asdtigbute-independencas-
sumption) then thexpected suppot®[op(S)] of a regionS = Sy x --- x S, is |D] - %; the
expected support dfu;, a;) Flop(a;,aj)]is |D] - W\Dﬂ' Since the datasdb is understood from the
context, we writes (S) instead olop (S), ando(a;, a;) instead ofop(a;, a;).

Intuitively, o(a;,a;) captures the co-occurence, and hence the similarity, dbatie valuesz; anda;.
Valuesa; anda; are said to betrongly connectei their co-occurrenced(a;, a;)) is significantly higher (by

3Classes of clusters that correspond to arbitrarily shapgibns in the numeric domain cannot be generalized as gléatihe
categorical domain because the categorical attribute®tibave a natural ordering imposed on their domains. Thexefee only
consider the class of hyper-rectangular regions.



some factory) than the value expected under the attribute-independeile now defines* to formalize
this intuition, and then give a formal definition of a cluster

Definition 3.2 Leta; € D;, a; € D;, anda > 1. The attribute values; anda; arestrongly connectedith

respect taD if op(ai,a;) > «- %. The functiono* p(a;, a;) is defined as follows:
k2 J ‘

U*D(aiu (17) -

aef | oplai,aj), if a; anda; are strongly connected
0, otherwise

LetS; C D; andS; C Dy, i # j, be two sets of attribute values. An elemepic S; is strongly connected
with S; if, for all = € S, a; andx are strongly connectedS; andS; are said to be strongly connected if
eacha; € S; is strongly connected witli; and eachu; € S; is strongly connected withi;.

Definition 3.3 Fori = 1,...,n, letC; C D;, |C;] > 1, anda > 1. ThenC = (C4,...,C,) is acluster
over{A,..., A,} if the following three conditions are satisfied. (1) Foralj € {1,...,n},i # j, C;
andC; are strongly connected. (2) For allj € {1,...,n}, i # j, there exists n@’; > C; such that for
all j # i, Cj andC; are strongly connected. (3) The suppep(C) of C' is at leasiv times the expected
support ofC' under the attribute-independence assumption.

We callC; thecluster-projectiorof C' on A;. C'is called asub-clusteiif it satisfies conditions (1) and (3).
A clusterC over a subset of all attribute$ C {A,,..., A,} is called asubspace clustesn S; if |S| = k
thenC' is called ak-cluster.

We now extend our notion of similarity to attribute valuengain the same attribute. Let, as € D; and
x € Dj. If (a1,2) and(ag, z) are strongly connected thén, , a») are “similar” to each other with respect
to A;. The level of similarity is the number of such distinct ditrie values: € D;. We now formalize this
intuition.

Definition 3.4 Letay,ay € D;. Thesimilarity v/ (a1, az) betweens; anday with respect tad; (j # i) is
defined as follows.

v (a1, a2) def {z € D; : 0™(a1,2) > 0ando™(az, z) > 0}

Below, we define the summary information which we need latelescribe th€ACTUS algorithm. The
summary information is of two types: (I)ter-attribute summaries and (2htra-attribute summaries. The
inter-attribute summaries consist of all strongly coneddittribute value pairs where each pair has attribute
values from different attributes; the intra-attribute suaries consist of similarities between attribute values
of the same attribute.

“Because a deviation afor 3 times the expected value is quite significant [BD76], typiedues ofa are betweer and3.



Definition 3.5 Let 44, ..., A,, be a set of categorical attributes with domains . . ., D,, respectively, and
let D be a dataset. Thater-attribute summany;; is defined asX;; def {Ei 4,5 €e{l,...,n},1 #j}
where

Xij def {(aj,aj,0p(ai,a;j)) : ai € D;,aj € Dj, andop(ai,aj) > 0}

Theintra-attribute summany:;; is defined asX;; def {Z{i 11,7 €{1,...,n}andi # j} where
i def ; ;
1= {(air, ain, v (ain, ai2)) : ai1, an € Dy, andy? (a1, a:2)) > 0}

LetG = (V, &) be agraph such that = U}, D; and(a;, a;) € £ iff o},(ai, a;) > 0. The graphg is called
the similarity graphon A4, ..., A,, with respect to the datasél. Let gf = <DZ~,57. be a graph such that

(1)

(aj1,a49) € gg; iff v7(a;1,a:2)) > 0. The graprgg is called thesimilarity graphon A; with respect to4;.

3.2 Discussion

We now compare the class of clusters allowed by our definititth the clusters discovered I§TI RR. For

the comparison, we generate test data using the data gendesteloped by Gibson et al. for evaluating

STI RR[GKR98]. We consider three datasets shown in Figures 1,®23akach dataset consistsi®000

tuples. DS1 and DS2 have two attributesPS3 has three attributes where each attribute consiste)of

attribute values. We control the location and the size ddtelis in each dataset by distributing an additional
u f the total number in the dataset) in regions designate tusters thus increasing

thejr supports aboye the expecte%l value undertIQe ttribdependence assumption. The remaining tuples

\ : 10! 10,7 R
b ! \ L ro 10N 16 N 10.
I I . I' | N Do ;
Il ! Il ! 17 “~ S o I‘ | l»'\_
\ II \ /, . N R \ | "
\ \ 18 ~ \ ! ' N | .
19 v/ 19 v/ ! ig Q! L S [
: 19 . 194/ o 197
20 ! 20! | | ‘ ‘ ‘
E E | 20, 20 20| 20 |
| | ! ! | \ |
Figure 1: DS1 Figure 2: DS2 Figure 3: DS3

We ranSTI RRon the datasets shown in Figures 1, 2, and 3, and manuallstesgdne basin that assigns
positive and negative weights respectively to attribuleesin different cluster-projections. To identify the
cluster projections, we observe the weights allocate®DlyRR and split them into two groups of positive
and negative weights. The cluster-projections identifig& bl RR are shown in Figures 4, 5, and 6.

6



|
10, 107, 10 10 /7 ° °
ll “ II \‘ ;I ‘| ! \| 10 : 10
I I | | I' | : | ;
| | | | |
| ! | ! Vo " | 1,
\ ! \ ! \ | |
194 19\ ¢ 17 - o : L :
) ) 18 19 9% 19 ) 19°
| | |
20 20, | 20, 20 | 20 | 20 |
I I I ! | |
| | | ! I I I
Figure 4: DS1STI RR's O/P Figure 5: DSZTI RR's O/P Figure 6: DSETI RR's O/P

The cluster-projections fobDS1 were recognized by Tl RR on the first non-principal basirh{) on
every attribute (as shown in Figure 4). When run on the dafaS2, the first non-principal basirb{) on A,
identifies the two groups{0,...,9} and{10,...,17} (as shown in Figure 5). The second non-principal
basin 3) on A, identifies the following two groupsf0, ... ,6} and{7,...,17}. Thus, no basin identifies
the overlap between the cluster-projections. It may beiblesso identify such overlaps through a non-
trivial post processing step. However, it is not clear howgnlaasins are required and how to recognize that
cluster-projections overlap from the weights on attribvéues. Moreover, we believe that any such post-
processing step itself will be similar to ti@&ACTUS algorithm. The result of runnin§TI RRon the dataset
DS3 is shown in Figure 6.STI RR merged the two cluster-projections on the second attrjlqubssibly
because one of the cluster-projections participates irerti@n one cluster.

From these experiments, we conclude t6at RR fails to discover the following classes of clusters:
(1) clusters consisting of overlapping cluster-projeasiaon any attribute, (2) clusters where two or more
clusters share the same cluster-projection. Howeverijtivaly, these two classes of clusters are valid
classes of clusters, and our cluster definition includeseat@asses CACTUS correctly discovers all the
implanted clusters from the datas&S1, DS2, andDS3. Thus, our definition of a cluster and hercaC-
TUS, which discovers all clusters allowed by our definition, rmedo identify a broader class of clusters
than that discovered b$TI RR. Since it is not possible to characterize clusters disadry STI RR, we
could not construct any example datasets from wi@AIETUS does not retrieve the expected clusters and
STI RRdoes.

4 CACTUS

In this section, we describe our three-phase clusteringrititgn CACTUS. The central idea behinGAC-
TUS is that a summary of the entire dataset is sufficient to compuget of “candidate” clusters which can
then be validated to determine the actual set of cluste#A&€TUS consists of three phasesummarization
clustering andvalidation In the summarization phase, we compute the summary infamd#rom the
dataset. In the clustering phase, we use the summary infiommi@ discover a set of candidate clusters. In



Awrt. B | Bwrt.C | Cwrt. B
ai,as. 2 by,by: 2 c1,c9. 3
ay,az. 2 by,b3: 2 c,c3. 2
ai,a4. 2 by, b3 2

as,az: 2

as,a4. 2

as,a4. 2

Figure 7: Similarity Graph o, B, C
Figure 8: Intra-attribute Summaries

the validation phase, we determine the actual set of cluftem the set of candidate clusters. We introduce
a hypothetical example which we use throughout the papdiusirate the successive phases in the algo-
rithm. Consider a dataset with three attributésB, andC with domains{ay, as, a3, as}, {b1, ba, b3, bs},
and{cy, co, c3, ¢4 }, respectively. Let the similarity graph derived from theadzet be as shown in Figure 7.

4.1 Summarization Phase

In this section, we describe the summarization phasgA&TUS. We show how to efficiently compute the
inter-attribute and the intra-attribute summaries, amattlescribe the resource requirements for maintaining
these summaries.

Categorical attributes usually hasmalldomains. Typical categorical attribute domains considléoe
clustering consist of less than a hundred or, rarely, a todisittribute values.An important implication of
the compactness of categorical domains is that the intelte summary;; for any pair of attributesi;
andA; fits into main memory because the number of all possiblebateivalue pairs fromi; andA; equals
|D;| - |Dj|. For the rest of this section, we assume that the inteibatti summary of any pair of attributes
fits easily into main memory. (We will give an example latestgport this assumption, and to show that
typically inter-attribute summaries for many pairs of ittites together fit into main memory.) However, for
the sake of completeness, we extend our techniques in 8éctimhandle cases where this trait is violated.
The same argument holds for the intra-attribute summasgeged.

4.1.1 Inter-attribute Summaries

We now discuss the computation of the inter-attribute surresaConsider the computation bf;, i # j.
We initialize a counter to zero for each pair of attributeves (a;,a;) € D; x Dj;, and start scanning

SFor instance, the maximum number of values assumed by aarataigattribute of any dataset in the popular UCI Machine
Learning test suite i$00 (for thePendi gi t s dataset) [CBM93].



the datasetD. For each tuple € D, we increment the counter for the pdirA;,t.A;). After the scan

of D is completed, we compute* by setting to zero all counters whose value is less than treshiold

Kij = - %. Thus, counts of only the strongly connected pairs aremethi The number of strongly
connected pairs is usually much smaller tha&x - |D;|. Therefore, the set of strongly connected pairs can
be maintained in specialized data structures designeg&rss matrices [DERS6].

We now present a hypothetical example to illustrate theuesorequirements of the simple strategy
described above. Consider a dataset Witlattributes each consisting ®80 attribute values. Witi00 MB
of main memory (easily available on current desktop systeassuming that each counter requitdsytes
we can maintain counters f@as00 = % attribute pairs simultaneously. Witt) attributes, we have
to evaluatel 225 attribute pairs. Therefore, we can compute all interdadiie summaries together in just one
scan of the dataset. The computational and space requitemere are similar to that of obtaining counts
of pairs of items while computing frequent itemsets [ANVES).

Quite often, a single scan is sufficient for computiig;. In some cases, we may need to sdan
multiple times—each scan computing;; for a (different) set of¢, j) pairs. The computation of the inter-
attribute summaries is CPU-intensive, especially whenntimaber of attributes is high, because for each
tuple in the dataset, we have to increméHt;—” counters where: is the number of attributes. Even if we
require multiple scans of the dataset, the I/O time for szanthe dataset goes up but the total CPU time
for incrementing the countersremains the same. Since the CPU time dominates the overathany-
construction time, the relative increase due to multiplenscis not significant. For instance, consider a
dataset ofl million tuples defined 00 attributes, each consisting dd0 attribute values. Experimentally,
we found that the total time for computing the inter-atttdbogsummaries of the dataset withmillion tuples
is 1040 seconds, whereas a scan of the dataset take@§ustconds. Suppose we partition all tH25
pairs of attributes into three groups consisting4068, 408, and409 pairs respectively. The computation
of the inter-attribute summaries of attribute pairs in egobup requires a scan of the dataset. The total
computation time is arountD96 seconds, which is only slightly higher than the time for ayirscan.

4.1.2 Intra-attribute Summaries

In this section, we describe the computation of the inttabatte summaries. We again exploit the char-
acteristic that categorical domains are very small and #assime that the intra-attribute summary of any

attribute A; fits in main memory. Our procedure for computiilg reflects the evaluation of the following
SQL query:

Select T1.A,T2.B,count(x)

From ¥;j as T1(A,B),X;; as T2(A,B)
Where  T1.A#T2.Aand T1.B=T2.B
Groupby T1.A T2A

Having count > 0;

5In our current implementation, we maintain the counts ajregty connected pairs in an array and do not optimize forspac



The above query joins;; with itself to compute the set of attribute value pairsdgfstrongly connected
to each other with respect té,.” SinceY:;; fits in main memory the self-join and hence the computation
of Efz is very fast. We will observe in the next section that, at aage of our algorithm, we only require
Efz for a particular pair of attributesi; and A;. Therefore, we computE{i, (j # 1), for each(i, j) pair
whenever it is required.

Consider the example shown in Figure 7. (We use the notatipn to denote the inter-attribute sum-
mary between attribute¥” andY'.) The inter-attribute summari@s,g, X 5c, and> 4¢ correspond to the
edges of the similarity graph oA, B, C shown in the figure. The intra-attribute summarie§ ,, %% 5,
»5., are shown in Table 8.

4.2 Clustering Phase

In this section, we describe the two-step clustering ph&<eACTUS that uses the attribute summaries to
compute candidate clusters in the data. In the first step,nabyze each attribute to compute all cluster-
projections on it. In the second step, we synthesize, in @-&ise manner, candidate clusters on sets of
attributes from the cluster-projections on individuatiatites. That is, we determine candidate clusters on
a pair of attributes, then extend the pair to a set of thre@ates, and so on. We now describe each step in
detail.

4.2.1 Computing Cluster-Projections on Attributes

Let A4,..., A, be the set of attributes with domaify, . .., D,, respectively. The central idea for comput-
ing all cluster-projections on an attribute isthat a clué€g, . . ., C,,) over the set of attributegA, ..., A, }
induces a sub-cluster over any attribute pais, A;), i # j. In addition, the cluster-projectio@’; on A4;

of the clusterC is the intersection of a set of cluster-projections 4nof 2-clusters over attribute pairs
(A;, Aj), j # i. For example, the cluster-projectidi;, b, } on the attributeB in Figure 7 is the inter-
section of{by, by, b3} (the cluster-projection o of the 2-cluster({b,, bs, b3}, {c1,co})) and{by, bs} (the
cluster-projection orB of the 2-cluster({ay, as, a3, a4}, {b1,b2})). We formalize the idea in the following
lemma.

Lemmad4.l LetC = (C,...,C,) be acluster on the set of attributgd, ..., A, }. Then, the following
properties are true.

(1) Foralli # j,i,j5 € {1,...,n}, (C;, C;) is a sub-cluster over the pair of attributes;, A;).

(2) There exists a se{Cij X and(Cf, Cj) is a 2-cluster ove(A;, A;)} such thatC; = m#icf.

Lemma 4.1 motivates the following two-step approach. Infifs pairwise cluster-projectiorstep, we
cluster each attributel; with respect to every other attributé;, j # < to find all cluster-projections od;
of 2-clusters ove(A;, A;). In the secondhtersectionstep, we compute all the cluster-projections Anof
clusters ovef A4, ..., A, } by intersecting sets of cluster-projections fr@aclusters computed in the first

"For an exposition of join processing, see any standarddektbn database systems, e.g., [Ram97].

10



T F S
v

A % 83

Figure 9: Extendind aq, as} w.r.t. B

step. However, the problem of computing cluster-projeddiof2-clusters in the pairwise cluster-projection
step is at least as hard as the NP-compdtitue problem [GJ79F The following lemma formalizes the
computational complexity. The proof is given in Appendix A.

Lemma 4.2 Let A; and A; be two attributes. Le@f be the similarity graph onl; with respect ta4;. The
problem of computing all cluster-projections @i of 2-clusters ovefA;, A;) is NP-complete.

To reduce the computational complexity of the clustergtpn problem, we exploit the following
property which, we believe, is usually exhibited by clustierthe categorical domain. If a cluster-projection
C; on A; of one (or more) cluster(s) is larger than a fixed positiveget, called thelistinguishing number
(denotedk), then it consists of a small identifying setvhich we call thedistinguishing set of attribute
values such that they will ndbgetherbe contained in any other cluster-projection 4n Thus, the dis-
tinguishing set distinguishe§’; from other cluster-projections oAd;. Note that a proper subset of the
distinguishing set may still belong to another clusterjgrtion, and that two distinct clusters may share an
identical cluster-projection (as in Figure 1).

We believe that the distinguishing subset assumption haldémost all cases. Even for the most re-
strictive version, which occurs when the distinguishingniner is1 and all cluster-projections of the set of
clusters are distinct, the assumption only requires theth eluster consist of a set of attribute valuesne
on each attribute that does not belong to any other cluster. For the examplégiar& 7, the set$a;} or
{asy} identify the cluster-projectiofa;, as } on the attributed. We now formally state the assumption.

Distinguishing Subset Assumption: Let C; and C! each of size greater thanbe two distinct cluster-
projections on the attributd;. Then there exist two sef$; andS! such that

We call x thedistinguishing number

A cliquein 97 is a set of vertices that are connected to each other by edffeson-zero weights. Given a gragh= (V, £)
and a constan{, the clique problem determinesdfconsists of a clique of size at leakt

11



Pairwise Cluster-Projections

The procedure for computing cluster-projections nof 2-clusters over the attribute pajri;, A;) con-
sists of two steps. In the first step, we find all possible wniigtishing sets (of size less than or equal to
k) on A;. In the second step, we extend with respectdtosome of these distinguishing sets to com-
pute cluster-projections oH;. In this section, we sometimes write “cluster-projection 4;” instead of a
“cluster-projection om4; of a2-cluster over(A;, A;).

Distinguishing Set Computation: In the first step, we rely on the following two properties todfiall
possible distinguishing sets ofy. (1) A distinguishing set is a clique in the similarity gra@fm (2) Any
subset of a clique is also a cliquegnotonicity properfy These two properties allow a level-wise clique
generation similar to the candidate generation in apridkl5+96]. That is, we first compute all cliques of
size2, which are then used to compute cliques of Sizand so on until all cliques of size less than or equal
to x are computed.

Let C}. denote the set of all cliques of size less than or equial We give an inductive description of the
procedure to generate the $&t. The base cas€y; whenk = 2 consists of all pairs of strongly connected
attribute values iD;. These pairs can easily be found frdrﬁ. The setCy, ;1 is computed from the sét;,

(k > 2) by “joining” C}, with itself. The join is the subset joirused in the candidate generation step of the
apriori algorithm for frequent itemset computation [AMS6]. We also remove all the candidates(if, ;
that contain a propét-subset not irC';, (a la subset pruning in apriori).

Extension Operation: In the second step, we “extend” with respect4p some of the candidate distin-
guishing sets computed in the first step to compute clustgegqtions onA4;. The intuition behind the
extension operation is illustrated in Figure 9. Suppose watvio extend{a;, a2} on A with respect to
B. We compute the sdb;, b, } of attribute values o3 strongly connected witha,, a2 }. We then extend
{a1, a9} with the set of all other value§us, a4} on A that is strongly connected witfb, b }.

Informally, the extension of a distinguishing setC D; adds toS all attribute values irD; that are
strongly connected with the set of all attribute valueshinthat S is strongly connected with. We now
introduce some terminology to formally describe the extamsperation.

Definition 4.1 Let A; and A; be two attributes with domain®; andD;. Let DS/ be a set of candidate
distinguishing sets, with respect tb;, on attributeA,. Let CS{ be the set of cluster-projections of) of
2-clusters over(A;, A;). Thesibling setSj- of S; € DS{ with respect to the attributel; is defined as
follows:

Si={a; € D;: foralla; € S, 0*(a;, a;) > 0}
|Sf\ is called thesibling strengthwith respect ta4; of the distinguishing ses;.
Thesubset flagpf S; € DS{ with respect a collection of set§ is said to beset(to 1) if there exists a set
S € C, such thatS; C S. Otherwise, the subset flag 8f is not set.
The participation countof S; € DS{ with respect td’, is the sum of the sibling strengths with respect to
A, of all supersets of; in C,.

12



Informally, the subset flag and the participation count eéhe following two purposes. First, a cluster-
projection may consist of more than one distinguishing r$@${ . Therefore, if we extend each setﬂhS‘{
a particular cluster-projection may be generated sevemad, once for each distinguishing set it contains.
To avoid the repeated generation of the same cluster-pimjgcve associate with each distinguishing set
a subset flag. The subset flag indicates whether the dissimiggi set is a subset of an existing cluster-
projection inCSZ. Therefore, if the subset flag is set then the distinguiskeigneed not be extended. For
the example shown in Figure 7, the distinguishing dets} and{a2} on A can both be extended to the
cluster-projection{a;, a2 }. Second, the distinguishing subset assumption appliggocluster-projections
of size greater tham. Therefore, a clique of size less than or equaktmay be a cluster-projection on
its own even though it may be a subset of some other clustgegiiton. To recognize such small cluster-
projections, we associate a participation count with eastinguishing set. If the participation count of a
distinguishing set with respect ibS‘g is equal to its sibling strength then it cannot be a clustejgation on
its own. Otherwise, it may be a small cluster-projection.

Algorithm 4.1 Extend(DS?, %)
/* Output: CS? */
begin
[* Initialization */
CS] = ¢
Reset the subset flags and the participation counts of dilhgisshing sets irDS{ to zero

foreachS; € DS’
if the subset flag of; is not set then
Extends; to C7
Set the subset flags and increment by the sibling strength thie participation counts of
all subsets ot”’ in DS?.
end /*if*/
end /*for*/
Identify and add small cluster-projections (of siex) to CS?
end

The pseudocode for the computationaﬂ{ is shown in Figure 4.1. Below, we describe each step in
detail.

Initialization: The first three steps initialize the procedure: we(?séi = ¢, and all distinguishing sets in
DS{ have their subset flags and their participation counts tesasro.

Extending S;: Let S; be the sibling set af; with respect tod;. LetC? be the sibling set af? with respect
to 4;. Then, we extend; to the cluster-projectio’s. Add C5 to CS.

13



Prune subsets ofC: Suppose” was extended frons;. Then, by definition, subsets 6f° cannot be the
distinguishing sets of other cluster projections4n Therefore, we set (td) all subset flags of subsets of
C# (including S;) in DS{ . The participation count of each of these subsets is alseased bySf |—the
sibling strength ofS;.

Identifying small cluster-projections: While extending distinguishing sets, we only choose seteseh
subset flags are not set. We check if each unextended diwstimigg setS; whose subset flag is set can be a
small (of size less thar) cluster-projection. If the participation count 68f equals its sibling strength, then
S; cannot be a cluster-projection on its own. Otherwisgmay be a cluster-projection. Therefore, we add
S;toCS?.

Note that the computation of cluster-projectionsAyrequires only the inter-attribute summaty; and

the intra-attribute summany?,. SinceX;; andE{i fitinto main memory, the computation is very fast.

(1)

Intersection of Cluster-projections

Informally, the intersection step computes the set of elugtojections om; of clusters ovef A, ..., A,}
by successively joining sets of cluster-projectionsAnof 2-clusters over attribute pairsd;, A;), j # i.
For describing the procedure, we require the following dedin.

Definition 4.2 LetS; andS; be two collections of sets of attribute values_én We define théntersection
join §; M S; betweensS; andS, as follows:

S§1 NS, = {s : there exists; € §; ands, € Sy such thats = s; N sy and|s| > 1}

Let CS{ be the set of cluster-projections ofy with respect toA;, j # i. Letj; = 1if i > 1, else
j1 = 2. Starting withS = CS{I, the intersection step executes the following operatioraliok # i.

S=S8mcsk

L | )
The resulting sef is the set of cluster-projections oty of clusters ovef Ay, ..., A,}. Besides being
a main-memory operation, the number of cluster-projestionA; with respect to any other attributé; is

usually small; therefore, the intersection step is quigt.fa

Further optimizations are possible over the basic stratkgcribed above for computing cluster pro-
jections. For instance, we can combine the computaticrmﬁfand that ofCS§ because, for each cluster-
projection inCS?, we compute its sibling set which is a cluster-projectiom?B‘_l'j. The second optimization
improves the computation of cluster-projections. Instedomputing cluster-projections on the attribute
A; with respect to every other attribute it may, in practice,sbhéficient to do so with respect to a few at-
tributes. However, we do not consider such optimizatiorcabee the clustering phase takes a small fraction
(less thanl0%) of the time taken by the summarization phase. (Our experisn@ Section 6 confirm this
observation.)

14



4.2.2 Level-wise Synthesis of Clusters

In this section, we describe the synthesis of candidateerkisrom the cluster-projections on individual
attributes (computed as described in Section 4.2). Theaaledea is that a cluster on a set of attributes
induces a sub-cluster on any subset of the attributesn6tonicity propery The monotonicity property
follows directly from the definition of a cluster. We also éoip the fact that we want to compute clusters
over the set of all attribute§A,,..., A, }. Informally, we start with cluster-projections o, and then
extend them to clusters ovéd,, A,), then to clusters ovdrA,, A,, A3), and so on.

Let C; be the set of cluster-projections on the attributg i = 1,...,n. LetC* denote the set of
candidate clusters defined over the set of attributes. .., A,. Therefore,C' = C;. We successively
generateC**! from C* until C" is generated o€**! is empty for some: + 1 < n. The generation of

C*+1 from C* proceeds as follows. Sét*+! = ¢. For each element’ = (¢;,...,¢;) € C*, we attempt
to augment” with a cluster projection,, ; on the attributed, ;. If forall i € {1,...,k}, (ci,cry1) is

a sub-cluster orfA;, Ay, 1)—which can be checked by looking up;(.1)—we augment* to generate
= e, ..., cpqr) and addF+! to CFFL,

For the example in Figure 7, the computation of the set of ickate clusters proceeds as follows. We
start with the sefa, a2} on A. We then find the candidaecluster{({ai, a2}, {b1,b2})} over the attribute
pair (A, B), and then the candidagecluster{({a1, a2}, {b1,b2}, {c1,c2})} over{A, B,C}.

4.3 Validation

We now describe a procedure to compute the set of actuakctusom the set of candidate clusters. Some
of the candidate clusters may not have enough support besaase of the-clusters that combine to form

a candidate cluster may be due to different sets of tuplesedagnize such false candidates, we check if
the support of each candidate cluster is greater than thereglthreshold. Only clusters whose support on
D passes the threshold requirement are retained.

After setting the supports of all candidate clusters to zere start scanning the dataget For each
tuplet € D, we increment the support of the candidate cluster to whibklongs. (Because the set of
clusters correspond to disjoint interval regiohgan belong to at most one cluster.) At the end of the scan,
we delete all candidate clusters whose support in the dataseless than the required thresholditimes
the expected support of the cluster under the attributegaddence assumption.

By construction CACTUS discovers all clusters that satisfy our cluster definitiang hence the follow-
ing theorem follows.

Theorem 4.1 Given that the distinguishing subset assumption h@d€§;TUS finds all and only those clus-
ters that satisfy Definition 3.3.

15



5 Extensions to Large Attribute Value Domains

In this section, we exten@ACTUS to handle unusually large attribute value domdin&intil now, we
assumed that the domains of categorical attributes aretlathhe inter-attribute summary of any pair of
attributes and the intra-attribute summary of any attelfits in main memory. Even though we argued with
compelling examples (UCI Machine Learning repository)t timeost real datasets satisfy this assumption,
for the sake of completeness, we modify the summarizatias@lfCACTUS to handle arbitrarily large
domain sizes.

Recall that we are only interested in strongly connectedspzli attribute value pairs in the summary
information. For large domain sizes, the number of stroragipnected (with respect to another attribute
A;) attribute value pairs of an attributé; relative to the the number of all possible attribute valugspia
very small. We exploit this observation to collapse digjagirts of attribute values into a single attribute
value thus creating a new transformed domain with a reduoethdh size. The intuition is that if a pair of
attribute values in the original domain are strongly coteecthen the corresponding pair of transformed
attribute values are also strongly connected providediieshold for strong connectivity between attribute
values involving the tranformed domain is the same as thasioig the original domain.

Let A; be an attribute with an unusually large domdm. Without loss of generality, leD; be the
set{l,...,|D;|}. Let M < |D;| be the maximum number of attribute values per attribute so tie
inter-attribute summaries and the intra-attribute suni@sanvolving any attribute fit in main memory. Let
c= [%1. We constructD; of size M from D; by mapping for a giverr € {0,..., M — 1}, the set of
attribute valueqz - ¢+ 1,...,z - ¢ + ¢} to the valuer + 1. Formally,

D)= {£(1),.... F(Di)), where (i) = [ 1] +1

We set the threshold for the strong connectivity involvitigilbute values inD; to the exact same value
if D; was being used. We then compute the inter-attribute sunesamolving A; using the transformed
domainD; instead ofD;. For each attribute value; € D; that participates in a strongly connected pair
(aj,a;) (aj € Dy, j # i), we expandz; to the set of all attribute valuei; - ¢+ 1,...,a; - ¢+ ¢} C D;
that map intoa; and form the pairga; - ¢ + 1,a;),....(a} - ¢ + ¢,a;). We then scan the datasbt to
count the supports of all these pairs, and select the siyauginected pairs among them; they constitute the
inter-attribute summary.;;.

The number of new pairs whose supports are to be countedsishas or equal te - |X;;| where|%;;|
represents the number of strongly connected paiB;irx D;. If this set of pairs is still larger than main
memory, we can repeat the above transformation trick. Heweve believe that such a repeated application
will rarely be necessary.

“Due to space constraints, we describe the extension to firstees in subspaces in Appendix B.

16



6 Performance Evaluation

In this section, we show the results of a detailed evaluatibthe speed and scalability GFACTUS on
synthetic and real datasets and we examined whether thierdwiscovered where intuitive and sensible.
We also compared the performance@XCTUS with the performance 08Tl RR.!? Our results show that
CACTUS is very fast and scalable; it outperforr831 RR by a factor betweefl and10.

6.1 Synthetic Datasets

We first used synthetic datasets for our experiments. Theltgasets were generated using the data gen-
erator developed by Gibson et al. [GKR98] to evalugié RR. (See Section 3.2 for a description of the
data generator.) We set the number of tuples moillion, the number of attributes tt0 and the number of
attribute values for each attribute 160. In all datasets, the cluster-projections on each atgilere[0, 9]
and|[10, 19] (as shown in Figure 1). Unless otherwise mentioned, we setdlue ofa at 3, and the value
of the distinguishing numbet to 2. For STI RR, we fixed the number of iterations to h8 as suggested
by Gibson et al. [GKR98].

As discussed in Section 3.2ACTUSdiscovers a broader class of clusters ti&dih RR, and our experi-
ments confirmed this.

Figure 10 shows the scalability @ACTUS and STI RR while increasing the number of tuples from
1 to 5 million. In Figure 11, the number of attributes is increadesin 4 to 50. For the results shown in
Figure 12, the number of attribute values is increased 0o 1000 while fixing the number of attributes at
4. While varying the number of attribute values, we assumatthtil 500 attribute values, the inter-attribute
summaries would fit into main memory; for a larger number ¢fitaite values we took the multi-layered
approach described in Section 5. In all caggsCTUS is 3 to 10 faster tharSTI RR, despite scanning the
dataset two times for constructing the inter-attribute swaries in some cases.

Time vs. #tuples Time vs. #Attributes Time vs. #Attribute Values

250
CACTUS —— CACTUS —— CACTUS ——

2000 STIRR 5000 STIRR STIRR

"

200
4000

,_.
@
=}
3

1500 T

seconds)
seconds)

3000

1000

2000 100

Time (in seconds)

Time (in
Time (in

@
<}
3

7 1000 T 50
0 / 0= 0

1 5 0 10 20 30 40 50 0 200 400 600 800 1000
#Attributes #Attribute values

Figure 10: Time vs. #Tuples Figure 11: Time vs. #Attributes iguFe 12: Time vs. #Attr-values

2 3 4
#tuples (in Millions)

OWe intend to compar€ACTUS andROCK after our ongoing implementation &0CK is complete.

17



First Author First Author (contd.) Second Author Second Author (contd.
Katz, Stonebraker, Wong Ceri, Navathe Katz, Wong Ceri, Navathe

DeWitt, Hsiao Abiteboul, Grumbach DeWitt, David Vianu, Grumbach
DeWitt, Ghandeharizadeh Korth, Levy DeWitt, Ghandeharizadeh | Silbershatz, Levy
Kanellakis, Beeri, Vardi Agrawal, Gehani Abiteboul, Beeri Jagadish, Gehani
Ramakrishnan, Beeri Chen, Hua, Su Beeri, Srivastava Su, Chen, Chu
Bancilhon, Kifer Chen, Hua, Lam Ramakrishnan, Kim Su, Lee

Afrati, Cosmadakis Collmeyer, King, Shemel] Papadimitriou, Cosmadakis Collmeyer, Shemer
Alonso, Barbara, GarciaMolina Copeland, Lipovski, Su || GarciaMolina, Barbara Su, Lipovski, Copeland
Devor, ElImasri Cornell, Dan, lyer, Yu Devor, EIMasri, Weeldreyef Yu, Dias

Barsolou, Keller, Wiederhold | Chang, Gupta Keller, Wiederhold Lee, Cheng

Barsalou, Keller, Shalom Fischer, Griffeth, Lynch | Keller, Wiederhold Griffeth, Fischer

Table 1:2-clusters on the pair of first author and second author ateib

ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Retb
ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMBTR, SICOMP, TCS, TR
PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCTC®MP, STOC

Table 2: Cluster-projections on Conference w.r.t. thetFArghor

6.2 Real Datasets

In this section, we discuss an application@CTUS to a combination of two sets of bibliographic entries.
The results from the application show tH2ACTUS finds intuitively meaningful clusters from the dataset
thus supporting our definition of a cluster.

The first set consists af766 bibliographic entries for articles related to databaseaesh [Wie] and
the second set consists 1919 bibliographic entries for articles related to Theoreti€amputer Science
and related areas [Sei]. For each article, we use the fallgour attributes: the first author, the second
author, the conference or the journal of publication, arelybar. If an article is singly-authored then the
author’'s name is repeated as the second author as well. Zég i the first author, the second author, the
conference, and the year attribute domains for the dataledested, the theory-related, and the combined
sets are{3418,3529,1631,44}, {8043,8190, 690,42}, and {10212,10527,2315,52} respectively. Note
that for these domains, some of the inter-attribute sunesand the intra-attribute summariesspecially
those involving the first author and the second author dimess-do not fit in main memory. However, we
choose this particular dataset because it is easier to jilnggealidity of the resulting clusters (than for some
other publicly available datasets, e.g., MdSHROOMdataset from the UCI Machine Learning repository).
We combine the two sets together to checlkCACTUS is able to identify the differences and the overlap

18



between the two communities.

We now discuss an important implication of the unusuallgéadomains of some of the categorical
attributes and the relatively small number of tuples in thasaset. Because of the large domain sizes, the
expected support under the attribute-independence assumnfpr any pair of attribute values from two
different attributes is almostera the maximum i9).32 for the (conference, year) pair. Therefore, for a
tuplet = (a1, a9, c,y) in the dataset, the paifg, as), (a1, ¢), (a1,y), (as,c), (a2, y), (¢,y) are all strongly
connected. This property has two implications. First, ttierg-connectedness relation between attribute
values is an equivalence relation. Second, the clustgegirons on any attribute are determined by #he
clusters involving at least one of the first author and thes@author attributes. Therefore, we first present
the cluster-projections di-clusters over the (first author, second author) attribwie. prhen, we present
cluster-projections on the conference and the year atésbwith respect to the first author attribute.

Table 6.1 shows some of ti2eclusters on the first author and the second author attripaire We only
present the database-related cluster-projections tgtitite thatCACTUS identifies the differences between
the two communities. We verified the validity of each clugissjection by querying on th®atabase
Systems and Logic Programmibgbliography at the web site maintained by Michael Ley [Legimilar
cluster-projections identifying groups of theory-rethtesearchers as well as groups that contribute to both
fields also exist. We show some cluster-projections coaredimg to the latter two types in Appendix C.

Table 2 shows some of the cluster-projections on the conéerattribute computed with respect to
the first author attribute. The first row consists exclugivef a group of database-related conferences,
the second consists exclusively of theory-related conf@e, and the third a mixture of both reflecting a
considerable overlap between the two communities.

7 Conclusions and Future Work

In this paper, we formalized the definition of a cluster whiea dlata consists of categorical attributes, and
then introduced a fast summarization-based algori@&€TUS for discovering such clusters in categorical
data. We then evaluated our algorithm against both syctheti real datasets.

In future, we intend to exten@ACTUS in the following three directions. First, we intend to relax
the cluster definition by allowing sets of attribute values each attribute which are “almost” strongly
connected to each other. That is, each attribute valueasgir connected to a large percentage, %@,
of the attribute values in the sets on other attributes. Sdamotivated by the observation that inter-attribute
summaries can be incrementally maintained under additiohdeletion of tuples, we intend to derive an
incremental clustering algorithm fro@ACTUS. Third, we intend to “rank” the clusters based on a measure
of interestingness, say, some function of the support ofistet.

Acknowledgements:We thank Prabhakar Raghavan for sending us the bibliogragsta.

19



References

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Guihag) and Prabhakar Raghavan. Automatic subspace
clustering of high dimensional data for data mining Plrmceedings of the ACM SIGMOD Conference on
Management of Datel 998.

[AMST96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srik&tannu Toivonen, and A. Inkeri Verkamo. Fast
Discovery of Association Rules. In Usama M. Fayyad, Gredqiatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editofsjvances in Knowledge Discovery and Data Miniolgapter 12, pages
307-328. AAAI/MIT Press, 1996.

[BD76] Peter J. Bickel and Kjell A. DoksunMathematical Statistics: Basic Ideas and Selected Toicsntice
Hall, 1976.

[CBM98] E. Keogh C. Blake and C.J. Merz. UCI repository of miae learning databases, 1998.
[Cou95] Transaction Processing Performance Council, Mb1 http://www.tpc.org.

[DER86] I.S. Duff, A.M. Erisman, and J.K. Reidirect Methods for Sparse Matrice©xford University Press,
1986.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intrditgjab— A guide to the theory of NP-
completenesstreeman; Bell Lab, Murray Hill NJ1979.

[GKR98] David Gibson, Jon Kleinberg, and Prabhakar RaghaGustering categorical data: An approach based
on dynamical systems. IRroceedings of the 24th International Conference on Vemgédatabases
pages 311-323, New York City, New York, August 24-27 1998.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok ShimkR&gobust clustering algorithm for categorical
attributes. InProceedings of the IEEE International Conference on Datgif@ering Sydney, March
1999.

[Ley] Michael Ley. Computer science bibliography. httamw.informatik.uni-trier.de/ ley/db/index.html.
[Ram97] Raghu RamakrishnaDatabase Management SysterlkcGraw Hill, 1997.

[Sei] J. Seiferas. A large bibliography on theory/foundat of computer science.
http://linwww.ira.uka.de/bibliography/Theory/Seifes.

[Wie] G. Wiederhold. Bibliography on database systems.
http://linwww.ira.uka.de/bibliography/Database/\tfezhold.

20



A Proofs

Proof for Lemma 4.1

Proof: Property (1) follows trivially from the definition of a clust We now prove Property (2). From
Property (1), we observe thét; C ﬁ#iqj. Suppose the equality does not hold in the above relatipnshi
ie.,C; C m#ic-g'. LetC; = ﬁ#iqj. From the definition of a cluster, we observe thatan be augmented
with at least one attribute value @ — C;. Therefore ' is a sub-cluster but not a cluster. 0

Proof for Lemma 4.2

Proof: The proof follows from the construction of an instance of ghester-projection problem from an
instance of the clique problem. Lét = (V,£) be a graph. Create two attributels and A; each with
domainV’. For each edge = (vi,v2) € £, we makev; on A; andv, on A; strongly connected, and

on A; andv; on A; strongly connected. This construction yields a similagtaph onA; and A; which
satisfies the following condition. If" is a clique inG thenC is a cluster-projection od; with respect ta4 ;,
and vice-versa. Therefore, any algorithm for computingtetprojections also solves the clique problem.
Hence, the cluster-projection problem is NP-complete. O

B Clusters in Subspaces

We extend theCACTUS algorithm to find clusters in subspaces. Recall that a swesplaister is a cluster
on a subses of the set of all attribute$A,, ..., A, }. TheCACTUS algorithm does not discover clusters in
subspaces for the following two reasons. First, a subsplastecC' does not span the set of all attributes.
Second, the orded, ..., A, in which cluster-projections on individual attributes ammbined may not be
the right order to find”. For instance, ifC' spans the subspace defined by a set of attributies As, A4}
(whenn > 4) then the level-wise synthesis described in Section 4.212et find C.

The central idea behind the extensiorGHCTUS to find subspace clusters is that they satisfy the mono-
tonicity property. That is, a cluster in a subsp@@duces a cluster on any subset®fThe monotonicity
property motivates the apriori-style level-wise syntkexicandidate clusters from the cluster-projections on
individual attributes. However, we skip the intersectidicloster-projections on an attributg; with respect
to every other attributed; for the following two reasons. First, a cluster in subsp&cmay not induce a
2-cluster on a pair of attributes not i, and hence the intersection of cluster-projections on @iate in
S with respect to every other attribute returns an empty setco8d, the intersection may cause the loss
of maximality (condition (2) in Definition 3.3) of a subspadester. For instance, a cluster-projection on
A; with respect toA; corresponds to a-cluster over(A;, A;) which, by definition, is a subspace clus-
ter; truncating such a cluster-projection in the intersecstep will no longer yield a maximal cluster on
(Ai, 4;).

Let C; be the set of cluster-projections on the attribdte i = 1,. .., n with respect to every attribute
A # A Let C* denote the set of candidate clusters defined on any setattfibutes (not necessarily
{Aq, ..., Ax}). C! = U™ ,C;. UsingC', we generat€?, and so on. We first describe the computatiol of

21



because it is different from that 6F, (k > 2).

For each possible pajfr;, ¢;) (c; € C;, ¢j € C;), we check if(c;, ¢;) is a sub-cluster on the attribute pair
(A;, A;) by confirming, using;;, that all attribute value pairs iy x c; are strongly connected. (t;, ¢;)
is a sub-cluster, then it is inserted in the seR-aflustersC?.

We computeC®*! from C*, k > 2, by “joining” C* with itself. The join is a prefix join similar to the
apriori candidate generation [AM®6]. We successively generaté*! from C* until C¥*! is empty for
somek + 1 < n orC” is generated. For each newly generated candidate, we chathilt its subsets are
also candidate clusters; candidates that do not pass thtk @re pruned out. (We omit the details of the
prefix join and subset pruning, and refer the reader to thgirai paper [AMS 96].)

For a cluster: € C* in a subspace consisting bfattributes, the above procedure examigles- (k + 1)
candidates. Depending on the valuekofsay, larger thari5), the number of candidate clusters can be
prohibitively high. The problem of examining a large humipércandidate clusters has been addressed
by Agrawal et al. [AGGR98]. They use thminimum description lengthrinciple to prune the number of
candidate clusters. Their techniques are directly aplpliécan our scenario as well. Therefore, we do not
address this problem; instead, we refer the reader to tiggnatipaper [AGGR98].

C Results from the Bibliographic Data

First Author Second Author
Abiteboul, Kolaitis Vardi, Papadimitriou
Papadimitriou, Vazirani Yannakakis, Vazirani

Sudarshan, GopalakrishnarRamakrishnan, Rangan
Edelsbrunner, Chazelle Welzl, Preparata, Sharir, Guibas
Allender, Book Wilson, Watanabe

Table 3:2-clusters on the pair of first author and second author ateib

22



