
Interprocedural Analysis for ParallelizationMary W. Hally,Brian R. Murphy, Saman P. Amarasinghe,Shih-Wei Liao, Monica S. LamComputer Systems LaboratoryStanford UniversityStanford, CA 94305 yComputer Science Dept.California Institute of TechnologyPasadena, CA 91125Abstract. This paper presents an extensive empirical evaluation of aninterprocedural parallelizing compiler, developed as part of the StanfordSUIF compiler system. The system incorporates a comprehensive andintegrated collection of analyses, including privatization and reductionrecognition for both array and scalar variables, and symbolic analysis ofarray subscripts. The interprocedural analysis framework is designed toprovide analysis results nearly as precise as full inlining but without itsassociated costs. Experimentation with this system on programs fromstandard benchmark suites demonstrate that an integrated combinationof interprocedural analyses can substantially advance the capability ofautomatic parallelization technology.1 IntroductionSymmetric shared-memory multiprocessors, built out of the latest micropro-cessors, are now a widely available class of powerful machines. As hardwaretechnology advances make pervasive parallel computing a possibility, compil-ers which can extract parallelism from sequential codes become important toolsto simplify parallel programming. Unfortunately, today's commercially availableparallelizing compilers are not e�ective at getting good performance on mul-tiprocessors [3, 19]. These compilers tend to be successful in parallelizing onlyinnermost loops. Parallelizing just inner loops is not adequate for multiproces-sors for two reasons. First, inner loops may not make up a signi�cant portionof the sequential computation, thus limiting the parallel speedup by limitingthe amount of parallelism. Second, synchronizing processors at the end of innerloops leaves little computation occurring in parallel between synchronizationpoints. The cost of frequent synchronization and its associated load imbalancecan potentially overwhelm the bene�ts of parallelization.If compilers are to successfully locate outer, coarse-grain parallel loops, twoimprovements are needed. First, parallelizing compilers must incorporate ad-This research was supported in part by DARPA contracts N00039-91-C-0138 andDABT63-91-K-0003, the NASA HPCC program, an NSF Young Investigator Award,an NSF CISE postdoctoral fellowship, a fellowship from Intel Corporation, and a fel-lowship from AT&T Bell Laboratories.

vanced array analyses, generalizing techniques currently only applied to sca-lar variables. For example, the compiler must recognize opportunities for arrayprivatization, whereby storage-related dependences on array variables are elim-inated by making a private copy of the array for each processor. As anotherexample, the compiler must recognize opportunities to parallelize array reduc-tions, such as computations of a sum, product, or maximumover array elements.A second essential requirement for recognizing coarse-grain parallel loopsis that procedures must not pose a barrier to analysis. One way to eliminateprocedure boundaries is to perform inline substitution|replacing each procedurecall by a copy of the called procedure|and perform analysis in the usual way.This is not a practical solution for large programs, as it is ine�cient in both timeand space. Interprocedural analysis, which applies data-ow analysis techniquesacross procedure boundaries, can be much more e�cient as it analyzes only asingle copy of each procedure. However, progress in interprocedural analysis hasbeen inhibited by the complexity of interprocedural systems and the inherenttradeo� between performing analysis e�ciently and obtaining precise results.We have developed an automatic parallelization system that is fully interpro-cedural, and incorporates all standard analyses included in today's parallelizers,such as data dependence analysis, analyses of scalar values such as inductionvariable recognition, and scalar dependence and reduction recognition. In ad-dition, the system employs analyses for array privatization and array reductionrecognition. This system has allowed extensive empirical evaluation of automaticparallelization of three standard benchmark suites, demonstrating signi�cant im-provements over previous interprocedural parallelization systems and the tech-nology available in commercial systems.This paper describes the components of this system, and the interproceduralanalysis framework in which they were developed. The key distinguishing fea-tures of this system are as follows. First, the interprocedural analysis is designedto be practical while providing nearly the same quality of analysis as if the pro-gram were fully inlined. Second, the array analysis incorporates a mathematicalformulation of array reshapes at procedure boundaries, supporting changes indimension between actual and corresponding formal parameters. Third, the sys-tem recognizes interprocedural array reductions. Finally, because the system hasbeen used in an extensive empirical evaluation, the implementations of all theanalysis techniques extend previous work to meet the demands of parallelizingreal programs.The remainder of the paper is organized into seven sections. Section 2 com-pares our work with other automatic parallelization systems. In Section 3, wepresent the interprocedural analysis framework and algorithm. Sections 4 and5, describe the analysis of scalar variables and array variables, presented as in-stantiations of the analysis framework from Section 3. Section 6 describes howthe interprocedural array analysis is extended to recognize array reductions. The�nal two sections discuss experiences with this system and conclude.5�2

2 Related WorkIn the late 1980s, a series of papers presented results on interprocedural par-allelization analysis [9, 15, 20]. Their common approach was to determine thesections of arrays that are modi�ed or referenced by each procedure call, en-abling parallelization of some loops containing calls whenever each invocationmodi�es array elements distinct from those that are referenced or modi�ed inother invocations. These techniques were shown to be e�ective in parallelizinglinear algebra libraries. More recently, the Fida system was developed at IBM toobtain more precise array sections through partial inlining of array accesses [10](see Section 7).Irigoin et al. developed an interprocedural analysis system, called PIPS, thatis part of an environment for parallel programming [12]. More recently, PIPS hasbeen extended to incorporate interprocedural array privatization [11, 5]. PIPS ismost similar to our work, but lacks three important features: (1) path-speci�c in-terprocedural information such as obtained through selective procedure cloning,(2) interprocedural reductions, and (3) extensive interprocedural scalar data-owanalysis such as scalar privatization.The Polaris system at University of Illinois is also pushing the state of the artin parallelization technology [2]. The most fundamental di�erence between oursystem and Polaris is that Polaris performs no interprocedural analysis, insteadrelying on full inlining of the programs to obtain interprocedural information.The Polaris group has demonstrated that good coverage (fraction of the programparallelized) can be obtained automatically. Although they report that full in-lining is feasible on eight medium-sized programs, this approach will likely havedi�culty parallelizing large loops containing thousands of lines of code.3 Interprocedural FrameworkParallelization depends upon the solution of a large number of data-ow anal-ysis problems, which share many commonalities. Traditional data-ow analysisframeworks help reduce development time and improve correctness by capturingthese common features in a single module [13]. In an interprocedural setting, aframework is even more important because of the complexity of collecting andmanaging information about all the procedures in a program.We use Fiat [6], a tool which encapsulates the common features of interpro-cedural analysis, in combination with the Stanford SUIF compiler to constituteour interprocedural parallelization system. The Fiat system has been describedpreviously, but we have extended the system to obtain precise ow-sensitive in-terprocedural results through the combination of two techniques which we nowdescribe. We have also added to the system a mathematical formulation of ar-ray reshapes (see Section 5.2) in order to support interprocedural array analysis.This section describes Fiat's parameterized templates that drive the paralleliza-tion analysis. 5�3

Region-Based Flow-Sensitive Analysis. To capture precise interprocedural infor-mation requires a ow-sensitive analysis approach, which derives analysis resultsalong each possible control ow path through the program. Precise and e�cientow-sensitive interprocedural analysis is di�cult because information ows intoa procedure both from its callers (representing the calling context in which theprocedure is invoked) and from its callees (representing the e�ects of the invoca-tion). For example, in a straightforward interprocedural adaptation of traditionaliterative analysis, analysis might be carried out over a program representationcalled the supergraph [16], where individual control ow graphs for the proce-dures in the program are linked together at procedure call and return points.Iterative analysis over this structure is slow because the number of control owpaths through which information ows increases greatly. Such analysis also losesprecision by propagating information along unrealizable paths [14]; the analysismay propagate calling context information from one caller through a procedureand return the side-e�ect information to a di�erent caller. In our system, we usea region-based analysis that solves the problems of unrealizable paths and slowconvergence. We perform analysis e�ciently in two passes over the program.Selective Procedure Cloning. For procedures invoked on multiple distinct pathsthrough a program, traditional interprocedural analysis forms a conservativeapproximation of the information entering the procedure that is correct for allpaths. Such approximations can a�ect the precision of analysis if a procedureis invoked along paths that contribute very di�erent information. Path-speci�cinterprocedural information has previously been obtained either by inline sub-stitution or by tagging data-ow sets with a path history through the call graph,incurring a data-ow set expansion problem corresponding to the code explosionproblem of inlining [8, 16, 17, 18]. To avoid such excessive space usage, we utilizepath-speci�c information only when it may provide opportunities for improvedoptimization. Our system incorporates selective procedure cloning, a program re-structuring in which the compiler replicates the analysis results for a procedureto analyze it in the context of distinct calling environments [4]. By applyingcloning selectively according to the unique data-ow information it exposes, wecan obtain the same precision as full inlining without unnecessary replication.3.1 The Region GraphThe region-based analysis aggregates information at the boundaries of programregions: basic blocks, loop bodies and loops (restricted to DO loops), procedurecalls, procedure bodies, and procedures. We use a program representation calledthe region graph to represent the loop nesting and procedure nesting of theprogram. The region graph is a directed graph whose nodes represent regionsand whose edges represent nesting relationships. With each region is associatedan immediate subregions graph, a directed ow graph consisting of immediatelynested regions and control ow edges between them.Each region has a single entry node. To simplify presentation, we primarilydescribe analyses with regions that also have a single exit. (The actual analysis5�4

framework implementation is more general. Irreducible graphs are supported inthe scalar data-ow analysis described in Section 4, although the array analysisapproximates when graphs are irreducible or when loops contain multiple exits.)3.2 Data-Flow FunctionsThe �rst phase of any program analysis using this framework yields a transferfunction for each region in a problem-speci�c form. For each analysis, a represen-tation for transfer functions T with the following operations must be provided:{ Extract basic block transfer function (T = BasicBlockTF(b)){ Composition (�){ Meet (V), with identity value (>){ Iteration (T i): yield e�ect after i iterations, where i is the loop's normalizedindex variable.{ Closure (T �): eliminate the most recent loop index variable to describe thee�ect of the entire loop.{ RetMap(T ; callsite): map procedure transfer function into caller spaceThe �rst phase computes relative information that summarizes the behaviorof each region. To compute absolute information, a second phase may optionallybe performed. The second phase determines absolute information on entry toeach procedure and region, using the transfer functions found in the �rst phaseto propagate a problem-speci�c data-ow value. A representation for this valuemust be provided, along with the following operations:{ Context of program (input value ?){ Meet (V), with identity value (>){ Apply transfer function to a data-ow value to yield another{ CallMap(val; callsite): map call context into procedure space{ Filter(val;Proc): remove information not relevant to Proc{ Partition(val1; val2): equivalence relation on procedure contexts3.3 AlgorithmA region-based analysis, as shown in Figure 1, proceeds in one or two phases.In the �rst phase, we analyze each procedure independent of its calling environ-ment to obtain a transfer function Tp; this transfer function is used (with ap-propriate parameter mapping) at call sites when analyzing callers. The secondphase propagates data-ow values, applying them to the transfer functions fromthe previous phase, to yield the data-ow input to each region. The two-phaseregion-based analysis is similar to what is traditionally called interval-basedanalysis, where the intervals of interest are loops and procedure bodies.5�5

/* PHASE 1: Derive Transfer Functions */for each procedure P from bottom to top over call graph:for each region R from innermost to outermost:if R is a basic block, compute TR = BasicBlockTF(R)if R is a loop with body R0,TR;R0 = T iR0 for this loop's normalized index variable iTR = T �R;R0if R is a call at site cs to procedure with body R0,TR = RetMap(TR0 ; cs) /* map parameters */if R is a loop body or procedure body,for a forward data-ow problem,for each immediate subregion R0,compute TR;R0 = transfer function from entry of R to entry of R0by �nding least solution to (for all R0):TR;R0 = ^p2pred(R0) Tp � TR;pTR = TExit(R) � TR;Exit(R)for a backward data-ow problem,for each immediate subregion R0,compute TR;R0 = transfer function from exit of R to exit of R0by �nding least solution to (for all R0):TR;R0 = ^p2succ(R0) Tp � TR;pTR = TEntry(R) � TR;Entry(R)/* PHASE 2: Derive Procedure Contexts using Transfer Functions *//* and propagate data ow information to regions */CEntry(Program) = f?gfor each procedure P from top to bottom over call graph,let C be the union of calling contexts on incoming edgeslet C0 = fFilter(c; P) j c 2 Cglet P be the equivalence classes of C 0 with respect to Partitionfor each partition p 2 PVp;P = ĉ2p cfor each region R in P from outermost to innermost,for each subregion R0 of R,Vp;R0 = TR;R0 (Vp;R)if R is a call at site cs with corresponding call graph edge e,add context CallMap(Vp;R; cs) to edge e /* map parameters */Fig. 1. Region-Based Interprocedural Analysis Framework5�6

Phase 1: Calculating Region Transfer Functions For each region R from inner-most loop to outermost loop, and from bottom to top in the call graph, wecompute its transfer function TR. A basic block's transfer function is derived di-rectly (using the BasicBlockTF function). The transfer function of a procedurecall takes the procedure body's transfer function and maps it to the caller space,renaming variables in its representation (using the RetMap operation).The transfer function for a loop applies the Iteration operation to the transferfunction of its loop body TR0 to obtain a transfer function TR;R0 representing thee�ect of i iterations of the body, where i is the loop's normalized index variable.The �nal transfer function showing the total e�ect of the loop is obtained byusing the Closure operation to eliminate the iteration counter i.For loop bodies and procedure bodies, deriving the transfer function involvesthe transfer functions of its immediate subregions. In a forward data-ow prob-lem, for each subregion R0, we compute TR;R0 , the transfer function from theentry of R to the entry of R0. This calculation results from a meet over thepredecessors of R0. If the immediate subregions graph is cyclic, then an iterativesolution may be required to �nd the transfer function. Otherwise, the subregionsare simply visited in the appropriate (reverse postorder) order within the region.The �nal transfer function for the loop body or procedure body is derived bycomposing the transfer function TR;Exit(R) for the subregion that represents theexit from region R, with the transfer function TExit(R) of that region.Data-ow problems that require a backward propagation within the intervalsare analogous. For an acyclic subregion graph, a postorder traversal over thesubregions derives transfer functions TR;R0 to describe the e�ects from the exitof R up to the exit of R0.Phase 2: Deriving Calling Contexts and Computing Final Values. For a two-phase problem, the second phase of the algorithm derives the data-ow inputto each procedure and its subregions. This phase of the analysis is performedtop-down over the call graph and from outermost to innermost loops withineach procedure body. For a procedure, the analysis derives the set of callingcontexts C contributed by calls to the procedure. Instead of performing a meetoperation over all of the calling contexts, the analysis partitions these contextsinto equivalence classes under the Partition relation according to their data-owinformation before meeting only the contexts within each equivalence class.The number of partitions is reduced by �rst using a Filter to eliminate fromthe data-ow values information not relevant to the called procedure. (We de-scribe an example of this �ltering in Section 4.)Each partition de�nes a data-ow input value Vp;P , the meet of the callingcontexts in that partition. For each partition, the analysis applies the transferfunctions to this data-ow value to propagate information from outermost toinnermost to yield the input to inner regions. For a region R representing aprocedure call, the analysis adds to the corresponding call graph edge the callingcontext Vp;R. It is important to note that our analysis does not actually generatecloned procedure bodies, but merely replicates their data-ow information forthe purposes of analysis. 5�7

4 Scalar Data-Flow AnalysisScalar data-ow analysis is crucial for parallelizing loops. Analyses of scalar vari-ables in a loop are necessary both to detect and eliminate scalar dependences andto support precise analysis of array accesses. Array analysis support is providedby an interprocedural symbolic analysis and a separate inequality constraintpropagation.4.1 Support for Array Analysis: Interprocedural Symbolic AnalysisTo precisely represent the array accesses in a loop (using an analysis such as theone to be described in Section 5) requires that array indices be rephrased in termswhich are valid throughout the loop. Using traditional program analyses, a setof analyses of integer variable values is needed: constant propagation, inductionand loop-invariant variable detection, and common subexpression recognition.Our system provides the e�ect of such analyses through a single symbolicanalysis, which is performed interprocedurally. For example, to parallelize thefollowing loop:K = J + 1DO 10 I=1,NA(J) = A(K)J = J + 2K = K + 210 CONTINUEthe array index expressions in terms of loop-varying variables (J and K) aremapped into expressions in terms of normalized (base 0) loop indices and loopinvariants. In this particular loop, a new loop-invariant variable J0 is introducedto refer to the value of J on entry to the loop and a base-0 iteration countvariable i is introduced, local to the loop body. J is found to have a value J0+2iand K a value J0+2i+ 1. Substituting these values into the array indices allowscomparison of the portions of array A read and written by the loop.The symbolic analysis determines for each variable appearing in an arrayaccess a symbolic value: an arbitrary expression describing its value in terms ofconstants, loop-invariant variables, and normalized loop indices, if possible.Array dependence analysis typically only handles a�ne array indices pre-cisely; nevertheless, the symbolic values resulting from the symbolic analysismay be non-a�ne. In some cases our system is currently unable to make useof this non-a�ne information. In one common case of non-a�ne array indices|those resulting from a higher-order induction variable|we extract additionalinformation which can be provided in an a�ne form, as discussed below.Representation: Symbolic Maps More formally, a symbolic value expres-sion sym is either Unknown or an arbitrary arithmetic/conditional expression interms of constants, variables, and loop indices. A symbolic mapSM = f< var1; sym1 >; : : :g5�8

binds variables var i to symbolic descriptions of their values symi. A symbolicmap associated with a region R may be either relative or absolute. In a relativemap, variables within bound values refer to their values on entry to R; in anabsolute map, no bound value may contain a variable modi�ed within R.For convenience below, we de�ne an operation SM (sym) on symbolic mapSM and symbolic value sym , which yields Unknown if sym contains a var i notbound in SM , and otherwise yields sym with every occurrence of a var i boundby SM replaced by the bound value symi.Region-Based Analysis We obtain absolute value maps describing variablevalues at every program point in two passes, as a region-based data-ow analysis.A bottom-up pass through the program derives the transfer function for eachregion, as a relative value map that describes variable values at each immediatesubregion in terms of entry variable values. A subsequent top-down pass throughthe program propagates to each region a symbolic context, an absolute mapdescribing actual variable values on region entry in terms of enclosing loop indicesand invariants.Phase 1: Transfer Functions The symbolic behavior of a region R is a relativemap SMR describing every variable's value on exit in terms of enclosing loopindices and variable values on entry to R. The following operations are de�ned:{ BasicBlockTF(b): forms a map showing the e�ect of the block on everyprogram variable: unmodi�ed variables are mapped to themselves, modi-�ed variables are mapped to a symbolic value expression representing thevalue on exit in terms of the values on entry. New variables are introducedto represent the values of certain operations with unknown results (e.g., loadfrom memory, I/O read). These variables are limited in scope to the nearestenclosing loop or procedure body.{ Composition (�): apply SM2 to every bound value in SM1:SM1 � SM2 = f< var i; SM2(symi) > j < var i; symi >2 SM1g{ Meet (V), with identity element >SM :SM1 ^ SM2 = f< var ; sym > j sym = (SM1 \ SM2)(var)g{ Iteration: SM i �nds loop invariants and induction variables and rephrasesthem in terms of the given index variable i. Auxiliary maps SM i0 (loop invari-ants) and SM i1 (induction variables) are used to compute SM i, as follows:SM i0 = f< var ; var > j < var ; var >2 SMgSM i1 = f< var ; var + i � c > j < var ; var + c >2 SM; c = SM (c)gSM i = f< var ; sym > jsym = (SM i0 [SM i1)(var)ggives the net change after i iterations of the loop, and includes loop invariantand induction variable recognition.{ Closure: SM� substitutes an expression if lb � ub then d(ub� lb)=stepe + 1else 0 for the most recent loop index variable i throughout SM .{ RetMap(SM; callsite): maps formals to actuals everywhere in SM .5�9

Phase 2: Symbolic Calling Contexts. The symbolic context of a region R is anabsolute map SMR describing each live variable's value on entry to R in termsof loop invariants and loop indices of enclosing loops.{ Context on entry to program: the initial symbolic context ? maps all vari-ables to Unknown.{ Meet (V), identity (>): as for relative maps.{ Apply transfer function: Relative map SM1 is applied to an absolute mapSM2 to derive a new absolute map: SM1 (SM2) = SM1 � SM2.{ CallMap(SM; callsite): map actuals to formals everywhere in SM .{ Filter(SM;Proc): Eliminate from the map all bindings of variables with noupwards-exposed reads in Proc.{ Partition(SM1; SM2): Only identical maps are equivalent.Cloning. We employ selective procedure cloning based on the values in the map.Currently, the �lter function eliminates from the map relations on variables thathave no upwards-exposed reads in the called procedure; this signi�cantly reducesthe amount of replication in the analysis.Higher-order Induction Variable Support The closure operation can beextended to recognize higher order induction variables, such as a variable incre-mented inside a triangular loop. Such variables are not uncommon in scienti�ccodes as linearized array subscripts. To handle 2nd-order induction variables, weextend the iteration operator with an auxiliary SM i2 map, as follows:SM i2 = f< var ; var + c1 � (i � (i � 1))=2 + c2 � i > j< var ; var + c1 � i + c2 > 2 SM 0 � (SM i0 [SM i�11);c1 = SM (c1); c2 = SM (c2)gSM i = f< var ; sym > j sym = (SM i0 [SM i1 [SM i2)(var)gUnfortunately, the resulting closed form of a second-order induction variablewhich is thus introduced is non-a�ne and not directly useful to the a�ne par-allelization tests used in array analysis. For this reason, the analysis in this caseintroduces a new variable x, whose scope is limited to the loop body, and inplace of the non-a�ne expression var + c1 � (i � (i � 1))=2 + c2 � i, we use thea�ne expression var + x.When the array analysis performs a comparison between two accesses con-taining x, the additional a�ne information is provided that if, for example,c1 � 0 and c2 � 0, then for iteration i = i0 we have x = x0 and for iterationi = i00 we have x = x00 such that if i0 < i00 then x0 � x00 + c1 + c2. Similar usefula�ne information can be provided under other conditions on c1 and c2. Thisapproach enables one commonly occurring case of non-a�ne symbolic valuesin array subscripts to be handled without an expensive extension to the arrayanalysis. 5�10

4.2 Inequality ConstraintsThe symbolic analysis described thus far can only determine equality constraintsbetween variables. Since array analysis also bene�ts from knowledge of loopbounds and other control-based contextual constraints on variables (e.g., ifpredicates), which may contain inequalities, a separate top-down pass carriesloop and predicate constraints to relevant array accesses. Equality constraintsdetermined by the symbolic analysis are used to rephrase each predicate in loop-invariant terms, if possible. The control context is represented by a set of a�neinequalities in the form discussed in Section 5.4.3 Scalar Parallelization AnalysisA number of standard analyses ensure that scalar variables do not limit theparallelism available in a loop. These analyses locate scalar dependences, lo-cate opportunities for scalar reduction transformations and determine privatiz-able scalars. We apply these analyses interprocedurally. A simple ow-insensitivemod-ref analysis[1] detects scalar dependences and, with a straightforward ex-tension, provides the necessary information to locate scalar reductions. A ow-sensitive live-variable analysis, discussed below, allows detection of privatizablescalar variables. The ow-sensitive symbolic analysis of Section 4.1 also �ndsinduction and loop-invariant integer variables, which can then be privatized.Live Variable Analysis. We solve a standard live-variable problem interpro-cedurally through a two-phase region-based backward analysis. In Phase 1, thetransfer function for each region is computed as a pair of sets: Gen set, contain-ing variables with upwards exposed reads in the region, and Kill set, containingvariables written in the region. In Phase 2, the set of live variables on entryto a region is determined from the set of live variables on exit of the region:Liveentry = (Liveexit �Kill) [Gen.For loops containing returns and breaks, the situation is somewhat com-plicated, since there is not just a single exit. A single transfer function is notsu�cient to describe the behavior of a region with multiple exits in a backwarddata-ow problem. Instead, we summarize the behavior of a loop body by threetransfer functions|from loop body exit, from loop exit, and from enclosing pro-cedure exit. A loop is described by just two transfer functions|from loop exitand from procedure exit. A single transfer function still su�ces to describe aprocedure. In other respects the analysis is straightforward.5 Analysis of Array VariablesThe array analysis locates loops that carry no data dependences on array ele-ments or that can be safely parallelized after array privatization. The system,when integrated with the reduction recognition and scalar data-ow analysis,performs an array data-ow analysis based on systems of linear inequalities to5�11

analyze a�ne array access functions. This approach is driven by the need tocompute both data dependences and value-based dependences for array privati-zation in a framework that is suitable for ow-sensitive interprocedural analysis.An important feature of the array data-ow analysis is the use of summaries,which describe subarrays accessed by a region of the code; summaries eliminatethe need to perform O(n2) pairwise dependence tests for a loop containing narray accesses. This e�ciency consideration may be unimportant within a sin-gle procedure, but is crucial when analyzing large loops that may span multipleprocedures and have hundreds of array accesses.5.1 Representation: SummariesWe represent each array access by a system of integer linear inequalities. Anarray summary is a set of such systems. For example, consider the followingloop nest. DO 10 I = 1; NDO 10 J = 1; MA(J+ 1; 2 � I) = ::: 	W1�W29=;W3The region of array A written by a single execution of the statement is representedby set containing one system of inequalities, parameterized by the program vari-ables M and N, and normalized loop index variables i and j:W1 = �(w1; w2) �����0 � j � M� 1; w1 = j+ 2;0 � i � N� 1; w2 = 2i+ 2 ��The included contextual constraints on program variables and loop indices areprovided by the scalar context analysis.Intuitively, a set is necessary because di�erent accesses to an array may referto distinctly di�erent regions of the array. Mathematically, many of the opera-tors applied to array summaries result in non-convex regions, which cannot beprecisely described with a single system of inequalities. To maintain e�ciency,we merge systems of inequalities whenever we can guarantee no loss of informa-tion will result. The following basic operations are de�ned on array summaries.Operations marked � are not exact.{ Empty? (A = ;) = 8a2A (a = ;). A set of systems is empty i� all systemsin the set are empty. A system of inequalities is empty if there are no integersolutions that satisfy the system. We use a Fourier-Motzkin pair-wise elim-ination technique with branch-and-bound to check for the existence of aninteger solution to a system of inequalities. If no solution exists, the systemis empty.� Contained? A��B = 8a2A9b2B(a � b). A set of systems is contained inanother, i� each system in the �rst set is contained in a single system in theother set. This is conservative as it may return a false negative. A systemof inequalities a is contained in a system of inequalities b if and only if acombined with the negation of any single inequality of b is empty.5�12

{ UnionA[B = fc j c 2 A or c 2 Bg. The union of two sets of systems simplyunions the two sets, then simpli�es the set using the following two heuristics:� If there are two systems a and b in the set such that a � b, then a isremoved from the set.� If two systems are rectilinear and adjacent, they are combined to forma single system.In practice, these heuristics keep the sets a manageable size and increase theprecision of the Contained? operator. Since the union of two convex regionscan result in a non-convex region, a set is necessary to maintain the precisionof the union operator.{ Intersection A \ B = fa \ b j a 2 A and b 2 B and a \ b 6= ;g. The inter-section of two sets of systems is the set of all non-empty pairwise intersectionsof their elements. Intersection of two systems of inequalities simply concate-nates the inequalities of the two systems.� Subtraction A � B = fa � b1 � : : : � bn j a 2 A and B = fb1 : : : bngg.The subtraction of two sets of systems subtracts all systems of the second setfrom each system in the �rst. Two systems are subtracted using a heuristic:a � b is exact when a\ b = ; or a � b or both are simple rectilinear systems;otherwise it is approximated as a.{ Projections Proj (A; v) eliminates the variable v from the constraints of allthe systems in set A by applying the Fourier-Motzkin elimination techniqueto each system. Each system a 2 A can be viewed as the integer points insidea n-dimensional polytope whose dimensions are the variables of a and whosebounds are given by the inequalities of a; this polytope is projected into alower-dimensional (n � 1) space where the integer solutions of all remain-ing dimensions remain unchanged. One use of projection is to summarizethe e�ects of array accesses within a loop. For example, for the system ofinequalities representing the access to array A shown above, projections areused to generate systems of inequalities representing the array accesses foreach loop in the nest. In some cases, eliminating a variable may result in alarger region than the actual region. In the example, eliminating the con-straint w2 = 2i+ 2 will lose the information that w2 must be even. For thisreason, analysis introduces an auxiliary x in W3 to retain this constraint.W2 = Proj (W1; j) = �(w1; w2) ����� 0 � i � N� 1; w2 = 2i+ 22 � w1 � M+ 1 ��W3 = Proj (W2; i) = �(w1; w2) ����� 2 � w2 � 2N; w2 = 2x2 � w1 � M+ 1 ��5.2 Array ReshapesInterprocedural array analysis must provide precise results in the presence ofarray reshapes at procedure boundaries, as when a slice of an array is passedinto a procedure, and as in linearization, when a multi-dimensional array in oneprocedure is treated as a linear array in another. In the following example, FOOpasses BAR the Kth column of the array X. This 10000-element vector from FOO,is manipulated as a 100� 100 array in BAR.5�13

SUBROUTINE FOO SUBROUTINE BAR(Y)INTEGER X(10000, 10) INTEGER Y(100, 100).... DO 9 I= 1,100CALL BAR(X(1, K)) DO 9 J= 1,50Y(I,J) = ...9 CONTINUEMapping an array summary from callee to caller is not a simple renameoperation. We perform this mapping by deriving inequalities for the indices ofthe actual parameter in terms of the indices of the formal parameter and usethe projection operation to eliminate the formal parameter's indices.We formalize the mapping of summary S for an n-dimensional formal arrayparameter F, where A(a1; : : : ; am) is passed at the call site and actual A is anm-dimensional array, using the mapping function:M(S; F; A; a1; : : : ; am) = f(j1; : : : ; jm) j Proj (fbF \ bA \ rFAg \ S; fi1; : : : ; ing)gWhere{ i1; : : : ; in are variables representing the indices of accesses to array F.{ j1; : : : ; jm are variables representing the indices of accesses to array A.{ bF is the set of bounds for the array F given by its type declaration. (Notethat the exact bounds of the outermost dimension are not required.){ bA is the set of bounds for the array A given by its type declaration.{ rFA describes the conditions under which an access F(i1; : : : ; in) in the proce-dure and an access A(j1; : : : ; jm) in the callee refer to the same location. Thisoccurs when the memory o�set of F(i1; : : : ; in) is equal to the memory o�setof A(j1; : : : ; jm) minus the memory o�set of A(a1; : : : ; am). This relationshipbetween memory o�sets is represented as an equality relation; other knownfacts about variables used in the equality may be included in the system.For the FOO, BAR example the mapping function is calculated using:bF = �1 � j1 � 1001 � j2 � 100� ; bA = �1 � i1 � 100001 � i2 � 10 � ;rFA = �100 � (j2 � 1) + (j1 � 1) = 10000 � (i2 � K) + (i1 � 1)1 � K � 10 �Thus when when using the mapping function on the summary of the array Y atthe start of subroutine BAR:M��(j1; j2) �����1 � j1 � 1001 � j2 � 50 �� ; Y; X; 1; K�= 8<:(i1; i2) ������8<:1 � i1 � 5000i2 = K1 � K � 10 9=;9=;This approach handles precisely cases where complex numbers in one proce-dure are treated as real numbers in another by modeling a complex number asan array with two elements. Some reshapes are not handled precisely. If arraydimensions are unknown, for example, there is no linear relationship between theindices of the actual and formal parameters, and unless the unknown dimensionsare identical, we must approximate. 5�14

5.3 Region-Based AnalysisThe analysis of an array variables computes four distinct sets for each programregion. These sets are used by both the dependence and privatization tests todetermine the safety of parallelization. The data-ow sets for a given region Rare informally de�ned as follows:WR { Write: portions of arrays possibly written within region RMR { Must Write: portions of arrays always written within region RRR { Read: portions of arrays possibly read within region RER { Exposed Read: portions of arrays whose reads are possiblyupwards exposed to the beginning of RThese sets are together computed as a 4-tuple transfer function using a back-wards region-based analysis as described in Section 3. Because just the transferfunction itself is needed, the second phase of the region-based framework can beomitted.Transfer Functions. The side-e�ect transfer function of a region R on a partic-ular array is represented as the 4-tupleSR =< WR;MR; RR; ER >where the elements are the sets informally de�ned as described above. The fol-lowing operations are de�ned on S tuples:{ BasicBlockTF(b): result of composing read and write accesses in block b.Read access: S =< ;; ;; fag; fag >. Write access: S =< fag; fag; ;; ; >.where a is a system describing the access indices, rewritten in loop-relativeterms (from symbolic analysis), with relevant inequality constraints added.{ Composition: S1 � S2 =< W1 [W2;M1 [M2; R1 [R2; E1 [(E2 �M1) >.{ Meet: S1 ^ S2 =< W1 [W2;M1 \M2; R1 [R2; E1 [E2 >.{ Identity element: >S =< ;; ;; ;; ;>.{ Iteration: Si = S. The given loop index variable i is used to perform depen-dence and privatization tests, as in the following section.{ Closure: S� =< Proj (W;L);Proj (M;L);Proj (R;L);Proj(E;L) >, where Lcontains the loop index i and other loop-modi�ed variables.{ RetMap(S; callsite) =< M(W; : : :);M(M; : : :);M(R; : : :);M(E; : : :) >, asdiscussed in Section 5.2.5.4 Dependence and Array Privatization TestsTo determine if array accesses allow the parallelization of a loop with index i,dependence and privatization tests are performed on the summary sets for theloop body R:{ There is no loop-carried:� True Dependence i� WRji1i \RRji2i \ fi1 < i2g = �� Anti Dependence i� WRji1i \RRji2i \ fi1 > i2g = �5�15

� Output Dependence i� WRji1i \WRji2i \ fi1 < i2g = �{ Array Privatization is possible i� WRji1i \ERji2i \ fi1 < i2g = �A loop may be safely parallelized if there are no loop-carried true, anti or outputdependences. The array privatization test is applied only to the variables thatare involved in dependences to determine if privatization will eliminate thesedependences.Our formulation of array privatization is an extension of Tu and Padua'salgorithm[21]. Tu and Padua recognize an array as privatizable only if there areno upwards-exposed reads within the loop. Our algorithm is more general inthat upwards-exposed reads are acceptable as long as they do not overlap writesin other iterations of the same loop.5.5 Generating Executable Code With Array PrivatizationIt is straightforward to generate parallelized code for loops for which there are nodependences, but in the presence of array privatization, the system must ensurethat initial and �nal values of the array are copied to and from the private copies.If an array has upwards-exposed read regions, the compiler must copy theseregions into the private copy prior to execution of the parallel loop. If an arrayis live on exit of the loop, then after a parallel execution of the loop the arraymust contain the same values as those obtained had the loop been executedsequentially; we do not test array liveness on exit, so we limit privatization tothose cases where every iteration in the loop writes to exactly the same region ofdata. To do so the analysis performs the following test to �nalize a loop whoseindex i has upper bound ub: If W = M jubi , the last loop iteration is peeled, andthis �nal iteration writes to the original array. Earlier iterations write to a privatecopy of the array. No peeling is necessary if the compiler can guarantee that thelast processor executes the last iteration. Then the compiler can generate codewhich simply writes to private copies in all the processors except the last one.6 Array Reduction RecognitionA reduction occurs when a location is updated on each loop iteration with theresult of a commutative and associative operation applied to its previous contentsand some data value. A loop containing a reduction may be safely parallelizedsince the ordering of the commutative updates need not be preserved.We have implemented a simple, yet powerful approach to recognizing reduc-tions, in response to the common cases we have encountered in experimentingwith the compiler. The reduction recognition, which is integrated with the ar-ray analysis described in the previous section, �nds reductions involving generalcommutative updates to array elements, possibly spanning multiple procedures.5�16

6.1 Reduction RecognitionWe currently recognize reductions on scalar variables and array locations involv-ing the operations +, �, MIN, and MAX. MIN (and, equivalently, MAX) reductionsof the form if (a(i) < tmin) tmin = a(i) are also supported.The system looks for commutative updates to a single location A of the formA = A op :::, where A is either a scalar variable or an array location and opis one of the operations listed above. This approach allows any commutativeupdate to a single array location to be recognized as a reduction, even withoutinformation about the array indices. We illustrate this point with an examplesparse matrix-vector multiply found in the Nas sample benchmark cgm:DO 200 J = 1, NXJ = X(J)DO 100 K = COLSTR(J) , COLSTR(J+1)-1Y(ROWIDX(K)) = Y(ROWIDX(K)) + A(K) * XJ100 CONTINUE200 CONTINUEOur system correctly determines that updates to Y are reductions on the outerloop, even though Y is indexed by another array ROWIDX and so the array accessfunctions for Y are not a�ne expressions.The reduction recognition analysis �rst locates commutative updates in aloop body; it veri�es that the only other reads and writes in the loop to thesame location are also commutative updates of the same type described by op.A loop is parallelized if all dependences involve variables whose only accesses arereduction operations of identical type.In terms of our data-ow analysis algorithm, reduction recognition is initial-ized by examining the code for commutative updates to the same array location.Whenever an array element is involved in a commutative update, the array anal-ysis derives summaries for the read and written subarrays and marks the systemof inequalities as a reduction of the type described by op. When meeting twosystems of inequalities during the interval analysis, the reduction types are alsomet. The resulting system of inequalities will only be marked as a reduction ifboth reduction types are identical.6.2 Generating Executable Code With ReductionsFor each variable involved in a reduction, the compiler makes a private copyof the variable for each processor. The executable code for the loop containingthe reduction manipulates the private copy of the reduction variable in threeseparate parts. First, the private copy is initialized prior to executing the loopwith the identity element for op (e.g., 0 for +). Second, the reduction operationis applied to the private copy within the parallel loop. Finally, the programperforms a global accumulation following the loop execution whereby all non-identity elements of the local copies of the variable are accumulated into theoriginal variable. Synchronization locks are used to guard accesses to the originalvariable to guarantee that the updates are atomic.5�17

Loops Parallel ParallelPrograms w/ calls (Fida) (SUIF)Spec89:doduc 19 2 7matrix300 11 0 8nasa7 8 0 0tomcatv 0 0 0Perfect:adm 35 * 4arc2d 1 0 0bdna 9 0 1dyfesm 21 0 6o52q 9 7 7mdg 7 0 2mg3d 12 0 0ocean 12 0 0qcd 40 0 0spec77 35 * 18track 18 1 1trfd 6 0 0Total 234 10 54Fig. 2. Static loop count comparison of our system with Fida.7 Experience with this SystemThis system has been used as an experimental platform in an extensive empiricalevaluation of the e�ectiveness of automatic parallelization technology. The fullresults are presented elsewhere [7], but we present a few highlights in this section.We have compared the results of our interpocedural analysis with the Fidasystem (Full Interprocedural Data-Flow Analysis), an interprocedural systemthat performs precise ow-insensitive array analysis [10] (see Section 2). TheFida system was the �rst to measure how interprocedural analysis on full appli-cations (from the Perfect and Spec89 benchmark suites) a�ects the numberof parallel loops that the system can automatically recognize. We compare howmany loops containing procedure calls are parallelized using the two systems inFigure 2. The SUIF system is able to locate greater than 5 times more parallelloops than Fida. This marked di�erence is due to the additional array analysistechniques employed in our system, and the tight integration with comprehensiveinterprocedural scalar analysis.As part of our evaluation, we have measured the importance of the individualtechniques employed in this system but not available in current commercialsystems. In particular, we have measured how much the advanced array analysesfor privatization and reduction recognition and the interprocedural array analysison advanced array analyses impact the results of parallelization. We have foundthat these techniques are essential to achieving any speedup on three of the5�18

twelve Spec92FP programs, four of the eight Nas sample benchmarks and twoof the thirteen Perfect benchmarks.8 ConclusionsThis paper has described the analyses in a fully interprocedural automatic par-allelization system. This system has been used in an extensive experiment thathas demonstrated that interprocedural data-ow analysis, array privatizationand reduction recognition are key technologies that greatly improve a parallel-izing compiler's ability to locate coarse-grain parallel loops. Through our work,we discovered that the e�ectiveness of an interprocedural parallelization sys-tem depends on the strength of all the individual analyses, and their ability towork together in an integrated fashion. This comprehensive approach to paral-lelization analysis is why our system has been much more e�ective at automaticparallelization than previous interprocedural systems and commercially availablecompilers.For some programs, our analysis is su�cient to �nd the available parallelism.For other programs, it seems impossible or unlikely that a purely static anal-ysis could discover parallelism|either because correct parallelization requiresdynamic information not available at compile time or because it is too di�cultto analyze. In such cases, we might bene�t from some support for run-time par-allelization or user interaction. The aggressive static parallelizer we have builtwill provide a good starting point to investigate these techniques.Acknowledgements. The authors wish to thank Patrick Sathyanathan and AlexSeibulescu for their contributions to the design and implementation of this sys-tem, and the rest of the SUIF group, particularly Jennifer Anderson and ChrisWilson, for providing support and infrastructure upon which this system is built.References1. J. P. Banning. An e�cient way to �nd the side e�ects of procedure calls and thealiases of variables. In Proceedings of the Sixth Annual Symposium on Principlesof Programming Languages. ACM, January 1979.2. B. Blume, R. Eigenmann, K. Faigin, J. Grout, Jay Hoeinger, D. Padua,P. Petersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris:The next generation in parallelizing compilers. In Proceedings of the Seventh An-nual Workshop on Languages and Compilers for Parallel Computing, August 1994.3. W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers onthe Perfect Benchmarks programs. IEEE Transactions on Parallel and DistributedSystems, 3(6):643{656, November 1992.4. K. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning.Computer Languages, 19(2), April 1993.5. B. Creusillet and F. Irigoin. Interprocedural array region analyses. In Proceed-ings of the 8th International Workshop on Languages and Compilers for ParallelComputing. Springer-Verlag, August 1995.5�19

6. M. W. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. FIAT: A frameworkfor interprocedural analysis and transformation. In Proceedings of the Sixth Work-shop on Languages and Compilers for Parallel Computing, Portland, OR, August1993.7. M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam. Detectingcoarse-grain parallelism using an interprocedural parallelizing compiler. In Pro-ceedings of Supercomputing '95, December 1995.8. W.L. Harrison. The interprocedural analysis and automatic parallelization ofScheme programs. Lisp and Symbolic Computation, 2(3/4):179{396, October 1989.9. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regularsection analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.10. M. Hind, M. Burke, P. Carini, and S. Midki�. An empirical study of precise inter-procedural array analysis. Scienti�c Programming, 3(3):255{271, 1994.11. F. Irigoin. Interprocedural analyses for programming environments. In NSF-CNRS Workshop on Evironments and Tools for Parallel Scienti�c Programming,September 1992.12. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization:An overview of the PIPS project. In Proceedings of the 1991 ACM InternationalConference on Supercomputing, Cologne, Germany, June 1991.13. J. Kam and J. Ullman. Global data ow analysis and iterative algorithms. Journalof the ACM, 23(1):159{171, January 1976.14. W. Landi and B.G. Ryder. A safe approximate algorithm for interproceduralpointer aliasing. In SIGPLAN '92 Conference on Programming Language Designand Implementation, SIGPLAN Notices 27(7), pages 235{248, July 1992.15. Z. Li and P. Yew. E�cient interprocedural analysis for program restructuring forparallel programs. In Proceedings of the ACM SIGPLAN Symposium on ParallelProgramming: Experience with Applications, Languages, and Systems (PPEALS),New Haven, CT, July 1988.16. E. Myers. A precise inter-procedural data ow algorithm. In Conference Recordof the Eighth Annual Symposium on Principles of Programming Languages. ACM,January 1981.17. M. Sharir and A. Pnueli. Two approaches to interprocedural data ow analysis.In S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Ap-plications. Prentice Hall Inc, 1981.18. O. Shivers. Control-Flow Analysis of higher-order languages. PhD thesis, CarnegieMellon University, School of Computer Science, Pittsburgh, PA, May 1991.19. J. P. Singh and J. L. Hennessy. An empirical investigation of the e�ectiveness ofand limitations of automatic parallelization. In Proceedings of the InternationalSymposium on Shared Memory Multiprocessors, Tokyo, Japan, April 1991.20. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. InProceedings of the SIGPLAN '86 Symposium on Compiler Construction, SIGPLANNotices 21(7), pages 176{185. ACM, July 1986.21. P. Tu and D. Padua. Automatic array privatization. In Proceedings of the SixthWorkshop on Languages and Compilers for Parallel Computing, Portland, OR,August 1993.This article was processed using the LaTEX macro package with LLNCS style5�20

