
Beyond Streams and Graphs: Dynamic Tensor Analysis

Jimeng Sun† Dacheng Tao‡ Christos Faloutsos †

† Computer Science Department, Carnegie Mellon University, Pittsburgh,USA
‡ School of Computer Science and Information Systems, Birkbeck College, University of London,UK

{jimeng,christos}@cs.cmu.edu, dacheng@dcs.bbk.ac.uk

ABSTRACT
How do we find patterns in author-keyword associations,
evolving over time? Or in DataCubes, with product-branch-
customer sales information? Matrix decompositions, like
principal component analysis (PCA) and variants, are in-
valuable tools for mining, dimensionality reduction, feature
selection, rule identification in numerous settings like stream-
ing data, text, graphs, social networks and many more.
However, they have only two orders, like author and key-
word, in the above example.

We propose to envision such higher order data as tensors,
and tap the vast literature on the topic. However, these
methods do not necessarily scale up, let alone operate on
semi-infinite streams. Thus, we introduce the dynamic ten-
sor analysis (DTA) method, and its variants. DTA provides
a compact summary for high-order and high-dimensional
data, and it also reveals the hidden correlations. Algorith-
mically, we designed DTA very carefully so that it is (a)
scalable, (b) space efficient (it does not need to store the
past) and (c) fully automatic with no need for user defined
parameters. Moreover, we propose STA, a streaming tensor
analysis method, which provides a fast, streaming approxi-
mation to DTA.

We implemented all our methods, and applied them in
two real settings, namely, anomaly detection and multi-way
latent semantic indexing. We used two real, large datasets,
one on network flow data (100GB over 1 month) and one
from DBLP (200MB over 25 years). Our experiments show
that our methods are fast, accurate and that they find in-
teresting patterns and outliers on the real datasets.

1. INTRODUCTION
Given a keyword-author-timestamp-conference bibliogra-

phy, how can we find patterns and latent concepts? Given
Internet traffic data (who sends packets to whom, on what
port, and when), how can we find anomalies, patterns and
summaries? Anomalies could be, e.g., port-scanners, pat-
terns could be of the form “workstations are down on week-
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ends, while servers spike at Fridays for backups”. Sum-
maries like the one above are useful to give us an idea what
is the past (which is probably the norm), so that we can
spot deviations from it in the future.

Matrices and matrix operations like SVD/PCA have played
a vital role in finding patterns when the dataset is “2-dimensional”,
and can thus be represented as a matrix. Important appli-
cations of this view point include numerous settings like:

1) information retrieval, where the data can be turned
into a document-term matrix, and then apply LSI [9, 24];
2) market basket analysis, with customer-products ma-
trices, where we can apply association rules [2] or “Ratio
Rules” [21]; 3) the web, where both rows and columns are
pages, and links correspond to edges between them; then
we can apply HITS [19] or pageRank [3] to find hubs, au-
thorities and influential nodes; all of them are identical or
closely related to eigen analysis or derivatives; 4) social

networks, and in fact, any graph (with un-labelled edges):
people are rows and columns; edges again correspond to non-
zero entries in the adjacency matrix. The network value
of a customer [13] has close ties to the first eigenvector;
graph partitioning [18] is often done through matrix alge-
bra (e.g. spectral clustering [16]); 5) streams and co-

evolving sequences can also be envisioned as matrices:
each data source (sensor) corresponds to a row, and each
time-tick to a column. Then we can do multivariate anal-
ysis or SVD [25],“sketches” and random projections [14] to
find patterns and outliers.
The need for tensors: Powerful as they may be, matrix-
based tools can handle neither of the two problems we stated
in the beginning. The crux is that matrices have only two
“dimensions” (e.g., “customers” and “products”), while we
may often need more, like “authors”, “keywords”, “times-
tamps”, “conferences”. This is exactly what a tensor is, and
of course, a tensor is a generalization of a matrix (and of a
vector, and of a scalar). We propose to envision all such
problems as tensor problems, to use the vast literature of
tensors to our benefit, and to introduce new tensor analysis
tools, tailored for streaming applications. Using tensors, we

OLAP this paper tensor literature

dimensionality order order/mode
dimension mode order/mode
attribute value dimension dimension

Table 1: Terminology correspondence

can attack an even wider range of problems, that matrices
can not even touch. For example, 1) Rich, time-evolving net-
work traffic data, as mentioned earlier: we have tensors of



order M= 3, with modes “source-IP”, “destination-IP” and
“port” over time. 2) Labeled graphs and social networks:
suppose that we have different types of edges in a social net-
work (eg., who-called-whom, who-likes-whom, who-emailed-
whom, who-borrowed-money-from-whom). In that case, we
have a 3rd order tensor, with edge-type being the 3rd mode.
Over time, we have multiple 3rd order tensors, which are
still within the reach of our upcoming tools. 3) Microarray
data, with gene expressions evolving over time [32]. Here we
have genes-proteins over time, and we record the expression
level: a series of 2nd order tensors. 4) All OLAP and Dat-
aCube applications: customer-product-branch sales data is
a 3rd order tensor; and so is patient-diagnoses-drug treat-
ment data.
Motivating example: Let us consider the network mon-
itoring example. Here we have network flows arriving very
fast and continuously through routers, where each flow con-
sists of source IP, destination IP, port number and the num-
ber of packets. How to monitor the dynamic traffic behav-
ior? How to identify anomalies which can signify a potential
intrusion, or worm propagation, or an attack? What are
the correlations across the various sources, destinations and
ports?

Sources

D
e

st
in

a
tio

n
s

P
or

ts

Core TensorD
es

tin
at

io
n 

P
ro

je
ct

io
n

Po
rt 

P
ro

je
ct

io
n

Source 
Projection

DTA/STA

(a) original Tensor (b) DTA result

Figure 1: 3rd order tensor of network flow data

Therefore, from the data model aspect, we propose to
use a more general and expressive model tensor sequences.
For the network flow example, the 3rd order tensor for a
given time period has three modes: source, destination and
port, which can be viewed as a 3D data cube (see Figure 1(a)).
An entry (i, j, k) in that tensor (like the small blue cube in
Figure 1(a)) has the number of packets from the correspond-
ing source (i) to the destination j through port k, during the
given time period. The dynamic aspect comes from the fact
that new tensors are arriving continuously over time.

From the algorithmic aspect, we propose the dynamic
and the streaming tensor analysis (DTA and STA) to sum-
marize the original tensors into smaller “core” tensors and
the “projection matrices” (one for each mode), as shown in
Figure 1(b). The projection matrices can be updated incre-
mentally over time when a new tensor arrives, and contain
valuable information about which, eg., source IP addresses
are correlated with which destination IP addresses and des-
tination ports, over time.

Finally, from the application aspect, we illustrate the
anomaly detection and multi-way LSI through DTA/STA.
For the former, our method found suspicious Internet activ-
ity in a real trace, and it also found the vast majority of
injected anomalies (see Section 6). For the latter, we found
natural groups of authors, keywords and time intervals, in
the DBLP bibliography subset.
Our contributions:

• The introduction of tensors to streaming analysis.

• Two new fast, incremental tools, the dynamic and the
streaming tensor analysis (DTA and STA).

Symbol Description

v a vector (lower-case bold)
v(i) the i-element of vector v
A a matrix (upper-case bold)
AT the transpose of A
Ai|

n
i=1 a sequence of N matrices A1, . . . ,An

A(i, j) the entry (i, j) of A
A(i, :) or A(:, i) i-th row or column of A
A a tensor (calligraphic style)
A(i1, . . . , iM ) the element of X with index (i1, . . . , iM )
M the order of the tensor
Ni the dimensionality of the ith mode (1 ≤ i ≤

M)

Table 2: Description of notation.

• Systematic evaluation on large, real datasets, where
our tools found patterns and anomalies, and provided
large speed-ups over competitors.

The rest of the paper is organized as the following: Section 2
introduces the necessary background. Then Section 3 for-
mally defines the problem and gives an overview of the
methods. Section 4 presents the key methods, dynamic ten-
sor analysis (DTA) and streaming tensor analysis (STA).
Using DTA or STA, Section 5 illustrates two important ap-
plications: anomaly detection and multi-way latent seman-
tics indexing. In Section 6 and Section 7 we extensively
evaluate all the proposed methods using two real datasets.
Section 8 discusses the related work. Finally we conclude in
Section 9.

2. BACKGROUND
Here we briefly give the main concepts and terms from

principal component analysis (PCA), and from tensor alge-
bra, also known as multilinear analysis.

2.1 Principal Component Analysis
PCA, as shown in Figure 2, finds the best linear projec-

tions of a set of high dimensional points to minimize least-
squares cost. More formally, given n points represented as
row vectors xi|

n
i=1 ∈ R

N in an N dimensional space, PCA
computes n points yi|

n
i=1 ∈ R

R (R≪ N) in a lower dimen-
sional space and the projection matrix U ∈ R

N×R such that
the least-squares cost e =

Pn

i=1 ‖xi−yiU
T ‖22 is minimized1.

x1
x2���n

N
y1
y2���n

R

UTR

N

Figure 2: PCA projects the N-D vector xis into R-D

vector yis and U is the projection matrix.
The solution of PCA can be computed efficiently by di-

agonalizing the covariance matrix of xi|
n
i=1. Alternatively,

if the rows are zero mean, then PCA is computed by the
Singular Value Decomposition (SVD): if the SVD of X is
X = Usvd ×Σsvd ×Vsvd

T , then our Y = Usvd ×Σsvd and
U = Vsvd.

1Both x and y are row vectors.



The intuition behind PCA is the following: if X is the
author-keyword matrix of the DBLP dataset, then matrix
Y is roughly the author-topic, and matrix U is the keyword-
topic matrix.

2.2 Multilinear Analysis
As mentioned, a tensor of order M closely resembles a

Data Cube with M dimensions. Formally, we write an
Mth order tensor X ∈ R

N1×···×NM as X[N1,...,NM ], where
Ni (1 ≤ i ≤ M) is the dimensionality of the ith mode (“di-
mension” in OLAP terminology). For brevity, we often omit
the subscript [N1, . . . , NM ].

We will also follow the typical conventions, and denote
matrices with upper case bold letters (e.g., U) row vectors
with lower-case bold letters (e.g., x, scalars with lower-case
normal font (e.g., n), and tensors with calligraphic font (e.g.,
X ). From the tensor literature we need the following defini-
tions:

Definition 1 (Matricizing or Matrix Unfolding).
The mode-d matricizing or matrix unfolding of an M th or-
der tensor X ∈ R

N1×···×NM are vectors in R
Nd obtained by

keeping index d fixed and varying the other indices. There-

fore, the mode-d matricizing X(d) is in R
(

Q

i6=d Ni)×Nd .

The mode-d matricizing X is denoted as unfold(X ,d)= X(d).
Similarly, the inverse operation is denoted as fold(X(d)). In
particular, we have X = fold(unfold(X , d)). Figure 3 shows
an example of mode-1 matricizing of a 3rd order tensor X ∈
R

N1×N2×N3 to the (N2 ×N3)×N1-matrix X(1). Note that
the shaded area of X(1) in Figure 3 the slice of the 3rd mode
along the 2nd dimension.

N3

N1

N2

N1

N2

N3

X(1)

Figure 3: 3rd order tensor X ∈ R
N1×N2×N3 is matri-

cized along mode-1 to a matrix X(1) ∈ R
(N2×N3)×N1 . The

shaded area is the slice of the 3rd mode along the 2nd

dimension.
Definition 2 (Mode Product). The mode product X×d

U of a tensor X ∈ R
N1×···×NM and a matrix U ∈ R

Ni×N′

is the tensor in R
N1×···×Ni−1×N′×Ni+1×···×NM defined by:

(X ×d U) (i1, . . . , id−1, j, id+1, . . . , iM )

=
PNi

id=1 X (i1, . . . , id−1, id, id+1, . . . , iM )U(id, j)
(1)

for all index values.

Figure 4 shows an example of 3rd order tensor X mode-
1 multiplies a matrix U. The process is equivalent to first
matricize X along mode-1, then to do matrix multiplication
of X1 and U, finally to fold the result back as a tensor.

In general, a tensor X ∈ R
N1×···×NM can multiply a se-

quence of matrices Ui|
M
i=1 ∈ R

Ni×Ri as: X ×1 U1 · · · ×M

UM ∈ R
R1×···×RM ,which can be written as X

M
Q

i=1
×i

Ui for

clarity. Furthermore, the notation for X ×1 U1 · · · ×i−1

Ui−1 ×i+1 Ui+1 · · · ×M UM (i.e. multiplication of all Ujs

except the i-th) is simplified as X
Q

j 6=i

×j
Uj .

N3

N1

N2 1
U

N1

R
N3

R

N2

Figure 4: 3rd order tensor X[N1,N2,N3] ×1 U results in a

new tensor in R
R×N2×N3

Definition 3 (Rank-(R1, . . . , RM ) approximation).

Given a tensor X ∈ R
N1×···×NM , a tensor X̃ ∈ R

N1×···×NM

with rank
“

X̃(d)

”

= Rd for 1 ≤ d ≤ M , that minimizes the

least-squares cost
‚

‚

‚
X − X̃

‚

‚

‚

2

F
, is the best rank-(R1, · · · , RM )

approximation of X .2

The best rank approximation X̃ = Y
M
Q

l=1
×l

UT
l , where the

core tensor Y ∈ R
R1×···×RM and the projection matrices

Ul|
M
l=1 ∈ R

Nl×Rl .

3. PROBLEM DEFINITION
In this section, we first formally define the notations of

tensor sequence and tensor stream. Then we overview the
operations on them.

Definition 4 (tensor sequence). A sequence of M th
order tensor X1 . . .Xn, where each Xi ∈ R

N1×···×NM (1 ≤
i ≤ n), is called tensor sequence if n is a fixed natural num-
ber. And n is the cardinality of the tensor sequence.

In fact, we can view an Mth order tensor sequence X1 . . .Xn

as a single (M+1)th order tensor with the dimensionality n
on the additional mode.

Definition 5 (tensor stream). A sequence of M th
order tensor X1 . . .Xn, where each Xi ∈ R

N1×···×NM (1 ≤
i ≤ n), is called a tensor stream if n is an integer that
increases with time.

Intuitively, we can consider a tensor stream is coming in-
crementally over time. And Xn is the latest tensor in the
stream. In network monitoring example, a new 3rd order
tensor (as the one in Figure 1(a)) comes every hour.

After defining the data models, the main operation is to
represent the original tensors in other basis such that un-
derlying patterns are easily revealed.

Definition 6 (Tensor analysis). Given a sequence of
tensors X1 . . .Xn, where each Xi ∈ R

N1×···×NM (1 ≤ i ≤ n),
find the orthogonal matrices Ui ∈ R

Ni×Ri |Mi=1, one for each
mode, such that the reconstruction error e is minimized:

e =
Pn

t=1

‚

‚

‚

‚

Xt − Xt

M
Q

i=1
×i

(UiU
T
i )

‚

‚

‚

‚

2

F

Note that Xt

M
Q

i=1
×i

(UiU
T
i ) is the approximation of Xt under

the space spanned by Ui|
M
i=1. And it can be rewritten as

2The square Frobenius norm is defined as ‖X‖2F =
N1
X

i=1

· · ·

NM
X

i=1

X (i1, ..., iM )2.



Yt

M
Q

i=1
×i

UT
i where Yt is the core tensor defined as Yt =

Xt

M
Q

i=1
×i

Ui.

More specifically, we propose three variants under tensor
analysis: offline tensor analysis (OTA) for a tensor sequence
(see Section 4.1); and dynamic tensor analysis (DTA) and
streaming tensor analysis (STA) for a tensor stream (see
Section 4.2 and Section 4.3).

4. TENSOR ANALYSIS
First, Section 4.1 introduces offline tensor analysis (OTA)

for a tensor sequence. Second, we present the core com-
ponent, dynamic tensor analysis (DTA) (Section 4.2) and
its variants. Third, Section 4.3 introduces streaming tensor
analysis (STA), which approximates DTA to further reduce
the time complexity.

4.1 Offline Tensor Analysis
We now introduce the offline tensor analysis (OTA) which

is a generalization of PCA for higher order tensors3.
Unlike PCA, which requires the input to be vectors (1st-

order tensors), OTA can accept general Mth order tensors
for dimensionality reduction. The formal definition is ex-
actly the same as Definition 6. Figure 5 shows an example
of OTA over n 2nd order tensors.

1N

2N

2N

1N

1U

Original Tensors 

Core Tensors

R1

R2

n

R1

R2

U2
T

i

Figure 5: OTA projects n large 2nd order tensors Xi

into n smaller 2nd order tensors Yi with two projection

matrices U1 and U2 (one for each mode).

Unfortunately, the closed form solution for OTA does not
exist. An alternating projection is used to approach to
the optimal projection matrices Ul|

M
l=1. The iterative al-

gorithm converges in finite number of steps because each
sub-optimization problem is convex. The detailed algorithm
is given in Figure 6. Intuitively, it projects and matricizes
along each mode; and it performs PCA to find the projec-
tion matrix for that mode. This process potentially needs
performing more than one iteration.

In practice, this algorithm converges in a small number
of iterations. In fact, Ding and Ye [7] shows the near-
optimality of a similar algorithm for 2nd order tensors. There-
fore, for time-critical applications, single iteration is usu-
ally sufficient to obtain the near-optimal projection matrices
Ud|

M
d=1. In that case, the algorithm essentially unfolds the

tensor along each mode and applies PCA on those unfolded
matrices separately.

Note that OTA requires all tensors available up front,
which is not possible for dynamic environments (i.e., new
tensors keep coming). Even if we want to apply OTA every
time that a new tensor arrives, it is prohibitively expensive

3Similar ideas have been proposed for 2nd- or 3rd order
tensors [22, 30, 12].

Input:
The tensors Xi|

n
i=1 ∈ R

N1×...×NM

The dimensionality of the output tensors Yi ∈ R
R1×...×RM .

Output:
The projection matrix Ul|

M
l=1 ∈ R

Nl×Rl constrained by
‖Ul‖ = I and the output tensors Yi|

n
i=1 ∈ R

R1×...×RM .
Algorithm:
1. Set Ul to be Nl ×Rl truncated identity matrix.
2. Conduct 3 - 8 iteratively.
3. For d = 1 to M
4. For 1 ≤ i ≤ n

5. construct X d
i = Xi(

Q

l6=d

×l
UlU

T
l ) ∈ R

R1×···×Nd×···×RM

6. unfold(X d
i , d) as Xi(d) ∈ R

Nd×(
Q

k 6=d Rk)

7. construct variance matrix Cd =
Pn

i=1 XT
i(d)Xi(d)

8. compute Ud by diagonalizing Cd

9. Check convergence: Tr(||UT
l Ul| − I|) ≤ ε for 1 ≤ l ≤M .

10.Calculate the core tensor Yi = Xi

M
Q

d=1
×Ud for 1 ≤ i ≤ n

Figure 6: Algorithm: Offline Tensor Analysis

or merely impossible since the computation and space re-
quirement are unbounded. Next we present an algorithm
for the dynamic setting.

4.2 Dynamic Tensor Analysis
Here we present the dynamic tensor analysis (DTA), an

incremental algorithm for tensor dimensionality reduction.
Intuition: The idea of incremental algorithm is to exploit
two facts:

1. In general OTA can be computed relatively quickly
once the variance matrices 4are available;

2. Variance matrices can be incrementally updated with-
out storing any historical tensor.

The algorithm processes each mode of the tensor at a
time. In particular, the variance matrix of the dth mode is
updated as:

Cd ← Cd + X
T
(d)X(d)

where X(d) ∈ R
(
Q

i6=d Ni)×Nd is the mode-d matricizing of
the tensor X . The updated projection matrices can be com-
puted by diagonalization: Cd = UdSdU

T
d , where Ud is an

orthogonal matrix and Sd is a diagonal matrix. The pseudo-
code is listed in Figure 7. The process is also visualized
in Figure 8.
Forgetting factor: Dealing with time dependent models,
we usually do not treat all the timestamps equally. Often
the recent timestamps are more important than the ones far
away from the past 5. More specifically, we introduce a for-
getting factor into the model. In terms of implementation,
the only change to the algorithm in Figure 7:

Cd ← λCd + X
T
(d)X(d)

where λ is the forgetting factor between 0 and 1. Herein
λ = 0 when no historical tensors are considered, while λ = 1

4Recall the variance matrix of X(d) ∈ R
(
Q

i6=d Ni)×Nd is de-

fined as C = XT
(d)X(d) ∈ R

Nd×Nd .
5Unless there is a seasonality in the data, which is not dis-
cussed in the paper.



Input:
New tensor X ∈ R

N1×...×NM

Previous projection matrices Ui|
M
i=1 ∈ R

Ni×Ri

Previous energy matrices Si|
M
i=1 ∈ R

Ri×Ri

Output:

New projection matrices Ui|
M
i=1 ∈ R

Ni×R′
i

New energy matrices Si|
M
i=1 ∈ R

R′
i×R′

i

Core tensor Y ∈ R
R′

1×···×RM

Algorithm:
// update every mode
1. For d = 1 to M

2. Mode-d matricize X as X(d) ∈ R
(
Q

i6=d Ni)×Nd

3. Reconstruct variance matrix Cd ← UdSdU
T
d

4. Update variance matrix Cd ← Cd + XT
(d)X(d)

5. Diagonalization Cd = UdSdU
T
d

6. Compute new rank Rd and truncate Ud and Sd

7. Calculate the core tensor Y = X
M
Q

d=1
×Ud

Figure 7: Algorithm: Dynamic Tensor Analysis

dU

T
dU

=

Reconstruct Variance Matrix

dC

× =

( )dX( )
T
dX

( ) ( )
T
d dX X

M
a
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e
, 

T
ra

n
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o
se

Construct Variance Matrix of  
Incremental Tensor 

dC

Update Variance Matrix

Diagonalize 
Variance Matrix

dS

dU

T
dU

dS

Matricize

Figure 8: New tensor X is matricized along the dth

mode. Then variance matrix Cd is updated by XT
(d)

X(d).

The projection matrix Ud is computed by diagonalizing

Cd.

when historical tensors have the same weights as the new
tensor X . Note that forgetting factor is a well-known trick
in signal processing and adaptive filtering [11].
Update Rank: One thing missing from Figure 7 is how to
update the rank Ri. In general the rank can be different on
each mode or can change over time. The idea is to keep the
smallest rank Ri such that the energy ratio ‖Si‖F

‹

‖X‖2F ,
is above the threshold [15]. In all experiments, we set the
threshold as 0.9 unless mentioned otherwise.
Complexity: The space consumption for incremental algo-
rithm is

QM

i=1 Ni +
PM

i=1 Ni×Ri +
PM

i=1 Ri. The dominant

factor is from the first term O(
QM

i=1 Ni). However, standard

OTA requires O(n
QM

i=1 Ni) for storing all tensors up to time
n, which is unbounded.

The computation cost is
PM

i=1 RiN
2
i +

PM

i=1 Ni

QM

j=1 Nj

+
PM

i=1 R′
iN

2
i . Note that for a medium or low mode tensor

(i.e., order M ≤ 5), the diagonalization is the main cost.
Section 4.3 introduces a faster approximation of DTA that
avoids diagonalization.

While for high order tensors (i.e., order M > 5), the dom-

inant cost becomes O(
PM

i=1 Ni

QM

j=1 Nj) from updating the

variance matrix (line 4). Nevertheless, the improvement of

DTA is still tremendous compared to OTA O(n
QM

i=1 Ni)
where n is the number of all tensors up to current time.

4.3 Streaming Tensor Analysis
In this section, we present the streaming tensor analysis

(STA), a fast algorithm to approximate DTA without diago-
nalization. We first introduce the key component of tracking
a projection matrix. Then a complete algorithm is presented
for STA.
Tracking a projection matrix: For most of time-critical
applications, the diagonalization process (in Figure 7) for
every new tensor can be expensive. Especially, when the
change of the variance matrix is small, it is not worthy di-
agonalizing that matrix. The idea is to continuously track
the changes of projection matrices using the online PCA
technique [25].

The main idea behind the tracking algorithm (see Figure 9)
is to read in a new vector (one row of a tensor matrix) and
perform three steps:

1. Compute the projection y, based on the current pro-
jection matrix U, by projecting x onto U;

2. Estimate the reconstruction error (e) and the energy,
based on the y values; and

3. Update the estimates of U.

Intuitively, the goal is to adaptively update U quickly
based on the new tensor. The larger the error e, the more
U is updated. However, the magnitude of this update should
also take into account the past data currently “captured” by
U. For this reason, the update is inversely proportional to
the current energy s(i).

Input:
projection matrix U ∈ R

n×r

energy vector s ∈ R
n

input vector x ∈ R
n

Output:
updated projection matrix U

updated energy vector s

1. As each point xt+1 arrives, initialize x́ := xt+1.

2. For 1 ≤ i ≤ r

y(i) = U(:, i)T
x́i (projection onto U(:, i))

s(i)← s(i) + y(i)2 (energy ∝ i-th eigenval)

e = x́− y(i)U(:, i) (error, e ⊥ U(:, i))

U(:, i)← U(:, i) +
1

s(i)
y(i)e (update PC estimate)

x́(i + 1)← x́i − y(i)U(:, i) (repeat with remainder).

Figure 9: Tracking a projection matrix

Streaming tensor analysis: The goal of STA is to adjust
projection matrices smoothly as the new tensor comes in.
Note that the tracking process has to be run on all modes
of the new tensor. For a given mode, we first matricize
the tensor X into a matrix X(d) (line 2 of Figure 10), then
adjust the projection matrix Ud by applying tracking a pro-
jection matrix over the rows of X(d). The full algorithm is
in Figure 10. And the process is visualized in Figure 11.

To further reduce the time complexity, we can select only
a subset of the vectors in X(d). For example, we can sam-
ple vectors with high norms, because those potentially give
higher impact to the projection matrix.
Complexity: The space complexity of STA is the same as
DTA, which is only the size of the new tensor. The com-
putational complexity is O((

P

i Ri)
Q

i Ni) which is smaller



than DTA (when Ri ≪ Ni). The STA can be further im-
proved with random sampling technique, i.e., use only subset
of rows of X(d) for update.

Input:
New tensor X ∈ R

N1×...×NM

Old projection matrices Ui|
M
i=1 ∈ R

Ni×Ri

Old energy matrices Si|
M
i=1 ∈ R

Ri×Ri

Output:
New projection matrices Ui|

M
i=1 ∈ R

Ni×Ri

New energy matrices Si|
M
i=1 ∈ R

Ri×Ri

Core tensor Y ∈ R
R1×···×RM

Algorithm:
1. For d = 1 to M // update every mode

2. Matricize new tensor X as X(d) ∈ R
(
Q

i6=d Ni)×Nd

3. For each column vector x in XT
(d)

4. Track a projection matrix(Ud, diag(Si), x)

5. Calculate the core tensor Y = X
M
Q

d=1
×Ud

Figure 10: Algorithm: Streaming Tensor Analysis
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Figure 11: New tensor X is matricized along the dth

mode. For every row of Xd, we update the projection

matrix Ud. And Sd helps determine the update size.

5. APPLICATIONS
After presenting the core technique of tensor analysis, we

now illustrate two practical applications of DTA or STA:
1) Anomaly detection, which tries to identify abnormal be-
havior across different tensors as well as within a tensor; 2)
Multi-way latent semantic indexing (LSI), which finds the
correlated dimensions in the same mode and across differ-
ent modes.

5.1 Anomaly Detection
We envision the abnormal detection as a multi-level screen-

ing process, where we try to find the anomaly from the
broadest level and gradually narrow down to the specifics.
In particular, it can be considered as a three-level process for
tensor stream: 1) given a sequence of tensors, identify the
abnormal ones; 2) on those suspicious tensors, we locate the
abnormal modes; 3) and then find the abnormal dimensions
of the given mode. In the network monitoring example, the
system first tries to determine when the anomaly occurs;
then it tries to find why it occurs by looking at the traffic
patterns from sources, destinations and ports, respectively;
finally, it narrows down the problem on specific hosts or
ports.

For level one (tensor level), we model the abnormality of

a tensor X by its reconstruction error:

ei = ‖Xi − Yi

M
Y

l=1

×l
U

T
l ‖F = ‖Xi − Xi

M
Y

l=1

×l
UlU

T
l ‖

2
F .

For level two (mode level), the reconstruction error of the
lth mode only involves one projection matrix Ul for a given
tensor X :

ed = ‖X − X ×l UlU
T
l ‖

2
F .

For level three (dimension level), the error of dimension d
on the lth mode is just the reconstruction of the tensor slice
of dimension d along the lth mode.

How much error is too much? We answer this question
in the typical way: If the error at time T is enough (say,
2) standard deviations away from the mean error so far, we
declare the tensor XT as abnormal. Formally, the condition
is as follows:

eT+1 ≥ mean
“

ei|
T+1
i=1

”

+ α · std
“

ei|
T+1
i=1

”

.

5.2 Multi-way Latent Semantic Indexing
The goal of the multi-way LSI is to find high correlated di-

mensions within the same mode and across different modes,
and monitor them over time. Consider the DBLP example,
author-keyword over time, Figure 12 shows that initially (in
X1) there is only one group, DB, in which all authors and
keywords are related to databases; later on (in Xn) two
groups appear, namely, databases (DB) and data mining
(DM).
Correlation within a mode: A projection matrix gives
the correlation information among dimensions for a given
mode. More specifically, the dimensions of the lth mode
can be grouped based on their values in the columns of Ul.
The entries with high absolute values in a column of Ul cor-
respond to the important dimensions in the same “concept”.

In the DBLP example shown in Figure 12, UK corre-
sponds to the keyword concepts. First and second columns
are the DB and DM concepts, respectively. The circles of
UA and UK indicate the influential authors and keywords
in DM concept, respectively. Similarly, the stars are for DB
concept. An example of actual keywords and authors is in
Table 3.
Correlations across modes: The interesting aspect of
DTA is that the core tensor Y provides indications on the
correlations of different dimensions across different modes.
More specifically, a large entry in Y means a high correla-
tion between the corresponding columns in all modes. For
example in Figure 12, the large values of Yi (in the shaded
region) activate the corresponding concepts of the tensor
Xi. For simplicity, we described a non-overlapping example,
however, groups may overlap which actually happens often
in real datasets.
Correlations across time: And the core tensor Yis also
capture the temporal evolution of concepts. In particular,
Y1 only activates the DB concept; while Yn activates both
DB and DM concepts.

Note that DTA monitors the projection matrices over
time. In this case, the concept space captured by projec-
tion matrix Uis are also changing over time.

6. EXPERIMENTS
In this Section, we evaluate the proposed methods on real

datasets. Section 6.1 introduces the datasets. Section 6.2



Authors Keywords Year

michael carey,michael stonebraker, h. jagadish,hector garcia-molina queri,parallel,optimization,concurr,objectorient 1995
surajit chaudhuri,mitch cherniack,michael stonebraker,ugur etintemel distribut,systems,view,storag,servic,process,cach 2004

jiawei han,jian pei,philip s. yu,jianyong wang,charu c. aggarwal streams,pattern,support,cluster,index,gener,queri 2004

Table 3: Example clusters: first two lines databases groups, last line data mining group.
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Figure 12: UA and UK capture the DB (stars) and DM

(circles) concepts in authors and keywords, respectively;

initially, only DB is activated in Y1; later on both DB

and DM are in Yn.

studies the computation efficiency of different methods.

6.1 Datasets

name description dimension timestamps

IP2D Network 2D 500-by-500 1200
IP3D Network 3D 500-by-500-by-100 1200
DBLP DBLP data 4584-by-3741 11

Figure 13: Three datasets

The Network Datasets: IP2D, IP3D

The traffic trace consists of TCP flow records collected at
the backbone router of a class-B university network. Each
record in the trace corresponds to a directional TCP flow
between two hosts through a server port with timestamps
indicating when the flow started and finished.

With this traffic trace, we study how the communication
patterns between hosts and ports evolve over time, by read-
ing traffic records from the trace, simulating network flows
arriving in real time. We use a window size of an hour to
construct a source-destination 2nd order tensors and source-
destination-port 3rd order tensor. For each 2nd order ten-
sor, the modes correspond to source and destination IP ad-
dresses, respectively, with the value of each entry (i, j) rep-
resenting the total number of TCP flows (packets) sent from
the i-th source to the j-th destination during an hour. Sim-
ilarly, the modes for each 3rd order tensor corresponds to
the source-IP address, the destination-IP address and the
server port number, respectively.

Because the tensors are very sparse and the traffic flows
are skewed towards a small number of dimensions on each
mode, we select only N1=N2=500 sources and destinations
and N3=100 port numbers with high traffic. Moreover, since
the values are very skewed, we scaled them by taking the
logarithm (and actually, log(x + 1), to account for x = 0),
so that our tensor analysis is not dominated by a few very
large entries. All figures are constructed over a time interval
of 1,200 timestamps(hours).
DBLP Bibliographic Data Set:

Based on DBLP data [1], we generate author-keyword 2nd
order tensors of KDD and VLDB conferences from year 1994
to 2004 (one tensor per year). The entry (a, k) in such a

tensor is the number of papers that author a has published
using keyword k during that year. In total, there are 4,584
authors and 3,741 keywords. Note that the keywords are
generated from the paper title after proper stemming and
stop-word removal.

All the experiments are performed on the same dedicated
server with four 2.4GHz Xeon CPUs and 12GB memory.
For each experiment, we repeat it 10 times, and report the
mean.

6.2 Efficiency Evaluation

Computational cost:

We first compare three different methods, namely, offline
tensor analysis (OTA), dynamic tensor analysis (DTA), stream-
ing tensor analysis (STA), in terms of computation time for
different datasets. Figure 14 shows the CPU time in loga-
rithm as a function of elapse time. Since the new tensors
keep coming, the cost of OTA increases linearly6; while DTA
and STA remains more or less constant. Note that DBLP in
Figure 14(c) shows lightly increasing trend on DTA and STA
because the tensors become denser over time (i.e., the num-
ber of published paper per year are increasing over time),
which affects the computation cost slightly.

We show that STA provides an efficient way to approxi-
mate DTA over time, especially with sampling. More specif-
ically, after matricizing, we sample the vectors with high
norms to update the projection matrices. Figure 15 shows
the CPU time vs. sampling rate, where STA runs much
faster compared to DTA.

Accuracy comparison:

Now we evaluate the approximation accuracy of DTA and
STA compared to OTA.
Performance metric: Intuitively, the goal is to be able to
compare how accurate each tensor decomposition is to the
original tensors. Therefore, reconstruction error provides a
natural way to quantify the accuracy. Recall the reconstruc-
tion error is defined in Definition 6. Error can always be re-
duced when more eigenvectors are included (more columns
in the projection matrices). Therefore, we fix the number of
eigenvectors in the projection matrices for all three meth-
ods such that the reconstruction error for OTA is 20%. And
we use the error ratios between DTA/STA to OTA as the
performance indices.
Evaluation results: Overall the reconstruction error of
DTA and STA are close to the expensive OTA method (see
Figure 16(d)). Note that the cost for doing OTA is very
expensive in both space and time complexity. That is why
only a few timestamps are shown in Figure 16 since after
that point OTA runs out of the memory.

In more details, Figure 16(a)-(c) plot the error ratios over
time for three datasets. There we also plot the one that

6We estimate CPU time by extrapolation because OTA runs
out of the memory after a few timestamps.
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Figure 14: Both DTA and STA use much less time than OTA over time across different datasets
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Figure 15: STA uses much less CPU time than DTA across different datasets

never updates the original projection matrices as a lower-
bound baseline.

DTA performs very close to OTA, which suggests a cheap
incremental methods over the expensive OTA. And an even
cheaper method, STA, usually gives good approximation to
DTA (see Figure 16(a) and (b) for IP2D and IP3D). But
note that STA performs considerably worse in DBLP in
Figure 16(c) because the adaptive subspace tracking tech-
nique as STA cannot keep up to the big changes of DBLP
tensors over consecutive timestamps. Therefore, STA is only
recommended for the fast incoming with significant time-
dependency (i.e., the changes over consecutive timestamps
should not be too big).

7. DATA MINING CASE STUDIES
After we evaluated the efficiency of the proposed methods,

we now present two data mining applications using both our
proposed methods, the dynamic and the streaming tensor
analysis. The two applications are 1) anomaly detection for
network traffic analysis and multi-way LSI on DBLP data.

7.1 Anomaly Detection
Here we focus on the IP3D dataset, that is, source-destination-

port tensors, and we use the algorithm described in Section 5.1
to detect the following three types of anomalies:
Abnormal source hosts: For example, port-scanners that
send traffic to a large number of different hosts in the system.
Abnormal destination hosts: For example, the victim of
a distributed denial of service attack (DDoS), which receives
high volume of traffic from a large number of source hosts.
Abnormal ports: Ports that receive abnormal volume of
traffic, and/or traffic from too many hosts.
Experiment Setup: We randomly pick one tensor from
normal periods with no known attacks. Due to the lack of
detailed anomaly information, we manually inject anomalies
into the selected timestamps using the following method.
For a given mode (i.e., source, destination or port) we ran-

Ratio 20% 40% 60% 80% 100%
Source IP 1 0.99 0.99 0.97 0.95
Destination IP 1 0.99 0.99 0.96 0.94
Port 1 1 0.99 0.98 0.97

Table 4: Network anomaly detection: precision is very

high (the detection false positive rate = 1 − precision).

domly select a dimension and then set 50% of the corre-
sponding slice to 1 simulating an attack in the network.

There are one additional input parameter: forgetting fac-
tor α which is varied from .2 to 1. The result is obtained
using DTA, and STA achieved very similar result so we ig-
nore it for clarity.
Performance Metrics: We use detection precision as our
metric. We sort dimensions based on their reconstruction
error, and extract the smallest number of top ranked hosts
(say k hosts) that we need to select as suspicious hosts, in
order to detect all injected abnormal host (i.e., recall = 100%
with no false negatives). Precision thus equals 1/k, and the
false positive rate equals 1 − precision. We inject only one
abnormal host each time. And we repeat each experiment
100 times and take the mean.
Results: Table 4 shows the precision vs. forgetting fac-
tor for detecting three different anomalies. Although the
precision remains high for both types of anomaly detection,
we achieve a higher precision when forgetting factor is low
meaning it forgets faster. This is because the attacks we in-
jected take place immediately which do not depend on the
past; in this case, fast forgetting is good. For more elaborate
attacks, the forgetting factor may need to be set differently.
Identify real anomaly: For network traffic, normal host
communication patterns in a network should roughly be sim-
ilar to each other over time. A sudden change of approxi-
mation accuracy suggests structural changes of communica-
tion patterns since the same approximation procedure can
no longer keep track of the overall patterns. Figure 17(a)
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Figure 16: Reconstruction error over time
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Figure 17: Network flow over time: we can detect anomalies by monitoring the approximation accuracy

shows relative reconstruction error7 over time using DTA.
The anomaly points are the ones above the red line, which is
the threshold based on 3 standard deviation above the mean
error percentage. The overall accuracy remains high. But
a few unusual error bursts occurs at hour 140 and 160 (cir-
cle in Figure 17(a). We manually investigate into the trace
further, and indeed find the onset of worm-like hierarchical
scanning activities. Figure 17 (b) and (c) show the normal
(green dash circle in (a)) and abnormal (red solid circle in
(a)) communication patterns. The dot in Figure 17 means
there are packet flows between the corresponding source and
destination. The prominent difference between these two is
that there are more scanning sources (more columns with
many dots). We can successfully identify this real anomaly
in the data using reconstruction error from DTA.

7.2 Multi-way LSI
After showing the use of reconstruction error for anomaly

detection, we now illustrate another important application
of DTA/STA, i.e., multi-way LSI. The idea is presented in
Section 5.2. Due to the lack of ground truth, we provide
manual inspection on the clusters. And we now present
some of the observations and examples.
Clustering network data: We perform 3-way LSI on Net-
work 3D data. The cluster is a tuple with three sets for
source, destination and port, respectively. Several interest-
ing clusters are verified by domain experts. For example,
the algorithm successfully groups web server ports into one
cluster while mail server ports into another. And the desti-
nation hosts in those clusters are confirmed to be web server
and mail servers.
Clustering DBLP data: Similarly, we perform 2-way
LSI on DBLP datasets over time. Two example clusters
are listed in Table 3. The algorithm correctly separate the
two groups (data mining, databases) of people and concepts
(2nd and 3rd clusters). And it identifies the focus change

7Relative error is the reconstruction error by the input ten-
sor norm.

over time as well, e.g., 1st and 2nd groups are both about
databases, but the focus has changed from object-oriented
(1995) to stream (2004).

8. RELATED WORK
Tensor and Multilinear Analysis: Tensor algebra and
multilinear analysis have been applied successfully in many
domains [5, 17, 29]. Powerful tools have been proposed, in-
cluding Tucker decomposition [27], parallel factor analysis
[10] or canonical decomposition [4], and bilinear PCA. Ten-
sors have been recently used in machine vision research, for
example by Shashua and Levin [26] for linear image cod-
ing, by Vasilescu and Terzopoulos [28] for face recognition.
Ye [31] presented the generalized low rank approximation
which extends PCA from the vectors (1st-order tensors) into
matrices (2nd order tensors). Ding and Ye [7] proposed an
approximation of [31]. Similar approach is also proposed in
[12]. Xu et al. [30] formally presented the tensor represen-
tation for PCA and applied it for face recognition. Drineas
and Mahoney [8] showed how to approximate the tensor
SVD using biased sampling.

These methods do one or more of the following assump-
tions: the dataset is dense, or static. We are interested in
sparse, streams of tensors, like the IP traffic matrices over
time.
Stream and Graph Mining: Data streams have been ex-
tensively studied in recent years. A recent surveys [23] have
discussed many data streams algorithms. Among them, Pa-
padimitriou et al. [25] proposes an online algorithm that
summarizes the multiple streams incrementally. Our STA
algorithm has a similar flavor but for general tensors instead
of just vectors.

A 2nd order tensor is a matrix and can be seen as a
graph. Analysis and mining of static graphs has attracted
a lot of interest, with many graph partitioning methods, in-
cluding METIS [18], spectral partitioning [16], information-
theoretic methods [6] and several variations. All these works
focus on static graphs (2nd order tensors), while our empha-
sis is on time-evolving sequences of graphs and in general,



sequences of tensors of potentially even higher order.

9. CONCLUSIONS
Numerous mining applications can be handled by matri-

ces, the powerful SVD/PCA, and its variants and exten-
sions. However, they all fall short when we want to study
multiple modes, for example, time-evolving traffic matri-
ces, time-evolving dataCubes, social networks with labeled
edges, to name a few.

Next we show how to solve these higher order problems,
by introducing the concept and vast machinery of tensors.
Our contributions are the following:

We introduce tensors and specifically tensor stream to
solve even more general streaming problems than those in
the past. Our approach is applicable to all time-evolving set-
tings, including as co-evolving time series, data streams and
sensor networks, time-evolving graphs (even labeled ones),
time-evolving social networks.

We propose two new tools, the dynamic and the streaming
tensor analysis (DTA and STA) which incrementally mine
and summarize large tensors, saving space and detecting
patterns. DTA and STA are fast, nimble (since they avoid
storing old tensors), and fully automatic, without requiring
any user-defined parameters.

We provide experiments on two real, large datasets: net-
work flow data and DBLP data. With respect to efficiency,
our DTA and STA methods gives several orders of magni-
tude speed-up over the offline tensor analysis, with a small
loss of accuracy. With respect to effectiveness, we applied
our methods to anomaly detection and “multi-way LSI”; in
both settings our tools found interesting and explainable
patterns.
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