
Efficient Application Migration under Compiler Guidance
Kun Zhang

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
kunzhang@cc.gatech.edu

Santosh Pande
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

santosh@cc.gatech.edu

Abstract
Mobile computing based upon wireless technology as the
interconnect and PDAs, Web-enabled cell phones etc. as the end
devices provide a rich infrastructure for anywhere, anytime
information access. Wireless connectivity also poses tough problems
[11, 12]. Network nodes may be mobile and the connectivity could
be sporadic. In many cases, application mobility involving migration
from one network node to another could provide interesting
possibilities. However, the migration process is expensive in terms
of both time and power overheads. To minimize the migration cost,
an efficient strategy must decide which parts of the program should
migrate to continue execution and at which program point the
migration should take place.

In this work we develop a compiler framework to achieve the above
two goals. First, the potential migration points are decided by
analyzing the call chains in the code. Then the compiler determines
what parts of the program are dead at these points. At run time,
using the current context of the call chain, a decision on whether to
migrate now or later is taken. Such a decision depends mainly upon
the cost of migration involved at the current program point vs. at a
later potential migration point. Our experiments with multimedia
applications show that both the migration state and the latency are
significantly reduced by our techniques over the base case of
migration with full state in the absence of any compiler guidance.
Thus, the key contribution of the paper is to provide an efficient
migration methodology removing barriers to application mobility.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Compilers, optimization.

General Terms Algorithms, Languages, Performance, Measurement.

Keywords Application Migration, Compiler, Mobile Computing,
IEEE 802.11

1. Introduction
Mobile computing (mostly based on wireless technology)
provides a rich infrastructure for anywhere, anytime information
access. Mobile devices such as personal digital assistants (PDAs)
as well as web enabled cell phones are widely used over a wireless
network. Mobile computing is becoming increasingly prevalent as
it allows the users to have their electronic work follow them
whenever a networked environment exists. However the wireless
technology poses tough challenges to be overcome [11; 12; 19].

For example, the mobile communication is bad; the bandwidth in
mobile computing is relatively low and the latency is relatively
high; and mobile computers are susceptible to high error rates and
sudden link failures.

On the other hand, application mobility is an important asset that
could be realized; one of the ways to achieve application mobility
is to migrate a partially executed application. Such a mechanism is
especially suited for applications on partially connected mobile
computers such as laptops and palmtops. For example, a time
consuming application executing on a machine which may be
prone to failure due to battery capacity, potential memory
bottlenecks discovered at run-time etc. can migrate off to a more
robust remote machine [10]. In this way, the application can still be
available on other machine and it can resume its execution there.

Application migration can also improve an application’s
performance based on the network conditions and the local
resource of the mobile devices. An application migration
framework exposes interesting geo-locality issues to be factored
into the application semantics improving its precision. For
example, migrating an application to a local server which has
more up-to-date real time information on traffic conditions might
lead to a better route suggestion than just using cached data
obtained during the last connection inside a car navigation system.
Migration could be an important mechanism pertaining to the
availability of a system. For example, imagine an application
which involves stock market trading; assume that a user is in the
middle of a stock transaction using his PDA or cell phone. His
handset is running out of power. He may not want to simply
postpone his transaction. If availability guarantee has to be
seamlessly achieved, it is best to migrate the entire transaction and
its state to another tethered device to continue this transaction.
Similarly, continuous process based systems operate on the
premise of availability and recoverability - an important means to
achieve both is to first migrate the execution on another system
and then attempt to recover and continue execution. Sometimes it
is better to migrate an application to the data host than migrate the
data to the host of the application since the data cannot be
relocated (due to trust or proprietary reasons) or the movement of
data would cause longer lag (e.g., a large database). In short,
migration can be applied in many different types of situations.

Research pertaining to classical migration is presented in [1; 7; 8; 20].
However, migration on embedded devices can be very expensive.
Migration may entail a considerable time lag and consume a
tremendous amount of power [2] due to an application’s large state
and the low bandwidth between mobile machines, which are often
battery powered. So the key question in migration is: How to minimize
the latency in migration? The answer depends on three factors: Which
parts of an application should migrate? At which program point the
migration can minimize the transmission time? How to devise an
effective mechanism to realize the above two goals?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-018-3/05/0006… $5.00.

11

It is important to devise such a guidance mechanism to do this
properly since it may take a long time (as we see through our
experiments) if one does it naively. In this work, we answer these
questions by building a compiler + run-time solution. The answers
will help provide insights into the compiler’s role in migration,
which has mainly been an operating system/middleware’s concern.

This paper is organized as follows. Section 2 describes the
background and motivation for application migration; section 3
represents our framework; section 4 illustrates the algorithms in
detail; section 5 shows the results of our experiments; section 6
discusses the related work; finally section 7 concludes our paper.

2. Background and Motivation
Application migration can be roughly classified into two
categories according to the architecture and operating system of
the machines: homogeneous application migration and
heterogeneous application migration [20]. Homogeneous
migration can only take place between machines running the same
operating system on the same architecture. Heterogeneous
migration can occur between different architecture and operating
system. In this work, we focus on homogeneous application
migration between embedded systems based on ARM architecture.

The necessary component required for resuming an application is
called the application state. The components of an application state
depend on the machine where the application is running and may
show substantial difference on different machines. However,
essential parts of an application state remain the same across the
implementations. A typical application state includes virtual
memory, opened files, machine state and environment data etc.

Migration before an application starts its execution is quite
different from migration after the application has executed for
some time. In the first case, migration is easy since we do not
have to consider the application state. In this work, we target the
second case in which the application state must be analyzed
carefully in order to minimize the time lapse experienced by an
application between suspension and resumption. In the following,
we will elaborate on such migration that takes place in the middle
of an application’s execution.

Migration allows seamless execution to continue on another
machine. The main process can be divided into five parts [2; 21]:
suspend the application on the source machine; gather the state
and represent it using some meta-data (this process is often
referred to as serialization), transfer the application state to the
destination machine; re-establish the state by loading it; and
resume the execution on the destination machine. The most
expensive part involves serialization and transmission of the
serialized state to another machine. So the best way to minimize the
migration time is to minimize the application state that gets migrated.

There are many different factors impacting migration such as the
number of applications running on the machine, CPU utilization,
file systems, trust, network connectivity, or any combination of
the above indicators. Other factors to consider include where to
migrate geographical proximity to the resources, operating system
capabilities and specialized hardware/software features [20].
Providing the whole systemic solution is not feasible nor is the
goal of this paper. In this paper, we address the issue of migration
dictated only by the state serialization and data transmission time

given other constraints being satisfied. The scenario is that the
middleware has taken migration decision after considering other
factors and it now seeks help from the program’s runtime system
(orchestrated by the compiler) on how and where to carry out the
migration. Under the guidance of the runtime system, the program
is prepared for migration through serialization and then migrates
under the middleware’s supervision.

Several mechanisms have been designed and implemented to
move an application among the nodes of a network in a
distributed system [7; 8]. However, the current application
migration schemes proposed in the OS literature mainly deal with
issues about where to migrate, which applications to migrate, and
how to select meta-representation for migration, but do not deal
with the critical issues of which parts of the state to migrate and
when to migrate in the middle of the program’s execution? Such
decisions involve knowledge of program properties that affect the
state. Migration becomes more attractive if such an analysis is
undertaken and is coupled with runtime system guidance. For
example, current approaches do not undertake file and code
liveness analysis, usually resulting in all of the opened files and
code being migrated to another machine. Such an approach which
transfers all the data and code entails considerable time and is not
feasible esp. for applications involving large data. An analysis that
allows determining which parts of the state should migrate and
when to migrate makes a big difference as shown in this paper.
We achieve such a solution in this paper through a combination of
static compiler analysis and runtime system guidance.

3. Framework Overview
In this work, we target distributed embedded systems in the
setting of an 802.11 [14] local area wireless network environment.
The embedded device is a widely used PDA, the Compaq iPAQ
based on Intel’s StrongARM processor. IPAQ is a small
multimedia-centric PDA that can act as a lightweight
entertainment station for movie, music and more. It is a versatile
device enabling the use of wireless communication. It usually has
SDRAM (Synchronous DRAM), non-volatile Flash ROM and a
high performance, low power demand CPU. More Flash ROM
can also be plugged in as additional storage. The applications are
generally written in either the C or C++ programming language.

In our approach, the compiler analysis determines the potential
migration points and the program components to migrate. Our
framework is shown in Figure 1. First, we instrument the program
to keep track of the file operations, stack size, heap size and the
time consumption on the paths of the program. The file operation
could be one of open, read, write and close. The instrumented
application is executed using the training sets to collect the profile
data. Second, the reaching graph for the application is built. The
reaching graph represents the reachability relationship between
the functions and the file operations. The reachability relation
shows whether or not it is possible to have a call sequence from
(current) function F to certain operations on file f. File f is said to
be live in F if such a call sequence exists. If a file is live in
(current) function F, it must be carried since there may be an
execution path leading to it in the future execution; otherwise it
may be discarded during migration. We use function pointer
analysis to discover multiple aliases of function pointers. The
static call chains are built using this information. By accounting
for these factors, the reachability analysis offers a safe mechanism

12

Table 1. Files and their description for Mpeg2 encoder

to determine whether or not a file should be carried during
migration. Next the code and global data liveness is analyzed. It is
a simple backward data flow analysis such as variable liveness
analysis in [16]. The heap liveness information is also collected.
Next, by combining the code, global variable and heap analysis
with stack size and file liveness information, the cost of migration
at potential migration points is decided for a given function.
Finally, the migration handler is inserted by the compiler in the
code providing guidance as a part of runtime system.

Next we will explain how our mechanism works in the dynamic
execution of a program. When a program is running, the operating
system invokes a migration interrupt to inform the program to
prepare for migration. The migration handler is triggered by the
runtime system upon receiving this interrupt. The handler
determines the current execution context and predicts future paths
to potential migration points. Using the application’s current state
and profile data, the migration handler predicts the most likely
future execution path. Along this path, it will determine earliest
such point where the delay benefit/cost ratio is maximized. Delay
benefit is the time that can be saved at that migration point and
cost is the expected execution time to that point. The migration
handler then makes a decision on whether to migrate now or
continue execution based on the cost-benefit tradeoffs at the
potential migration point. If execution continues, the run-time
system checks if the predicted execution path is followed or not. If
it is not followed, it re-evaluates the prediction and makes a new
decision on migration. At the migration point, the dead files are
discarded; the dead data and code is also discarded.

4. Migration Algorithms
4.1 File Analysis
Most media applications make use of a number of large files.
Discarding many of these files during migration may generate a
tremendous time and energy savings. Most programs use a
potential set of files whose name-set can be found through
analysis. A real example (Mpeg2 encoder) is used through this
section to illustrate how our approach discovers this information.

Before we go into the file analysis, some important conditions of
our work are presented. The set of all files used in an application
is called its file universe. A program’s file universe is said to be
bounded if we can derive all files names and their locations
through hard-coded files names. That means that potential files
which will be used by the program are derivable by analysis
before its execution. Our framework is not intended for
applications whose file universe is unbounded (such as OS file
system support, for example). The applications we work on have a
bounded file universe and can be found using closure.

For example, there are fifteen files used in the execution of the
Mpeg2 encoder. They are: options.par, rec_files (including 0.y,
0.u, 0.v, 1.y, 1.u, 1.v, 2.y, 2.u, 2.v, 3.y, 3.u and 3.v), stat.out and
output.m2v. The description of these files is shown in Table 1. In
this example, the bitstream of YUV components is encoded. To
make it easy, suppose only 4 frames for encoding. Mpeg2 encoder
uses a pre-set convention that the file “options.par” contains the
names of the “rec_files” which hold the frame data.

File name File description
options.par Options of encoding (input file)

rec_files YUV components to be encoded (input file)
stat.out Statistics file (output file)

output.m2v Encoded file (output file)

The file operation analysis process is shown in Figure 2. First, our
approach takes a transitive closure using hard-coded names in the
program and constructs the file universe. In other words, our
technique works if we can construct the file universe of the
application. Note that we need not know the content of the files.
At the same time, potential aliases of file pointers are discovered.
Second, we have file pointer analysis to accurately generate the
file-pointer— filename correspondence. Typically, files are opened
and read sequentially by incrementing the file pointers. We
perform a check on the file pointer to discover any
rewinding/resets/potential decrements. If there is no potential
reset/decrement operation, only the remainder of the file starting
from current file pointer will be read in the future execution. Thus
it will be safe to carry only the remainder of the file from where
the current pointer is. Finally, by analyzing the operation on file
pointers, we can know when the file is opened, read, written and
closed. In the following section, we show how file liveness
analysis is performed based on these file operations information.

Reaching graph
creation

Migration handler insertion

File liveness
analysis

Migration determination model

Stack, heap and execution time

profiling data

File profiling data

Figure 1. Framework overview

Instrumentation

Instrumented program execution

Code, global variable and heap
liveness analysis

Hard-coded files analysis

File universe creation File pointer aliasing analysis

File pointer and file mapping creation

File operation location

Figure 2. File operation analysis

File pointer inc/decrement checking

13

Figure 4. Algorithm for identifying FLR[f]

4.1.1 Reaching Graph
First, a reaching graph is built representing the function
precedence relationship based on file operations. A reaching
graph is a directed graph that contains two types of nodes:
functions and file operation tuples. A node label could represent a
function or a file operation tuple. The node label is the function
name or a 2-tuple {file_operation, file_name}. The file operation
tuple node is specially used to store the exact program point
where the file operation is located.

The edges of the graph can be built in three ways. When any two
nodes are invoked sequentially in the same function, they are
connected with a directed edge indicating the order of execution
or precedence relation. The second type of edges are from the last
callee of a function to all of its caller’s pointed to nodes. These
edges show that the next function to be executed should be the
next sequential function after the caller in the program. Then the
edge from the caller to the other nodes except its last callee can be
removed from the reaching graph. If a node N is the first callee of
a function F, there is an edge from F pointing to N. Notice that F
may have more than one first possible callee since F may call
them in a switch statement or an if-else statement. Thus, the edges
in the reachability graph can show an invocation or precedence
relation.

The reaching graph for the Mpeg2 encoder is shown in Figure 3.
To save space, not all functions are shown. Only the ones that
may involve file operations are included. Functions without file
operations do not impact our file analysis algorithm. The dashed
line indicates that the caller calls the callee indirectly, which
means there are some other function calls between the two
functions. Notice that there are two types of nodes in the graph:
function call nodes bearing the label of the function calls and file
operation nodes bearing the tuple (file-operation, file-name) as the

label. The directed arrows either show precedence or a caller-
callee relationship. The precedence relation illustrates the order of
execution. There are edges from N12 to N15, N16 and N17 since
they are called in a switch statement in N12. At first, there is an
edge from N12 to N13 since N13 is called after N12 in N5. N15,
N16, N17 are all last callees of N12, so edges are added from
these nodes to N13. Then the edge between N12 and N13 is
deleted. An edge from N20 to N13 is inserted and the edge from
N16 to N13 is removed.

4.1.2 File Analysis Algorithm
This subsection details our file live range analysis algorithms.
First, some definitions are introduced. In this subsection, G
denotes the reaching graph of the program.

Definition1: A file is said to be live in a node N of G if there
exists a reference to the file on a path starting from the entry of N.
Otherwise, the file is said to be dead in N.

Notice if a file is dead, the program is not used anymore; it can be
discarded during migration. This observation results in possible
time saving in application migration.

Definition2: A node B is reachable from a node A in G if there
exists a directed path from A to B in G.

Next, we identify a file’s effective live range and the migration
points in a program.

1) A file f’s effective live range set is denoted by FLR[f]. The
algorithm to compute FLR[f] is shown in Figure 4. Initially,
FLR[f] contains only those nodes that contain file operations on f.
We then consider the nodes in G from which we can reach any
node in FLR[f] and include them in FLR[f]. The process is
repeated until convergence (defined as either termination or
transitive closure). In other words, FLR[f] denotes the effective
live range of a file consisting of all the functions from which an
execution can lead to a potential operation on f.

File f FLR[f]
options.par N1, N2, N6, N7, N8

rec_files N1- N12, N16, N18 – N20

Consider the example in Figure 3 again. In this reaching graph,
the nodes containing file operations on f form FLR[f]. Then
FLR[f] is expanded according to the reachability information. For
example, at first, FLR[options.par] contains nodes N6, N7 and
N8. N2 can reach N6 and N1 can reach N2, so they are also

FLR[f] = {N | N contains file operations on f}
change = true;
while(change)

change = false;
For N∈G

If (∃ M∈FLR[f]) && (M is reachable from N in G)
&& (N∉FLR[f])

 FLR[f] = FLR[f] ∪ {N};
 change = true;
 EndIf
 EndFor
EndWhile

Table 2. FLR[f] for Mpeg2 encoder

N1

N3

N2

N4

N5

N6

N7

N9

N10

readquantmat

init

putseq

readparmfile

main

{open, options.par}

{read, options.par}

{close, options.par}

range_checkes

profile_and_level_checks

Figure 3. Sub reaching graph for Mpeg2 encoder

N8

N11

N12

N13

N14

N15

N16

N17

N18

N19

N20

rec_init_seq

readframe

motion_estimation

writeframe

read_y_u_v

{open, rec_files}

{read, rec_files}

{close, rec_files}

read_yuv

read_ppm

14

included in FLR[options.par]. Similarly, FLR[rec_files] is
obtained. Among the files used by the Mpeg2 encoder, stat_out
and output.m2v have long live ranges. Because they are live
through almost the entire program and they involve file output
due to the write operations, they cannot be discarded during
migration. Therefore, we will not discuss them anymore. The
other files’ live ranges are shown in Table 2.

2) Determine LF[N], the set of live files in a node N. It is easy to
see that LF[N] = {f: N∈FLR[f]}. This set is only used to conduct
the LFNW set as following.

3) Next, we identify LFNW[N], a subset of LF[N], as those files
in node N such that there is no write operation on them along any
path starting from the entry of N. The algorithm for identifying
LFNW[N] is described in Figure 5.

.

The significance of LFNW[N] is as follows. LFNW[N] denotes
only those files which could be read on some path starting at N. It
excludes those which could be written. The files that could be
written should migrate, but those in LFNW[N] need not migrate if
function N itself becomes unreachable in the current call context.
One more clarification is that our analysis focuses only on those
files that are safe not to be carried since they will be never needed
in execution after migration.

Function name LF[F] LFNW[F]
N1, N2, N6, N7, N8 rec_files, options.par,

stat.out output.m2v
rec_files, options.par

N3 – N5, N9 – N12,
N16, N18 – N20

rec_files, stat.out,
output.m2v

rec_files

The LF[N] and LFNW[N] sets for the Mpeg2 encoder are illustrated
in Table 3. Notice that we add stat.out and output.m2v to show the
difference of LF[F] and LFNW[F]. Stat.out and output.m2v are live
throughout the whole program, so they are included in LF[F]. But
there exist write operations on them, so they are not contained in
LFNW[F]. From this table, we can observe that there are many
opened files in the program and the time duration between when the
files are opened and closed is relatively short. This feature affords
the opportunity to delay the migration to a better program point
since if the interrupt comes at a point too close to the open operation
on a file, we can delay migration to the point when the file is closed.
Through experiments, we observed that this does not demand too
many cycles. For example, suppose readframe receives the interrupt.
The migration may be delayed to writeframe instead of readframe
saving the time for migrating three of the rec_files.

For convenience, we illustrate all the set definitions and their
descriptions in Table 4.

Definition Description
G Reaching Graph of the program

FLR[f] File live range of file f
LF[N] Set of live files in node N

LFNW[N] Set of live files in node N and there is no
write operation in or after N

4.2 Code and Global Variable Analysis
In this subsection, we show how to identify dead functions and
global variables through data flow analysis.

Definition 3: A function (global variable) is dead at a program
point if there does not exist any path from the current execution
point to the function (global variable). Otherwise it is live.

For a function F, denote in[F] to be the set of live functions at the
entry of F; out[F] to be the set of live functions at the exit of F,
dead_in[F] to be the set of dead functions at the entry of F;
Universal_set to be the set of all the functions in the program;
gv_in[F] to be the set of live global variables at the entry of F;
gv_out[F] to be the set of live global variables at the exit of F;
gv_dead_in[F] to be the set of dead global variables at the entry of
F; and gv_universal_set to be the set of all the global variables in
the program. The algorithm to collect dead function and dead
global variable information is shown in Figures 6 and 7
respectively. Notice that before performing global variable
analysis, the variable aliasing is performed. Both of the two
algorithms are similar to live variable analysis [16] except that
there is no kill set and the analysis unit is a function instead of a
basic block. Because we use a conservative approach, the kill set
is unnecessary. When a function receives the migration interrupt,
if a function or a global variable is dead before entering the
function, they need not be carried during migration.

A binary code can be viewed as a sequence of functions. A table
is built to keep track of the address of each function in the binary

Figure 5. Algorithm for identifying LFNW[N]

LFNW[N] = LF[N];
For f∈LFNW[N]

For M∈FLR[f]
 If (M is reachable from N in G)
 && (∃ a write operation on f in M)
 LFNW[N] = LFNW[N] – {f};

 Break;
 EndIf

EndFor
EndFor

Table 4. Definitions and their descriptions

Figure 7. Global variable analysis

Initialization:
gv_in[F] = gv_out[F] = NULL;
gv_gen[F] = {v | v is a global variable referenced in F}

Data flow equations:
gv_in[F] = gv_gen[F] U gv_out[F];

gv_out[F] = U F’ is reachable from F in[F’]
Finalization:

dead_gv_in[F] = gv_universal_set – gv_in[F]

Figure 6. Code analysis

Table 3. LF[N] and LFNW[N] for Mpeg2 encoder

Initialization:
 in[F] = out[F] = NULL;
 gen[F] = {F’|F’ is called in F} U {F}
Data flow equations:
 in[F] = gen[F] U out[F];

 out[F] = U F’ is reachable from F in[F’]
Finalization:
 dead_in[F] = universal_set – in[F]

15

code. According to the liveness of a function, the code can be
divided into live parts and dead parts. A live/dead part consists of
sequentially connected live/dead functions. Live and dead parts
appear alternately in the code. When the code migrates to another
mobile machine, only live parts are transmitted. The function calls
to the dead functions in the migrated code are removed and the
remaining code will be rebuilt on the destination machine.

4.3 Heap Analysis
Currently we only deal with heap objects that are allocated and
freed by the programmer using the malloc() and free() system
function calls. First, we do heap object pointer aliasing analysis. A
heap object is said to be live if a malloc() call is invoked and no
free() call is invoked on any pointer pointing to this heap object.
Otherwise, it is said to be dead. Through our experiments detailed
in the next section, we can observe that large heap object may be
freed when the application proceeds executing enabling us to save
time in migration if the program reaches a later migration point.

4.4 Migration Points Determination Model
In this phase, we describe how to set up a model to determine the
most likely migration point based on the analysis of the program
and the time estimation. The goal of the algorithm is to delay
migration so that the time consumption on the files, stack, global
variable and code is less than the additional time to get there.

First, we need to estimate delay_cost, the cost of additional time
for executing the program to a later migration point. Let MP[F] be
the functions which are reachable from F, where F is the function
receiving the migration interrupt. And MP[F] is the set of all
possible migration points starting from F. The delay_cost for each
function in MP[F] is evaluated as follows.

Suppose we are currently in the execution of a function F and
want to know the most likely path from F to M∈MP[F]. Each
execution path from F to M is labeled with prefix, suffix,
frequency and execution time. The prefix P is the function
sequence in the application’s stack when it reaches F. The suffix S
is the function sequence when the program reaches M excluding
the prefix. The frequency is the execution times of the path with P
and S as its prefix and suffix. The execution time is the time
consumption on the path from F to M matching prefix P and
suffix S. The most likely path from F to M is defined as the path
with the highest frequency that matches the function sequence
(prefix) in the application’s current stack. Next the estimated time
from F to M (delay_cost) is determined by the execution time on
such a path. If there is no such a path from F to M in the profiling
data, delay_cost is set to infinity since that may represent a
dynamically infeasible path.

The example in Figures 8 and 9 show how our prefix and suffix
matching scheme works. First, the paths (P1, P2, P3) whose prefix
matches with the application’s current stack <F1, F2, F3, F> are
selected. Among these paths, P3 is executed most frequently (8000
times), so it is chosen as the most likely path. The delay_cost from
F to M is 20 (msec).

Next, the time saving at a later migration point is denoted by
delay_benefit. Delay_benefit is computed according to the
transmission delay plus the serialization overhead. The pure
transmission speed is not enough to estimate migration time since
it only tackles the cost of transferring data from the sender’s
buffer to the receiver’s buffer. The cost of moving this data from
the receiver’s SDRAM or Flash ROM to its buffer still needs to
be taken into account, which is called serialization overhead.
Bryan Carpenter et. al. [18] measured the serialization cost for
marshalling data in a Java interface to MPI. They showed that the
overhead ranged from 0.027 µ s/byte to 100 µ s/byte, depending
on the data type.

In this work, we build a serialization overhead model by the
simulation on an iPAQ, which is based on the ARM architecture.
The Flash ROM in an iPAQ consists of a fixed number of blocks,
each with 32 pages of 512 or 2048 bytes of main data [25]. The
experimental results for serializing SDRAM or Flash ROM
resident data are shown in Figures 10 and 11. It shows that the
data serialization time increases with the size of moved data
linearly. The slope of the line represents the bulk transfer
capacity. They are 0.124 and 0.071 respectively. That means it
costs 0.124 (0.071) seconds to move 1kbytes data from the Flash
ROM (SDRAM) to the buffer. In an application’s state, the global
variables, stack and code usually stay in SDRAM while the
opened files lie in the Flash ROM. So delay_benefit should be

P3 {<F1, F2, F3, F>, <F8, F9, F7, M>, 8000, 20}

P2 {<F1, F2, F3, F>, <F7, F10, M>, 100, 10}
F

P1 {<F1, F2, F3, F>, <F4, F5, F6, M>, 2000, 30}

M
F2

F1

F

F3

Figure 8. Current stack Figure 9. Matched paths from F to M

Figure 11. Serialization: Copying data from Flash ROM to SDRAM

Figure 10. Serialization: Copying data from SDRAM to SDRAM

Execution time of copying data from Flash ROM to SDRAM

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80

Kbytes

se
c

Execution time of copying data from SDRAM to SDRAM

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80

Kbytes

se
c

16

(unit_trans_time + 0.071) × (stack_size[F] - stack_size[M] +
global_variable_size[F] – global_variable_size[M] + code_size[F]
– code_size[M] + heap_size[F] – heap_size[M]) +
(unit_trans_time + 0.124) × (file_size[F] – file_size[M]), where
the interrupt comes into F and M is a function in MP[F] used for
deciding actual migration point. Unit_trans_time in the above
equation represents unit time needed to transmit the serialized
data over the wireless link. The migration interrupt handler
performs the trade off analysis for all the functions in MP[F] to
determine the best potential later migration point.

From the above discussion one can see that in case a migration
interrupt is received in function F, it may be possible to continue
execution until a function M that belongs to MP[F] and migrate once
this function is called. Thus, one could generate a migration call in M.

But it is not sufficient to generate such a call and simply continue
execution from F. There is no guarantee that execution will reach
M. Thus, M only represents a potential migration point if
execution proceeds along the respective call chains. But we must
monitor and change the decision to migrate in case execution
proceeds along a different chain in the dynamic sense as discussed
above. Recall that we computed M as the most likely migration
point that could be reached in the given calling context for
migration cost tradeoff analysis. We used profiling information to
arrive at the above. If the program does not follow the predicted
(most likely) path, we must provision for it.

To solve this problem, we use the suffix to do the re-estimation of
migration point and the tradeoff. Suppose the application receives
the interrupt at function F and it was predicted by the interrupt
handler that it will go along a certain path to reach a migration
point M. Assume that somehow the program’s execution does not
match with the predicted path and it reaches a function F’ not on
the predicted path, then we have to re-analyze the migration
decision. We re-evaluate it as follows. We first predict the
execution path from F’ and the corresponding migration point. Let
M’ be the most beneficial migration point in MP[F’]. If the sum
of the actual execution time from F to F’ plus the estimated
execution time from F’ to M’ is greater than the delay_benefit at
M’, we decide to migrate immediately in F’. Otherwise, we decide
to continue execution until M’. We continue this process in case,
again, path prediction to M’ is in error and so on until the
application migrates.

5. Experimental Results
This section shows the experimental results indicating the state
and latency saving offered by our migration framework. Our
experiments are based on the ARM architecture, which is very
popular for embedded systems such as PDAs and mobile
handhelds such as iPAQs. The wireless networks are 802.11
wavelan and the transmission speed in such a network is assumed
to be 1Mbps during a migration. In fact, the transmission speed is
usually much smaller than 1Mbps due to the network traffic
volume and some link failures. The optimizations are implemented
in gcc cross-compiler and the handlers are inserted in the run time
system. We simulated our programs using SimpleScalar [15].

We ran a series of experiments to determine if our application
migration algorithm could save significant amounts of time during
migration. To evaluate it here, we focus on multimedia
applications. We have eight multimedia applications. They are

compiled using the gcc cross-compiler with instrumentation.
These benchmarks are trained using training set, which includes
five to ten different inputs to collect profiling data. Then another
input (called ref input), which is not in the training set, is used for
the evaluation. The ref inputs of these applications are shown in
Table 5. For the benchmark mesa, the demon (osdemon), which is
included in MediaBench, is used to get the result.

Applications Input set
Adpcm(en) clinton.pcm (in MediaBench)
Epic lana.tif (in MediaBench)
G721(en) clinton.pcm (in MediaBench)
Gsm clinton.pcm (in MediaBench)
Jpeg(en) input_large.ppm (in MiBench)
Mesa None
Mpeg(en) Bitstream of YUV components (in

MediaBench)
Pegwit public_key, encryption_noise_file,

plain_text (in MeadiaBench)

We performed three sets of experiments. In the first experiment,
all of the application state migrates completely without any
analysis, which is the base line for the latter two experiments. The
second one conveys how our application state analysis algorithm
works for these applications. In other words, in this setting the
application migrates immediately at the point of interrupt (now)
except that dead code, global variables and read files that are no
longer needed are dropped. The third one is focused on
determining the best migration point. Among these three
experiments, consistency in interrupts was maintained (i.e., the
interrupts happened at the same dynamic program point) while
comparing the optimized and unoptimized versions.

The application state of the eight multimedia applications is shown in
Figure 12. In this graph, we have three columns for each benchmark.
They represent the results of migration now without any analysis (first
column), migration now with analysis (second column) and migration
later with analysis (third column). Each column is split into six parts,
showing the sizes of the heap, code, global variables, stack, write files
(the file which is at least written once by the application) and read files
(the file which is only read by the application).

The first experiment (first column for each application) proves
that the application state could be quite big (up to 1882 Kbytes).
This may result in long latency in low bandwidth networks and

Table 5. Ref input set of multimedia applications

Figure 12. Application state

Application state

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ad
pc

m(en
)

ep
ic

g7
21

(en
)

gsm

jpe
g(e

n)
mesa

mpe
g2

(en
)

pe
gw

it

K
by

te
s

Heap

Code

Global variable

Stack

Write file

Read file

17

may cause high overhead in migration. Among the state, stack and
global variables constitute the smallest parts and do not contribute
much during migration. The dominant factor in an application’s
state depends on its own feature. For example, the read file in
Adpcm(en), G721(en) and Mpeg(en) entails most of the cost
during migration, which enables us to save time if part of the file
becomes dead. For Jpeg(en), the read file, heap and code are the
main parts of its current state and dropping these helps here.
There is a chance of saving time by reducing the read file size or
heap size in Pegwit and Epic. This justifies that devising a
framework that takes a unified view of the state rather than just
focusing on data or code is superior.

In the second experiment (second column for each application),
the application state is decreased by a large value due to our
algorithm. The benefit mostly comes from read files, code and
heap. For example, in Epic and Jpeg(en), almost all the read files
become dead when the interrupt comes in and there is no potential
file pointer reset/decrement on all future possible paths, so the
remainder of the file can be removed safely. About half of the
mesa code is dead in migration, which can also be discarded
safely. On an average the application state is decreased by 45.39%
ranging from 13.95% to 71.85% using our migration scheme over
the naïve method of carrying all of the state. This scheme shows
that it is highly beneficial to migrate without dead state.

In the third experiment, we show how delaying the migration to a
later program point saves additional state and time in some cases.
Comparing with the second experiment, we can see that later
migration algorithm works better in terms of time saving. For
example, Mpeg2(en) has many frames as input files. As the
program continues running, more and more frames can be thrown
away since they are not needed any more. Since reading a file
from Flash ROM or SDRAM is less expensive than transferring it
through serialization and communication, we are afforded the
opportunity to delay migration to a more beneficial later program
point where more read files become dead. For Jpeg(en) and Epic,
when the program receives the migration signal, most of the heap
space allocated is going to be freed. If the application migrates
later, less state needs to be carried. There is, of course, cost
involved for continuing execution. However, the cost is quite
small compared with the benefit we get in migration time saving.
Our algorithm works well for such programs that read files into a
buffer and then the data is processed. This scheme is not suitable
for G721(en) since reduction in state progresses more slowly than
execution -- the input file is read for a data item at a time and the
major cycles are spent on its encryption, which consumes time.
On average, 5.07% additional migration time is saved at later
migration point, ranging from 0% to 23.62%.

Figure 13 shows how much time migration would take. We can
see that the time latency is long, ranging from 33 seconds to 176
seconds. Among the delay, serialization takes up almost all of the
migration time. It is due to our relative high transmission speed
(1Mbps) assumption. This assumption is conservative. If the
transmission speed was lower, savings would be even more due to
larger difference in cost of transmission. The time reduction in
Epic and Jpeg(en) is more obvious than the application state
decrease since most of the application state reduction lies in the
file size decrease, which cost longer time than other data (such as
heap, code, global variable). It illustrates our migration algorithm
achieves excellent time reductions. On average, the time saving

for the second experiment (migrate without dead state) is 48.94%,
ranging from 13.62% to 75.81%. For the third experiment
(migrate later and removing more dead state), it is 55.34%,
ranging from 33.04% to 81.34%.

We also performed a sensitivity study to determine the effect of
migration interrupts coming at different points of program
execution. We generated four interrupts more or less uniformly
spaced and checked the effects on the state. We observed that
many files get read right in the beginning of execution (and thus
become dead in first few thousand or so cycles) and thus all
interrupts coming after those have the same effects. Also, most
files are not written until the end and due to symmetric reason
other interrupts coming in between do not impact either. We
found that for just one application that the data was being read
and written continually in a loop throughout. Since a part file was
becoming dead (which was discovered by incrementing file
pointer), the deadness increased with later interrupts, but at the
same time more was added in a live (write) file.

The results of the sensitivity study are illustrated in Figures 14
and 15. They show active application state and migration time at
respective interrupt points comparing the base case with our
optimized schemes. On average, the application state decreases
by 47.61% for the second experiment and 51.26% for the third
experiment. There is 51.11% time saving for the second
experiment and 54.29% for the third experiment.

We also evaluate the correctness of our path prediction algorithm.
We experimented with eight applications and four interrupts were
generated for each application. So there were 32 interrupts in total.
The path prediction failed only for one interrupt and after one re-
evaluation, it became correct. So the correctness of our path
prediction algorithm is 32/33 = 97%.

Benchmark Overhead (s)
Adpcm(en) 0.131
Epic 0.663
G721(en) 0.376
Gsm 0.894
Jpeg(en) 1.423
Mesa 1.046
Mpeg(en) 1.391
Pegwit 1.034

Figure 13. Migration time

Migration time

0

50

100

150

200

250

adp
cm

(en
) epi

c

g7
21

(en
) gsm

jpe
g(e

n) mesa

mpeg
2(e

n)
peg

wit

se
c Transmission time

Serialization overhead

Table 6. Overhead

18

The overhead of our algorithm is shown in Table 6. The overhead
includes the time to decide which part to migrate, to calculate the
delay benefit and delay cost, and to determine the potential
migration points. On average, the overhead is 0.870 seconds. We
can observe that the overhead is much smaller compared with the
overall time spent and saved in migration.

6. Related Work
There has been a great amount of research work on process
migration in distributed systems [1; 20]. Emerald [17] provides an
object level migration mechanism to support fine-grained object
mobility. Sprite’s [8; 9] and COOL [3; 4] supports a high degree
of transparency.

Scalability is one big concern of process and object migration
techniques [13]. Application migration operates at a higher level. It
can be applied to the systems in wide area networks. Application
migration is either transparent or under user’s control [5, 6].

Krishna A. Bharat and Luca Cardelli [5] implemented
homogeneous application migration at the programming language
level. The biggest strengths of their implementation are that the
details of migration are completely hidden from the application
programmer, and; arbitrary user interface applications can be
migrated by a single “migration” command. J. Hall et. al. [26],
proposed an efficient migration algorithm. Their approach was
driven by the change in network configuration. Our strategy is
driven by the application’s state. To our knowledge this is the first
work that provides a compiler guidance framework for deciding
what to migrate and when to migrate to achieve tremendous savings
in the amount of state migrated and the time it takes to migrate.

Compiler assisted program analysis has also been around for a long
time. For example, the compiler generated potential checkpoint code
to maintain the desired checkpoint interval [22; 23]. Plank [24] et.
al., proposed a compiler assisted automatic memory exclusion in
checkpointing systems. Our strategy is different from theirs since
our analysis is based on the application state instead of the pure
structure of one program. Also, we do not assume periodic state
savings as is the case in incremental check-pointing schemes. In
addition, we perform analysis to determine whether to migrate right
away or continue for dropping additional state.

7. Conclusion
In this work, we tackle the problem of doing efficient application
migration. We propose a compiler assisted migration point
determination framework based on profile information to save
data transmission time in application migration. The basic idea is
to determine a best migration point to save time in application
migration. At run time, we guide the migration decision through a
combination of tradeoff analysis that gets triggered. The
framework not only determines the most profitable migration
points, but also determines what should be dropped during
migration to minimize serialization and communication overheads.

We have empirically shown such a compiler driven approach does
save on the state to be migrated and does reduce the cost of
migration. The time saving due to our framework is significant
over a scheme that migrates all of the state naively (45.39%
saving in time ranging from 13.95% to 71.85%). For some
applications, it is even beneficial to continue execution (being

lazy) to drop more state, (ranging from additional saving of 0 % to
23.62% with an average of 5.07%). Overall, our approach
improves the efficiency of migration in a significant way by
dropping dead state, and in some cases, by continuing to execute
expending a few more cycles to thin it further. Due to the
tremendous savings achieved by our scheme, we believe that it
will eliminate the biggest barrier to migration: high overheads and
will facilitate application mobility in future systems.

8. References
[1] Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna.

Understanding Code Mobility. In IEEE Transactions on
Software Engineering. 1998.

[2] Robin Kravets, Karsten Schwan and Ken Calvert. Power-
aware Communication for Mobile Computers. In Mobile
Multimedia Communications. 1999.

[3] Rodger Lea, Christian Jacquemot and Chorus systemes.
COOL: System Support for Distributed Object-oriented
Programming. In IEEE Transactions on Software
Engineering. 1993.

[4] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont. Overview of the CHORUS Distributed
Operating Systems. In Workshop on Micro-Kernels and
Other Kernel Architectures. 1992.

[5] K. Bharat and L. Cardelli. Migratory Applications. In
Proceedings of the Eighth ACM Symposium on User
Interface Software and Technology. 1995.

[6] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P.
Steenkiste, and J. Subhlok. A Resource Query Interface for
Network-aware Applications. In 7th IEEE Smposium on
High-Performance Distributed Computing, IEEE. 1998.

[7] Artsy, Y. and Finkel, R. 1989. Designing a Process
Migration Facility: The Charlotte Experience. In IEEE
Computer. 1989.

[8] F. Douglis and J. Ousterhout. Transparent Process
Migration: Design Alternatives and the Sprite
Implementation. In Software: Practice and Experience.
1991.

[9] John K. Ousterhout, Andrew R. Cherenson, Frederick
Douglis, Michael N. Nelson and Brent B. Welch. The Sprite
Network Operating System. In Computer Magazine of the
Computer Group News of the IEEE Computer Group
Society. 1988.

[10] Joseph TARDO and Luis VALENTA. Mobile Agent
Security and Telescript. In Proceedings of the 41st IEEE
International Computer Conference. 1996.

[11] G.H. Forman and J. Zahorjan. The Challenges of Mobile
Computing. In IEEE Computer. 1994.

[12] T. Imielinsky and B.R. Badrinath. Wireless Computing:
Challenges in Data Management. In Communications of the
ACM. 1994.

[13] Deborah Estrin, Ramesh Govindan, John Heidemann and
Satish Kumar. Next Century Challenges: Scalable
Coordination in Sensor Networks. In Proceedings of the 5th
annual ACM/IEEE international conference on Mobile
computing and networking. 1999.

19

[14] http://grouper.ieee.org/groups/802/11/index.htmly

[15] The SimplesSalar - arm power modeling project.
http://www.eecs.umich.edu/~panalyzer

[16] Alfred V. Aho, Ravi Sethi and Jefferey D. Ullman.
Compilers, Principles, Techniques, and Tools. Addison
Wesley. 1986.

[17] E. Jul, H. Levy, N. Hutchinson and A. Black. Fine-Grained
Mobility in the Emerald System. In ACM Transactions on
Computer Systems. 1988.

[18] B. Carpenter, G. Fox, S.H. Ko and S. Lim. Object
Serialization for Marshalling Data in a Java Interface to MPI.
In Proceedings of the ACM 1999 conference on Java Grande.
1999.

[19] Robert Gray, David Kotz, Saurab Nog, Daniela Rus and
George Cybenko. Mobile agents for mobile computing.
Technical report PCS-TR96-285.

[20] ARamon Lawrence. A survey of process migration
mechanisms. Technical report, University of Iowa. 1998.

[21] J.M. Smith. A survey of process migration mechanisms.
Technical report, Columbia University. 1995.

[22] Chung-Chi Jim Li, Elliot M. Stewart and W. Kent Fuchs.
Compiler-assisted full checkpointing. Software -- Practice
and Experience, 24(10):871—886. October 1994.

[23] M. Beck, J. S. Plank, and G. Kingsley. Compiler-assisted
checkpointing. Technical Report CS-94-269, University of
Tennessee at Knoxville. December 1994.

[24] James S. Plank, Micah Beck and Gerry Kingsley. Compiler-
Assisted Memory Exclusion for Fast Checkpointing. In IEEE
Technical Committee on Operating Systems and
Applications Environments - Special Issue on Fault-
Tolerance. 1995.

[25] Chanik Park, Junghee Lim, Kiwon Kwon, Jaejin Lee and
Sang Lyul Min. Compiler-Assisted Demand Paging for
Embedded Systems with Flash Memory. In Proceedings of
the fourth ACM international conference on Embedded
software. 2004.

[26] Joseph Hall, Jason Hartline, Anna R. Karlin, Jared Saia and
John Wilkes. On algorithms for efficient data migration. In
Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms. 2001.

Figure 14. Application state

Figure 15. Migration time

Application State

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ad
pc

m(en
)

adp
cm

(en
)

adp
cm

(en
)

adp
cm

(en
)

ep
ic

ep
ic

ep
ic

ep
ic

g7
21

(en
)

g7
21

(en
)

g7
21

(en
)

g7
21

(en
)

gsm gsm gsm gsm

jpe
g(e

n)

jpe
g(e

n)

jpe
g(e

n)

jpe
g(e

n)
mesa mesa mesa mesa

mpeg
2(e

n)

mpeg
2(e

n)

mpeg
2(e

n)

mpeg
2(e

n)
pe

gw
it

pe
gw

it

pe
gw

it

pe
gw

it

K
by

te
s

Heap
Code
Global variables
Stack
Write files
Read files

Migration time

0

50

100

150

200

250

adp
cm

(en
)

adp
cm

(en
)

adp
cm

(en
)

adp
cm

(en
)

ep
ic

ep
ic

ep
ic

ep
ic

g7
21

(en
)

g7
21

(en
)

g7
21

(en
)

g7
21

(en
)

gsm gsm gsm gsm

jpe
g(e

n)

jpe
g(e

n)

jpe
g(e

n)

jpe
g(e

n)
mesa mesa mesa mesa

mpeg
2(e

n)

mpeg
2(e

n)

mpeg
2(e

n)

mpeg
2(e

n)
peg

wit

peg
wit

peg
wit

peg
wit

se
c Transmission time

Serialization overhead

20

