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Abstract 
Mobile computing based upon wireless technology as the 
interconnect and PDAs, Web-enabled cell phones etc. as the end 
devices provide a rich infrastructure for anywhere, anytime 
information access. Wireless connectivity also poses tough problems 
[11, 12]. Network nodes may be mobile and the connectivity could 
be sporadic. In many cases, application mobility involving migration 
from one network node to another could provide interesting 
possibilities. However, the migration process is expensive in terms 
of both time and power overheads. To minimize the migration cost, 
an efficient strategy must decide which parts of the program should 
migrate to continue execution and at which program point the 
migration should take place.  

In this work we develop a compiler framework to achieve the above 
two goals. First, the potential migration points are decided by 
analyzing the call chains in the code. Then the compiler determines 
what parts of the program are dead at these points. At run time, 
using the current context of the call chain, a decision on whether to 
migrate now or later is taken. Such a decision depends mainly upon 
the cost of migration involved at the current program point vs. at a 
later potential migration point. Our experiments with multimedia 
applications show that both the migration state and the latency are 
significantly reduced by our techniques over the base case of 
migration with full state in the absence of any compiler guidance. 
Thus, the key contribution of the paper is to provide an efficient 
migration methodology removing barriers to application mobility.   

Categories and Subject Descriptors    D.3.4 [Programming 
Languages]: Processors – Compilers, optimization. 

General Terms  Algorithms, Languages, Performance, Measurement.  

Keywords   Application Migration, Compiler, Mobile Computing, 
IEEE 802.11 

1. Introduction 
Mobile computing (mostly based on wireless technology) 
provides a rich infrastructure for anywhere, anytime information 
access. Mobile devices such as personal digital assistants (PDAs) 
as well as web enabled cell phones are widely used over a wireless 
network. Mobile computing is becoming increasingly prevalent as 
it allows the users to have their electronic work follow them 
whenever a networked environment exists. However the wireless 
technology poses tough challenges to be overcome [11; 12; 19]. 

For example, the mobile communication is bad; the bandwidth in 
mobile computing is relatively low and the latency is relatively 
high; and mobile computers are susceptible to high error rates and 
sudden link failures.  

On the other hand, application mobility is an important asset that 
could be realized; one of the ways to achieve application mobility 
is to migrate a partially executed application. Such a mechanism is 
especially suited for applications on partially connected mobile 
computers such as laptops and palmtops. For example, a time 
consuming application executing on a machine which may be 
prone to failure due to battery capacity, potential memory 
bottlenecks discovered at run-time etc. can migrate off to a more 
robust remote machine [10]. In this way, the application can still be 
available on other machine and it can resume its execution there.  

Application migration can also improve an application’s 
performance based on the network conditions and the local 
resource of the mobile devices. An application migration 
framework exposes interesting geo-locality issues to be factored 
into the application semantics improving its precision. For 
example, migrating an application to a local server which has 
more up-to-date real time information on traffic conditions might 
lead to a better route suggestion than just using cached data 
obtained during the last connection inside a car navigation system. 
Migration could be an important mechanism pertaining to the 
availability of a system. For example, imagine an application 
which involves stock market trading; assume that a user is in the 
middle of a stock transaction using his PDA or cell phone. His 
handset is running out of power. He may not want to simply 
postpone his transaction. If availability guarantee has to be 
seamlessly achieved, it is best to migrate the entire transaction and 
its state to another tethered device to continue this transaction. 
Similarly, continuous process based systems operate on the 
premise of availability and recoverability -  an important means to 
achieve both is to first migrate the execution on another system 
and then attempt to recover and continue execution. Sometimes it 
is better to migrate an application to the data host than migrate the 
data to the host of the application since the data cannot be 
relocated (due to trust or proprietary reasons) or the movement of 
data would cause longer lag (e.g., a large database). In short, 
migration can be applied in many different types of situations. 

Research pertaining to classical migration is presented in [1; 7; 8; 20]. 
However, migration on embedded devices can be very expensive. 
Migration may entail a considerable time lag and consume a 
tremendous amount of power [2] due to an application’s large state 
and the low bandwidth between mobile machines, which are often 
battery powered. So the key question in migration is: How to minimize 
the latency in migration? The answer depends on three factors: Which 
parts of an application should migrate? At which program point the 
migration can minimize the transmission time? How to devise an 
effective mechanism to realize the above two goals?  
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It is important to devise such a guidance mechanism to do this 
properly since it may take a long time (as we see through our 
experiments) if one does it naively. In this work, we answer these 
questions by building a compiler + run-time solution. The answers 
will help provide insights into the compiler’s role in migration, 
which has mainly been an operating system/middleware’s concern.  

This paper is organized as follows. Section 2 describes the 
background and motivation for application migration; section 3 
represents our framework; section 4 illustrates the algorithms in 
detail; section 5 shows the results of our experiments; section 6 
discusses the related work; finally section 7 concludes our paper. 

2. Background and Motivation 
Application migration can be roughly classified into two 
categories according to the architecture and operating system of 
the machines: homogeneous application migration and 
heterogeneous application migration [20]. Homogeneous 
migration can only take place between machines running the same 
operating system on the same architecture. Heterogeneous 
migration can occur between different architecture and operating 
system. In this work, we focus on homogeneous application 
migration between embedded systems based on ARM architecture.  

The necessary component required for resuming an application is 
called the application state. The components of an application state 
depend on the machine where the application is running and may 
show substantial difference on different machines. However, 
essential parts of an application state remain the same across the 
implementations. A typical application state includes virtual 
memory, opened files, machine state and environment data etc.  

Migration before an application starts its execution is quite 
different from migration after the application has executed for 
some time. In the first case, migration is easy since we do not 
have to consider the application state. In this work, we target the 
second case in which the application state must be analyzed 
carefully in order to minimize the time lapse experienced by an 
application between suspension and resumption. In the following, 
we will elaborate on such migration that takes place in the middle 
of an application’s execution. 

Migration allows seamless execution to continue on another 
machine. The main process can be divided into five parts [2; 21]: 
suspend the application on the source machine; gather the state 
and represent it using some meta-data (this process is often 
referred to as serialization), transfer the application state to the 
destination machine; re-establish the state by loading it; and 
resume the execution on the destination machine. The most 
expensive part involves serialization and transmission of the 
serialized state to another machine. So the best way to minimize the 
migration time is to minimize the application state that gets migrated. 

There are many different factors impacting migration such as the 
number of applications running on the machine, CPU utilization, 
file systems, trust, network connectivity, or any combination of 
the above indicators. Other factors to consider include where to 
migrate geographical proximity to the resources, operating system 
capabilities and specialized hardware/software features [20]. 
Providing the whole systemic solution is not feasible nor is the 
goal of this paper. In this paper, we address the issue of migration 
dictated only by the state serialization and data transmission time 

given other constraints being satisfied. The scenario is that the 
middleware has taken migration decision after considering other 
factors and it now seeks help from the program’s runtime system 
(orchestrated by the compiler) on how and where to carry out the 
migration. Under the guidance of the runtime system, the program 
is prepared for migration through serialization and then migrates 
under the middleware’s supervision. 

Several mechanisms have been designed and implemented to 
move an application among the nodes of a network in a 
distributed system [7; 8]. However, the current application 
migration schemes proposed in the OS literature mainly deal with 
issues about where to migrate, which applications to migrate, and 
how to select meta-representation for migration, but do not deal 
with the critical issues of which parts of the state to migrate and 
when to migrate in the middle of the program’s execution?  Such 
decisions involve knowledge of program properties that affect the 
state. Migration becomes more attractive if such an analysis is 
undertaken and is coupled with runtime system guidance. For 
example, current approaches do not undertake file and code 
liveness analysis, usually resulting in all of the opened files and 
code being migrated to another machine. Such an approach which 
transfers all the data and code entails considerable time and is not 
feasible esp. for applications involving large data. An analysis that 
allows determining which parts of the state should migrate and 
when to migrate makes a big difference as shown in this paper. 
We achieve such a solution in this paper through a combination of 
static compiler analysis and runtime system guidance.  

3. Framework Overview 
In this work, we target distributed embedded systems in the 
setting of an 802.11 [14] local area wireless network environment. 
The embedded device is a widely used PDA, the Compaq iPAQ 
based on Intel’s StrongARM processor. IPAQ is a small 
multimedia-centric PDA that can act as a lightweight 
entertainment station for movie, music and more. It is a versatile 
device enabling the use of wireless communication. It usually has 
SDRAM (Synchronous DRAM), non-volatile Flash ROM and a 
high performance, low power demand CPU. More Flash ROM 
can also be plugged in as additional storage. The applications are 
generally written in either the C or C++ programming language.  

In our approach, the compiler analysis determines the potential 
migration points and the program components to migrate. Our 
framework is shown in Figure 1. First, we instrument the program 
to keep track of the file operations, stack size, heap size and the 
time consumption on the paths of the program. The file operation 
could be one of open, read, write and close. The instrumented 
application is executed using the training sets to collect the profile 
data. Second, the reaching graph for the application is built. The 
reaching graph represents the reachability relationship between 
the functions and the file operations. The reachability relation 
shows whether or not it is possible to have a call sequence from 
(current) function F to certain operations on file f. File f is said to 
be live in F if such a call sequence exists. If a file is live in 
(current) function F, it must be carried since there may be an 
execution path leading to it in the future execution; otherwise it 
may be discarded during migration.  We use function pointer 
analysis to discover multiple aliases of function pointers. The 
static call chains are built using this information. By accounting 
for these factors, the reachability analysis offers a safe mechanism 
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Table 1. Files and their description for Mpeg2 encoder 

to determine whether or not a file should be carried during 
migration. Next the code and global data liveness is analyzed. It is 
a simple backward data flow analysis such as variable liveness 
analysis in [16]. The heap liveness information is also collected. 
Next, by combining the code, global variable and heap analysis 
with stack size and file liveness information, the cost of migration 
at potential migration points is decided for a given function. 
Finally, the migration handler is inserted by the compiler in the 
code providing guidance as a part of runtime system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we will explain how our mechanism works in the dynamic 
execution of a program. When a program is running, the operating 
system invokes a migration interrupt to inform the program to 
prepare for migration. The migration handler is triggered by the 
runtime system upon receiving this interrupt. The handler 
determines the current execution context and predicts future paths 
to potential migration points.  Using the application’s current state 
and profile data, the migration handler predicts the most likely 
future execution path. Along this path, it will determine earliest 
such point where the delay benefit/cost ratio is maximized. Delay 
benefit is the time that can be saved at that migration point and 
cost is the expected execution time to that point. The migration 
handler then makes a decision on whether to migrate now or 
continue execution based on the cost-benefit tradeoffs at the 
potential migration point. If execution continues, the run-time 
system checks if the predicted execution path is followed or not. If 
it is not followed, it re-evaluates the prediction and makes a new 
decision on migration. At the migration point, the dead files are 
discarded; the dead data and code is also discarded.   

4. Migration Algorithms 
4.1 File Analysis 
Most media applications make use of a number of large files. 
Discarding many of these files during migration may generate a 
tremendous time and energy savings. Most programs use a 
potential set of files whose name-set can be found through 
analysis. A real example (Mpeg2 encoder) is used through this 
section to illustrate how our approach discovers this information. 

Before we go into the file analysis, some important conditions of 
our work are presented. The set of all files used in an application 
is called its file universe. A program’s file universe is said to be 
bounded if we can derive all files names and their locations 
through hard-coded files names. That means that potential files 
which will be used by the program are derivable by analysis 
before its execution. Our framework is not intended for 
applications whose file universe is unbounded (such as OS file 
system support, for example). The applications we work on have a 
bounded file universe and can be found using closure.  

For example, there are fifteen files used in the execution of the 
Mpeg2 encoder. They are: options.par, rec_files (including 0.y, 
0.u, 0.v, 1.y, 1.u, 1.v, 2.y, 2.u, 2.v, 3.y, 3.u and 3.v), stat.out and 
output.m2v. The description of these files is shown in Table 1. In 
this example, the bitstream of YUV components is encoded. To 
make it easy, suppose only 4 frames for encoding. Mpeg2 encoder 
uses a pre-set convention that the file “options.par” contains the 
names of the “rec_files” which hold the frame data.  

File name File description 
options.par Options of encoding (input file) 

rec_files YUV components to be encoded (input file) 
stat.out Statistics file (output file) 

output.m2v Encoded file (output file) 
 

 

 

 

 

 

 

 

 

The file operation analysis process is shown in Figure 2. First, our 
approach takes a transitive closure using hard-coded names in the 
program and constructs the file universe. In other words, our 
technique works if we can construct the file universe of the 
application. Note that we need not know the content of the files. 
At the same time, potential aliases of file pointers are discovered. 
Second, we have file pointer analysis to accurately generate the 
file-pointer— filename correspondence. Typically, files are opened 
and read sequentially by incrementing the file pointers. We 
perform a check on the file pointer to discover any 
rewinding/resets/potential decrements. If there is no potential 
reset/decrement operation, only the remainder of the file starting 
from current file pointer will be read in the future execution. Thus 
it will be safe to carry only the remainder of the file from where 
the current pointer is. Finally, by analyzing the operation on file 
pointers, we can know when the file is opened, read, written and 
closed. In the following section, we show how file liveness 
analysis is performed based on these file operations information. 

Reaching graph 
creation 

Migration handler insertion 

File liveness 
analysis 

Migration determination model 

Stack, heap and execution time 

profiling data 

File profiling data 

Figure 1. Framework overview 

Instrumentation 

Instrumented program execution 

Code, global variable and heap 
liveness analysis 

Hard-coded files analysis 

File universe creation  File pointer aliasing analysis  

File pointer and file mapping creation 

File operation location 

Figure 2. File operation analysis 

File pointer inc/decrement checking 
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Figure 4. Algorithm for identifying FLR[f] 

4.1.1  Reaching Graph 
First, a reaching graph is built representing the function 
precedence relationship based on file operations. A reaching 
graph is a directed graph that contains two types of nodes: 
functions and file operation tuples. A node label could represent a 
function or a file operation tuple. The node label is the function 
name or a 2-tuple {file_operation, file_name}. The file operation 
tuple node is specially used to store the exact program point 
where the file operation is located.  

The edges of the graph can be built in three ways. When any two 
nodes are invoked sequentially in the same function, they are 
connected with a directed edge indicating the order of execution 
or precedence relation. The second type of edges are from the last 
callee of a function to all of its caller’s pointed to nodes. These 
edges show that the next function to be executed should be the 
next sequential function after the caller in the program. Then the 
edge from the caller to the other nodes except its last callee can be 
removed from the reaching graph. If a node N is the first callee of 
a function F, there is an edge from F pointing to N. Notice that F 
may have more than one first possible callee since F may call 
them in a switch statement or an if-else statement. Thus, the edges 
in the reachability graph can show an invocation or precedence 
relation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reaching graph for the Mpeg2 encoder is shown in Figure 3. 
To save space, not all functions are shown. Only the ones that 
may involve file operations are included. Functions without file 
operations do not impact our file analysis algorithm. The dashed 
line indicates that the caller calls the callee indirectly, which 
means there are some other function calls between the two 
functions. Notice that there are two types of nodes in the graph: 
function call nodes bearing the label of the function calls and file 
operation nodes bearing the tuple (file-operation, file-name) as the 

label. The directed arrows either show precedence or a caller-
callee relationship. The precedence relation illustrates the order of 
execution. There are edges from N12 to N15, N16 and N17 since 
they are called in a switch statement in N12. At first, there is an 
edge from N12 to N13 since N13 is called after N12 in N5. N15, 
N16, N17 are all last callees of N12, so edges are added from 
these nodes to N13. Then the edge between N12 and N13 is 
deleted. An edge from N20 to N13 is inserted and the edge from 
N16 to N13 is removed. 

4.1.2 File Analysis Algorithm 
This subsection details our file live range analysis algorithms. 
First, some definitions are introduced. In this subsection, G 
denotes the reaching graph of the program. 

Definition1: A file is said to be live in a node N of G if there 
exists a reference to the file on a path starting from the entry of N. 
Otherwise, the file is said to be dead in N.  

Notice if a file is dead, the program is not used anymore; it can be 
discarded during migration. This observation results in possible 
time saving in application migration. 

Definition2: A node B is reachable from a node A in G if there 
exists a directed path from A to B in G.  

Next, we identify a file’s effective live range and the migration 
points in a program.  

1) A file f’s effective live range set is denoted by FLR[f]. The 
algorithm to compute FLR[f] is shown in Figure 4. Initially, 
FLR[f] contains only those nodes that contain file operations on f. 
We then consider the nodes in G from which we can reach any 
node in FLR[f] and include them in FLR[f]. The process is 
repeated until convergence (defined as either termination or 
transitive closure). In other words, FLR[f] denotes the effective 
live range of a file consisting of all the functions from which an 
execution can lead to a potential operation on f. 

 

 

 

 

 

 

 

 

 

File f FLR[f] 
options.par N1, N2, N6, N7, N8 

rec_files N1- N12, N16, N18 – N20 
 

Consider the example in Figure 3 again. In this reaching graph, 
the nodes containing file operations on f form FLR[f]. Then 
FLR[f] is expanded according to the reachability information. For 
example, at first, FLR[options.par] contains nodes N6, N7 and 
N8. N2 can reach N6 and N1 can reach N2, so they are also 

FLR[f] = {N | N contains file operations on f} 
change = true; 
while(change) 

change = false; 
For N∈G 

If ( ∃ M∈FLR[f]) && (M is reachable from N in G) 
&& (N∉FLR[f]) 

            FLR[f] = FLR[f] ∪ {N}; 
            change = true; 
        EndIf   
    EndFor 
EndWhile 

Table 2. FLR[f] for Mpeg2 encoder 

N1 

N3 

N2 

N4 

N5 

N6 

N7 

N9 

N10 

readquantmat 

init 

putseq 

readparmfile 

main 

{open, options.par} 

{read, options.par} 

{close, options.par} 

range_checkes 

profile_and_level_checks 

Figure 3. Sub reaching graph for Mpeg2 encoder 

N8 

N11 

N12 

N13 

N14 

N15 

N16 

N17 

N18 

N19 

N20 

rec_init_seq 

readframe 

motion_estimation 

writeframe 

read_y_u_v 

{open, rec_files} 

{read, rec_files} 

{close, rec_files} 

read_yuv 

read_ppm 
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included in FLR[options.par]. Similarly, FLR[rec_files] is 
obtained. Among the files used by the Mpeg2 encoder, stat_out 
and output.m2v have long live ranges. Because they are live 
through almost the entire program and they involve file output 
due to the write operations, they cannot be discarded during 
migration. Therefore, we will not discuss them anymore. The 
other files’ live ranges are shown in Table 2. 

2) Determine LF[N], the set of live files in a node N. It is easy to 
see that LF[N] = {f: N∈FLR[f]}. This set is only used to conduct 
the LFNW set as following. 

3) Next, we identify LFNW[N], a subset of LF[N], as those files 
in  node N such that there is no write operation on them along any 
path starting from the entry of N. The algorithm for identifying 
LFNW[N] is described in Figure 5. 
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The significance of LFNW[N] is as follows. LFNW[N] denotes 
only those files which could be read on some path starting at N. It 
excludes those which could be written. The files that could be 
written should migrate, but those in LFNW[N] need not migrate if 
function N itself becomes unreachable in the current call context. 
One more clarification is that our analysis focuses only on those 
files that are safe not to be carried since they will be never needed 
in execution after migration. 

Function name LF[F] LFNW[F] 
N1, N2, N6, N7, N8 rec_files, options.par, 

stat.out output.m2v 
rec_files, options.par 

N3 – N5, N9 – N12, 
N16, N18 – N20 

rec_files, stat.out, 
output.m2v 

rec_files 
 

The LF[N] and LFNW[N] sets for the Mpeg2 encoder are illustrated 
in Table 3. Notice that we add stat.out and output.m2v to show the 
difference of LF[F] and LFNW[F]. Stat.out and output.m2v are live 
throughout the whole program, so they are included in LF[F]. But 
there exist write operations on them, so they are not contained in 
LFNW[F]. From this table, we can observe that there are many 
opened files in the program and the time duration between when the 
files are opened and closed is relatively short. This feature affords 
the opportunity to delay the migration to a better program point 
since if the interrupt comes at a point too close to the open operation 
on a file, we can delay migration to the point when the file is closed. 
Through experiments, we observed that this does not demand too 
many cycles. For example, suppose readframe receives the interrupt. 
The migration may be delayed to writeframe instead of readframe 
saving the time for migrating three of the rec_files. 

For convenience, we illustrate all the set definitions and their 
descriptions in Table 4. 

Definition Description 
G Reaching Graph of the program 

FLR[f] File live range of file f 
LF[N] Set of live files in node N 

LFNW[N] Set of live files in node N and there is no 
write operation in or after N 

 

4.2 Code and Global Variable Analysis 
In this subsection, we show how to identify dead functions and 
global variables through data flow analysis.  

Definition 3: A function (global variable) is dead at a program 
point if there does not exist any path from the current execution 
point to the function (global variable). Otherwise it is live. 

For a function F, denote in[F] to be the set of live functions at the 
entry of F; out[F] to be the set of live functions at the exit of F, 
dead_in[F] to be the set of dead functions at the entry of F; 
Universal_set to be the set of all the functions in the program; 
gv_in[F] to be the set of live global variables at the entry of F; 
gv_out[F] to be the set of live global variables at the exit of F; 
gv_dead_in[F] to be the set of dead global variables at the entry of 
F; and gv_universal_set to be the set of all the global variables in 
the program. The algorithm to collect dead function and dead 
global variable information is shown in Figures 6 and 7 
respectively. Notice that before performing global variable 
analysis, the variable aliasing is performed. Both of the two 
algorithms are similar to live variable analysis [16] except that 
there is no kill set and the analysis unit is a function instead of a 
basic block. Because we use a conservative approach, the kill set 
is unnecessary. When a function receives the migration interrupt, 
if a function or a global variable is dead before entering the 
function, they need not be carried during migration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A binary code can be viewed as a sequence of functions. A table 
is built to keep track of the address of each function in the binary 

Figure 5. Algorithm for identifying LFNW[N]  

LFNW[N] = LF[N]; 
For f∈LFNW[N] 

For M∈FLR[f] 
    If (M is reachable from N in G) 
        && ( ∃ a write operation on f in M) 
        LFNW[N] = LFNW[N] – {f}; 

            Break; 
        EndIf 

EndFor  
EndFor 

Table 4. Definitions and their descriptions 

Figure 7. Global variable analysis 

Initialization: 
gv_in[F] = gv_out[F] = NULL; 
gv_gen[F] = {v | v is a global variable referenced  in F} 

Data flow equations: 
gv_in[F] = gv_gen[F] U gv_out[F]; 

gv_out[F] = U F’ is reachable from F in[F’] 
Finalization: 

dead_gv_in[F] = gv_universal_set – gv_in[F] 

Figure 6. Code analysis 

Table 3. LF[N] and LFNW[N] for Mpeg2 encoder 

Initialization: 
    in[F] = out[F] = NULL; 
    gen[F] = {F’|F’ is called in F} U {F} 
Data flow equations: 
    in[F] = gen[F] U out[F]; 

    out[F] = U F’ is reachable from F in[F’] 
Finalization: 
    dead_in[F] = universal_set – in[F] 
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code. According to the liveness of a function, the code can be 
divided into live parts and dead parts. A live/dead part consists of 
sequentially connected live/dead functions. Live and dead parts 
appear alternately in the code. When the code migrates to another 
mobile machine, only live parts are transmitted. The function calls 
to the dead functions in the migrated code are removed and the 
remaining code will be rebuilt on the destination machine. 

4.3 Heap Analysis 
Currently we only deal with heap objects that are allocated and 
freed by the programmer using the malloc() and free() system 
function calls. First, we do heap object pointer aliasing analysis. A 
heap object is said to be live if a malloc() call is invoked and no 
free() call is invoked on any pointer pointing to this heap object. 
Otherwise, it is said to be dead. Through our experiments detailed 
in the next section, we can observe that large heap object may be 
freed when the application proceeds executing enabling us to save 
time in migration if the program reaches a later migration point.  

4.4 Migration Points Determination Model 
In this phase, we describe how to set up a model to determine the 
most likely migration point based on the analysis of the program 
and the time estimation. The goal of the algorithm is to delay 
migration so that the time consumption on the files, stack, global 
variable and code is less than the additional time to get there.  

First, we need to estimate delay_cost, the cost of additional time 
for executing the program to a later migration point. Let MP[F] be 
the functions which are reachable from F, where F is the function 
receiving the migration interrupt. And MP[F] is the set of all 
possible migration points starting from F. The delay_cost for each 
function in MP[F] is evaluated as follows. 

Suppose we are currently in the execution of a function F and 
want to know the most likely path from F to M∈MP[F]. Each 
execution path from F to M is labeled with prefix, suffix, 
frequency and execution time. The prefix P is the function 
sequence in the application’s stack when it reaches F. The suffix S 
is the function sequence when the program reaches M excluding 
the prefix. The frequency is the execution times of the path with P 
and S as its prefix and suffix. The execution time is the time 
consumption on the path from F to M matching prefix P and 
suffix S. The most likely path from F to M is defined as the path 
with the highest frequency that matches the function sequence 
(prefix) in the application’s current stack. Next the estimated time 
from F to M (delay_cost) is determined by the execution time on 
such a path. If there is no such a path from F to M in the profiling 
data, delay_cost is set to infinity since that may represent a 
dynamically infeasible path. 

 

 

 

 

 

 

 

 

The example in Figures 8 and 9 show how our prefix and suffix 
matching scheme works. First, the paths (P1, P2, P3) whose prefix 
matches with the application’s current stack <F1, F2, F3, F> are 
selected. Among these paths, P3 is executed most frequently (8000 
times), so it is chosen as the most likely path. The delay_cost from 
F to M is 20 (msec). 

Next, the time saving at a later migration point is denoted by 
delay_benefit. Delay_benefit is computed according to the 
transmission delay plus the serialization overhead. The pure 
transmission speed is not enough to estimate migration time since 
it only tackles the cost of transferring data from the sender’s 
buffer to the receiver’s buffer. The cost of moving this data from 
the receiver’s SDRAM or Flash ROM to its buffer still needs to 
be taken into account, which is called serialization overhead. 
Bryan Carpenter et. al. [18] measured the serialization cost for 
marshalling data in a Java interface to MPI. They showed that the 
overhead ranged from 0.027 µ s/byte to 100 µ s/byte, depending 
on the data type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this work, we build a serialization overhead model by the 
simulation on an iPAQ, which is based on the ARM architecture. 
The Flash ROM in an iPAQ consists of a fixed number of blocks, 
each with 32 pages of 512 or 2048 bytes of main data [25]. The 
experimental results for serializing SDRAM or Flash ROM 
resident data are shown in Figures 10 and 11. It shows that the 
data serialization time increases with the size of moved data 
linearly. The slope of the line represents the bulk transfer 
capacity. They are 0.124 and 0.071 respectively. That means it 
costs 0.124 (0.071) seconds to move 1kbytes data from the Flash 
ROM (SDRAM) to the buffer. In an application’s state, the global 
variables, stack and code usually stay in SDRAM while the 
opened files lie in the Flash ROM. So delay_benefit should be 

P3 {<F1, F2, F3, F>, <F8, F9, F7, M>, 8000, 20} 

P2 {<F1, F2, F3, F>, <F7, F10, M>, 100, 10} 
F 

P1 {<F1, F2, F3, F>, <F4, F5, F6, M>, 2000, 30} 

M 
F2 

F1 

F 

F3 

Figure 8. Current stack     Figure 9. Matched paths from F to M 

Figure 11. Serialization: Copying data from Flash ROM to SDRAM 

Figure 10. Serialization: Copying data from SDRAM to SDRAM 
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(unit_trans_time  + 0.071) × (stack_size[F] - stack_size[M] + 
global_variable_size[F] – global_variable_size[M] + code_size[F] 
– code_size[M] + heap_size[F] – heap_size[M]) + 
(unit_trans_time + 0.124) × (file_size[F] – file_size[M]), where 
the interrupt comes into F and M is a function in MP[F] used for 
deciding actual migration point. Unit_trans_time in the above 
equation represents unit time needed to transmit the serialized 
data over the wireless link. The migration interrupt handler 
performs the trade off analysis for all the functions in MP[F] to 
determine the best potential later migration point. 

From the above discussion one can see that in case a migration 
interrupt is received in function F, it may be possible to continue 
execution until a function M that belongs to MP[F] and migrate once 
this function is called. Thus, one could generate a migration call in M.  

But it is not sufficient to generate such a call and simply continue 
execution from F. There is no guarantee that execution will reach 
M. Thus, M only represents a potential migration point if 
execution proceeds along the respective call chains. But we must 
monitor and change the decision to migrate in case execution 
proceeds along a different chain in the dynamic sense as discussed 
above. Recall that we computed M as the most likely migration 
point that could be reached in the given calling context for 
migration cost tradeoff analysis. We used profiling information to 
arrive at the above. If the program does not follow the predicted 
(most likely) path, we must provision for it.  

To solve this problem, we use the suffix to do the re-estimation of 
migration point and the tradeoff. Suppose the application receives 
the interrupt at function F and it was predicted by the interrupt 
handler that it will go along a certain path to reach a migration 
point M. Assume that somehow the program’s execution does not 
match with the predicted path and it reaches a function F’ not on 
the predicted path, then we have to re-analyze the migration 
decision. We re-evaluate it as follows. We first predict the 
execution path from F’ and the corresponding migration point. Let 
M’ be the most beneficial migration point in MP[F’]. If the sum 
of the actual execution time from F to F’ plus the estimated 
execution time from F’ to M’ is greater than the delay_benefit at 
M’, we decide to migrate immediately in F’. Otherwise, we decide 
to continue execution until M’. We continue this process in case, 
again, path prediction to M’ is in error and so on until the 
application migrates. 

5. Experimental Results 
This section shows the experimental results indicating the state 
and latency saving offered by our migration framework. Our 
experiments are based on the ARM architecture, which is very 
popular for embedded systems such as PDAs and mobile 
handhelds such as iPAQs. The wireless networks are 802.11 
wavelan and the transmission speed in such a network is assumed 
to be 1Mbps during a migration. In fact, the transmission speed is 
usually much smaller than 1Mbps due to the network traffic 
volume and some link failures. The optimizations are implemented 
in gcc cross-compiler and the handlers are inserted in the run time 
system. We simulated our programs using SimpleScalar [15].  

We ran a series of experiments to determine if our application 
migration algorithm could save significant amounts of time during 
migration. To evaluate it here, we focus on multimedia 
applications. We have eight multimedia applications. They are 

compiled using the gcc cross-compiler with instrumentation. 
These benchmarks are trained using training set, which includes 
five to ten different inputs to collect profiling data. Then another 
input (called ref input), which is not in the training set, is used for 
the evaluation. The ref inputs of these applications are shown in 
Table 5. For the benchmark mesa, the demon (osdemon), which is 
included in MediaBench, is used to get the result. 

Applications Input set 
Adpcm(en) clinton.pcm (in MediaBench) 
Epic lana.tif (in MediaBench) 
G721(en) clinton.pcm (in MediaBench) 
Gsm clinton.pcm (in MediaBench) 
Jpeg(en) input_large.ppm (in MiBench) 
Mesa None 
Mpeg(en) Bitstream of YUV components (in 

MediaBench) 
Pegwit public_key, encryption_noise_file, 

plain_text (in MeadiaBench) 
 

We performed three sets of experiments. In the first experiment, 
all of the application state migrates completely without any 
analysis, which is the base line for the latter two experiments. The 
second one conveys how our application state analysis algorithm 
works for these applications. In other words, in this setting the 
application migrates immediately at the point of interrupt (now) 
except that dead code, global variables and read files that are no 
longer needed are dropped. The third one is focused on 
determining the best migration point. Among these three 
experiments, consistency in interrupts was maintained (i.e., the 
interrupts happened at the same dynamic program point) while 
comparing the optimized and unoptimized versions. 

 

 

 

 

 

 

 

 

 

The application state of the eight multimedia applications is shown in 
Figure 12. In this graph, we have three columns for each benchmark. 
They represent the results of migration now without any analysis (first 
column), migration now with analysis (second column) and migration 
later with analysis (third column). Each column is split into six parts, 
showing the sizes of the heap, code, global variables, stack, write files 
(the file which is at least written once by the application) and read files 
(the file which is only read by the application). 

The first experiment (first column for each application) proves 
that the application state could be quite big (up to 1882 Kbytes). 
This may result in long latency in low bandwidth networks and 

Table 5. Ref input set of multimedia applications 

Figure 12. Application state 
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may cause high overhead in migration. Among the state, stack and 
global variables constitute the smallest parts and do not contribute 
much during migration.  The dominant factor in an application’s 
state depends on its own feature. For example, the read file in 
Adpcm(en), G721(en) and Mpeg(en) entails most of the cost 
during migration, which enables us to save time if part of the file 
becomes dead. For Jpeg(en), the read file, heap and code are the 
main parts of its current state and dropping these helps here. 
There is a chance of saving time by reducing the read file size or 
heap size in Pegwit and Epic.  This justifies that devising a 
framework that takes a unified view of the state rather than just 
focusing on data or code is superior. 

In the second experiment (second column for each application), 
the application state is decreased by a large value due to our 
algorithm. The benefit mostly comes from read files, code and 
heap. For example, in Epic and Jpeg(en), almost all the read files 
become dead when the interrupt comes in and there is no potential 
file pointer reset/decrement on all future possible paths, so the 
remainder of the file can be removed safely. About half of the 
mesa code is dead in migration, which can also be discarded 
safely. On an average the application state is decreased by 45.39% 
ranging from 13.95% to 71.85% using our migration scheme over 
the naïve method of carrying all of the state. This scheme shows 
that it is highly beneficial to migrate without dead state.  

In the third experiment, we show how delaying the migration to a 
later program point saves additional state and time in some cases. 
Comparing with the second experiment, we can see that later 
migration algorithm works better in terms of time saving. For 
example, Mpeg2(en) has many frames as input files. As the 
program continues running, more and more frames can be thrown 
away since they are not needed any more. Since reading a file 
from Flash ROM or SDRAM is less expensive than transferring it 
through serialization and communication, we are afforded the 
opportunity to delay migration to a more beneficial later program 
point where more read files become dead.  For Jpeg(en) and Epic, 
when the program receives the migration signal, most of the heap 
space allocated is going to be freed. If the application migrates 
later, less state needs to be carried. There is, of course, cost 
involved for continuing execution. However, the cost is quite 
small compared with the benefit we get in migration time saving. 
Our algorithm works well for such programs that read files into a 
buffer and then the data is processed. This scheme is not suitable 
for G721(en) since reduction in state progresses more slowly than 
execution -- the input file is read for a data item at a time and the 
major cycles are spent on its encryption, which consumes time. 
On average, 5.07% additional migration time is saved at later 
migration point, ranging from 0% to 23.62%.  

Figure 13 shows how much time migration would take. We can 
see that the time latency is long, ranging from 33 seconds to 176 
seconds. Among the delay, serialization takes up almost all of the 
migration time. It is due to our relative high transmission speed 
(1Mbps) assumption. This assumption is conservative. If the 
transmission speed was lower, savings would be even more due to 
larger difference in cost of transmission. The time reduction in 
Epic and Jpeg(en) is more obvious than the application state 
decrease since most of the application state reduction lies in the 
file size decrease, which cost longer time than other data (such as 
heap, code, global variable). It illustrates our migration algorithm 
achieves excellent time reductions. On average, the time saving 

for the second experiment (migrate without dead state) is 48.94%, 
ranging from 13.62% to 75.81%. For the third experiment 
(migrate later and removing more dead state), it is 55.34%, 
ranging from 33.04% to 81.34%. 

 

 

 

 

 

 

 

 

 

We also performed a sensitivity study to determine the effect of 
migration interrupts coming at different points of program 
execution. We generated four interrupts more or less uniformly 
spaced and checked the effects on the state. We observed that 
many files get read right in the beginning of execution (and thus 
become dead in first few thousand or so cycles) and  thus  all 
interrupts coming after those have the same effects. Also, most 
files are not written until the end and due to symmetric reason 
other interrupts coming in between do not impact either. We 
found that for just one application that the data was being read 
and written continually in a loop throughout. Since a part file was 
becoming dead (which was discovered by incrementing file 
pointer), the deadness increased with later interrupts, but at the 
same time more was added in a live (write) file.  

The results of the sensitivity study are illustrated in Figures 14 
and 15. They show active application state and migration time at 
respective interrupt points comparing the base case with our 
optimized schemes.  On average, the application state decreases 
by 47.61% for the second experiment and 51.26% for the third 
experiment. There is 51.11% time saving for the second 
experiment and 54.29% for the third experiment.  

We also evaluate the correctness of our path prediction algorithm. 
We experimented with eight applications and four interrupts were 
generated for each application. So there were 32 interrupts in total. 
The path prediction failed only for one interrupt and after one re-
evaluation, it became correct. So the correctness of our path 
prediction algorithm is 32/33 = 97%. 

Benchmark Overhead (s) 
Adpcm(en) 0.131 
Epic 0.663 
G721(en) 0.376 
Gsm 0.894 
Jpeg(en) 1.423 
Mesa 1.046 
Mpeg(en) 1.391 
Pegwit 1.034 

 

Figure 13. Migration time 
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The overhead of our algorithm is shown in Table 6. The overhead 
includes the time to decide which part to migrate, to calculate the 
delay benefit and delay cost, and to determine the potential 
migration points. On average, the overhead is 0.870 seconds. We 
can observe that the overhead is much smaller compared with the 
overall time spent and saved in migration. 

6. Related Work 
There has been a great amount of research work on process 
migration in distributed systems [1; 20]. Emerald [17] provides an 
object level migration mechanism to support fine-grained object 
mobility. Sprite’s [8; 9] and COOL [3; 4] supports a high degree 
of transparency. 

Scalability is one big concern of process and object migration 
techniques [13]. Application migration operates at a higher level. It 
can be applied to the systems in wide area networks. Application 
migration is either transparent or under user’s control [5, 6].  

Krishna A. Bharat and Luca Cardelli [5] implemented 
homogeneous application migration at the programming language 
level. The biggest strengths of their implementation are that the 
details of migration are completely hidden from the application 
programmer, and; arbitrary user interface applications can be 
migrated by a single “migration” command. J. Hall et. al. [26], 
proposed an efficient migration algorithm. Their approach was 
driven by the change in network configuration. Our strategy is 
driven by the application’s state. To our knowledge this is the first 
work that provides a compiler guidance framework for deciding 
what to migrate and when to migrate to achieve tremendous savings 
in the amount of state migrated and the time it takes to migrate.  

Compiler assisted program analysis has also been around for a long 
time. For example, the compiler generated potential checkpoint code 
to maintain the desired checkpoint interval [22; 23]. Plank [24] et. 
al., proposed a compiler assisted automatic memory exclusion in 
checkpointing systems. Our strategy is different from theirs since 
our analysis is based on the application state instead of the pure 
structure of one program. Also, we do not assume periodic state 
savings as is the case in incremental check-pointing schemes. In 
addition, we perform analysis to determine whether to migrate right 
away or continue for dropping additional state.  

7. Conclusion 
In this work, we tackle the problem of doing efficient application 
migration. We propose a compiler assisted migration point 
determination framework based on profile information to save 
data transmission time in application migration. The basic idea is 
to determine a best migration point to save time in application 
migration. At run time, we guide the migration decision through a 
combination of tradeoff analysis that gets triggered. The 
framework not only determines the most profitable migration 
points, but also determines what should be dropped during 
migration to minimize serialization and communication overheads.  

We have empirically shown such a compiler driven approach does 
save on the state to be migrated and does reduce the cost of 
migration. The time saving due to our framework is significant 
over a scheme that migrates all of the state naively (45.39% 
saving in time ranging from 13.95% to 71.85%). For some 
applications, it is even beneficial to continue execution (being 

lazy) to drop more state, (ranging from additional saving of 0 % to 
23.62% with an average of 5.07%). Overall, our approach 
improves the efficiency of migration in a significant way by 
dropping dead state, and in some cases, by continuing to execute 
expending a few more cycles to thin it further. Due to the 
tremendous savings achieved by our scheme, we believe that it 
will eliminate the biggest barrier to migration: high overheads and 
will facilitate application mobility in future systems. 
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Figure 14. Application state 

Figure 15. Migration time 
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