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ABSTRACT

Data on individuals and entities are being collected widely.
These data can contain information that explicitly identi-
fies the individual (e.g., social security number). Data can
also contain other kinds of personal information (e.g., date
of birth, zip code, gender) that are potentially identifying
when linked with other available data sets. Data are often
shared for business or legal reasons. This paper addresses
the important issue of preserving the anonymity of the in-
dividuals or entities during the data dissemination process.
We explore preserving the anonymity by the use of general-
izations and suppressions on the potentially identifying por-
tions of the data. We extend earlier works in this area along
various dimensions. First, satisfying privacy constraints is
considered in conjunction with the usage for the data be-
ing disseminated. This allows us to optimize the process
of preserving privacy for the specified usage. In particular,
we investigate the privacy transformation in the context of
data mining applications like building classification and re-
gression models. Second, our work improves on previous
approaches by allowing more flexible generalizations for the
data. Lastly, this is combined with a more thorough ex-
ploration of the solution space using the genetic algorithm
framework. These extensions allow us to transform the data
so that they are more useful for their intended purpose while
satisfying the privacy constraints.

General Terms

Privacy, data transformation, generalization, suppression,
predictive modeling.

1. INTRODUCTION

Unprecedented amounts of data are being collected on in-
dividuals and entities. This is being fueled by progress in
various technologies like storage, networking and automa-
tion in various business processes. Of particular interest
are data containing structured information on individuals
(referred to as micro-data in [11, 10, 14]). Such data are
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collected and used by various government agencies (e.g.,
U.S. Census Bureau and Department of Motor Vehicles) and
by many commercial industries (e.g., insurance companies,
health organizations, retailers). More and more data are
also disseminated and shared within the organization col-
lecting it and with other organizations. The dissemination
could be to satisfy some legal requirements or as part of
some business process. An important issue that has to be
addressed is the protection of the privacy of individuals or
entities referred to in the released micro-data [19, 20, 6].

An obvious step to protect the privacy of the individuals
(or entities) is to replace any explicitly identifying informa-
tion by some randomized placeholder. For example, a ran-
domized token could replace the uniquely identifying social
security number of a person in U.S.A. However, it has been
pointed out that this is not sufficient since the released data
contains other information which when linked with other
data sets can identify or narrow down the individuals or
entities [10, 15, 17, 14]. An example in [14] illustrates the
identification by linking a medical data set and a voter list
using fields like zip code, date of birth and gender.

In addition to the identity disclosure problem discussed
above, attribute disclosure occurs when something about
an individual is learnt from the released data [12]. At-
tribute disclosure can happen even without identity disclo-
sure. Also, attribute disclosure in the broad sense can in-
clude inferential disclosure in which some characteristic of
the individual can be inferred more accurately because of
the data release [6]. Attributes whose disclosure needs to
be protected in the strictest sense are denoted to be sensi-
tive (e.g., physical or mental health of an individual) [19].
One approach to handling sensitive attributes is to exclude
them from public use data sets [19]. This paper focuses on
identity disclosure but related issues on inferential attribute
disclosure will be be discussed where appropriate.

One approach to solving the identity disclosure problem
is to perturb the data using techniques like adding noise
and swapping values while ensuring that some statistical
properties of the entire table are maintained [11]. The re-
identification risk in data masked by such perturbation tech-
niques is evaluated using a probabilistic formulation. Addi-
tion of noise and selective data swapping are used in [11] to
generate masked data with small disclosure risk while pre-
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and the re-identification risk using such perturbative meth-
ods is being actively researched [4, 21]. Data masked using
only additive noise was used to generate classification mod-



els which were evaluated using a synthetic benchmark in [1].
For predictive modeling applications, further work is needed
to quantify and evaluate the tradeoffs between model accu-
racy and the probabilistic disclosure risk on real data sets.

An alternative approach to solving this problem is to trans-
form the data by using generalizations and suppressions [15,
17, 14]. An example of a transformation by generalization
is to replace the exact date of birth by only the year of
birth. The loss of specificity makes the identification pro-
cess harder. Too much generalization could make the trans-
formed data useless. For example, generalizing the date of
birth to century containing it has little value when consid-
ering, say, current insurers. Suppression could be viewed as
the ultimate generalization since no information is released.
As before, the data transformation challenge is to find the
right tradeoff between the amount of privacy and loss of in-
formation content due to generalizations and suppressions
[10, 15, 17, 14].

This paper uses the approach of transforming the data
using generalizations and suppression to satisfy the privacy
constraints. We extend earlier works in this area along mul-
tiple dimensions. First, we consider the tradeoff between
privacy and information loss in the context of the usage for
which the transformed data is being generated. Examples of
usage like building predictive models are used to illustrate
how the usage targeting leads to better solutions. Next,
we allow more flexible generalizations of the data that ex-
pand the space of possible data transformations potentially
leading to better solutions. Lastly, we cast this search for
the right tradeoff between privacy and information loss as
a large-scale optimization problem and aggressively pursue
its solution using a genetic algorithm framework.

2. BACKGROUND

In this section we will cover the high level formulation
of the data transformation problem. We will use terminol-
ogy from the earlier work by Samarati [14] where appro-
priate. Conceptually, the data to be transformed will be
viewed as a table. The rows of this table represent individ-
uals (entities) being described and the columns represent
attributes of these individuals (entities). There are three
types of columns based on their ability to identify individ-
uals (entities). Some columns contain explicitly identify-
ing information (e.g., social security number) which needs
to be handled by replacement with an unlinkable token or
by suppression. Some columns contain potentially identify-
ing information that could be linked with other tables for
the purposes of re-identification of the individuals. The set
of these potentially identifying columns (or attributes) has
been called a quasi-identifier in earlier works [14]. The re-
maining columns do not contain any identifying information.

The privacy level to be guaranteed will be specified by the
notion of k-anonymity [14]. Intuitively, a transformed table
satisfies k-anonymity if every combination of values occur-
ring in the potentially identifying columns (quasi-identifier)
cannot be matched to fewer than k rows. Specifying higher
values for k results in stricter privacy requirements by mak-
ing re-identification by linking harder.

The k-anonymity requirement is met by generalizing or
suppressing values in the potentially identifying columns of
the table. The most general form of this would allow individ-
ual entries (also called cells) in the table to be generalized or
suppressed as needed. However, this approach would com-

plicate the interpretation of the table in applications like
data mining, because values in a single column of the trans-
formed table could then have complex relationships. We will
use a simpler transformation that generalizes all the entries
in a potentially identifying column uniformly. This reduces
the solution space to be considered and also fits well with
current applications (e.g., predictive modeling tools). This
simplification is also used by many earlier works [10, 17,
14]. Similarly, suppressions will be performed by masking
out the contents of all the potentially identifying columns
in each suppressed row as suggested earlier [17, 14]. A more
general notion that allows specific entries (cells) to be sup-
pressed has also been proposed [10].

We extend the earlier works [10, 15, 17, 14] by allowing
more flexible generalizations as described next. The form of
the allowed generalization depends on the type of data in
a potentially identifying column. First, consider a column
with categorical information (e.g., zip code, gender, race,
marital status). Generalizations (coarsening) for such a col-
umn are typically described by a taxonomy tree. Consider
an example of a taxonomy tree in Figure 1. The column
corresponding to this tree contains information on an indi-
vidual’s type of work. The leaf nodes depict all the possible
types of work: self-employed (incorporated), self-employed
(not incorporated), federal government, state government,
local government, private company, without pay and never
worked. These can be grouped as shown in Figure 1 at the
next level into self-employed, government, and unemployed.
A valid generalization A in our work is represented by a set
of nodes S4 in the taxonomy tree that satisfy the property
that the path from every leaf node Y to the root encounters
exactly one node P in S4. The value represented by the leaf
node Y is generalized in A to the value represented by the
node P. This definition of a valid generalization is broader
than earlier notions that required that all the generalized
values had to be at the same level of the taxonomy tree.
For example, {self-employed, federal government, state gov-
ernment, local government, private company, unemployed }
represents a valid generalization using the taxonomy tree in
Figure 1.

Next, consider a column with numeric information (e.g.,
age or education in years). Generalization for a numeric
column is done by discretization of its values into a set of
disjoint intervals. Each interval could be represented by a
symbolic value that denotes the interval and is interpreted
accordingly. Alternatively a numeric value could be chosen
as a representative value for each interval (e.g., median value
of entries in the original table that lie within the interval).
The choice of representation for the discretized value de-
pends on the application for which the transformed table is
being generated. Allowed discretizations can be constrained
by specifying the possible end points for the intervals. The
choice of possible end points determines the granularity of
the intervals explored during discretization. For example,
if the number of unique numeric values in a column is rea-
sonably small, an end point can be chosen between each
pair of neighboring values. Alternatively, end points can be
determined by applying a process like scalar quantization
on the value space for this column. For example, the set
of intervals {[0,20),[20,40),[40,60),[60,80),[80,00)} is a valid
discretization for a column containing the age (in years) of
an individual.

Having defined the privacy goal (in terms of k-anonymity)
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Figure 1: Taxonomy tree for a column containing information on type of work

and the valid generalizations we can now consider the task
of transforming the table. Transforming the table using gen-
eralizations and suppressions results in loss of information
content. We define metrics to quantify the loss of content
as it pertains to the anticipated uses of the transformed ta-
ble. Transformation of the table can then be formulated as
optimization of the metric while satisfying the k-anonymity
constraint. This is illustrated using various usage exam-
ples including the generation of predictive models common
in data mining tasks. The following section defines these
usage based metrics.

3. USAGE BASED METRICS

In this section, specific uses for the transformed table
are considered and the corresponding loss metrics defined.
These metrics will be used in the optimization formulation
in Section 4. Experimental results in Section 5 illustrate the
value of usage based metrics.

3.1 Multiple Uses

The most general case is when the data is being dissem-
inated for multiple uses. We also include in this case the
situation when the usage is unknown at the time of dissemi-
nation. For this case we define a metric which captures some
general notion of information loss as was done in the earlier
works [15, 17, 14]. Our metric differs from the earlier ones
because it has to handle the more flexible generalizations
allowed in our work.

Information in all the potentially identifying columns will
be assumed to be equally important in this case. So the to-
tal information loss due to generalizations and suppressions
(represented by a general loss metric LM) will be computed
by summing up a normalized information loss for each of
these columns. We will define the loss computation for each
type of column next. This information loss for a column
will be computed as the average loss for each entry in the
column.

Consider a potentially identifying column containing cate-
gorical information that is generalized based on a taxonomy
tree T (e.g., Figure 1). Consider an entry in this column

(e.g., State Government) where the generalized value in the
transformed table corresponds to node P (e.g., Government)
in the taxonomy tree T. One approach is to quantify the
loss when a leaf node value cannot be disambiguated from
another value due to the generalization. For example, gener-
alizing the value State Government to the value Government
implies that it cannot be disambiguated from the values Fed
Government and Local Government. The associated loss can
be modeled as shown in Figure 2. In our experiments, we
simplify the model by assuming the same generalization loss
for ambiguity between any two distinct categorical values.
Let the total number of leaf nodes in T be denoted by M.
Let the number of leaf nodes in the subtree rooted at node P
be Mp. Using this simplified model and normalizing using
the worst case situation when the generalized node is the
root of the taxonomy tree leads to (Mp —1)/(M —1) as the
loss for this entry. For the earlier example, the normalized
loss is 2/7 when the value State Government is generalized
to Government. The loss for a suppressed entry is the same
as the loss when the generalized value corresponds to the
root of the tree.

Next, consider a potentially identifying column contain-
ing numeric information. As before we can use a notion of
ambiguity in defining the information loss for a numeric en-
try. Consider a entry which is generalized to an interval ¢
defined by the lower and upper end points L; and U;, re-
spectively. Let the lower and upper bounds in the table for
values in this column be L and U, respectively. The normal-
ized loss for this entry is given by (U; — L;)/(U — L). For
example, consider the attribute education with the mapping
to numeric values given in Figure 3. Generalizing the value
Doctorate to the interval {[Doctorate, Masters|} has a nor-
malized loss given by 2/15. A suppressed row can be viewed
as being maximally generalized to an interval with the col-
umn bounds as its end points. The loss for the column is
computed by averaging the loss for each of its entries.

3.2 Predictive Modeling Use

One possible use for the transformed table is to build pre-
dictive models for some attribute. For example, a manu-
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Figure 2: Loss due to generalization of categorical
attribute value

1. Doctorate 9. 12th

2. Professional school 10. 11th

3. Masters 11. 10th

4. Bachelors 12. 9th

5. Associate (vocational) 13. 7th-8th
6. Associate (academic) 14. 5th-6th
7. Some college 15. 1st-4th
8. High School grad 16. Preschool

Figure 3: Mapping to numeric values for the at-
tribute education

facturer might be interested in modeling the customers who
are interested in a specific category of products. The cus-
tomer profile and transaction data that are collected by a
retailer could be used to build such models. A key ques-
tion is whether we can build these models accurately while
satisfying constraints on identity disclosure. The model’s
accuracy is dependent on the information loss due to gen-
eralizations and suppressions. We will define metrics that
measure the loss of the purity in the target variables (for
predictive modeling) due to aggregation caused by the gen-
eralizations. This is a conservative approach since it does
not try to tailor the metric to any specific predictive mod-
eling method.

First, we will consider building a classification model where
the class label information is in one of the columns of the
table. The columns allowed as inputs to the classification
model are specified and can include potentially identifying
columns.

Generalizing or suppressing the content in potentially iden-
tifying columns weakens the discrimination of classes using
these columns. The k-anonymity constraint forces multiple
rows (at least k) in the table to have the same combination
of generalized values for the potentially identifying columns.
All rows with a unique combination of generalized values
will be said to belong to the same group. For each row r, let
G(r) denote the group to which it belongs. Rows in a group
G with different class labels cannot be discriminated using
the potentially identifying columns. Therefore, for accurate
classification, it is preferable if all the rows in G have the
same class label. For now we will ignore the fact that in-
formation in the non-identifying columns might be able to

discriminate the rows in G with different labels. This will be
discussed in Section 6. Therefore, the metric for this usage
will penalize impure groups that contain rows with different
labels.

The classification metric CM is defined in Equation 1 as
the sum of the individual penalties for each row in the table
normalized by the total number of rows N.

CM =

Zall Tows penalty(row T)
- M)

A row r is penalized if it is suppressed or if its class label
class(r) is not the majority class label majority(G) of its
group G (see Equation 2).

1 if r is suppressed
penalty(row r) = ¢ 1 if class(r) # majority(G(r)) (2)
0 otherwise

This is illustrated using an example that has two poten-
tially identifying attributes (X,Y) with numeric values (in
the range 0 to 10) in Figure 4. The two classes in this ex-
ample are marked by the symbols % and O. The solid lines
indicate a solution where {[0,7.5],(7.5,10]} is the general-
ization for attribute X, and {[0,3.5],(3.5,10]} is the gener-
alization for attribute Y. Consider this solution when the
k-anonymity constraint specified has & = 5. None of the
rows have to be suppressed. The row with X =9, Y =9
contributes a penalty of 1 because its class label * is not the
majority label O in its group (group defined by Xe(7.5,10]
and Ye(3.5,10]). The CM metric has value 0.15 for this
case, since 3 out of the 20 points do not have the majority
class in their groups.
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Figure 4: Example with numeric attributes X and
Y

The classification metric can be extended to incorporate
a cost matrix that indicates the cost of misclassifying a data
point with class C1 as having class C2. This is done by
modifying the penalty function to reflect the cost of mis-
classifying a row r from its original class to the majority
class of its group. The suppressed rows can also be treated
as a separate group in this case.

Next, consider using the transformed table to build a re-
gression model for a dependent variable V' that is one of the



columns of the table. The columns that are allowed as in-
puts to this model are specified and can include potentially
identifying columns.

Using the earlier notion of a group based on unique com-
bination of values for potentially identifying columns, the
modeling of the dependent variable is impacted by the vari-
ability (purity) of its value within the groups. The purity
of each group can be quantified by any measure of disper-
sion. In particular, a classical measure like variance or a
robust measure like absolute deviation from the median are
good candidates. The regression metric is normalized by the
dispersion when all the rows are in a single group.

If there are multiple target variables for predictive mod-
eling, their normalized metrics can be combined using a
weighted sum based on a user-defined weighting for each
target.

4. SOLVING THE OPTIMIZATION PROB-
LEM

The metrics defined in the earlier section can be used to
measure the loss due to generalizations and suppressions as
it pertains to the specified usage of the transformed table.
The problem to be solved is to minimize the loss as indi-
cated by the chosen metric while satisfying the specified
k-anonymity constraint. The more flexible generalizations
allowed in our formulation lead to a larger space of possible
solutions that must be considered while solving this opti-
mization problem. This factor, along with the variety in
the metrics to be optimized, motivated the use of a general
framework for optimization. The genetic algorithm frame-
work was chosen because of its flexible formulation and its
ability to find good solutions given adequate computational
resources [8, 7]. Clearly, this randomized approach does not
guarantee finding a globally optimal solution.

Genetic algorithms are iterative optimization procedures
that mimic the natural process of evolution. These algo-
rithms work on a set of solutions to a problem (called popu-
lation). Each solution in the population is represented by a
string (called chromosome). In each iteration new solutions
are generated from the population in an attempt to obtain
better solutions. The notion of a better solution is based
on some problem specific metric. Two of the key operations
in the iterative process are crossover (combine portions of
two solutions to produce two other solutions) and mutation
(incrementally modify a solution).

The specific form of the genetic algorithm used in our
application is based on the GENITOR work [18]. Exten-
sions to this work that were necessary for our application
will be described later. A solution in our application has
two parts: the generalizations chosen for the potentially
identifying columns and the rows that are suppressed. The
chromosome in the genetic algorithm (GA) framework is a
bit string that represents the chosen generalizations. The
metric computation to determine the goodness of a solution
computes the suppressions that are needed if the solution’s
generalizations are applied to the table.

The chromosome bit string is composed by concatenating
the bit strings corresponding to each potentially identify-
ing column. Consider a potentially identifying column with
numeric values. The number of bits in the bit string corre-
sponding to a numeric column depends on the granularity
at which the generalization intervals are defined. The first

step is to define the values that could be used as end points
for the generalization intervals. For a column with a small
number of possible values a potential end point could be
added in between each pair of successive values. For nu-
meric columns with too many values potential end points
could be chosen by some discretization procedure (e.g., [5,
9]). The bit string for a numeric column is made up of one
bit for each potential end point in value order. A value of 1
for a bit implies that the corresponding value is used as an
interval end point in the generalization.

Consider a categorical column with D distinct values which
are generalized using the taxonomy tree 7. The number of
bits needed for this column in the chromosome is D — 1
which are assigned as described next. The distinct column
values, which are represented by the leaf nodes of the tree T',
are arranged in the order resulting from an in-order traver-
sal of T. The leaf nodes from left to right as shown in
Figure 1 conform to an in-order traversal of that taxonomy
tree. The chromosome bits are assigned to the positions be-
tween successive values (leaf nodes) in this order. This is
pictorially depicted in Figure 5. There are 7 chromosome
bits (b1 through b7) allocated for this column. For example,
bit b3 corresponds to the position between the leaf node val-
ues, federal government and state government. A value of 1
for this bit position implies that these two values are sepa-
rated in the corresponding generalization. However, unlike
the case of numeric columns, only some combination of val-
ues for the bit string correspond to valid generalizations for
the categorical column. Recall that the nodes representing
a valid generalization must satisfy the property that each
leaf node encounters exactly one generalization node on the
path to the tree root. Considering our example, if bit b3
is 1, then this implies that bits b2, b4, b5, and b6 are also
1. The genetic algorithm [18] has to be extended to ensure
that the chromosomes in the population represent valid gen-
eralizations for the categorical columns. This is done by an
additional step that modifies newly generated chromosomes
that are invalid into valid ones while retaining as much as
possible of the original characteristics.

The genetic algorithm used [18] requires choosing some
parameters like the size of the population, the probability
of mutating a bit in the chromosome and the number of it-
erations to be run. These parameters are typically chosen
based on some experimentation. Varying the number of it-
erations is an easy way of controlling the tradeoff between
the quality of the solution and computational cost of the
algorithm. The population should be large enough to have
adequate variety in it for the evolutionary process. Typical
choices for these parameters are illustrated using an example
in the next section.

5. EXPERIMENTS

We have adapted a publicly available classification bench-
mark for the experiments. The adult benchmark in the UCI
repository [2] is based on census data and has been used
widely in classification experiments. For our experiments we
retain only eight of the original attributes that are all consid-
ered to be potentially identifying. These are age, work class,
education, marital status, occupation, race, gender and na-
tive country. The binary attribute salary class (salary above
or below 50,000) is also retained. Records with missing val-
ues are discarded because of limitations in our prototype
system. This leaves 30162 records in the training set consti-
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Figure 5: Taxonomy tree from Figure 1 with the chromosome bits

tuting the original table for these experiments.

Two of the attributes, age (in whole years) and education,
are treated as numeric quantities. The mapping to numeric
values for the attribute education is given in Figure 3. Since
the number of distinct values is relatively small for these
two numeric attributes, we include a potential interval end
point between each pair of successive values. The other six
attributes are treated as categorical attributes with a tax-
onomy tree defining the allowed generalizations for each of
them. The taxonomy tree for the work class attribute was
introduced earlier in Figure 1. Trees for the other categori-
cal attributes are not shown due to space constraints. The
allowed generalizations lead to a chromosome of length 157
bits.

Our genetic algorithm was applied to the training set de-
scribed above. All runs used a chromosome population size
of 5000 and ran 0.5 million iterations of the genetic algo-
rithm. The probability of mutating any bit of the chromo-
some in an iteration was set at 0.002. In experiment 1, the
usage for the transformed table was building a classification
model for the salary class column. The k-anonymity pri-
vacy constraint was varied by having k take the values 10,
25, 50, 75, 100, 150, 200, 250 and 500. The optimized classi-
fication metric CM achieved for these values of k is plotted
as the solid line in Figure 6. It is interesting to note that
there is little degradation in the CM metric as the privacy
requirement ranges from k = 10 to & = 500. Also, low
values for the CM metric (around 0.18) suggest that the al-
gorithm is able to find good transformations in the context
of this usage criterion. For example, the solution for k = 250
generalizes away all the information in the attributes work
class, occupation, race, gender and native country (i.e., val-
ues in these columns are generalized to the root of the cor-
responding taxonomy trees). The other attributes are gen-
eralized as follows: age by {[0,39],(39,00)}, education by
{[Doctorate, Bachelors],[Associate (vocational), Some col-
lege], [High school grad, Preschool]}, and marital status by
{Married, Was married, Never married}. Note that the gen-

eralization for the numeric attribute education is represented
using intervals based on the mapping given earlier in Fig-
ure 3.

The general loss metric LM was also computed for each
solution in this experiment and is plotted as the dashed line
in Figure 6. The non-monotonic behavior is easily explained
by the fact that the algorithm did not try to optimize the
LM metric in this experiment. However, it is interesting to
note the very poor values (around 0.8) for the LM metric of
these solutions. This illustrates that solutions targeted at
one usage need not be suitable for some other purpose.

In experiment 2, the generalized loss metric LM was op-
timized for various levels of the privacy constraint. The LM
metric achieved is shown by the dashed line in Figure 7.
In contrast to the poor LM values achieved in experiment
1, the LM values now range from 0.21 to 0.49 as k ranges
from 10 to 500. There is a clear tradeoff between the level
of privacy (indicated by k) and the loss of information as
measured by LM. For example, consider the numeric at-
tribute education. At the privacy level of k = 25, the chosen
generalization for this attribute is {[Doctorate, Professional
school],[Masters, High School grad], [12th, 1st-4th]}. Values
not included were suppressed (e.g., Preschool). At the more
restrictive privacy level of k& = 250, this attribute is gen-
eralized much further using just the interval {[Professional
school, 7th-8th]}. Again, values not included in the gener-
alization above were suppressed.

The classification metric CM was also computed for the
solutions in experiment 2 and is shown as the solid line in
Figure 7. The values for CM display non-monotonic behav-
ior and fall in the range from 0.3 to 0.4. Clearly, these values
are poorer than those achieved in experiment 1 when CM
itself was optimized.

The transformed data sets produced in these two exper-
iments can also be compared by using them to generate
classification models for the binary attribute salary. Tree
models are generated using the C4.5 [13] classifier using the
transformed data sets from experiments 1 and 2. The results
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are presented in Figure 8. The classifier error reported is the
estimate based on 10-fold cross validation. The classification
errors for the anonymized data produced by optimizing the
CM metric (experiment 1) are in a relatively tight range
from 17.3% to 18.5%. This should be compared with the
corresponding error of 17.1% for the original data (without
any transformations for anonymity). The classification er-
rors are significantly higher for the data sets produced by
optimizing the LM metric and reach the maximum possi-
ble value at higher values of k. Specifically, for k values
of 200 and above the classifiers generated using data from
experiment 2 misclassify all the minority class records.
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Figure 8: Tree classifier errors using transformed
data(using 10-fold cross validation)

Our experiments illustrate the value of using metrics tai-
lored to the purpose for which the data is disseminated.
These results can also be viewed as indicating the diffi-
culty in producing truly multi-purpose data sets satisfying
k-anonymity requirements. This issue needs to be investi-
gated using the other approach to anonymization, namely,
by adding noise and swapping [11]. Such a comparative anal-
ysis would be useful to determine the preferred approach for
generating multi-purpose anonymized data sets.

The genetic algorithm framework is able to handle the
larger solution space that results from the more flexible gen-
eralizations considered. Figure 9 shows the performance of
the genetic algorithm by plotting the CM metric of the best
solution for k£ = 100 (solid line) against the number of itera-
tions run. As expected, the improvement in the best solution
is rapid at the beginning and gradual later. In contrast, the
number of unique solutions (dashed line) continues to in-
crease after 500K iterations. This implies that the solution
space continues to be explored but the locally optimal solu-
tion found is not improved. Similarly, Figure 10 shows the
performance when the general loss metric LM is optimized
for k£ = 100.

All the experiments discussed so far correspond to the
situation where some existing data has to be transformed
to preserve privacy constraints. The adult training set was



used as the representative data in these experiments. It is
possible that after the initial data transformation and dis-
semination, data on new individuals or entities (i.e., new
rows in the table) become available for another release. It
is interesting to investigate the effectiveness of applying to
the new table the data generalizations chosen by the analy-
sis of the original table. This would allow the transformed
tables to be concatenated for analysis with a single set of
generalizations for the columns. We used the test set of the
same adult benchmark as the representative second table to
be released. The smaller test set had 15060 records (after
discarding records with missing values) and the same set of
attributes used in all the earlier experiments. The genetic
algorithm was applied to the test set to optimize both LM
and CM metrics for various levels of the privacy constraint.
These optimized metric values are compared with the cor-
responding values achieved by reusing the data generaliza-
tions gotten from the training set. Figures 11 and 12 present
the comparisons for the CM and LM metrics, respectively.
The solid lines in these figure indicate when the metrics are
equal and provide a reference for comparison. As expected,
the metric values achieved by using the earlier generaliza-
tions are worse than the optimized values. The more pro-
nounced degradation in the CM metric was primarily due
to increased suppressions when earlier generalizations were
reused. This type of analysis is useful in determining if the
degradation in metric is offset by the benefits of having the
same generalizations across multiple tables.

For most applications we do not see any real time require-
ments for the task of transforming the data to satisfy pri-
vacy. A computationally intensive approach like the genetic
algorithm framework was chosen because the quality of the
solution is far more important than the time taken to gen-
erate it. Our prototype system took 18 hours to transform
the training set with 30K records using 500K iterations on
an IBM Model 6868 Intellistation (1 GHz Pentium III pro-
cessor, 1GB memory). Very large data sets can be handled
by running the algorithm on a random sample of the records
and then applying the generated generalizations to the whole
data set. However, as illustrated in Figures 11 and 12, this
will cause some degradation in the quality of the solution
generated.

6. DISCUSSION

The earlier section demonstrated the viability of our ap-
proach using an example with eight potentially identifying
attributes. In general, the size of the solution space de-
pends on the number of such attributes and the granularity
at which they need to be considered. Determining which
attributes should be considered as potentially identifying
is based on an assessment of possible links to other avail-
able data. This needs to be done with typical databases in
each domain (e.g., retail). Clearly, as the number of poten-
tially identifying attributes grows, identity disclosure risk in-
creases. The corresponding increase in the number of unique
combinations of potentially identifying values will have an
impact on the k-anonymity approach. Also, the complex-
ity of the optimization problem increases due to the the
larger solution space to be searched. Further experiments
are needed to investigate the applicability of this approach
to wider data sets.

In each domain, in addition to the identifying attributes
one needs to determine the sensitive attributes. It has been

suggested that sensitive attributes be removed completely
from data sets being publicly released [19]. Further work
is needed to determine adequate ways of handling these at-
tributes if they are included. Clearly, they cannot be targets
of predictive modeling using our methods since that will re-
sult in their inferential disclosure. This is because the op-
timization we perform for predictive modeling would group
together rows with similar values for the target attribute.
This optimization improves the model accuracy while satis-
fying the identity disclosure constraint, but it also increases
the inferential attribute disclosure for the sensitive attribute
being targeted. While this is an explicit issue with the k-
anonymity approach to anonymization, further investigation
is needed on issues related to the inferential disclosure of
sensitive attributes even for other approaches (e.g., additive
noise and swapping).

In many cases only a sample of the data is released. The
privacy protection due to sampling has been considered in
various works (e.g., [6, 16, 3]). Applying the k-anonymity
approach to the release of a sample opens up some new
issues. One approach could be to require that the released
sample satisfy the k-anonymity requirement. The choice of
k would have to be made taking into account the sampling
effect. Alternatively, the k-anonymity requirement could be
first applied to the entire population before a sample of the
transformed table is released. The sizes of the groups in the
released sample will depend on the form of sampling used
(e.g., random, stratified). Further work is needed to explore
the k-anonymity approach in the context of sampling.

For predictive modeling usage the metrics defined in Sec-
tion 3 consider predictability using only the potentially iden-
tifying attributes. This was done independent of the pre-
dictive capabilities of the other non-identifying attributes.
Considering both identifying and non-identifying attributes
during the data transformation process could lead to better
solutions. Finding an effective way of doing this with po-
tentially large numbers of non-identifying attributes needs
further exploration.

7. CONCLUSION

We have addressed the important problem of transforming
data so that the dual goals of usefulness and privacy can be
satisfied. The data transformation was done by generalizing
or suppressing potentially identifying content in the data.
Usage based metrics were defined to quantify the loss of in-
formation due to the transformations tailored to the data
usage. Usages considered included classification and regres-
sion modeling, frequently employed in data mining applica-
tions. The data transformation problem was then solved by
using the genetic algorithm framework to optimize the ap-
propriate metric. Experimental results were presented using
a benchmark based on census data. These results demon-
strated the viability of our approach and also the benefits
of the usage based metrics. We also discuss the limitations
of our approach and several open problems in this area.
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