
Compiler-Directed Cache Polymorphism �
J. S. Hu, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, H. Saputra and W. Zhang

Microsystems Design Lab
Pennsylvania State University

University Park, PA 16802.

ABSTRACTClassical compiler optimizations assume a �xed cache archi-tecture and modify the program to take best advantage of it.In some cases, this may not be the best strategy because eachloop nest might work best with a di�erent cache con�gurationand transforming a nest for a given �xed cache con�gurationmay not be possible due to data dependences. Working witha �xed cache con�guration can also increase energy consump-tion in loops where the best required con�guration is smallerthan the default (�xed) one. In this paper, we take an alter-nate approach and modify the cache con�guration for eachnest depending on the access pattern exhibited by the nest.We call this technique compiler-directed cache polymorphism(CDCP). More speci�cally, in this paper, we make the follow-ing contributions. First, we present an approach for analyzingdata reuse properties of loop nests. Second, we give algo-rithms to simulate the footprints of array references in theirreuse space. Third, based on our reuse analysis, we present anoptimization algorithm to compute the cache con�gurationsfor each nest. Our experimental results show that CDCP isvery e�ective in �nding the near-optimal data cache con�gu-rations for di�erent nests in array-intensive applications.
Categories and Subject DescriptorsB.3 [Hardware]: Memory Structures; D.3.4 [ProgrammingLanguages]: Processors|Compilers;Optimization
General TermsAlgorithms, Design, Experimentation, Performance
KeywordsEmbedded software, compilers, cache polymorphism, data reuse,cache locality, energy consumption.�This work was supported in part by grants fromPDG, National Science Foundation grants CAREER0093082&0093085, 0103583, 0082064 and a GSRC grant.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02,June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

1. INTRODUCTIONMost of today's microprocessor systems include several spe-cial architectural features (e.g., large on-chip caches) that usea signi�cant fraction of on-chip transistors. These complexand energy-hungry features are meant to be applicable acrossdi�erent application domains. However, they are e�ectivelywasted for applications that cannot fully utilize them, as theyare implemented in a rigid manner. For example, not all theloops in a given array-based embedded application can takeadvantage of a large on-chip cache. Also, working with a �xedcache con�guration can increase energy consumption in loopswhere the best required con�guration (from the performanceangle) is smaller than the default (�xed) one. This is becausea larger cache can result in a large per access energy.The conventional approach to address the locality prob-lem for caches (that is, the problem of maximizing the num-ber of cache hits) is to employ compiler optimization tech-niques [8]. Current compiler techniques generally work underthe assumption of a �xed cache memory architecture, andtry to modify the program behavior such that the new be-havior becomes more compatible with the underlying cachecon�guration. However, there are several problems with thismethod. First, these compiler-directed modi�cations some-times are not e�ective when data dependences prevent nec-essary program transformations. Second, the available cachespace sometimes cannot be utilized e�ciently, because thestatic con�guration of cache does not match di�erent require-ments of di�erent programs and/or of di�erent portions ofthe same program. Third, most of the current compiler tech-niques (adapted from scienti�c compilation domain) do nottake energy issues into account in general.An alternative approach to the locality problem is to use re-con�gurable cache structures and dynamically tailor the cachecon�gurations to meet the execution pro�le of the applicationat hand. This approach has the potential to address the lo-cality problem in cases where optimizing the application codealone fails. However, previous research on this area [1, 9] ismainly focused on the implementation and the employmentmechanisms of these designs, and lacks software-based tech-niques to direct dynamic cache recon�gurations. Recently, acompiler-directed scheme to adapt the cache assist was pro-posed in [6]. Our work focuses on the cache as opposed to thecache assist.In this paper, we propose a strategy where an optimizingcompiler decides the best cache con�guration for each nestin the application code. More speci�cally, in this paper, wemake the following contributions. First, we present techniquesfor analyzing the data reuse properties of a given loop nest

and constructing formal expressions of these reuse patterns.Second, we develop algorithms to simulate the footprints ofarray references. Our simulation approach is much more ef-�cient than classical cycle-based simulation techniques as itsimulates only data reuse space. Third, we develop an opti-mization algorithm for computing the optimized cache con�g-urations for each loop nest. We also provide a program levelalgorithm for selecting dynamic cache con�gurations. We fo-cus on the behavior of array references in loop nests as loopnests are the most important part of array-intensive mediaand signal processing application programs. In most cases,the computation performed in loop nests dominates the ex-ecution time of these programs. Thus, the behavior of theloop nests determines both performance and energy behaviorof applications. Previous research [8] shows that the perfor-mance of loop nests is directly in
uenced by the cache behav-ior of array references. Also, recently, energy consumption hasbecome an important issue in embedded systems [9]. Conse-quently, determining a suitable combination of cache memorycon�guration and optimized software is a challenging problemin embedded design world.The rest of this paper is organized as follows. Section 2 re-views basic concepts, notions, and representations for array-based codes. In Section 3, concepts related to cache behaviorsuch as cache misses, interferences, data reuse, and data local-ity are analyzed. Section 4 introduces our compiler-directedcache polymorphism technique, and presents a complete setof algorithms to implement it. We present experimental re-sults in Section 5 to show the e�ectiveness of our technique.Finally, Section 6 concludes the paper with a summary anddiscusses some future work on this topic.
2. ARRAY-BASED CODESThis paper is particularly targeted at the array-based codes.Since the performance of loop nests dominates the overall per-formance of the array-based codes, optimizing nests is par-ticularly important for achieving best performance in manyembedded signal and video processing applications. Optimiz-ing data locality (so that the majority of data references aresatis�ed from the cache instead of main memory) can improvethe performance and energy e�ciency of loop nests in the fol-lowing ways. First, it can signi�cantly reduce the number ofmisses in data cache, thus avoiding frequent accesses to lowermemory hierarchies. Second, by reducing the number of ac-cesses to the lower memory hierarchies, the increased cache hitrate helps promote the energy e�ciency of the entire memorysystem. In this section, we discuss some basic notions aboutarray-based codes, loop nests, array references as well as someassumptions we made.
2.1 Representation for ProgramsWe assume that the application code to be optimized hasthe format which is shown in Figure 1.Assumption 1. Each array in the application code beingoptimized is declared in the global declaration section of theprogram. The arrays declared in the global section can be ref-erenced by any loop in the code.This assumption is necessary for our algorithms that willbe discussed in following sections. In the optimization stageof computing the cache con�guration for the loop nests, As-sumption 1 ensures an exploitable relative base address ofeach array involved.

#include < header:h >� � �Global Declaration Section of Arrays;� � �main(int argc, char *argv[])f � � �Loop Nest No. 0;� � �Loop Nest No. 1;...Loop Nest No. l;� � �g Figure 1: Format for a Program.for(i1 = l1; i1 � u1; i1+ = s1)for(i2 = l2; i2 � u2; i2+ = s2)� � �for(in = ln; in � un; in+ = sn)f � � �AR1[f1;1(~i)][f1;2(~i)] � � � [f1;d1 (~i))] � � � ;� � �AR2[f2;1(~i)][f2;2(~i)] � � � [f2;d2 (~i))] � � � ;...� � �ARr[(fr;1(~i)][fr;2(~i)] � � � [fr;dr (~i))] � � � ;g Figure 2: Format for a Loop Nest.Since loop nests are the main structures in array-based pro-grams, program codes between loop nests can be neglected.We also assume that each nest is independent from the oth-ers. That is, as shown in Figure 1, the application containsa number of independent nests, and no inter-loop-nest datareuse is accounted for. This assumption can be relaxed toachieve potentially more e�ective utilization of recon�gurablecaches. This will be one of our future research. Note that sev-eral compiler optimizations such as loop fusion, �ssion, andcode sinking can be used to bring a given application codeinto our format [12].Assumption 2. All loop nests are at the same program lex-ical level, the global level. There is no inter-nesting betweenany two di�erent loop nests.Assumption 3. All nests in the code are perfectly-nested,i.e., all array operations and array references only occur atthe innermost loop.These assumption, while not vital for our analysis, make ourimplementation easier. We plan to relax these in our futurework.
2.2 Representation for Loop NestsIn our work, loop nests form the boundaries at which dy-namic cache recon�gurations occur. Figure 2 shows the for-mat for a loop nest.In this format, ~i stands for the loop index vector, ~i =(i1; i2; � � � ; in)T . Notations lj ; uj and sj are the correspond-ing lower bound, upper bound, and stride for each loop indexij , where j = 1; 2; � � � ; n. AR1, AR2, � � � , and ARr corre-spond to di�erent instances of array references in the nest.Note that these may be same or di�erent references to thesame array, or di�erent references to di�erent arrays. Func-tion fj;k(~i) is the subscript (expression) function (of~i) for the

kth subscript of the jth array reference, where j = 1; 2; � � � ; r,k = 1; 2; � � � ; dk, and dk is the number of dimensions for thecorresponding array.
2.3 Representation for Array ReferencesIn a loop nest with the loop index vector~i, a reference ARjto an array with m dimensions is expressed as:ARj [fj;1(~i)][fj;2(~i)] � � � [fj;m(~i)]:We assume that the subscript expression functions fj;k(~i) area�ne functions of the loop indices and loop-invariant con-stants. A row-major storage layout is assumed for all arraysas in C language. Assuming that the loop index vector isan n depth vector; that is, ~i = (i1; i2; � � � ; in)T , where n isthe number of loops in the nest, an array reference can berepresented as:0BBB@ fj;1fj;2...fj;m 1CCCA = 0BBB@ a11 a12 � � � a1na21 a22 � � � a2n...am1 am2 � � � amn 1CCCA0BBB@ i1i2...in 1CCCA+0BBB@ c1c2...cm 1CCCA(1)The vector at the left side of the above equation is calledarray reference subscript vector ~f . The matrix above is de-�ned as access matrix A. The rightmost vector is known asthe constant o�set vector ~c. Thus, the above equation can bealso written as [12]: ~f = A~i+ ~c (2)
3. CACHE BEHAVIORIn this section, we review some basic concepts about cachebehavior. As noted earlier, in array-intensive applications,cache behavior is largely determined by the footprints of thedata manipulated by loop nests. In this paper, we �rst pro-pose an algorithm for analyzing the cache behavior for di�er-ent arrays and di�erent array references in a given loop nest.Based on the information gathered from this analysis, we thenpropose another algorithm to compute the cache memory de-mand in order to achieve a perfect cache behavior for the loopnest being analyzed, and suggest a cache con�guration.
3.1 Cache MissesThere are three types of cache misses: compulsory (cold)misses, capacity misses, and con
ict (interference) misses.Di�erent types of misses in
uence the performance of pro-gram in di�erent ways. Note that, most of the data cachesused in current embedded systems are implemented as set-associative caches or direct-mapping caches in order to achievehigh speed, low power, and low implementation cost. Thus,for these caches, interference misses can dominate the cachebehavior, particularly for array-based codes. It should bestressed that since the cache interferences occur in a highlyirregular manner, it is very di�cult to capture them accu-rately [11]. Ghosh et al. proposed cache miss equations in [4]as an analytical framework to compute potential cache missesand direct code optimizations for cache behavior.
3.2 Data Reuse and Data LocalityData reuse and data locality concepts are discussed in [12]in detail. Basically, there are two types of data reuses: tempo-ral reuse and spatial reuse. In a given loop nest, if a reference

accesses the same memory location across di�erent loop iter-ations, this is termed as temporal reuse; if the reference ac-cesses the same cache block (not necessarily the same memorylocation), we call this spatial reuse. We can consider temporalreuse is a special case of spatial reuse. If there are di�erentreferences accessing the same memory location, we say that agroup-temporal reuse exists; whereas if di�erent references areaccessing the same cache block, it is termed as group-spatialreuse. Note that group reuse only occurs among di�erent ref-erences of the same array in a loop nest. When the reuseddata item is found in the cache, we say that the reference ex-hibits locality. This means that data reuse does not guaranteedata locality. We can convert a data reuse into locality onlyby catching the reused item in cache. Classical loop-orientedcompiler techniques try to achieve this by modifying the loopaccess patterns.
4. ALGORITHMS FOR CACHE POLYMOR-

PHISMThe performance and energy behavior of loop nests arelargely determined by their cache behavior. Thus, how to op-timize the cache behavior of loop nests is utmost importantfor satisfying high-performance and energy e�ciency demandsof array-based codes.There are at least two kinds of approaches to perform op-timizations for cache behavior. The conventional way is com-piler algorithms that transform loops using interchange, re-versal, skewing, and tiling transformations, or transform thedata layout to match the array access pattern. As mentionedearlier, the alternative approach is to modify the underlyingcache architecture depending on the program access pattern.Recent research work [7] explores the potential bene�ts fromthe second approach. The strategy presented in [7] is based onexhaustive simulation. The main drawback of this simulation-based strategy is that it is extremely time consuming and canconsider only a �xed set of con�gurations. Typically, simulat-ing each nest with all possible cache con�gurations makes thisapproach unsuitable for practice. In this section, we presentan alternative way for determining the suitable cache con�g-urations for di�erent sections (nests) of a given code.
4.1 Compiler-directed Cache PolymorphismThe existence of cache interferences is the main factor thatdegrades the performance of a loop nest. Cache interfer-ences disrupt the data reuse in a loop nest by preventing datareuse from being converted into locality. Note that both self-interferences or cross-interferences can prevent a data itemfrom being used while it is still in the cache. Our objective isthen to determine the cache con�gurations that help reduceinterferences. The basic idea behind the compiler-directedcache polymorphism (CDCP) is to analyze the source code ofan array-based program and determine data reuse character-istics of its loop nests at compile time, and then to compute asuitable (near-optimal) cache con�guration for each loop nestto exploit the data locality implied by its reuse. The near-optimal cache con�guration determined for each nest elimi-nates most of the interference misses while keeping the cachesize and associativity under control. In this way, it optimizesexecution time and energy at the same time. In fact, in-creasing either cache capacity or associativity further onlyincreases energy consumption. In this approach, the sourcecodes are not modi�ed (obviously, they can be optimized be-

for(i = 0; i � N1; i ++)for(j = 0; j � N2; j ++)for(k = 0; k � N3; k ++)for(l = 0; l � N4; l ++)f a[i + 2 � k][2 � j + 2][l] = a[i + 2 � k][2 � j][l];b[j][k + l][i] = a[2 � i][k][l];gFigure 3: Example Code { a Loop Nest.fore our algorithms are run; what we mean here is that we donot do any further code modi�cations for the sake of cachemorphism).At the very high level, our approach can be described asfollows. First, we use compiler to transform the source codesinto an intermediate format. In the second step, each loopnest is processed as a basic element for cache con�guration.In each loop nest, references of each array are assigned intodi�erent uniform reference sets. Each uniform set is then an-alyzed to determine the reuse they exhibit over di�erent looplevels. Then, for each array, an algorithm is used to simulatethe footprints of the reuse space within the layout space ofthis array. Following this, a loop nest level algorithm opti-mizes the cache con�gurations while ensuring data locality.Finally, the code is generated such that these dynamic cachecon�gurations are activated at runtime (in appropriate pointsin the application code).
4.2 Array References and Uniform Reference

SetsEvery array reference is expressed in Equation 2, ~f = A~i+~c,in which ~f is the subscript vector, A is the access matrix, ~iis the loop index vector and ~c is the constant vector. Allthe information are stored in the array reference leaf, arraynode and its parent loop-nest node of the intermediate codes.Consider a piece of code in Figure 3, which is a loop nest:The �rst reference of array a is represented by the followingaccess matrix Aa and constant o�set vector �!ca ,Aa : 0@ 1 0 2 00 2 0 00 0 0 1 1A ;�!ca : 0@ 020 1A :The reference to array b is also represented by its access ma-trix Ab and constant o�set vector �!cb :Ab : 0@ 0 1 0 00 0 1 11 0 0 0 1A ;�!cb : 0@ 000 1A :The de�nition of uniform reference set is very similar tothe uniformly generated set [3]. If two references to an arrayhave the same access matrix and only di�er in constant o�setvectors, these two references are said to belong to the sameuniform reference set. Constructing uniform reference sets foran array provides an e�cient way for analyzing the data reusefor the said array. This is because all references in an uniformreference set have same data access patterns and data reusecharacteristics. Also, identifying uniform reference sets allowsus to capture group reuse easily.
4.3 Algorithm for Reuse AnalysisIn the following sections, we use a bottom-up approachto introduce the algorithms for implementing our compiler-

INPUT: access matrix Am�n of a uniform reference setarray node, loop-nest nodea given cache block size: BK SZOUTPUT: self-reuse pattern vector ���!SRPn of this uniform setBeginInitial self-reuse pattern vector: ���!SRPn = ~0Set current loop level CLP to be the innermost loop:CLP = nDoSet current dimension level CDN to be the highestdimension: CDN = 0Set index occurring
ag IOF : IOF = FALSEDoIf Element in access matrix A[CDN][CLP] 6= 0Set IOF = TRUEBreakGo up to the next lower dimension levelWhile CDN == the lowest dimensionIf IOF == FALSESet reference has temporal reuse at this level:SRP [CLP] = TEMP-REUSEElse If CDN == mIf A[CDN][CLP] � s[CLP] < BK SZ=ELMT SZSet reference has spatial reuse at this level:SRP [CLP] = SPAT-REUSEGo up to the next higher loop levelWhile CLP == the outermost loop levelEnd.Figure 4: Algorithm 1: Self-Reuse Analysis.directed cache polymorphism technique. First, algorithms an-alyzing the data reuses including self-reuses and group-reusesare provided for each uniform reference set in this subsection.
4.3.1 Self-Reuse AnalysisBefore the reuse analysis, all references of an array in a loopnest are �rst constructed into several uniform reference sets.Self-reuses (both temporal and spatial) are analyzed at thelevel of uniform set. This algorithm works on access matrix.The detailed algorithm is shown in Figure 4.This algorithm checks each loop index variable from theinnermost loop to the outermost loop to see whether it oc-curs in the subscript expressions of the references. If the jthloop index variable ij does not occur in any subscript expres-sion, the re
ection in access matrix is that all elements inthe jth column are 0. This means that the iterations at thejth loop do not change the memory location accessed, i.e.,the array reference has self-temporal reuse in the jth loop.If the index variable only occurs in the lowest (the fastest-changing) dimension (i.e., the mth dimension), the distancebetween the contiguous loop iterations is checked. In the al-gorithm, s[CLP] is the stride of the CLP th loop, BK SZ isa given cache block size and ELMT SZ is the size of arrayelements. If the distance (A[CDN][CLP] � s[CLP]) betweentwo contiguous iterations of this reference is within a cacheblock, it has spatial reuse in this loop level.
4.3.2 Group-Reuse AnalysisGroup reuses only exist among references in the same uni-form reference set. Group-temporal reuse occurs when di�er-ent references access the same data location across the loopiterations, while group-spatial reuse exists when di�erent ref-erences access the same cache block in the same or di�erentloop iterations. Algorithm 2 in Figure 5 exploits a simpli�edversion of group reuse which only exists in one loop level.When a group-spatial reuse is found at a particular looplevel, the algorithm in Figure 5 �rst checks whether this level

INPUT: a uniform reference set with A and ~csarray node, loop-nest nodea given cache block size: BK SZOUTPUT: group-reuse pattern vector ����!GRPn of this uniform setBeginInitial group-reuse pattern vector: ����!GRPn = ~0For each pair of constant vectors ~c1 and ~c2If ~c1 and ~c2 only di�er at the jth elementSet init dist = j c1[j]� c2[j] jCheck the jth row in access matrix AFind the �rst occurring loop index variable (non-zeroelement) starting from the innermost loop, say ikIf k < 1If j == m and init dist < BK SZ=ELMT SZContinueElseCheck the kth column of access matrix AIf ik only occurs in the jth dimensionIf j == m //m is the lowest dimension of arrayIf init dist%A[k][m] == 0Set GRP[k] = TEMP-REUSEElse If GRP[k] == 0Set GRP[k] = SPAT-REUSEElse //j < mIf init dist%A[k][m] == 0Set GRP[k] = TEMP-REUSEEnd.Figure 5: Algorithm 2: Group-Reuse Analysis.has group-temporal reuse for other pairs of references. If itdoes not have such reuse, this level will be set to have group-spatial reuse. Otherwise, it just omits the current reuse found.For group-temporal reuse found at some loop level, the ele-ment corresponding to that level in the group-reuse vector���!GRPn will be directly set to have group-temporal reuse.Now, for each array and each of its uniform reference setsin a particular loop nest, using Algorithm 1 and Algorithm2, the reuse information at each loop level can be collected.As for the example code in subsection 4.3, references to arraya have self-spatial reuse at loop level l, self-temporal reuseat loop level j and group reuse at loop level j. Reference ofarray b has self-spatial reuse at loop level i.Note that, in contrast to the most of the previous work inreuse analysis (e.g., [12]), this approach is simple and com-putes reuse information without solving a system of equations.
4.4 Simulating the Footprints of Reuse SpacesThe next step in our approach is to transform those datareuses into real data localities. A straightforward idea is tomake the data cache large enough to hold all the data in thesereuse spaces of the arrays. Note that data which are out ofreuse spaces are not necessary to be kept in cache after the�rst reference since there is no reuse for those data. As dis-cussed earlier, the cache interferences can signi�cantly a�ectthe overall performance of a nest. Thus, the objective of ourtechnique is to �nd a near-optimal cache con�guration, whichcan reduce or eliminate the majority of the cache interferenceswithin a nest. An informal de�nition of a near-optimal cachecon�guration is as follows:Definition 1. A near-optimal cache con�guration is thepossibly smallest cache in size and associativity which achievesa near-optimal number of cache misses. And, any increase ineither cache size or associativity over this con�guration doesnot deliver further signi�cant improvement.In order to �gure out such a near-optimal cache con�gu-ration that would contain the entire reuse space for a loop

nest, the real cache behavior in these reuse spaces must bemade available for potential optimizations. In this section,we provide an algorithm that simulates the exact footprints(memory addresses) of array references in their reuse spaces.Suppose, for a given loop index vector ~i, an array refer-ence with a particular value of ~i = (i1; i2; � � � ; in)T can beexpressed as follows:f(~i) = SA+ Cof1 � i1 + Cof2 � i2 + � � �+ Cofn � in: (3)Here, SA is starting address of the array reference, whichis di�erent from the base address (the memory address ofthe �rst array element) of an array. It is the constant partof the above equation. Suppose that the data type size ofthe array elements is elmt sz, the depth of dimension is m,the dimensional bound vectors are �!dlm = (dl1; dl2; � � � ; dlm)T ,��!dum = (du1; du2; � � � ; dum)T , and the constant o�set vector~c = (c1; c2; � � � ; cm)T , SA is derived from the following equa-tion:SA = elmt sz � mXj=1 m+1Yk=j+1 ddk � cj ; ddk = �1; k = m+ 1duk � dlk; k � m(4)Cofj(j = 1; 2; � � � ; n) are integrated coe�cients of the loopindex variables. Suppose the access matrix is Am�n, Cofj isderived as follows:Cofj = elmt sz � mXl=1 m+1Yk=l+1 ddk � alj ; ddk = �1; k = m+ 1duk � dlk; k � m(5)Note that, with Equation 3, the address of an array refer-ence at a particular loop iteration can be calculated as theo�set in the layout space of this array. The algorithm pro-vided in this section is using these formulations to simulatethe footprints of array references at each loop iteration withintheir reuse spaces. Following two observations give some basisas to how to simulate the reuse spaces.Observation 1. In order to realize the reuse carried by theinnermost loop, only one cache block is needed for this arrayreference.Observation 2. In order to realize the reuse carried bya non-innermost loop, the minimum number of cache blocksneeded for this array reference is the number of cache blocksthat are visited by the loops inner than it.Since we have assumed that all subscript functions are a�ne,for any array reference, the patterns of reuse space duringdi�erent iterations at the loop level which has the reuse areexactly the same. Thus, we only need to simulate the �rstiteration of the loop having the reuse currently under ex-ploiting. For example, loop level j in loop vector ~i has thereuse we are exploiting, the simulation space is de�ned asSMSj = (i1 = l1; i2 = l2; � � � ; ij = lj ; ij+1; � � � ; in), in whichik>j varies from its lower bound lk to upper bound uk.Algorithm 3 (shown in Figure 6) �rst calls Algorithms 1 and2. Then, it simulates the footprints of the most signi�cantreuse space for an array in a particular loop nest. Thesefootprints are marked with a array bitmap.
4.5 Computation and Optimization of Cache

Configurations for Loop Nests

INPUT: an array node, a loop-nest nodea given cache block size: BK SZOUTPUT: an array-level bitmap for footprintsBeginInitial array size AR SZ in number of cache blocksAllocate an array-level bitmap ABM with size AR SZand initial ABM to zerosInitial the highest reuse level RS LEV = n//n is the depth of loop nestFor each uniform reference setCall Algorithm 1 for self-reuse analysisCall Algorithm 2 for group-reuse analysisSet URS LEV = highest reuse level of this setIf RS LEV > URS LEVSet RS LEV = URS LEVIf RS LEV == nFor all references of this arraySet ~i = ~l//only use the lower boundapply equation 3 to get the reference address f(~i)transfer to block id: bk id = f(~i)=BK SZset array bitmap: ABM [bk id] = V ISITEDElseFor all loop indexes ij , j > RS LEVvaries the value of ij from lower bound to upper boundFor all references of this arrayapply equation 3 to get the reference address f(~i)transfer to block id: bk id = f(~i)=BK SZset array bitmap: ABM [bk id] = V ISITEDEnd.Figure 6: Algorithm 3: Simulation of Footprints inReuse Spaces.In previous subsections, the reuse spaces of each array ina particular loop nest have been determined and their foot-prints have also been simulated in the layout space of eacharray. Each array has a bitmap indicating the cache blockswhich have been visited by the iterations in reuse spaces afterapplying Algorithm 3. As we discussed earlier, the phenom-ena of cache interferences can disturb these reuses and preventthe array references from realizing data localities across loopiterations. Thus, an algorithm that can reduce these cacheinterferences and result in better data localities within thereuse spaces is crucial.In this subsection, we provide a loop-nest level algorithm toexplicitly �gure out and display the cache interferences amongdi�erent arrays accessed within a loop nest. The main pointof this approach is to map the reuse space of each array intothe real memory space. At the same time, the degree of con-
ict (number of interferences among di�erent arrays) at eachcache block is stored in a loop-nest level bitmap. Since theself-interference of each array is already solved by Algorithm3 using an array bitmap, this algorithm mainly focuses onreducing the group-interference that might occur among dif-ferent arrays. As is well-known, one of the most e�ective wayto avoid interferences is to increase the associativity of datacache, which is used in this algorithm. Based on the de�ni-tion of near-optimal cache con�guration, this algorithm triesto �nd the smallest data cache with smallest associativity thatachieves signi�cantly reduced cache interferences and nearlyperfect performance of the loop nest. Figure 7 shows the de-tailed algorithm (Algorithm 4) that computes and optimizesthe cache con�guration.For a given loop nest, Algorithm 4 starts with the cacheblock size (BK SZ) from its lower bound, e.g., 16 bytes andgoes up to its upper bound, e.g., 64 bytes. At each particularBK SZ, it �rst applies Algorithm 3 to obtain the array bitmapABM of each array. Then it allocates a loop-nest level bitmap

INPUT: loop-nest nodeglobal list of arrays declaredlower bound of block size: Bk SZ LBupper bound of block size: Bk SZ UBOUTPUT: optimal cache con�gurations at di�. BK SZBeginSet BK SZ = BK SZ LB (lower bound)DoFor each array in this loop nestCall algorithm 3 to get the array bitmap ABMcreate and initial a loop-nest level bitmap LBM,with the size is the smallest 2n that is �the size of the largest array (in block): LBM sizeFor each array bitmap ABMmap ABM into the loop-nest bitmap LBMwith the relative base-address of array: base addrto indicate the degree of con
ict at each blockFor block id < array sizeLBM [(block id+ base addr)%LBM size]+ =ABM [block id]set assoc = the largest degree of con
ict in LBMset cache sz = assoc � LBM sizeset optimal cache conf. to current cache conf.For assoc < assoc upper boundhalf the number of sets of current cache byLBM size= = 2For i � LBM sizeLBM [i]+ = LBM [i + LBM size]set assoc = highest value of LBM [i]; i � LBM sizeset cache size = assoc � LBM sizeIf assoc < assoc upper boundand cache size < optimal cache sizeset optimal cache conf. to current cache conf.give out optimal cache conf. at BK SZdoubling BK SZ� = 2while BK SZ > BK SZ UB (upper bound)End.Figure 7: Algorithm 4: Compute and Optimize CacheCon�gurations for Loop Nests.LBM for all arrays within this nest, whose size is the smallestvalue in power of 2 that is greater or equal to the largestarray size. All ABMs are remapped to this LBM with theirrelative array base addresses. The value of each bits in LBMindicates the con
ict at a particular cache block. Followingthis, the optimization is carried out by halving the size ofLBM and remapping LBM . The largest value of bits inLBM also shows the smallest cache associativity needed toavoid the interference in the corresponding cache block. Thisprocess is ended when the upper bound of associavitity is met.A near-optimal cache con�guration at block size BK SZ iscomputed as the one which has smallest cache size as well asthe smallest associativity.
4.6 Global Level Cache PolymorphismThe compiler-directed cache polymorphism technique doesnot make changes to the source code. Instead, it uses compileronly for source code parsing and generates internal code withthe intermediate format which is local to our algorithms. Aglobal or program level algorithm, Algorithm 5 (in Figure 8)is presented in this subsection to obtain the directions (cachecon�gurations for each nest of a program) of the cache recon-�guration mechanisms.This algorithm �rst generates the intermediate format ofthe original code and collects the global information of arraysin source code. After that, it applies Algorithm 4 to each of itsloop nests and obtains the near-optimal cache con�gurationsfor each of them. These con�gurations are stored in the cache-con�guration list (CCL). Each loop nest has a corresponding

INPUT: source code(.spd)OUTPUT: Performance data and its cache con�gurationsfor each loop nestBeginInitial cache-con�guration list: CCLUse one SUIF pass to generate the intermediate code formatConstruct a global list of arrays declared with itsrelative base addressFor each loop nestFor each array in this loop nestConstruct uniform reference sets for all its referencesCall algorithm 4 to optimize the cache con�gurationsfor this loop neststore the con�gurations to the CCLFor each block sizeactivate recon�guration mechanisms with each loop nestusing its con�guration from the CCLOutput performance data as well as the cache con�gurationof each loop nestEnd.Figure 8: Algorithm 5: Global Level Cache Polymor-phism.#de�ne N 8int a[N][N][N], b[N][N][N];intN1 = 4; N2 = 4; N3 = 4; N4 = 4;main()f int i, j, k, l;for(i = 0; i � N1; i ++)for(j = 0; j � N2; j ++)for(k = 0; k � N3; k ++)for(l = 0; l � N4; l++)f a[i+ k][j + 2][l] = a[i+ k][j][l];b[j][k + l][i] = a[2 � i][k][l];gg Figure 9: An Example: Array-based Code.node in CCL which has its near-optimal cache con�gurationsat di�erent block sizes. After the nest-level optimization isdone, Algorithm 5 activates the cache recon�guration mech-anisms, in which a modi�ed version of the Shade simulatoris used. During the simulation, Shade is directed to use thenear-optimal cache con�gurations in CCL for each loop nestbefore its execution. The performance data of each loop nestunder di�erent cache con�gurations is generated as output.Since current cache recon�guration mechanisms can onlyvary cache size and cache ways with �xed cache block size,the cache optimization is done for di�erent (�xed) cache blocksizes. This means that the algorithms in this paper suggesta near-optimal cache con�guration for each loop nest for agiven block size. In the following section, experimental resultsverifying the e�ectiveness of this technique are presented.
4.7 An ExampleIn this subsection, we focus on the example code in Figure9 to illustrate how the compiler-directed cache polymorphismtechnique works. For simplicity, this code only contains onenest.Algorithm 5 starts with one SUIF pass to convert the abovesource code into intermediate code, in which the programnode only has one loop-nest node. The loop-nest node isrepresented by its index vector ~i = (i; j; k; l)T , with an in-dex lower bound vector of �!il = (0; 0; 0; 0)T , an upper bound

vector of �!iu = (N1; N2; N3; N4)T and a stride vector of �!is =(1; 1; 1; 1)T . Within the nest, arrays a and b have referencesARa1 , ARa2 , ARa3 and ARb, which are represented in accessmatrices and constant vectors as follows:Aa1 : 0@ 1 0 1 00 1 0 00 0 0 1 1A ;�!ca1 : 0@ 020 1A ;Aa2 : 0@ 1 0 1 00 1 0 00 0 0 1 1A ;�!ca2 : 0@ 000 1A ;Aa3 : 0@ 2 0 0 00 0 1 00 0 0 1 1A ;�!ca3 : 0@ 000 1A ;Ab : 0@ 0 1 0 00 0 1 11 0 0 0 1A ;�!cb : 0@ 000 1A ;Also, a global array list is generated as < a; b >. Then,for array a, references ARa1 and ARa2 are grouped into oneuniform reference set, and ARa3 is put to another one. Arrayb, on the other hand, has only one uniform reference set.Then, Algorithm 4 is invoked and starts from the smallestcache block size, BK SZ, say 16 bytes. It uses Algorithm 3to obtain the array bitmap ABMa for array a and ABMb forarray b at BK SZ. Within Algorithm 3, we �rst call Algo-rithm 1 and Algorithm 2 to analyze the reuse characteristicsof a given array. In our example, the �rst uniform set of ar-ray a has self-spatial reuse at level l, group-temporal reuse atlevel j, the second uniform set has self-spatial reuse at levell and self-temporal reuse at level j. Reference of array b hasself-spatial reuse at level i. The highest level of reuse is thenused for each array by Algorithm 3 to generate the ABM forits footprints in the reuse space. We assume an integer has 4bytes in size. In this case, both ABMa and ABMb have 128bits shown as follows:ABMa:0-31 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 032-63 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 064-95 096-127 0ABMb:0-31 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 032-63 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 064-95 096-127 0These two ABMs are then passed by Algorithm 3 to Al-gorithm 4. In turn, Algorithm 4 creates a loop-nest bitmapLBM with size being equal to the largest array size, MAX(ABMs), and re-maps ABMa and ABMb to LBM . Since ar-ray a has relative base address at 0 (byte), and array b at2048, we determine LBM as follows:0-31 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 032-63 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 064-95 096-127 0

Name Arrays Nests Brief Descriptionadi.c 6 2 Alternate Direction Integralaps.c 17 3 Mesoscale Hydro Modelbmcm.c 11 3 Molecular Dynamic of Watere
ux.c 5 6 Mesh Computationtomcat.c 9 8 Mesh Generationtsf.c 1 4 Array-based Computationvpenta.c 9 8 Nasa Ames Fortran Kernelwss.c 10 7 Molecular Dynamics of WaterTable 1: The Array-based Benchmarks Used in theExperiments.The maximum value of bits in LBM indicates the number ofinterference among di�erent arrays in the nest. Thus, it is theleast associativity that is required to avoid this interference.In this example, Algorithm 4 starts from a cache associativityof 2 to compute the near-optimal cache con�guration. Eachtime, the size of LBM is halved and the LBM is re-mappeduntil the resulting associativity reaches the upper bound, e.g.,16. Then it outputs the smallest cache size with smallest as-sociativity as the near-optimal con�guration at this block sizeBK SZ. For this example, the near-optimal cache con�gu-ration is 2KB 2-way associative cache at 16 byte block size.The LBM after optimization is shown as follows:0-31 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 032-63 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0Following this, Algorithm 4 continues to compute the near-optimal cache con�gurations for larger cache block sizes bydoubling the previous block size. When the block size reachesits upper bound, e.g., 64 bytes, this algorithm stops to passall the near-optimal con�gurations at di�erent block sizes toAlgorithm 5. On receiving these con�gurations, Algorithm5 activates Shade to simulate the example code (executable)with these cache con�gurations. Then the performance datais generated as the output of Algorithm 5.
5. EXPERIMENTS

5.1 Simulation FrameworkIn this section, we present our simulation results to ver-ify the e�ectiveness of the CDCP technique. Our techniquehas been implemented using SUIF [5] compiler and Shade[2]. Eight array-based benchmarks are used in this simula-tion work. In each benchmark, loop nests dominate the over-all execution time. Our benchmarks, the number of arrays(for each benchmark) and the number of loop nests (for eachbenchmark) are listed in Table 1.Our �rst objective here is to see the cache con�gurationsreturned by our CDCP scheme and a scheme based on ex-haustive simulation (using Shade). We consider three di�er-ent block (line) sizes: 16, 32 and 64 bytes. Note that our workis particularly targeted at L1 on-chip caches.
5.2 Selected Cache ConfigurationsIn this subsection, we �rst apply an exhaustive simulationmethod using the Shade simulator. For this method, the orig-inal program codes are divided into a set of small programs,each program having a single nest. Shade simulates these

loop nests individually with all possible L1 data cache con-�gurations within the following ranges: cache sizes from 1Kto 128K, set-associativity from 1 way to 16 ways, and blocksize at 16, 32 and 64 bytes. The number of data cache missesis used as the metric for comparing performance. The opti-mal cache con�guration at a certain cache block size is thesmallest one in terms of both cache size and set associativ-ity that achieves a performance (the number of misses) whichcannot be further improved (the number of misses cannot bereduced by 1%) by increasing cache size and/or set associa-tivities. The left portion of Table 2 shows the optimal cachecon�gurations (as selected by Shade) for each loop nest indi�erent benchmarks as well as at di�erent cache block sizes.The compiler-directed cache polymorphism technique di-rectly takes the original source code in the SUIF .spd for-mat and applies Algorithm 5 to generate the near-optimalcache con�gurations for each loop nest in the source code. Itdoes not do any instruction simulation for con�guration op-timization. Thus, it is expected to be very fast in �ndingthe near-optimal cache con�guration. The execution engine(a modi�ed version of Shade) of CDCP directly applies thesecache con�gurations to activate the recon�guration mecha-nisms dynamically. The cache con�gurations determined byCDCP are shown on the right part of Table 2. To sum up, inTable 2, for each loop nest in a given benchmark, the optimalcache con�gurations from Shade and near-optimal cache con-�gurations from CDCP technique at block sizes 16, 32, and64 bytes are given. A notation such as 8k4s is used to indicatea 8K bytes 4-way set associative cache with a block size of 32bytes. In this table, B means bytes, K denotes kilobytes andM indicates megabytes.From Table 2, we can observe that CDCP has the ability todetermine cache capacities at byte granularity. In most cases,the cache con�guration determined by CDCP is less than orequal to the one determined by the exhaustive simulation.
5.3 Simulation ResultsThe two sets of cache con�gurations for each loop nestsgiven in Table 2 are both simulated at the program level. Allcon�gurations from CDCP with cache size less than 1K aresimulated at 1K cache size with other parameters unmodi�ed.For best comparison, the performance is shown as the cachehit rate instead of the miss rate. Figure 10 gives the per-formance comparison between Shade (exhaustive simulation)and CDCP using a block size of 16 bytes.
Figure 10: Performance Comparison of Cache Con-�gurations at Block Size of 16: Shade Vs CDCP.We see from Figure 10 that, for benchmarks adi:c, aps:c,bmcm:c and wss:c, the results obtained from Shade and CDCPare very close. On the other hand, Shade outperforms CDCPin benchmarks eflux:c, tomcat:c and vpenta:c, and CDCP

Codes Shade CDCPadi 16 32 64 16 32 641 1k4s 1k4s 1k4s 64B4s 128B4s 256B4s2 16k16s 16k16s 16k16s 16k16s 16k16s 16k16saps 16 32 64 16 32 641 2k4s 4k8s 64k4s 2k8s 4k4s 8k8s2 16k8s 16k16s 32k16s 16k4s 16k8s 32k8s3 4k2s 4k8s 8k8s 2k16s 4k8s 8k8sbmcm 16 32 64 16 32 641 1k8s 2k8s 4k8s 64B1s 128B1s 256B1s2 1k8s 2k8s 4k8s 64B2s 128B4s 256B1s3 32k4s 64k4s 128k4s 32k4s 64k4s 128k4se
ux 16 32 64 16 32 641 16k4s 32k4s 64k4s 2k8s 4k4s 8k8s2 16k8s 32k4s 64k4s 8k4s 16k2s 32k4s3 128k16s 128k16s 128k1s 128k8s 256k2s 256k2s4 2k8s 2k8s 4k8s 128B4s 256B2s 256B4s5 16k16s 32k4s 64k4s 8k16s 16k8s 32k4s6 128k16s 128k16s 128k1s 128k8s 256k2s 256k2stomcat 16 32 64 16 32 641 1k2s 1k1s 1k1s 32B2s 64B2s 128B1s2 1k1s 1k1s 1k1s 32B1s 64B1s 128B2s3 128k4s 128k8s 128k1s 64k1s 128k2s 256k2s4 1k2s 1k4s 2k8s 32B2s 64B2s 128B1s5 64k8s 128k8s 128k2s 64k1s 128k2s 256k2s6 1k2s 1k4s 2k4s 64B4s 128B4s 256B2s7 64k4s 128k8s 128k8s 32k4s 64k8s 128k16s8 32k1s 128k2s 128k4s 32k1s 64k2s 128k4stsf 16 32 64 16 32 641 4k4s 8k1s 8k1s 4k1s 4k1s 4k1s2 128k16s 128k16s 128k16s 1M1s 1M1s 1M1s3 4k4s 4k16s 8k4s 4k1s 4k1s 4k1s4 128k16s 128k16s 128k16s 1M1s 1M1s 1M1svpenta 16 32 64 16 32 641 64k1s 128k1s 128k16s 64k1s 128k1s 256k8s2 1k8s 2k4s 2k8s 128B8s 256B8s 512B8s3 1k4s 2k2s 2k8s 256B4s 512B2s 1k2s4 128k8s 128k16s 128k16s 128k2s 256k8s 512k2s5 1k4s 2k4s 4k2s 256B4s 512B2s 1k2s6 1k2s 2k2s 2k8s 128B8s 256B4s 512B8s7 1k2s 1k2s 1k16s 64B1s 128B2s 256B4s8 64k8s 128k2s 128k1s 64k1s 128k1s 256k1swss 16 32 64 16 32 641 4k4s 8k4s 8k16s 2k2s 4k4s 8k8s2 1k8s 2k8s 4k4s 64B4s 128B4s 256B4s3 1k2s 1k2s 1k2s 64B2s 128B4s 256b4s4 64k4s 64k4s 64k4s 64k2s 64k2s 64k2s5 4k4s 8k8s 16k8s 2k4s 4k4s 8k8s6 1k2s 1k2s 1k2s 32B2s 64B1s 128B2s7 2k8s 4k4s 4k4s 64B4s 128B1s 256B2sTable 2: Cache Con�gurations for each Loop Nest inBenchmarks: Shade Vs CDCP.outperforms Shade in tsf:c. Figures 11 and 12 show the re-sults with block sizes of 32 and 64 bytes, separately.We note that, for most benchmarks, the performance dif-ference between Shade and CDCP decreases as the block sizeis increased to 32 and 64 bytes. Especially for benchmarksadi:c, aps:c, bmcm:c and wss:c, the performances from thetwo approaches are almost the same. For other benchmarkssuch as tsf:c and vpenta:c, our CDCP strategy consistentlyoutperforms Shade when block size is 32 or 64 bytes. Thisis because the exhaustive Shade simulation has a searchingrange (for cache sizes) from 1K to 128K as explained earlier,while CDCP has no such constraints (that is, it can comeup with a non-standard cache size too). Obviously, we canuse much larger and/or much �ner granular cache size for ex-haustive simulation. But, this would drastically increase thesimulation time, and is not suitable for practice. In contrast,

Figure 11: Performance Comparison of Cache Con-�gurations at Block Size of 32: Shade Vs CDCP.the CDCP strategy can determine any near-optimal cachecon�guration without much increase in search time.
Figure 12: Performance Comparison of Cache Con-�gurations at Block Size of 64: Shade Vs CDCP.For more detailed study, we break down the performancecomparison at loop nest level for benchmark aps:c. Figure 13shows the comparison for each loop nest of this benchmark atdi�erent cache block sizes.
Figure 13: Loop-nest Level Performance Comparisonof Cache Con�gurations for asp.c: Shade Vs CDCP.The results from the loop nest level comparison show thatthe CDCP technique is very e�ective in �nding the near-optimal cache con�gurations for loop nests in this benchmark,especially at block sizes of 32 and 64 bytes (the most com-mon block sizes used in embedded processors). Since CDCPis analysis-based not simulation-based, we can expect that itwill be even more desirable in codes with large input sizes.From energy perspective, the Cacti power model [10] is usedto compute the energy consumption in L1 data cache for eachloop nest of our benchmarks at di�erent cache con�gurationslisted in Table 2. We use 0.18 micron technology for all thecache con�gurations. The detailed energy consumption �g-ures are given in Table 3.

Codes Shade CDCPadi 16 32 64 16 32 641 318.6 287.4 -1 318.6 287.4 -2 12154.4 13164.5 16753.6 12154.4 13164.5 16753.6aps 16 32 64 16 32 641 322.3 771.7 540.1 661.2 335.4 822.02 125599.5 279985.9 368764.9 65461.7 122847.2 145962.23 7907.7 33273.5 34697.7 64275.4 33273.5 34697.7bmcm 16 32 64 16 32 641 314.6 342.9 393.4 31.7 30.5 31.12 314.6 342.9 393.4 83.0 155.2 31.13 26826.7 32203.8 36989.1 26826.7 32203.8 36989.1e
ux 16 32 64 16 32 641 366.7 386.4 433.3 648.4 320.1 776.62 1068.8 610.3 700.1 534.8 301.7 598.53 2366.1 2435.0 329.4 1220.7 727.5 749.64 310.2 321.7 370.7 146.0 77.0 -5 2326.5 636.5 731.2 2399.6 1121.7 624.56 2573.0 2666.1 375.0 1323.3 795.5 821.3tomcat 16 32 64 16 32 641 895.0 280.4 260.0 895.0 748.4 260.02 28.4 27.5 28.1 28.4 27.5 74.33 66507.5 117366.5 40582.4 26846.9 40767.0 83199.24 78.1 147.5 - 78.1 77.1 29.55 25678.1 27508.1 14394.7 9448.6 14978.6 25989.16 80.8 152.7 167.6 152.8 152.7 86.57 9461.3 18865.2 25190.9 9647.7 21984.0 57050.08 2051.1 5050.0 8406.6 2051.1 4046.2 8406.6tsf 16 32 64 16 32 641 160.9 38.5 41.4 34.7 34.7 35.92 18858.6 18245.8 19320.4 6263.6 9501.5 14293.23 163.5 787.9 173.9 35.2 35.2 42.54 18769.0 18159.7 19230.0 6234.3 9452.6 14226.7vpenta 16 32 64 16 32 641 4111.6 5130.1 87386.9 4111.6 5130.1 22364.92 350.7 184.6 - 350.7 - -3 189.4 102.3 - 189.4 97.7 98.64 77075.1 235412.6 268609.7 27835.4 90080.5 100849.25 188.4 216.9 108.7 188.4 97.4 98.36 99.1 101.7 - - 185.8 -7 90.2 89.0 - 32.7 89.0 -8 36158.0 13557.1 15249.6 8994.2 12456.5 21512.0wss 16 32 64 16 32 641 268.8 279.9 1610.6 138.6 261.1 624.02 288.5 317.1 168.1 143.9 143.6 -3 75.1 74.1 74.9 75.1 141.8 -4 22641.6 23665.1 22935.2 13274.4 13051.5 14560.25 326.7 672.8 775.3 325.7 319.6 756.36 74.8 73.8 74.6 74.8 27.6 74.67 302.8 155.6 166.6 142.4 27.9 75.1Table 3: Energy Consumption (microjoules) of L1Data Cache for each Loop Nest in Benchmarks withCon�gurations in Table 2: Shade Vs CDCP.From our experimental results, we can conclude that (i)our strategy generates competitive performance results withexhaustive simulation, and (ii) in general it results in a muchlower power consumption than a con�guration selected byexhaustive simulation. Consequently, our approach strikes abalance between performance and power consumption.
6. CONCLUSIONS AND FUTURE WORKIn this paper, we propose a new technique, compiler-directedcache polymorphism, for optimizing data locality of array-based embedded applications while keeping the energy con-sumption under control. In contrast to many previous tech-1Energy estimation is not available from Cacti due to the verysmall cache con�guration.

niques that modify a given code for a �xed cache architec-ture, our technique is based on modifying (recon�guring) thecache architecture dynamically between loop nests. We pre-sented a set of algorithms that (collectively) allow us to selecta near-optimal cache con�guration for each nest of a givenapplication. Our experimental results obtained using a set ofarray-intensive applications reveal that our approach gener-ates competitive performance results and consumes much lessenergy (when compared to an exhaustive simulation basedframework). We plan to extend this work in several direc-tions. First, we would like to perform experiments with dif-ferent sets of applications. Second, we intend to use cachepolymorphism at granularities smaller than loop nests. And�nally, we would like to combine CDCP with loop/data basedcompiler optimizations to optimize both hardware and soft-ware in a coordinated manner.
7. REFERENCES[1] D. H. Albonesi. Selective cache ways: On-demand cacheresource allocation. In Proc. of the 32nd Micro, 1999.[2] B. Cmelik and D. Keppel. Shade: a fast instruction-setsimulator for execution pro�ling. In Proc. of the 1994ACM SIGMETRICES Conf. on the Measurement andModeling of Computer Systems, May 1994.[3] D. Gannon, W. Jalby, and K. Gallivan. Strategies forcache and local memory management by globalprogram transformation. Journal of Parallel andDistributed Computing, 5(5):587{616, October 1988.[4] S. Ghosh, M. Martonosi, and S. Malik. Cache missequations: An analytical representation of cache misses.In Proc. of ICS'97.[5] Stanford Compiler Group. The SUIF Library, version1.0 edition. 1994.[6] X. Ji, D. Nicolaescu, A. Veidenbaum, A. Nicolau, andR. Gupta. Compiler-directed cache assist adaptivity.Technical Report ICS-TR-00-17, ICS Department,University of California-Irvine, June 2000.[7] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. J.Irwin, and J. Ramanujam. Morphable cachearchitectures: potential bene�ts. In ACM Workshop onLCTES'01, June 2001.[8] Kathryn S. McKinley, Steve Carr, and Chau-WenTseng. Improving data locality with looptransformations. ACM Transactions on ProgrammingLanaguages and Systems, 18(4):424{453, July 1996.[9] P. Ranganathan, S. Adve, and N. P. Jouppi.Recon�gurable caches and their application to mediaprocessing. In Proc. of the 27th ISCA, June 2000.[10] G. Reinman and N. Jouppi. An integrated cache timingand power model. Cacti 2.0 technical report, COMPAQWestern Research Lab, 1999.[11] O. Temam, C. Fricker, and W. Jalby. Cache interferencephenomena. In Proc. of ACM SIGMETRICSConference on Measurement & Modeling ComputerSystems, 1994.[12] M. Wolf and M. Lam. A data locality optimizingalgorithm. In Proc. of PLDI'91, pages 30{44, 1991.

