Interprocedural Analysis for Parallelization

Mary W. Hally,
Brian R. Murphy, Saman P. Amarasinghe,
Shih-Wei Liao, Monica S. Lam

Computer Systems Laboratory T Computer Science Dept.
Stanford University California Institute of Technology
Stanford, CA 94305 Pasadena, CA 91125

Abstract. This paper presents an extensive empirical evaluation of an
interprocedural parallelizing compiler, developed as part of the Stanford
SUIF compiler system. The system incorporates a comprehensive and
integrated collection of analyses, including privatization and reduction
recognition for both array and scalar variables, and symbolic analysis of
array subscripts. The interprocedural analysis framework is designed to
provide analysis results nearly as precise as full inlining but without its
associated costs. Experimentation with this system on programs from
standard benchmark suites demonstrate that an integrated combination
of interprocedural analyses can substantially advance the capability of
automatic parallelization technology.

1 Introduction

Symmetric shared-memory multiprocessors, built out of the latest micropro-
cessors, are now a widely available class of powerful machines. As hardware
technology advances make pervasive parallel computing a possibility, compil-
ers which can extract parallelism from sequential codes become important tools
to simplify parallel programming. Unfortunately, today’s commercially available
parallelizing compilers are not effective at getting good performance on mul-
tiprocessors [3, 19]. These compilers tend to be successful in parallelizing only
innermost loops. Parallelizing just inner loops is not adequate for multiproces-
sors for two reasons. First, inner loops may not make up a significant portion
of the sequential computation, thus limiting the parallel speedup by limiting
the amount of parallelism. Second, synchronizing processors at the end of inner
loops leaves little computation occurring in parallel between synchronization
points. The cost of frequent synchronization and its associated load imbalance
can potentially overwhelm the benefits of parallelization.

If compilers are to successfully locate outer, coarse-grain parallel loops, two
improvements are needed. First, parallelizing compilers must incorporate ad-

This research was supported in part by DARPA contracts N00039-91-C-0138 and
DABT63-91-K-0003, the NASA HPCC program, an NSF Young Investigator Award,
an NSF CISE postdoctoral fellowship, a fellowship from Intel Corporation, and a fel-
lowship from AT&T Bell Laboratories.

vanced array analyses, generalizing techniques currently only applied to sca-
lar variables. For example, the compiler must recognize opportunities for array
privatization, whereby storage-related dependences on array variables are elim-
inated by making a private copy of the array for each processor. As another
example, the compiler must recognize opportunities to parallelize array reduc-
tions, such as computations of a sum, product, or maximum over array elements.

A second essential requirement for recognizing coarse-grain parallel loops
is that procedures must not pose a barrier to analysis. One way to eliminate
procedure boundaries is to perform inline substitution—replacing each procedure
call by a copy of the called procedure—and perform analysis in the usual way.
This is not a practical solution for large programs, as it is inefficient in both time
and space. Interprocedural analysis, which applies data-flow analysis techniques
across procedure boundaries, can be much more efficient as it analyzes only a
single copy of each procedure. However, progress in interprocedural analysis has
been inhibited by the complexity of interprocedural systems and the inherent
tradeoff between performing analysis efficiently and obtaining precise results.

We have developed an automatic parallelization system that is fully interpro-
cedural, and incorporates all standard analyses included in today’s parallelizers,
such as data dependence analysis, analyses of scalar values such as induction
variable recognition, and scalar dependence and reduction recognition. In ad-
dition, the system employs analyses for array privatization and array reduction
recognition. This system has allowed extensive empirical evaluation of automatic
parallelization of three standard benchmark suites, demonstrating significant im-
provements over previous interprocedural parallelization systems and the tech-
nology available in commercial systems.

This paper describes the components of this system, and the interprocedural
analysis framework in which they were developed. The key distinguishing fea-
tures of this system are as follows. First, the interprocedural analysis is designed
to be practical while providing nearly the same quality of analysis as if the pro-
gram were fully inlined. Second, the array analysis incorporates a mathematical
formulation of array reshapes at procedure boundaries, supporting changes in
dimension between actual and corresponding formal parameters. Third, the sys-
tem recognizes interprocedural array reductions. Finally, because the system has
been used in an extensive empirical evaluation, the implementations of all the
analysis techniques extend previous work to meet the demands of parallelizing
real programs.

The remainder of the paper is organized into seven sections. Section 2 com-
pares our work with other automatic parallelization systems. In Section 3, we
present the interprocedural analysis framework and algorithm. Sections 4 and
5, describe the analysis of scalar variables and array variables, presented as in-
stantiations of the analysis framework from Section 3. Section 6 describes how
the interprocedural array analysis is extended to recognize array reductions. The
final two sections discuss experiences with this system and conclude.

5—2

2 Related Work

In the late 1980s, a series of papers presented results on interprocedural par-
allelization analysis [9, 15, 20]. Their common approach was to determine the
sections of arrays that are modified or referenced by each procedure call, en-
abling parallelization of some loops containing calls whenever each invocation
modifies array elements distinct from those that are referenced or modified in
other invocations. These techniques were shown to be effective in parallelizing
linear algebra libraries. More recently, the FIDA system was developed at IBM to
obtain more precise array sections through partial inlining of array accesses [10]
(see Section 7).

Irigoin et al. developed an interprocedural analysis system, called PIPS, that
is part of an environment for parallel programming [12]. More recently, PIPS has
been extended to incorporate interprocedural array privatization [11, 5]. PIPS is
most similar to our work, but lacks three important features: (1) path-specific in-
terprocedural information such as obtained through selective procedure cloning,
(2) interprocedural reductions, and (3) extensive interprocedural scalar data-flow
analysis such as scalar privatization.

The Polaris system at University of Illinois is also pushing the state of the art
in parallelization technology [2]. The most fundamental difference between our
system and Polaris is that Polaris performs no interprocedural analysis, instead
relying on full inlining of the programs to obtain interprocedural information.
The Polaris group has demonstrated that good coverage (fraction of the program
parallelized) can be obtained automatically. Although they report that full in-
lining is feasible on eight medium-sized programs, this approach will likely have
difficulty parallelizing large loops containing thousands of lines of code.

3 Interprocedural Framework

Parallelization depends upon the solution of a large number of data-flow anal-
ysis problems, which share many commonalities. Traditional data-flow analysis
frameworks help reduce development time and improve correctness by capturing
these common features in a single module [13]. In an interprocedural setting, a
framework is even more important because of the complexity of collecting and
managing information about all the procedures in a program.

We use FIaT [6], a tool which encapsulates the common features of interpro-
cedural analysis, in combination with the Stanford SUIF compiler to constitute
our interprocedural parallelization system. The FIAT system has been described
previously, but we have extended the system to obtain precise flow-sensitive in-
terprocedural results through the combination of two techniques which we now
describe. We have also added to the system a mathematical formulation of ar-
ray reshapes (see Section 5.2) in order to support interprocedural array analysis.
This section describes FIAT’s parameterized templates that drive the paralleliza-
tion analysis.

Region-Based Flow-Sensitive Analysis. To capture precise interprocedural infor-
mation requires a flow-sensitive analysis approach, which derives analysis results
along each possible control flow path through the program. Precise and efficient
flow-sensitive interprocedural analysis i1s difficult because information flows into
a procedure both from its callers (representing the calling context in which the
procedure is invoked) and from its callees (representing the effects of the invoca-
tion). For example, in a straightforward interprocedural adaptation of traditional
iterative analysis, analysis might be carried out over a program representation
called the supergraph [16], where individual control flow graphs for the proce-
dures in the program are linked together at procedure call and return points.
Iterative analysis over this structure is slow because the number of control flow
paths through which information flows increases greatly. Such analysis also loses
precision by propagating information along unrealizable paths [14]; the analysis
may propagate calling context information from one caller through a procedure
and return the side-effect information to a different caller. In our system, we use
a region-based analysis that solves the problems of unrealizable paths and slow
convergence. We perform analysis efficiently in two passes over the program.

Selective Procedure Cloning. For procedures invoked on multiple distinct paths
through a program, traditional interprocedural analysis forms a conservative
approximation of the information entering the procedure that is correct for all
paths. Such approximations can affect the precision of analysis if a procedure
is invoked along paths that contribute very different information. Path-specific
interprocedural information has previously been obtained either by inline sub-
stitution or by tagging data-flow sets with a path history through the call graph,
incurring a data-flow set expansion problem corresponding to the code explosion
problem of inlining [8, 16, 17, 18]. To avoid such excessive space usage, we utilize
path-specific information only when it may provide opportunities for improved
optimization. Qur system incorporates selective procedure cloning, a program re-
structuring in which the compiler replicates the analysis results for a procedure
to analyze it in the context of distinct calling environments [4]. By applying
cloning selectively according to the unique data-flow information it exposes, we
can obtain the same precision as full inlining without unnecessary replication.

3.1 The Region Graph

The region-based analysis aggregates information at the boundaries of program
regions: basic blocks, loop bodies and loops (restricted to DO loops), procedure
calls, procedure bodies, and procedures. We use a program representation called
the region graph to represent the loop nesting and procedure nesting of the
program. The region graph is a directed graph whose nodes represent regions
and whose edges represent nesting relationships. With each region is associated
an immediate subregions graph, a directed flow graph consisting of immediately
nested regions and control flow edges between them.

Each region has a single entry node. To simplify presentation, we primarily
describe analyses with regions that also have a single exit. (The actual analysis

5—4

framework implementation 1s more general. Irreducible graphs are supported in
the scalar data-flow analysis described in Section 4, although the array analysis
approximates when graphs are irreducible or when loops contain multiple exits.)

3.2 Data-Flow Functions

The first phase of any program analysis using this framework yields a transfer
function for each region in a problem-specific form. For each analysis, a represen-
tation for transfer functions 7 with the following operations must be provided:

— Extract basic block transfer function (7 = BasicBlockTF (b))

— Composition (o)

— Meet (M), with identity value (T)

— Tteration (77): yield effect after i iterations, where i is the loop’s normalized
index variable.

— Closure (77): eliminate the most recent loop index variable to describe the
effect of the entire loop.

— RetMap(7, callsite): map procedure transfer function into caller space

The first phase computes relative information that summarizes the behavior
of each region. To compute absolute information, a second phase may optionally
be performed. The second phase determines absolute information on entry to
each procedure and region, using the transfer functions found in the first phase
to propagate a problem-specific data-flow value. A representation for this value
must be provided, along with the following operations:

Context of program (input value —)

— Meet (M), with identity value (T)

— Apply transfer function to a data-flow value to yield another
— CallMap(val, callsite): map call context into procedure space

Filter(val, Proc): remove information not relevant to Proc
— Partition(valy, vals): equivalence relation on procedure contexts

3.3 Algorithm

A region-based analysis, as shown in Figure 1, proceeds in one or two phases.
In the first phase, we analyze each procedure independent of its calling environ-
ment to obtain a transfer function 7,; this transfer function is used (with ap-
propriate parameter mapping) at call sites when analyzing callers. The second
phase propagates data-flow values, applying them to the transfer functions from
the previous phase, to yield the data-flow input to each region. The two-phase
region-based analysis is similar to what is traditionally called interval-based
analysis, where the intervals of interest are loops and procedure bodies.

5—5H

/* PHASE 1: Derive Transfer Functions */
for each procedure P from bottom to top over call graph:
for each region R from innermost to outermost:
if R is a basic block, compute Tr = BasicBlockTF (R)
if Ris a loop with body R’,
Trr = Té, for this loop’s normalized index variable 1
TR = TR*,R’
if Ris a call at site cs to procedure with body R’,
Tr = RetMap(Trs, ¢s) /* map parameters */
if Ris a loop body or procedure body,
for a forward data-flow problem,
for each immediate subregion R,
compute Tz = transfer function from entry of R to entry of R’
by finding least solution to (for all R'):
Trr = /\ TooTrp
pEpred(R’)
Tr = Texit(r) © TR, Exit(R)
for a backward data-flow problem,
for each immediate subregion R,
compute Tg p = transfer function from exit of R to exit of R
by finding least solution to (for all R'):

Trr = /\ TpoTryp

pEsucc(R!)

Tr = Touty(R) © TR Eatry (R)

/* PHASE 2: Derive Procedure Contexts using Transfer Functions */
/* and propagate data flow information to regions */
CEntry(Program) = {J—}
for each procedure P from top to bottom over call graph,
let C be the union of calling contexts on incoming edges
let C' = {Filter(c, P) | c € C}
let P be the equivalence classes of C' with respect to Partition
for each partition p € P

Vp,p = /\C

cEp
for each region R in P from outermost to innermost,

for each subregion R’ of R,
Vo, rr = Tr,r(Vp,R)
if Ris a call at site cs with corresponding call graph edge e,
add context CallMap(Vy,r, cs) to edge e /* map parameters */

Fig. 1. Region-Based Interprocedural Analysis Framework

Phase 1: Calculating Region Transfer Functions For each region R from inner-
most loop to outermost loop, and from bottom to top in the call graph, we
compute its transfer function 7. A basic block’s transfer function is derived di-
rectly (using the BasicBlockTF function). The transfer function of a procedure
call takes the procedure body’s transfer function and maps it to the caller space,
renaming variables in its representation (using the RetMap operation).

The transfer function for a loop applies the Iteration operation to the transfer
function of its loop body 7' to obtain a transfer function 7 g/ representing the
effect of ¢ iterations of the body, where ¢ 1s the loop’s normalized index variable.
The final transfer function showing the total effect of the loop is obtained by
using the Closure operation to eliminate the iteration counter :.

For loop bodies and procedure bodies, deriving the transfer function involves
the transfer functions of its immediate subregions. In a forward data-flow prob-
lem, for each subregion R, we compute Tg g/, the transfer function from the
entry of R to the entry of R’. This calculation results from a meet over the
predecessors of R’. If the immediate subregions graph is cyclic, then an iterative
solution may be required to find the transfer function. Otherwise, the subregions
are simply visited in the appropriate (reverse postorder) order within the region.
The final transfer function for the loop body or procedure body is derived by
composing the transfer function 7g p..(r) for the subregion that represents the
exit from region R, with the transfer function 7g,(g) of that region.

Data-flow problems that require a backward propagation within the intervals
are analogous. For an acyclic subregion graph, a postorder traversal over the
subregions derives transfer functions 7g g to describe the effects from the exit
of R up to the exit of R'.

Phase 2: Deriving Calling Contexts and Computing Final Values. For a two-
phase problem, the second phase of the algorithm derives the data-flow input
to each procedure and its subregions. This phase of the analysis is performed
top-down over the call graph and from outermost to innermost loops within
each procedure body. For a procedure, the analysis derives the set of calling
contexts C contributed by calls to the procedure. Instead of performing a meet
operation over all of the calling contexts, the analysis partitions these contexts
into equivalence classes under the Partition relation according to their data-flow
information before meeting only the contexts within each equivalence class.

The number of partitions is reduced by first using a Filter to eliminate from
the data-flow values information not relevant to the called procedure. (We de-
scribe an example of this filtering in Section 4.)

Each partition defines a data-flow input value V, p, the meet of the calling
contexts in that partition. For each partition, the analysis applies the transfer
functions to this data-flow value to propagate information from outermost to
innermost to yield the input to inner regions. For a region R representing a
procedure call, the analysis adds to the corresponding call graph edge the calling
context V, g. It is important to note that our analysis does not actually generate
cloned procedure bodies, but merely replicates their data-flow information for
the purposes of analysis.

4 Scalar Data-Flow Analysis

Scalar data-flow analysis is crucial for parallelizing loops. Analyses of scalar vari-
ables in a loop are necessary both to detect and eliminate scalar dependences and
to support precise analysis of array accesses. Array analysis support 1s provided
by an interprocedural symbolic analysis and a separate inequality constraint
propagation.

4.1 Support for Array Analysis: Interprocedural Symbolic Analysis

To precisely represent the array accesses in a loop (using an analysis such as the
one to be described in Section 5) requires that array indices be rephrased in terms
which are valid throughout the loop. Using traditional program analyses, a set
of analyses of integer variable values is needed: constant propagation, induction
and loop-invariant variable detection, and common subexpression recognition.

Our system provides the effect of such analyses through a single symbolic
analysis, which is performed interprocedurally. For example, to parallelize the
following loop:

K=J+1

DO 10 I=1,N
A(J) = A(K)
J=J+2
K=K+ 2

10 CONTINUE

the array index expressions in terms of loop-varying variables (J and K) are
mapped into expressions in terms of normalized (base 0) loop indices and loop
invariants. In this particular loop, a new loop-invariant variable Jy is introduced
to refer to the value of J on entry to the loop and a base-0 iteration count
variable 7 is introduced, local to the loop body. J 1s found to have a value Jg + 2¢
and K a value Jo 4+ 2¢ 4+ 1. Substituting these values into the array indices allows
comparison of the portions of array A read and written by the loop.

The symbolic analysis determines for each variable appearing in an array
access a symbolic value: an arbitrary expression describing its value in terms of
constants, loop-invariant variables, and normalized loop indices, if possible.

Array dependence analysis typically only handles affine array indices pre-
cisely; nevertheless, the symbolic values resulting from the symbolic analysis
may be non-affine. In some cases our system is currently unable to make use
of this non-affine information. In one common case of non-affine array indices—
those resulting from a higher-order induction variable—we extract additional
information which can be provided in an affine form, as discussed below.

Representation: Symbolic Maps More formally, a symbolic value expres-
sion sym is either Unknown or an arbitrary arithmetic/conditional expression in
terms of constants, variables, and loop indices. A symbolic map

SM = {< vary, symy >,...}

5—8

binds variables var; to symbolic descriptions of their values sym;. A symbolic
map associated with a region R may be either relative or absolute. In a relative
map, variables within bound values refer to their values on entry to R; in an
absolute map, no bound value may contain a variable modified within R.

For convenience below, we define an operation SM (sym) on symbolic map
SM and symbolic value sym, which yields Unknown if sym contains a var; not
bound in SM, and otherwise yields sym with every occurrence of a var; bound
by SM replaced by the bound value sym,.

Region-Based Analysis We obtain absolute value maps describing variable
values at every program point in two passes, as a region-based data-flow analysis.
A bottom-up pass through the program derives the transfer function for each
region, as a relative value map that describes variable values at each immediate
subregion in terms of entry variable values. A subsequent top-down pass through
the program propagates to each region a symbolic context, an absolute map
describing actual variable values on region entry in terms of enclosing loop indices
and invariants.

Phase 1: Transfer Functions The symbolic behavior of a region R is a relative
map SMpg describing every variable’s value on exit in terms of enclosing loop
indices and variable values on entry to R. The following operations are defined:

— BasicBlockTF (b): forms a map showing the effect of the block on every
program variable: unmodified variables are mapped to themselves, modi-
fied variables are mapped to a symbolic value expression representing the
value on exit in terms of the values on entry. New variables are introduced
to represent the values of certain operations with unknown results (e.g., load
from memory, I/O read). These variables are limited in scope to the nearest
enclosing loop or procedure body.

— Composition (o): apply SMs to every bound value in SM;:

SM, o SMy = {< var;, SMa(sym;) > | < var;, sym; >€ SMy }
— Meet (A), with identity element T gy
SMy A SMs = {< var, sym > | sym = (SMy N SMa2)(var)}
— Tteration: SM? finds loop invariants and induction variables and rephrases

them in terms of the given index variable i. Auxiliary maps SM% (loop invari-
ants) and SM3 (induction variables) are used to compute SM*, as follows:

SMY = {< wvar,var > | < var, var >€ SM}
SMi = {< var,var +i%c > | < var, var + ¢ >€ SM, ¢ = SM(¢)}
SM* = {< var, sym > |sym = (SM5 U SM*)(var)}
gives the net change after ¢ iterations of the loop, and includes loop invariant
and induction variable recognition.
— Closure: SM™* substitutes an expression if [b < ub then [(ub—[b)/step] + 1
else 0 for the most recent loop index variable ¢ throughout SM.
— RetMap(SM, callsite): maps formals to actuals everywhere in SM.

5—9

Phase 2: Symbolic Calling Contexts. The symbolic context of a region R is an
absolute map SMpg describing each live variable’s value on entry to R in terms
of loop invariants and loop indices of enclosing loops.

— Context on entry to program: the initial symbolic context — maps all vari-
ables to Unknown.

— Meet (M), identity (T): as for relative maps.

— Apply transfer function: Relative map SM; is applied to an absolute map
SM> to derive a new absolute map: SM; (SM2) = SMy o SMo.

— CallMap(SM, callsite): map actuals to formals everywhere in SM.

— Filter(SM, Proc): Eliminate from the map all bindings of variables with no
upwards-exposed reads in Proc.

— Partition(SMy, SM>): Only identical maps are equivalent.

Cloning. We employ selective procedure cloning based on the values in the map.
Currently, the filter function eliminates from the map relations on variables that
have no upwards-exposed reads in the called procedure; this significantly reduces
the amount of replication in the analysis.

Higher-order Induction Variable Support The closure operation can be
extended to recognize higher order induction variables, such as a variable incre-
mented inside a triangular loop. Such variables are not uncommon in scientific
codes as linearized array subscripts. To handle 2nd-order induction variables, we
extend the iteration operator with an auxiliary SM% map, as follows:

SM = {< var,var 4+ ¢y x (i % (i —1))/2 + ca % i > |
< var,var 4 ¢ xi4cy > € SM’ o (SMEUSME™1),
' c1 = SM(Cl), Co = SM(CQ)}))
SM" = {< var,sym > | sym = (SMy U SM" U SM%)(var)}

Unfortunately, the resulting closed form of a second-order induction variable
which is thus introduced is non-affine and not directly useful to the affine par-
allelization tests used in array analysis. For this reason, the analysis in this case
introduces a new variable x, whose scope is limited to the loop body, and in
place of the non-affine expression var + ¢y * (¢ % (¢ — 1))/2 + c2 * {, we use the
affine expression var + x.

When the array analysis performs a comparison between two accesses con-
taining x, the additional affine information is provided that if, for example,
c1 > 0 and e¢s > 0, then for iteration i = ¢’ we have * = x’ and for iteration
1 = ¢ we have x = 2" such that if ¢/ < ¢/ then 2’ < &’ + ¢; + ¢5. Similar useful
affine information can be provided under other conditions on ¢; and c¢y. This
approach enables one commonly occurring case of non-affine symbolic values
in array subscripts to be handled without an expensive extension to the array
analysis.

4.2 Inequality Constraints

The symbolic analysis described thus far can only determine equality constraints
between variables. Since array analysis also benefits from knowledge of loop
bounds and other control-based contextual constraints on variables (e.g., if
predicates), which may contain inequalities, a separate top-down pass carries
loop and predicate constraints to relevant array accesses. Equality constraints
determined by the symbolic analysis are used to rephrase each predicate in loop-
invariant terms, if possible. The control context is represented by a set of affine
inequalities in the form discussed in Section 5.

4.3 Scalar Parallelization Analysis

A number of standard analyses ensure that scalar variables do not limit the
parallelism available in a loop. These analyses locate scalar dependences, lo-
cate opportunities for scalar reduction transformations and determine privatiz-
able scalars. We apply these analyses interprocedurally. A simple flow-insensitive
mod-ref analysis[1] detects scalar dependences and, with a straightforward ex-
tension, provides the necessary information to locate scalar reductions. A flow-
sensitive live-variable analysis, discussed below, allows detection of privatizable
scalar variables. The flow-sensitive symbolic analysis of Section 4.1 also finds
induction and loop-invariant integer variables; which can then be privatized.

Live Variable Analysis. We solve a standard live-variable problem interpro-
cedurally through a two-phase region-based backward analysis. In Phase 1, the
transfer function for each region is computed as a pair of sets: Gen set, contain-
ing variables with upwards exposed reads in the region, and Kl set, containing
variables written in the region. In Phase 2, the set of live variables on entry
to a region is determined from the set of live variables on exit of the region:
Liveeniry = (Liveepir — Kill) U Gen.

For loops containing returns and breaks, the situation is somewhat com-
plicated, since there is not just a single exit. A single transfer function is not
sufficient to describe the behavior of a region with multiple exits in a backward
data-flow problem. Instead, we summarize the behavior of a loop body by three
transfer functions—from loop body exit, from loop exit, and from enclosing pro-
cedure exit. A loop 1s described by just two transfer functions—from loop exit
and from procedure exit. A single transfer function still suffices to describe a
procedure. In other respects the analysis is straightforward.

5 Analysis of Array Variables

The array analysis locates loops that carry no data dependences on array ele-
ments or that can be safely parallelized after array privatization. The system,
when integrated with the reduction recognition and scalar data-flow analysis,
performs an array data-flow analysis based on systems of linear inequalities to

5—11

analyze affine array access functions. This approach is driven by the need to
compute both data dependences and value-based dependences for array privati-
zation in a framework that is suitable for flow-sensitive interprocedural analysis.
An important feature of the array data-flow analysis is the use of summaries,
which describe subarrays accessed by a region of the code; summaries eliminate
the need to perform (O(n?) pairwise dependence tests for a loop containing n
array accesses. This efficiency consideration may be unimportant within a sin-
gle procedure, but is crucial when analyzing large loops that may span multiple
procedures and have hundreds of array accesses.

5.1 Representation: Summaries

We represent each array access by a system of integer linear inequalities. An
array summary s a set of such systems. For example, consider the following
loop nest.

DO10I = 1, N
DO 10 J = 1, M

Wa
A(J+1, 2xI) = ... }Wl}w2

The region of array A written by a single execution of the statement is represented
by set containing one system of inequalities, parameterized by the program vari-
ables M and N, and normalized loop index variables i and j:

0<j<M—1, w=j+2,
0<i<N—1, wy=2i+2
The included contextual constraints on program variables and loop indices are

provided by the scalar context analysis.
Intuitively, a set is necessary because different accesses to an array may refer

Wy = {(wl,wz)

to distinctly different regions of the array. Mathematically, many of the opera-
tors applied to array summaries result in non-convex regions, which cannot be
precisely described with a single system of inequalities. To maintain efficiency,
we merge systems of inequalities whenever we can guarantee no loss of informa-
tion will result. The following basic operations are defined on array summaries.
Operations marked * are not exact.

— Empty? (A =0) = Vaea (a = 0). A set of systems is empty iff all systems
in the set are empty. A system of inequalities 1s empty if there are no integer
solutions that satisfy the system. We use a Fourier-Motzkin pair-wise elim-
ination technique with branch-and-bound to check for the existence of an
integer solution to a system of inequalities. If no solution exists, the system
1s empty.

* Contained? ACB = V,caTven(a C b). A set of systems is contained in
another, iff each system in the first set is contained in a single system in the
other set. This is conservative as it may return a false negative. A system
of inequalities a is contained in a system of inequalities & if and only if a
combined with the negation of any single inequality of b is empty.

5—12

— Union AUB = {¢ | ¢ € A or ¢ € B}. The union of two sets of systems simply
unions the two sets, then simplifies the set using the following two heuristics:
e If there are two systems a and b in the set such that a C b, then a is
removed from the set.
e If two systems are rectilinear and adjacent, they are combined to form
a single system.
In practice, these heuristics keep the sets a manageable size and increase the
precision of the Contained? operator. Since the union of two convex regions
can result in a non-convex region, a set 1s necessary to maintain the precision
of the union operator.

— Intersection ANB ={anb|ac Aandbec B and anb#B}. The inter-
section of two sets of systems is the set of all non-empty pairwise intersections
of their elements. Intersection of two systems of inequalities simply concate-
nates the inequalities of the two systems.

* Subtraction A ~ B = {a~b ~...~b,|a€ Aand B={by...b,}}.
The subtraction of two sets of systems subtracts all systems of the second set
from each system in the first. Two systems are subtracted using a heuristic:
a ~ bis exact when and =0 or a C b or both are simple rectilinear systems;
otherwise it 1s approximated as a.

— Projections Proj(A, v) eliminates the variable v from the constraints of all
the systems in set A by applying the Fourier-Motzkin elimination technique
to each system. Each system a € A can be viewed as the integer points inside
a n-dimensional polytope whose dimensions are the variables of @ and whose
bounds are given by the inequalities of a; this polytope is projected into a
lower-dimensional (n — 1) space where the integer solutions of all remain-
ing dimensions remain unchanged. One use of projection is to summarize
the effects of array accesses within a loop. For example, for the system of
inequalities representing the access to array A shown above, projections are
used to generate systems of inequalities representing the array accesses for
each loop in the nest. In some cases, eliminating a variable may result in a
larger region than the actual region. In the example, eliminating the con-
straint wo = 21 + 2 will lose the information that ws must be even. For this
reason, analysis introduces an auxiliary « in W3 to retain this constraint.

. . 0<i<N—1 wy=2i42
WZIPTO](WMJ):{(WLW2) {2<w1<M—|—1 }}

. . 2 <wy < 2N, wy =2z
= Pt = {5 ST, T)

5.2 Array Reshapes

Interprocedural array analysis must provide precise results in the presence of
array reshapes at procedure boundaries, as when a slice of an array is passed
into a procedure, and as in ltnearization, when a multi-dimensional array in one
procedure is treated as a linear array in another. In the following example, FOO
passes BAR the Kth column of the array X. This 10000-element vector from F0O,
is manipulated as a 100 x 100 array in BAR.

5—13

SUBROUTINE FOO SUBROUTINE BAR(Y)

INTEGER X (10000, 10) INTEGER Y (100, 100)
e DO 9 I= 1,100
CALL BAR(X(1, K)) DO 9 J= 1,50
Y(I,3) = ...
9 CONTINUE

Mapping an array summary from callee to caller is not a simple rename
operation. We perform this mapping by deriving inequalities for the indices of
the actual parameter in terms of the indices of the formal parameter and use
the projection operation to eliminate the formal parameter’s indices.

We formalize the mapping of summary S for an n-dimensional formal array
parameter F, where A(ay,...,an) is passed at the call site and actual & is an
m-dimensional array, using the mapping function:

M(S,F b ar, .. am) = {(J1, .-y Jm) | Proj ({bp N by Nrpat NS, {in, ... in)}
Where

— i1,...,1, are variables representing the indices of accesses to array F.

— Ji,---,Jm are variables representing the indices of accesses to array A.

— bp is the set of bounds for the array F given by its type declaration. (Note
that the exact bounds of the outermost dimension are not required.)

— by is the set of bounds for the array A given by its type declaration.

— rpp describes the conditions under which an access F(iy, ..., 4,) in the proce-
dure and an access A(j1, ..., jm) in the callee refer to the same location. This
occurs when the memory offset of F(iy,. .., 4,) is equal to the memory offset
of A(j1, ..., Jm) minus the memory offset of 4(ay, ..., an). This relationship
between memory offsets is represented as an equality relation; other known
facts about variables used in the equality may be included in the system.

For the FOO, BAR example the mapping function is calculated using:

po = [1< 1 <100 p. — [1< <10000

F=l1<jy,<100(A= 1<iz<10 [

{100 % (jo — 1) 4 (j1 — 1) = 10000 * (iz — K) + (i1 — 1)
"FA T 1<K<10

Thus when when using the mapping function on the summary of the array Y at
the start of subroutine BAR:

, 1< iy < 5000
.. 1 <45 <100 .. -~
M({(]la]Z) { == }},Y,X,I,K)I (ZlaZZ) ZZIK

This approach handles precisely cases where complex numbers in one proce-
dure are treated as real numbers in another by modeling a complex number as
an array with two elements. Some reshapes are not handled precisely. If array
dimensions are unknown, for example, there 1s no linear relationship between the
indices of the actual and formal parameters, and unless the unknown dimensions
are identical, we must approximate.

5.3 Region-Based Analysis

The analysis of an array variables computes four distinct sets for each program
region. These sets are used by both the dependence and privatization tests to
determine the safety of parallelization. The data-flow sets for a given region R
are informally defined as follows:

Wgr — Write: portions of arrays possibly written within region R
Mp — Must Write: portions of arrays always written within region R
Rp — Read: portions of arrays possibly read within region R

Ep - Ezposed Read: portions of arrays whose reads are possibly

upwards exposed to the beginning of R

These sets are together computed as a 4-tuple transfer function using a back-
wards region-based analysis as described in Section 3. Because just the transfer
function itself is needed, the second phase of the region-based framework can be
omitted.

Transfer Functions. The side-effect transfer function of a region R on a partic-
ular array is represented as the 4-tuple

Sr =< Wg, Mg, Rr, Er >

where the elements are the sets informally defined as described above. The fol-
lowing operations are defined on S tuples:

— BasicBlockTF (b): result of composing read and write accesses in block b.
Read access: S =< §,0,{a},{a} >. Write access: S =< {a},{a},0,0 >.
where a is a system describing the access indices, rewritten in loop-relative
terms (from symbolic analysis), with relevant inequality constraints added.

— Composition: Sy o Sy =< Wy U W, My U Mo, Ry U Ra, By U (Es ~ My) >.

— Meet: ST A Sy =< Wi U Wz,Ml n Mz,Rl URQ,El UFEs >.

— Identity element: Tg =< (,0,0,0 >.

— Iteration: S? = S. The given loop index variable 7 is used to perform depen-
dence and privatization tests, as in the following section.

— Closure: S* =< Proj(W, L), Proj(M, L), Proj(R, L), Proj(E, L) >, where L
contains the loop index ¢ and other loop-modified variables.

— RetMap(S, callsite) =< MW,..), M(M,..), M(R,..),M(E,...) >, as

discussed 1n Section 5.2.

5.4 Dependence and Array Privatization Tests

To determine if array accesses allow the parallelization of a loop with index i,
dependence and privatization tests are performed on the summary sets for the

loop body R:

— There is no loop-carried: ' '
o True Dependence iff Wg|i* N Rp|;> N {i1 < iz} = ¢
o Anti Dependence iff Wg|i* N Rpli> 0 {i1 > 2} = ¢

5—15

e Output Dependence iff Wr[i* N Wr|2 0 {i1 < iz} = ¢
— Array Privatization is possible iff Wg|i* 0 Eg[* N {iy < iz} = ¢

A loop may be safely parallelized if there are no loop-carried true, anti or output
dependences. The array privatization test is applied only to the variables that
are involved in dependences to determine if privatization will eliminate these
dependences.

Our formulation of array privatization i1s an extension of Tu and Padua’s
algorithm|[21]. Tu and Padua recognize an array as privatizable only if there are
no upwards-exposed reads within the loop. Our algorithm is more general in
that upwards-exposed reads are acceptable as long as they do not overlap writes
in other iterations of the same loop.

5.5 Generating Executable Code With Array Privatization

It is straightforward to generate parallelized code for loops for which there are no
dependences, but in the presence of array privatization, the system must ensure
that initial and final values of the array are copied to and from the private copies.
If an array has upwards-exposed read regions, the compiler must copy these
regions into the private copy prior to execution of the parallel loop. If an array
1s live on exit of the loop, then after a parallel execution of the loop the array
must contain the same values as those obtained had the loop been executed
sequentially; we do not test array liveness on exit, so we limit privatization to
those cases where every iteration in the loop writes to exactly the same region of
data. To do so the analysis performs the following test to finalize a loop whose
index i has upper bound ub: If W = M |4®| the last loop iteration is peeled, and
this final iteration writes to the original array. Earlier iterations write to a private
copy of the array. No peeling is necessary if the compiler can guarantee that the
last processor executes the last iteration. Then the compiler can generate code
which simply writes to private copies in all the processors except the last one.

6 Array Reduction Recognition

A reduction occurs when a location i1s updated on each loop iteration with the
result of a commutative and associative operation applied to its previous contents
and some data value. A loop containing a reduction may be safely parallelized
since the ordering of the commutative updates need not be preserved.

We have implemented a simple, yet powerful approach to recognizing reduc-
tions, in response to the common cases we have encountered in experimenting
with the compiler. The reduction recognition, which is integrated with the ar-
ray analysis described in the previous section, finds reductions involving general
commutative updates to array elements, possibly spanning multiple procedures.

5—16

6.1 Reduction Recognition

We currently recognize reductions on scalar variables and array locations involv-
ing the operations +, %, MIN, and MAX. MIN (and, equivalently, MAX) reductions
of the form if (a(i) < tmin) tmin = a(i) are also supported.

The system looks for commutative updates to a single location A of the form
A = Aop..., where A is either a scalar variable or an array location and op
is one of the operations listed above. This approach allows any commutative
update to a single array location to be recognized as a reduction, even without
information about the array indices. We illustrate this point with an example
sparse matrix-vector multiply found in the NAS sample benchmark cgm:

DO 200 J =1, N
XJ = X))
DO 100 K = COLSTR(J) , COLSTR(J+1)-1
Y(ROWIDX(K)) = Y(ROWIDX(K)) + A(K) * XJ
100 CONTINUE
200 CONTINUE

Our system correctly determines that updates to Y are reductions on the outer
loop, even though Y is indexed by another array ROWIDX and so the array access
functions for Y are not affine expressions.

The reduction recognition analysis first locates commutative updates in a
loop body; it verifies that the only other reads and writes in the loop to the
same location are also commutative updates of the same type described by op.
A loop is parallelized if all dependences involve variables whose only accesses are
reduction operations of identical type.

In terms of our data-flow analysis algorithm, reduction recognition is initial-
ized by examining the code for commutative updates to the same array location.
Whenever an array element is involved in a commutative update, the array anal-
ysis derives summaries for the read and written subarrays and marks the system
of inequalities as a reduction of the type described by op. When meeting two
systems of inequalities during the interval analysis, the reduction types are also
met. The resulting system of inequalities will only be marked as a reduction if
both reduction types are identical.

6.2 Generating Executable Code With Reductions

For each variable involved in a reduction, the compiler makes a private copy
of the variable for each processor. The executable code for the loop containing
the reduction manipulates the private copy of the reduction variable in three
separate parts. First, the private copy is initialized prior to executing the loop
with the identity element for op (e.g., 0 for +). Second, the reduction operation
is applied to the private copy within the parallel loop. Finally, the program
performs a global accumulation following the loop execution whereby all non-
identity elements of the local copies of the variable are accumulated into the
original variable. Synchronization locks are used to guard accesses to the original
variable to guarantee that the updates are atomic.

5—17

Loops|Parallel|Parallel
Programs|w/ calls| (Fida)| (SUIF)
SPEC89:
doduc 19 2 7
matrix300 11 0 8
nasa? 8 0 0
tomcatv 0 0 0
PERFECT:
adm 35 * 4
arc2d 1 0 0
bdna 9 0 1
dyfesm 21 0 6
flo52q 9 7 7
mdg 7 0 2
mg3d 12 0 0
ocean 12 0 0
qed 40 0 0
spec’7 35 * 18
track 18 1 1
trfd 6 0 0
Total 234 10 54

Fig. 2. Static loop count comparison of our system with FiDa.

7 Experience with this System

This system has been used as an experimental platform in an extensive empirical
evaluation of the effectiveness of automatic parallelization technology. The full
results are presented elsewhere [7], but we present a few highlights in this section.

We have compared the results of our interpocedural analysis with the Fipa
system (Full Interprocedural Data-Flow Analysis), an interprocedural system
that performs precise flow-insensitive array analysis [10] (see Section 2). The
FiDa system was the first to measure how interprocedural analysis on full appli-
cations (from the PERFECT and SPEC89 benchmark suites) affects the number
of parallel loops that the system can automatically recognize. We compare how
many loops containing procedure calls are parallelized using the two systems in
Figure 2. The SUIF system is able to locate greater than 5 times more parallel
loops than Fipa. This marked difference is due to the additional array analysis
techniques employed in our system, and the tight integration with comprehensive
interprocedural scalar analysis.

As part of our evaluation, we have measured the importance of the individual
techniques employed in this system but not available in current commercial
systems. In particular, we have measured how much the advanced array analyses
for privatization and reduction recognition and the interprocedural array analysis
on advanced array analyses impact the results of parallelization. We have found
that these techniques are essential to achieving any speedup on three of the

5—18

twelve SPECI2F P programs, four of the eight Nas sample benchmarks and two
of the thirteen PERFECT benchmarks.

8 Conclusions

This paper has described the analyses in a fully interprocedural automatic par-
allelization system. This system has been used in an extensive experiment that
has demonstrated that interprocedural data-flow analysis, array privatization
and reduction recognition are key technologies that greatly improve a parallel-
izing compiler’s ability to locate coarse-grain parallel loops. Through our work,
we discovered that the effectiveness of an interprocedural parallelization sys-
tem depends on the strength of all the individual analyses, and their ability to
work together in an integrated fashion. This comprehensive approach to paral-
lelization analysis is why our system has been much more effective at automatic
parallelization than previous interprocedural systems and commercially available
compilers.

For some programs, our analysis is sufficient to find the available parallelism.
For other programs, it seems impossible or unlikely that a purely static anal-
ysis could discover parallelism—either because correct parallelization requires
dynamic information not available at compile time or because it is too difficult
to analyze. In such cases, we might benefit from some support for run-time par-
allelization or user interaction. The aggressive static parallelizer we have built
will provide a good starting point to investigate these techniques.

Acknowledgements. The authors wish to thank Patrick Sathyanathan and Alex
Seibulescu for their contributions to the design and implementation of this sys-
tem, and the rest of the SUIF group, particularly Jennifer Anderson and Chris
Wilson, for providing support and infrastructure upon which this system is built.

References

1. J. P. Banning. An efficient way to find the side effects of procedure calls and the
aliases of variables. In Proceedings of the Sizth Annual Symposium on Principles
of Programming Languages. ACM, January 1979.

2. B. Blume, R. Eigenmann, K. Faigin, J. Grout, Jay Hoeflinger, D. Padua,
P. Petersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris:
The next generation in parallelizing compilers. In Proceedings of the Seventh An-
nual Workshop on Languages and Compilers for Parallel Computing, August 1994.

3. W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on
the Perfect Benchmarks programs. IEFFE Transactions on Parallel and Distributed
Systems, 3(6):643-656, November 1992.

4. K. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning.
Computer Languages, 19(2), April 1993.

5. B. Creusillet and F. Irigoin. Interprocedural array region analyses. In Proceed-
ings of the 8th International Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, August 1995.

5—19

6. M. W. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. FIAT: A framework
for interprocedural analysis and transformation. In Proceedings of the Sixth Work-
shop on Languages and Compilers for Parallel Computing, Portland, OR, August
1993.

7. M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam. Detecting
coarse-grain parallelism using an interprocedural parallelizing compiler. In Pro-
ceedings of Supercomputing 95, December 1995.

8. W.L. Harrison. The interprocedural analysis and automatic parallelization of
Scheme programs. Lisp and Symbolic Computation, 2(3/4):179-396, October 1989.

9. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350—
360, July 1991.

10. M. Hind, M. Burke, P. Carini, and S. Midkiff. An empirical study of precise inter-
procedural array analysis. Scientific Programming, 3(3):255-271, 1994.

11. F. Irigoin. Interprocedural analyses for programming environments. In NSF-
CNRS Workshop on Evironments and Tools for Parallel Scientific Programming,
September 1992.

12. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization:
An overview of the PIPS project. In Proceedings of the 1991 ACM International
Conference on Supercomputing, Cologne, Germany, June 1991.

13. J. Kam and J. Ullman. Global data flow analysis and iterative algorithms. Journal
of the ACM, 23(1):159-171, January 1976.

14. W. Landi and B.G. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In SIGPLAN 92 Conference on Programming Language Design
and Implementation, SIGPLAN Notices 27(7), pages 235-248, July 1992.

15. Z. La and P. Yew. Efficient interprocedural analysis for program restructuring for
parallel programs. In Proceedings of the ACM SIGPLAN Symposium on Parallel
Programming: Experience with Applications, Languages, and Systems (PPEALS),
New Haven, CT, July 1988.

16. E. Myers. A precise inter-procedural data flow algorithm. In Conference Record
of the Eighth Annual Symposium on Principles of Programming Languages. ACM,
January 1981.

17. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Ap-
plications. Prentice Hall Inc, 1981.

18. O. Shivers. Control-Flow Analysis of higher-order languages. PhD thesis, Carnegie
Mellon University, School of Computer Science, Pittsburgh, PA, May 1991.

19. J. P. Singh and J. .. Hennessy. An empirical investigation of the effectiveness of
and limitations of automatic parallelization. In Proceedings of the International
Symposium on Shared Memory Multiprocessors, Tokyo, Japan, April 1991.

20. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, SIGPLAN
Notices 21(7), pages 176-185. ACM, July 1986.

21. P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sizth
Workshop on Languages and Compilers for Parallel Computing, Portland, OR,
August 1993.

This article was processed using the IATpX macro package with LLNCS style

5—20

