Spinach: A Liberty-based Simulator for Programmable
Network Interface Architectures

Paul Willmann, Michael Brogioli, and Vijay S. Pai

Electrical and Computer Engineering
Rice University
Houston, TX 77005

{willmann, brogioli, vijaypai}@rice.edu

ABSTRACT

This paper presents Spinach, a new simulator toolset spabjfi
designed to target programmable network interface arthites.

Spinach models both system components that are common to all

programmable environments (e.g., ALUs, control and dataspa
registers, instruction processing) and components tleaspecific
to the embedded systems and network interface environregts
software-controlled scratchpad memory, hardware agsisBMA
and medium access control).

Spinach is built on the Liberty Simulation Environment (USE
and exploits LSE’s modularity to support easy reconfigoratf
programmable network interface cards (NICs) and embedged s
tems, enabling wide design space exploration with littla@rcode
variation. For example, the same underlying C code is usedheh
supporting a uniprocessor Gigabit network interface, atipra-
cessor Gigabit interface, or a multiprocessor 10 Gigabérface
with a highly heterogeneous memory system. The only diffeze
is in a small number of lines of high-level scripting code dise
configure the various modules into a simulation model.

Spinach is validated by modeling the Tigon-2 programmalte E
ernet controller by Alteon Websystems running actual Etégpro-
cessing firmware and by comparing the reported results t@mhct
hardware benchmarks. Spinach is then used to obtain neghtssi
about the performance of Gigabit and 10 Gigabit networkrinte
faces.

Categories and Subject Descriptors

C.4 [Computer Systems Organizatiofy: Performance of Systems—
Modeling Technique®.4.4 Input/Output and Data Communi-
cationg: Performance Analysis and Design AidSimulation

*This work is supported in part by a donation from Advanced
Micro Devices and by the National Science Foundation under
Grant Nos. ACI-03050691, ANI-0216467, CCR-0209174, and
CCR-0238187.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

LCTES'04,June 11-13, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-806-7/04/0006$5.00.

General Terms
Measurement, Performance, Design

Keywords
Programmable Network Interfaces, Simulation, EmbeddesticBys

1. INTRODUCTION

A computer system’s network interface translates betwhen t
formats understood on the external network and the locetéon-
nect. The most common are network interface cards (NICg) tha
support the Ethernet protocol externally and the PCI bigsriatly.
Because the standard Ethernet protocol is well-defined Catdb
a minimal set of required features, allowing most previod€s\
to be built as ASICs. However, recent trends toward offlogdin
networking services from the host CPU have motivated theotise
programmable processors on NICs, as programmable prasesso
provide increased flexibility, easier debugging and madifim to
support evolving protocols, and potentially lower desigsts. Ex-
amples of tasks supported directly on programmable NIQsdec
interrupt reduction, TCP protocol processing, cachingeddiently
requested content, TCP/IP checksum offloading, iSCSI pobto
implementations, or message-passing [2, 5, 6, 8, 13, 15].

As NICs start to take on more tasks traditionally performgd b
the host CPU, the design and evaluation of programmable NICs
will become a more important component of system architectu
Just as architectural simulation has become the dominaaemo
of evaluation for general-purpose programmable procesgaan
also serve well for the field of programmable NICs. Howevgy, e
isting architectural simulators are not well-suited togreonmable
NIC designs. First, NICs with programmable processors @so
corporate nonprogrammable units such as direct memoryssicce
(DMA) and medium access control (MAC) units that asynchrip
interact with the host I/O interconnect, the external Bieg&rand
the local NIC memory system. Second, NICs are by their very
nature 1/O intensive, and the workload consists not onlyhef t
firmware to implement those tasks, but also the 1/O intevasti
of the NIC with the host and the Ethernet.

This paper presents Spinach, a new simulation infrastreidtu
programmable NIC architectures. Spinach models both systen-
ponents that are common to all programmable environmerds (e
ALUs, control and data paths, registers, instruction pssicey) and
components that are specific to the embedded system and MIC en
ronments (e.g., software-controlled scratchpad memangvhare
assists for DMA and medium access control). Ease of configura
ity is fundamental to Spinach; this modularity and confidpiliey
allows the same modules of C source code to be used whether de-

signing a uniprocessor Gigabit network interface, a mrdtpssor
Gigabit network interface, or a multiprocessor 10 Gigakitwork
interface with a highly heterogeneous memory system. $hiisa
validated through modeling of and comparison with the Tigon
programmable Ethernet controller by Alteon Websystem®ing
actual Ethernet processing firmware. The Spinach Tigon-@eio
relies only on high-level architectural parameters deiegoh from
publicly available documentation, exploratory benchradHat re-
veal processor details, and visual inspection of the hanelsraom-
ponents, such as memory. For all configurations evaluatedet
sultant Spinach model is accurate within 8.9% of real hardwa
performance and within 4.5% on average.

Spinach is an execution-driven simulator, but its I/0O iat¢ions
are processed in a trace-driven fashion using a specipbparhar-
ness that mimics the behavior of the host and Ethernet. Tris h
ness exploits the fact that Ethernet frames are processedian
to avoid any intricate interactions with the actual exemutf the
firmware.

Spinach is comprised of 19 modules for the Liberty Simula-
tion Environment (LSE), a system that enables extensiveered
software building block modules and easy reconfiguratiodesf
signs [18]. Existing LSE-based simulators and modules,gvew
rely on an underlying emulator to maintain architecturatesiand
use high level modules for system timing only. Such an eroulat
backend can introduce correctness issues in dealing wathsin-
chronous state interactions of the non-programmable NIt and
harness and can also complicate reconfigurability by reguad-
ditional low-level state to be incorporated into the emui&or each
functional change in the NIC design. In contrast to stand&&
modules, Spinach modules maintain architectural statgriatly.
This removes the burden of maintaining and understandimng co
plex state interactions and module source code beyond \ukat t
modules themselves exchange, and also allows Spinachvmero
a one-to-one mapping of real system hardware to software mod
ules.

This paper uses Spinach to obtain or confirm several key in-
sights about programmable NIC design. Spinach confirmsethe r
sults of Kim et al. indicating the benefits of multiprocesgin a
NIC [7] and use the results presented there as a method &fineri
the Spinach model of the Tigon-2 NIC architecture. Spin&aemt
varies the memory bandwidth of a multiprocessor NIC to verif
Kim’s speculation that bandwidth is indeed a performancetdr
for multiprocessor NICs. Finally, this paper shows Spinaait-
eling a 10 Gigabit network interface and discusses how $hina
facilitated the architectural design decisions for thatesn.

The remainder of this paper proceeds as follows. Sectioneagi
background information on the operation of NICs and the Lib-
erty Simulation Environment (LSE). Section 3 describesrtbe
Spinach modules. Section 4 describes how Spinach is vedldat
against an actual programmable NIC, and Section 5 des@ibds
ies that use Spinach to explore other NIC architecturestid®e6
discusses additional types of modeling performed usingasi.
Section 7 describes related work, and Section 8 conclugepah
per and discusses future directions.

2. BACKGROUND

This section describes Spinach’s background, focusinghen t
programmable network interface systems Spinach targetshen
Liberty Simulation Environment on which Spinach is based.

2.1 Programmable Network Interfaces

Typical network interfaces have a PCl hardware interfadbdo
host system and a wired, wireless, or fiber-optic link to aneEt

net network. The basic tasks of an Ethernet network interéacd
(NIC) are the same regardless of whether the NIC is prograstena
or not; the only difference is whether the flow of Ethernetrfea
processing through various states is controlled by a prograble
CPU or an ASIC. Even programmable NICs typically have ASIC
units to assist with performance-sensitive tasks suchrastdhem-
ory access (DMA) interactions with the host or the actualgmais-
sion of data on the network.

The network interface is responsible for sending and réauogiv
data by transferring data between the host memory and the net
work. The key difference between these two tasks is that d isen
initiated by the host, whereas a receive arrives unsatilsittrom
the network. Since the received data must ultimately be sltgmb
in the host memory, the receive process actually consistgogbor-
tions: one in which the host first informs the NIC of pre-adted
memory available for later receives, and one in which the Bd€
tually transfers received data into the host memory. AlgioNICs
vary somewhat in their particular implementation, the baseps
for sending and receiving are as described below.

To inform the NIC that a host memory buffer either has been pre
pared for sending as an Ethernet frame or has been pre+aiibca
for a later receive, the device driver in the host operatiygtesn
writes the address and length of the host memory buffer irea sp
cial structure in host memory calledaffer descriptor The device
driver then informs the NIC of a new buffer descriptor thrbuey
programmed I/O operation. The NIC initiates a DMA read of the
buffer descriptor from host memory. For sends, the NIC thessu
the buffer descriptor to initiate a DMA read of the actualnfie
specified by the address and length. The result of that DMA is
stored in the NIC's memory, and the NIC uses its MAC transmit
unit to send the data on the network when allowed by Ethernet
medium access policies.

Data from the Ethernet network is first received by the NIC’s
MAC receive unit, and the NIC then creates a buffer desarifmo
the data. The NIC then writes the actual data and the buffer de
scriptor to host memory through DMA.

After any of the send, receive pre-allocation, or data recse-
quences, the NIC may interrupt the host CPU to inform it that a
send was completed or data was received. Because of thedtegh r
of packet arrivals and completions, most Gigabit Etherri€s\io
not interrupt the host CPU until some threshold has beerseths
such as a certain number of frames sent or received or a timeou

Ethernet frames may vary in size from 64 bytes to 1518 bytes.
The above protocol processing steps do not depend on thefsize
the frame; however, the DMA and MAC units must each touch ev-
ery bit of every frame, so all data must be touched at leasttini
the NIC memory. This may lead to a memory bandwidth bottlenec
at higher throughput rates, as suggested by previous wrkr{7
sufficient bandwidth limits not only the DMA and MAC units, tou
may also slow down the firmware if the NIC processor contends
with these units for memory bandwidth.

2.2 Liberty Simulation Environment

Spinach is built using the Liberty Simulation Environmer$E),
a system for creating simulators by composing hierarchiuad-
els comprised of individual code modules [18]. The prograngm
model for Liberty consists of modules written in C and congzbs
into higher-level modules using a language for specifyitrgcs
tural connections between modules. These structural ctions
are called ports, and they consist of data, enable, and atédge
signals. Modules react to signals on their input ports; ralbca-
tion of modules takes place as a response to port activibherat
than function calls (as in simulators that use functiontgriiaces

between components) or through the scheduling of an everih (a
explicit discrete event-driven simulators). As in most siators,
the modules can take ordinary values as their parameterikeUn
most other simulators, however, the modules can also tade us
written functions as parameters; these functions are atidw pre-
process the input data and set the behavior of the moduledicco
ingly. Thus, key advantages of the LSE include the straigtidrd
retargetability and reconfiguration of modules into sinmg of
various systems, as well as the easy integration of variousla-
tors with each other. The latter is particularly straightfard since
even a top-level simulator is itself an LSE module.

Vachharajani et al. have previously described the modebof-c
putation within the LSE, compared it to other simulatioreaia-
tives, and used the LSE to study microarchitectures [18hdlgh
not discussed in their paper, a major feature of the LibentyuS
lation Environment is themulatorinterface, in which a fast func-
tional simulator maintains the architectural state of tysem and
the modules are only used for timing.

3. SPINACH MODULES

This section shows how to construct and configure Spinach mod
ules to simulate the various structures in a programmalileank
interface. Section 3.1 explains how Spinach modules diffem
standard LSE modules and motivates Spinach’s specificibantr
tions. Section 3.2 covers the modules common to all prograipien
systems, such as processors and local memories. Sectidetail3
the modules that are unique to this environment, such as thas
manage host and Ethernet interactions, as well as some sp#ie
cialized memory modules specific to embedded architectures

3.1 Comparison to Standard LSE Modules

Unlike standard Liberty modules, Spinach does not use LSE’s
emulator interface described in Section 2. Spinach is dddn
for architectures that include multiprocessing, self-ifyadg code,
and memory interactions that are asynchronous to instruetke-
cution via the nonprogrammable assists and harness. Insyseh
tems, the timing of instruction execution and state modifices
may have an impact on the actual instruction sequences that a
computed [9]. More importantly, by not maintaining systeatein
an underlying emulator, significantly less software engiimg ef-
fort is required to migrate to multiprocessor based syst@masbe-
yond. For example, modifying an emulator-based system tbetno
a dual processor design instead of a uniprocessor requirelae
tor modifications to support additional fetch engines, segifiles,
access to shared memory regions, scratchpads, and othéeearc
tural state. This problem is only exacerbated when addistpou
instruction sets or migrating to four- or eight-processahéec-
tures required in 10 Gigabit NIC configurations. Spinachy-ho
ever, encapsulates all architectural state into the medifiem-
selves; modifying this state requires interactions ovedut®ports.
For instance, migrating from a uniprocessor NIC to an eighy-
multiprocessor NIC simply required creating seven more@ssor
and cache module instances and connecting them to the pn-chi
memory module via their port connections. No additionaludan
tor code was required, nor was any additional system stateenke
Hence, Spinach encourages exploration of radically diffear-
chitectures by freeing the computer architect from underding
simulation implementation details that may affect comess.

While LSE allows the user to build arbitrarily flexible sinagl
tors, Spinach allows the user to create and use modulesatatsh
one-to-one mapping to corresponding hardware structiités.en-
ables the user to accurately and easily verify concretdtanthral
changes to the system via simple high level module conmestio

effectively providing composable and heterogeneous prakties-
sor systems with asynchronous actions.

3.2 General-Purpose Modules

Tables 1 and 2 present the Spinach modules that are geregpally
plicable for programmable processors and their memonresyst
A key benefit of Spinach in this context is that processor aathm
ory modules acquired from other LSE users could be easig int
grated in place of these modules; this paper uses new moldetes
cause the LSE still has few users and existing modules tenseto
the emulator interface described in Section 2.

The processor modules are used to maintain the state ofdhe pr
cessor pipeline. These include an ISA-specific fetch unit,SA-
specific decode unit, and a configurable number of generic ALU
for the execute stage. Processor units such as the registanti
pipeline latches are implemented through memory and pipg mo
ules, described below.

Memory state modules maintain memory state internally, and
other modules access this state through references to thesad
input ports with accompanying data and type specifiers. éskbs
and data are arbitrarily wide, and the user may configure tine n
ber of ports. All writes in a given cycle are processed befeeals,
enabling internal forwarding. The same type of module islifee
all memories in the system, including register files, stnaaals,
main memory, and memory-mapped registers. The state iaform
tion for the memory is maintained in the memory module itself
when coupled hierarchically with simple pipelined delagreénts,
the hierarchical module then manages both timing and state.

For the main memory, the burst timing is maintained through
the memory controller module. The memory controller is apnfi
ured by the user to detect contiguous memory bursts of desire
length and enforce latency penalties between bursts. &unthre,
the memory controller segments the memory address spaze int
separate regions; these are used in Spinach to separasseste
memory-mapped registers from main-memory references.

Spinach provides one controller each for SRAM and DRAM.
The SRAM memory controller has burst detection, paranwtble
fixed initial latency, and enforces in-order completion asslie.
The DRAM controller is similar except that the initial latgnis
variable according to parameterizable row activationieaies; the
current model also enforces in-order completion and is®eth
controllers model burst-mode memories with a higher-lagani-
tial access and higher bandwidth for later sequential @esesThe
burst-mode parameters (initial latency, sequential actes, and
burst/row-length) of each segmented physical memory retiie
controller manipulates are user-configurable. This all&psach
to accurately model the bandwidth and latency of an SRAMetlas
NIC; future work will expand these memaory controllers to sor
out-of-order memory completion via split transaction used
will examine higher-bandwidth DRAM NIC architectures.

Instances of configurable memory arbiters handle all bus arb
tration. The memory arbiter uses an algorithmically partenized
policy to choose which memory reference to issue next froira v
ety of different sources (CPUs or other hardware units). mben-
ory arbiter is also used to handle arbitration for the sepdbdA
assist units that may simultaneously request host attentio

Spinach also includes five general-purpose utility modthes
act as glue logic between the components units: an N-to-ti-mul
plexer, a 1-to-N demultiplexer, fanctionthat determines its per-
cycle output based on its inputs and a user-specified ahgoidgt
parameterteethat fans out one input port to several different out-
puts, and gipeto provide a configurable pipelined delay between
its input and output ports.

Module Name Description

Inputs Outputs

ALU
and floating-point operation.

General-purpose math unit. Supports integéiwo data inputs, one op- One output, one flags po

—

code for condition codes.

MIPS Fetch Unit

Integrated program counter register, instrdnput PC, Instruction in,
tion register, and simulation controller fq
start and stop conditions. Accesses mempry
hierarchy for instructions. Specific to MIP[S

Next PC (sent to pipeline),
Instruction Out, Load P(
(sent to memory to fetch
next instruction.)

rHalt Detect

ally ISA-independent.

ISA.
MIPS Decode| Decodes a MIPS instruction into individu
Unit control signals for the pipeline that are gen

alMIPS instruction

pr-

Control Signals (Register
Write, Instruction Format
Immediate Field, Memory
Read, Memory Write, etc.

Table 1: Description of general-purpose processor modules

3.3 Special-Purpose Modules

Table 3 lists the special-purpose modules in Spinach. Th& DM
and MAC assists are fully autonomous modules that act indepe
dently of the processor modules and control the transferatd d
between the NIC memory and its external media. The extereal m
dia for the DMA and MAC assists are the PCI bus and the physical
layer of the network, respectively. The DMA assist and tla@gr
mit MAC assist poll a memory-mapped register that tells tiiem
initiate their actions (using dedicated ports not showniguFe 2),
while the receive MAC assist initiates its actions when éss@-
put data from the physical network. Each of these units tren h
a queue in the NIC's memory that consists of structures &iitig
the memory addresses and lengths of the data of interesheln t
case of the DMA assist, the structure includes the hostasideess
and the NIC-side address; the data is transferred betweetwth
according to whether it is a DMA read or write. The queuesliier t
MAC unit give the NIC memory addresses from which to transmit
or into which to receive network data. Since both DMA and MAC
assists must read and write from the NIC memory, they share th
portions of their code that performs those tasks. A moreesggr
sive approach for future versions of Spinach may be to uhifge

Scratch Scratch
Pad A CPUA CPUB | PadB |
A A
Tigon-2 | | e
NIC
Memory : :
l l Memory Bus "| Bus Arbiter External |
i SRAM
DMA DMA : :
Read Write :
A_*_4 v
PCI Interface Medium Access
L A A)
PCI Bus Full-duplex Gigabit

Ethernet Interface

Figure 1: Block diagram of a programmable network interface
based on the Alteon Tigon-2 programmable Gigabit Ethernet

assists into a common module and then have the actual aecess tcontroller

the external medium (whether PCI or Ethernet) controlledugh
a user-configurable function parameter.

The scratchpad filter module is a unit that combines filtering
and arbitration to separate shared-memory referencesdrivate-
memory references based on a configurable address mapraArbit
tion is included to allow a single port into the scratchpadmogy
being shared by the instruction fetch and data memory stigbe
processor pipeline.

4. EXPERIMENTAL VALIDATION

Spinach is validated by composing a simulator that modeis th
hardware and software of an existing programmable Gigah#re
net controller, the Tigon-2 by Alteon Websystems [1], anchpar-
ing the reported results against actual hardware benclamaike
follwing sections describe the model and the experimeesllts.

4.1 Architectural Simulation Model for a
Tigon-2 NIC
Figure 1 depicts the key components of the Tigon-2 architect
The Tigon-2 includes two 88 MHz MIPS R4000-based CPUs, a
private on-chip memory (calledsztratchpadl for each processor, a
shared off-chip SRAM, small hardware-controlled instimictand
data caches, and nonprogrammable units to perform diregt-me

or receive data on the network controlled by Ethernet mediam
cess control (MAC). The scratchpad is of particular interesit is
a fast software-managed memory that stores frequently csdel
and data. All firmware is initially loaded into the shared S®RA
any code that the firmware wishes to execute from the scratch-
pad must first be written into the scratchpad by the firmware it
self, an example of self-modifying code. Each processar ials
cludes small hardware-controlled caches that only cacheents
from main memory (not the scratchpad). The instruction easfa
single 128-byte line for prefetching firmware code that isfoand
in the scratchpad. The data cache is a single 8-byte linewvitk-
through and a no-write-allocate policy; this cache linedf&zcho-
sen simply because the memory bus is 8-bytes wide and the cach
allows the full memory width of memory to be used even though
most instructions only operate on 4 bytes. The fact that Hvhes
are only a single line indicate that they are intended prigpas
spatial-locality prefetch buffers. Both caches and thatstipad
have single-cycle access.

Figure 2 shows how the Tigon-2 model is configured using the
Spinach modules. Note that the 19 basic Spinach modules de-
scribed in Section 3 are composed hierarchically into hidgneel

ory access (DMA) transfers to and from host memory and to send modules such as processor cores. Main memory, memory-mappe

Module Name

Description

Inputs

Outputs

Memory State

Maintains modifiable state on an array

bytes (endianness is user-configurable). S
ports concurrent access through multig
ports, each one of which can either perforn
read or write in a single memory cycle. Real
are not performed until all writes complet
enabling internal forwarding. Can be co
figured to “listen” to actions on specific aq
dresses and generate output on special p

Latency is modeled with separate modules.

oMultiple channels of refer-
upnces (address, data, writ|
lenable, and datatype)

ha

ds

e

n-

prts.

Multiple channels of sta

etus, read-data (only valid

on read), snooped port a
tion.

modules for both instruction and data stq
age. Supports caches of arbitrary line lengt]
associativity, and number of sets. Suppqg

redress, write-enable, dat
hslatatype), cache data, fi
rtdata, and snooped addreg

data]
cach

a,write-enable,

Il datatype) and

sreference (address, write

Memory Con-| SRAM/DRAM memory controller with con{ Address, write-enable, Read-data, latency untjl
troller figurable support for variable-latency memp-data-to-write, datatype operation commits, and
ries - may control multiple memory modules(size, alignment) control signals to memory
(each with different latencies) segmented by modules.
address. Ensures in-order retirement of mem-
ory state and in-order arrival of loaded data.
‘Ack’ on input ports signals reference accep-
tance.
Memory Arbiter | Configurable memory channel arbiter. UseMultiple channels of| Address, write-enable,
may specify, with a function parameter, araddress, write-enable, datatype, and data-to-write

arbitration policy according to which channeldatatype, and data-to-write of selected operation.
was last acknowledged (successfully won gar- Also, passed-back read-
bitration to higher level.) Stackable. Defaylt data and latency of
arbitration policy is round-robin. operation.

Cache Controller | Configurable cache controller and cach®equested reference (ad¥Fill reference (addresg,

1%

nd

e-

a
in-

variable latency operations, write-back a
write-thru policies, LRU and random replac
ment, prioritization of critical references on
cache miss, and address snooping for line
validation in MP systems.

enable, data, and datatype.

Table 2: Description of general-purpose memory modules

knowledgment signal on the LSE port, and acknowledgmers ar
passed through the various levels of arbiters and filterk tzathe
originator of the reference, such as the processor coresssts.
Thus, every level only needs to carry state about whetheotdhe
reference was acknowledged by the next higher level, fatiig

Main Memory

Memory-
Mapped
Registers

Memory-
Mapped
Memory Controller |~ Registers

}

8 the simulation of this system’s heterogeneous memory ttlya

ﬂ:gt Memory Arbiter =——= ,ﬂéﬁ, P This model results only from visual inspection, benchmaaksi

T 1; research of publicly available documentation. The sintanod-

) MAC ules are generic and include no low-level implementatioiaitie

% e Mooy At Assist [such as an RTL description. Inspection of the Tigon-2 yi@ifisr-
/_,_U ‘ L’ mation about the specific SRAM it uses. Benchmarking the com-

Scratchpad Scratonpett putation and memory system provides further insight inganii-

Scratchpad Fiter = Memory Scratchpad F:”é" = Memory croarchitectural charachteristics. Combining this infation with

the Alteon documentation yields an accurate, detailedtacthral
model that maps directly to Spinach modules.

Alteon Websystems released the firmware source code far thei
network interface [2]. This study specifically uses firmwhased
on Alteon’s version 12.4.13, which was the last one distatu
This firmware version uses only one processor for all Ethatata
processing, using the second processor only for a timer. [dop
firmware is self-modifying in that it explicitly copies codseg-
ments into the scratchpad memory and then executes thoge cod
segments. All versions of the Tigon firmware in this papehide
minor changes to speed up initialization and account foldbk

Processor
Core #N

Processor
Core #1

Figure 2: Mapping the Tigon architecture to Spinach modules

registers, and the scratchpads are all instantiationseofridmory
state module. Memory references are acknowledged usinacthe

tional operation; this assist transfers data

tween the external physical layer and t
NIC memory system. It is also configurg
based on parameters at fixed locations in

memory-mapped register region accessiblg
the MAC assist.

belata
he

write
datatyps

data,
and

(address,
enable,

descriptor-only memory,
Physical Data Out.

Module Name Description Inputs Outputs

DMA Assist Configurable for unidirectional or bidired- Read-data from accessibleMemory reference groups
tional operation; this assist transfers data benemories and bus data In(address, data, write-
tween the external interface bus (typicallydata from PCI.) enable, and datatype)
PCI) and the NIC memory system. It is cop- for main data memory|
figured based on parameters at fixed locatipns memory mapped registers,
in the memory-mapped register region acces- and optional dedicated
sible to the DMA assist. Events detected by descriptor-only memory,
polling dedicated ports to memory-mappgd Bus Data Out (data tq
registers. PClI.)

MAC Assist Configurable for unidirectional or bidired- Physical Data In, NIC read Memory reference groups

~

d for main data memory|
the memory mapped registers,
2 10 and optional dedicated

Scratchpad Filter| Specialized arbiter and filter used to ste
memory references to a private memory u
and memory mapped registers. Also enfor
higher-numbered channels must complete
bitration to higher levels before the lowe
number channels are permitted to attempt
bitration; this ensures ordering of pipeling
memory references which occur simultar

ously but are time-shifted.

eMultiple channels of refer-
niences (address, data, writ
temnable, and datatype) ar
aone channel each of re
r-turned load data from pri
avate memory, main mem
2cbry, and memory-mappe
eregisters

Passed-through channe

eof memory reference
d(address, data, write
-enable, and datatype) t
private memory, memory
- mapped registers, an
d main memory hierarchy.

Table 3: Description of special-purpose modules

of a host device driver in the system under study, as the éevic
driver normally initializes certain memory regions in thetwork
interface according to the host system’s configuration. Uripro-
cessor firmware in this paper runs all code (including thest)m
on the single processor; the multiprocessor firmware usepdh
allelization strategy of Kim et al. [7]. All of these changssll
result in valid Ethernet firmware for the actual NIC, as thiedfhet
frame-processing steps remain unchanged.

The network interface under test is studied using a set afe@pi
modules that form an evaluation harness. The evaluatiomebar
mimics the host and Ethernet interactions of the networcfate,
playing back traces of buffer descriptors based on actualssee-
ceive pre-allocations, and data receives of UDP traffic wabket
sizes ranging from minimum-sized to maximum-sized (1&laytd
1472-byte payloads). The harness plays back the threetaadast
as possible while maintaining the ratio of actions of eaehtkinee
types at any point in the simulation. In a real system, sends a
receives would actually be correlated (e.g., TCP datatn&sons
and acknowledgments), but this behavior is not directlylaiqd
by the Ethernet layer and is not captured by this harness. ¥ mo
complex harness, however, could capture these behaviarsibyg
TCP connection identifiers to determine which frames hawenbe
processed by the simulated NIC. The evaluation harnessdesl
an Ethernet timing model and also includes a simple PCI model
that adds a configurable amount of overhead to DMA transters t
and from host memory; the overhead is currently set to 30%das
on the results reported by Kim et al. [6]. Because the siradlat
NIC has very little state that must warm up over the coursénef t
run (e.g., no branch predictor, caches with only a few linesh-
vergence to a given throughput level is achieved within asde
100 Ethernet frames.

4.2 Validation Results

Figure 3 shows the UDP payload data bandwidth achieved in
megabits per second on a Tigon-2 NIC operating with only dne o
its processors. Each graph compares Spinach modeling gbe-Ti
2 (labeledUniprocessor - Spinach) against the performance of a
3Com Tigon-2 NIC (labeletUniprocessor - Hardware); both the
simulation system and the hardware system run the samenersi
of the Tigon firmware that has been modified to operate on only
one processor. The theoretical maximum UDP payload bardwid
on a 1 Ghit/sec physical link is provided as a reference;ivece
only traffic has a theoretical maximum representative dfiitgplex
nature.

Figure 3(a) presents total UDP throughput for bidirectidre-
fic, while Figure 3(b) shows total UDP throughput under airexse
only workload. For both the Spinach and 3Com tests, thedwsdir
tional bandwidth reported is the maximum sum bandwidth mea-
sured under varying mixes of transmit-to-receive ratiogidally
this ratio is approximately 1:2 for both the Spinach moded an
3Com NIC. This reflects the processing requirements for e t
types of packets and the prioritization of the receive handier
the send handler, which ensures higher receive througBpusénd
packets require at minimum two data transfers from the ros (
each for the header and payload) while receive packetsreequiy
one data transfer to the host. Each completed transfemresqoiio-
cessing by the NIC. Receive-only workloads are used as ain add
tional reference point for verifying Spinach’s model of ffigon-

2. For each uniprocessor case tested in both the bidiredtard
receive-only scenarios, the performance of the Spinactesys
within 8.8% of the 3Com NIC'’s performance and within 4.9% on
average. As with the 3Com NIC, the Spinach model saturatiys on
66% of theoretical peak bandwidth when utilizing one preoes

2000 1000
1800 900 1
1600 800 1
1400 700 1
oy o
£ 1200 £ 600 1
31000 3 500 1
ey <
(=2} (=)
> >
S 800 S 400 |
e e
= =
600 300 1
400 200 1
_F — Ethernet Limit (Duplex) —— Ethernet Limit (Simplex)
200 —— Uniprocessor — Spinach 100 —— Uniprocessor — Spinach
-& - Uniprocessor — Hardware -& - Uniprocessor - Hardware
0 ‘ ‘ ‘ : : : : 0 ‘ ‘ ‘ : : : :
18 200 400 600 800 1000 1200 1472 18 200 400 600 800 1000 1200 1472
UDP Datagram Size (Bytes) UDP Datagram Size (Bytes)
(a) Bidirectional traffic (b) Receive-only traffic
Figure 3: Spinach modeling uniprocessor Tigon
2000 retical UDP peak throughput — an increase of 23% over theronip
cessor case. Creating a two-processor Tigon-2 Spinachlmesde
1800) o : .
quired less than 100 additional lines of high-level temgadatode
1600 N in a script file.
1400 |
2 100 5. FURTHER INVESTIGATIONS WITH
g |
= SPINACH
21000 S . . .
< Although validating Spinach against actual hardware isedulis
3 800 1 exercise that shows the efficacy of modeling a network iaterf
= with this toolset, the true value of any simulator arisesrriis

600

400

—— Ethernet Limit (Duplex)
—&— Parallel - Spinach
-& - Parallel - Hardware

600 800 1000 1200
UDP Datagram Size (Bytes)

200

0 . . ;
18 200 400 1472

Figure 4: Spinach modeling Tigon with parallel firmware

ability to model systems that have not yet been implemergedh
systems may be incremental modifications to existing agchites

or radical changes to support vastly different goals. Thigtien
discusses using Spinach first to model a Tigon-2-basednsystid
greatly increased memory bandwidth and second to model & nov
10 Gigabit per second Ethernet controller architecture.

5.1 Exploring the Tigon Memory Bottleneck

Kim et al. hypothesized that because firmware processing re-
quirements are invariant of frame-size, limitations suskexernal
SRAM bandwidth prevents the Tigon-2 architecture from achi
ing 100% of theoretical Ethernet peak throughput at maximum

Figure 4 shows the UDP payload bandwidth in megabits per sec- sized UDP frames [7]. Spinach allows the verification of thys

ond on a Tigon-2 NIC running Kim'’s parallelized firmware orifbo

pothesis, since it is possible to increase the memory batbdwi

processors. The figure compares the 3Com Tigon-2 NIC (ldbele while holding the processor frequency constant at 88 MHzty s
Parallel - HW) against the Spinach model of the Tigon-2 architec- ply changing one parameter in one configuration file. Figure 5

ture (labeledParallel - Spinach). Traffic is full-duplex; in contrast
to the uniprocessor case, traffic is mostly balanced on baih p
cessors since the firmware parallelization strategy putst sEnd-
related tasks on one processor and most receive-relaties aas
the other, avoiding resource contention among the process$mr
each frame size tested, the multiprocessor Spinach modehimn

shows the UDP payload bandwidth in megabits per second of two
Tigon-2 Spinach models, comparing the base multiproc&sgon-

2 Spinach model that uses 100 MHz SRAM (labeled “Parallel -

Spinach (Base - 100 MHz SRAM)”) and the same model modified

to use SRAM operating at 250 MHz (labeled “Parallel - Spinach

(250 MHz SRAM)"). As predicted by Kim’'s hypothesis, Spinach

8.9% of the benchmarks measured using the 3Com NIC. On aver-shows that the Tigon-2 architecture can fully utilize a 1 iGleic

age, the Spinach multiprocessor Tigon-2 model is withi/3dt
the real hardware. For maximum-sized UDP frames of 1472Xbyte

full-duplex link when given adequate memory bandwidthetast-
ingly, increased bandwidth also improves throughput farimum-

both the Spinach model and 3Com NIC saturate 81% of the theo- sized Ethernet frames, since the processors’ memory ascesf

2000

1800 4

1600 q

1400 b

1200 b

1000 4

800 7

Throughput (Mb/s)

600 A

400 b
—— Ethernet Limit (Duplex)
-& - Parallel - Spinach, 250 MHz SRAM [}
—&— Parallel - Spinach, 100 MHz SRAM

600 800 1000 1200 1472
UDP Datagram Size (Bytes)

200

200 400

Figure 5: Spinach modeling Tigon with 250 MHz SRAM

fer fewer additional latencies caused by contention withDahd

MAC assist traffic. Spinach enables the investigation of tton-
intuitive performance increase without perturbing theteyysas a
runtime hardware profiler might.

5.2 Supporting 10 Gigabit Ethernet

As local area link speeds increase, a key target for moddrn ne
work architectures is 10 Gigabit Ethernet. The greatergpéd0
Gigabit Ethernet obviously requires more processing pdivan
Gigabit Ethernet; however, it is a challenge to incorpothtereq-
uisite processing power and memory bandwidth within the grow
constraints of the network interface environment. An esgtion of
the computation power and memory hierarchy requiremenig of
Gigabit Ethernet suggests that a NIC design with 8 MIPS R4000

Instruction Memory I
L

r—-r_qm‘—w—‘:"
F—CacheOJ I—Cache‘IJ P I-Cache P-1

1) [}
Processor
Core P-1

Processor | Processor
Core 0 Core 1 R

e f f
[(P+4)x(S+1) Crossbar (Mux/Demux Network)

v i vt y 4

Scratchpad | Scratchpad Scratchpad
Bank 0 Bank 1 *** BankS-1

Memory Arbiter
DMA
™ Read .
P DRAM Memory N
€l Controller e
1 DMA - MAC t
Wiite Packet Memory =

Figure 6: A scalable 10 Gigabit NIC architecture implemente
in Spinach

are predominantly the same modules as used in the Tigon-2lmod
simply connected in different ways. An implementation vé@tpro-
cessors running at 200 MHz each, an on-chip memory netwdlk wi
4 banks, instruction caches of 2 kB each, and GDDR SDRAM oper-
ating at 500 MHz fulfills the computational and memory barutttvi
requirements needed to saturate the link; all elementsraréated
with the base Spinach modules presented in this papernimnely

based cores, a banked on-chip SRAM for frame metadata, high-experimental results verify that this architecture saag88.6% of

bandwidth off-chip graphics DRAM for frame data, and sefmra
instruction caches for each core can provide the needetl déve
throughput. However, such a system also requires firmwaae th
can exploit a far greater level of parallelism than the systele-
scribed in Section 4.

Due to Spinach’s inherent scalability, expanding beyordribon-
2 based multiprocessor design described in Section 2 extjnio
additonal simulator source code or toolset modificationathBr,
to increase the number of processors, memory banks, canbes a
cache controllers, the number of module instances was gimpl
creased and their respective input and output ports weneecbed
to the on-chip memory interface module via high-level testgd
code.

the theoretical peak full-duplex bandwidth, while initsalability
results show that operating with just 6 processor coregastiows
97.6% throughput.

6. DISCUSSION

In addition to simulating NICs, Spinach is designed to be ar-
bitrarily flexible in simulating other types of embedded teyss.
Spinach includes user-configurable cache controllers acitecmod-
ules, as well as arbitration modules for the memory hiesarahd
variable-latency memory modules that can be used to simolat
chip SRAM as well as off-chip SRAM and off-chip DRAM of
various sizes. Using a different ISA would simply requireeavn

Since no real hardware exists on which to develop the custom ALU module definition and a new decode stage for the processor

parallel firmware that runs on the 8-processor 10 Gigabit, I$iginach
functions as a software development tool as well. Extendese
bug information is maintained by all module instances, jatiog
information such as instruction traces, memory referenaees,
and timing. Spinach also includes non-intrusive sources quo-
filing tools for the MIPS code that runs on the MIPS processor
module used in these Spinach-based NIC simulators. Thé-resu
ing firmware is based on a distributed task-queue model, alith
task-processing functions written in a re-entrant stylertable si-
multaneous execution on multiple cores.

Figure 6 shows how the desired 10 Gigabit Ethernet controlle
architecture can be mapped to Spinach modules. Note thse the

pipeline. Similarly, Spinach’s flexibility also enablesniguration
of VLIW systems. Since the processor pipeline definitiontaons
only high level module listings and no actual module sourxgec
a DSP-style VLIW pipeline could be configured by replicatthg
width of the pipeline.

Virtually any special-purpose hardware that the user caisiem
in the system can be incorporated into a Liberty Simulatiori-£
ronment module and plugged into the Spinach simulator ofceho
with relative ease. For example, recent work has added a+eco
figurable functional unit into the execute stage of the NI@¥'s-
cessor to run application-specific instructions seleciethe com-
piler. This reconfigurable unit is written as a Liberty maslaind

follows a design similar to that of Ye et al. [20], with up taeiin-
put source registers and a single output register. The denthen
folds basic blocks or other appropriate instruction segesrinto
a single reconfigurable fabric instruction when possibléhdugh
the actual reconfigurable fabric is not a base module of $pina

face to a multiprocessor Gigabit network interface to a iprdt
cessor 10 Gigabit network interface with a highly heteregers
memory system. This paper then uses Spinach to confirm onobta
key insights on the performance of programmable NICs, atigw
for study of systems that might otherwise be intractableabse of

a user created an LSE module using C code to simulate the addi-their interaction with operating-system and network reses.

tional hardware needed and then added this module to the high
level module listings of a Spinach NIC simulator. The writéthe
reconfigurable module required no intimate knowledge ofpitee
cessor’s internal workings; rather, the module only viewpssor
state through the values on its input ports at the start ofyesleck
cycle.

7. RELATED WORK

Sections 1 and 2 describe the background for Spinach. Téis se
tion describes other related work in detail.

Crowley et al. have investigated the performance chairatitey

of programmable network interfaces and their impact on ggec
sor design, but the workloads evaluated have been commutati
bound kernels (MD5, encryption, and IP-forwarding) ratttean
1/0-bound Ethernet firmware [3]. Consequently, that workdis
conventional processor simulators without the need tadekup-
port for special-purpose features such as DMA or MAC assgst!
In contrast, Spinach enables investigation of 1/0O intéoast and
their impact on bottlenecks such as memory bandwidth, whish
been highlighted as a problem for networking performancsdwy
eral recent works [7, 12, 16].

Efforts to simulate communication intermediaries in npri-
cessor systems have substantial similarities with Spin&ohn ex-
ample, Heinrich et al. used simulation to determine the guerf
mance overhead of the MAGIC programmable communication con
troller in the Stanford FLASH multiprocessor through comipa
son to a system that could process communication protocol op
erations with no latency [4]. They found that the overheafda o
realizable programmable controller were either small ardde
hidden effectively for many full-scale multiprocessor bqgttions.
Kranz et al. studied the performance impact of integratiegsage-
passing and shared-memory communication models in the MIT
Alewife machine [10]. Although their system also includesimy
designed processors and networks, this integration waswach
largely through their network coprocessor, titled the Camioa-
tion and Memory Management Unit (CMMU). Mukherjee et al.
found substantial performance improvements for fine-gctom-
munication by adding cacheability and coherence to thecdestate
of a network interface that connects the nodes of a tighthyptad
multiprocessor system to its coherent interconnect [14chEof
these works coupled the simulator for a network controlteat
larger simulator designed specifically for the multipramssys-
tem under study. In contrast, Spinach is a set of standaladelies
based on the Liberty Simulation Environment, enabling $imsu-
lator to be easily retargeted and integrated with arbittabgrty-
based system models.

8. CONCLUSIONS

Spinach provides the architecture community with a simpte s
of tools to evaluate an increasingly important class of esyst
Built with only 19 base modules, Spinach allows for the easpn-
figuration of the systems under test and the integration obwa
architectural advances. While monolithic simulators gpédally
difficult to adapt and extend, the structural and composaatere
of Spinach makes it highly flexible, requiring only high-é¥em-
plated code to migrate from a uniprocessor Gigabit netwoidri

Future plans include the integration of Spinach with theo®ri
network models built using the LSE [19], power models for em-
bedded systems such as Avalanche or the ARMulator extenision
of Simunic et al.[11, 17], and full-system simulators thapsurt
operating-system-intensive applications and enable $leeofi ac-
tual I/O rather than a trace-based harness.

Acknowledgments

The authors thank Hyong-youb Kim for assistance with thé var
ous Tigon firmware versions used in this paper, Scott Rixaer f
comments on the paper, and Neil Vachharajani for support tivé
Liberty backend.

9. REFERENCES

[1] Alteon Networks.Tigon/PCI Ethernet ControllerAugust
1997. Revision 1.04.
[2] Alteon WebSystemsGigabit Ethernet/PCI Network
Interface Card: Host/NIC Software Interface Definitjatuly
1999. Revision 12.4.13.
P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad.
Characterizing Processor Architectures for Programmable
Network Interfaces. liProceedings of the 14th International
Conference on Supercomputjrgages 54—-65, May 2000.
M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxtéer, P.
Singh, R. Simoni, K. Gharachorloo, D. Nakahira,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy.
The Performance Impact of Flexibility in the Stanford
FLASH Multiprocessor. IrProceedings of the Sixth
International Conference on Architectural Support for
Programming Languages and Operating Systguages
274-285, October 1994.
[5] Y. Hoskote, B. A. Bloechel, G. E. Dermer, V. Erraguntla,
D. Finan, J. Howard, D. Klowden, S. G. Narendra, G. Ruhl,
J. W. Tschanz, S. Vangal, V. Veeramachaneni, H. Wilson,
J. Xu, and N. Borkar. A TCP Offload Accelerator for 10 Gb/s
Ethernet in 90-nm CMOSEEE Journal of Solid-State
Circuits, 38(11):1866-1875, November 2003.
H. Kim, V. S. Pai, and S. Rixner. Improving Web Server
Throughput with Network Interface Data Caching. In
Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and
Operating Systempages 239-250, October 2002.
H. Kim, V. S. Pai, and S. Rixner. Exploiting Task-Level
Concurrency in a Programmable Network Interface. In
Proceedings of the 2003 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programmingune 2003.
K. Kleinpaste, P. Steenkiste, and B. Zill. Software Sopp
for Outboard Buffering and Checksumming.Pnoceedings
of the ACM SIGCOMM 95 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communicationpages 87-98, August 1995.
E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the
Validity of Trace-Drive Simulation for Multiprocessors |
Proceedings of the 18th Annual International Symposium on
Computer Architecturepages 244-253, May 1991.

(3]

(4]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and
B.-H. Lim. Integrating message-passing and shared-memory
Early experience. IProceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming pages 54-63, May 1993.

Y. Liand J. Henkel. A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems. IProceedings of the 35th Conference on Design
Automation (DAC 1998)pages 188—193, June 1998.

Y.-D. Lin, Y.-N. Lin, S.-C. Yang, and Y.-S. Lin. DiffSer

over Network Processors: Implementation and Evaluation. |
Hot Interconnects XAugust 2002.

K. Z. Meth and J. Satran. Design of the iSCSI Protocol. In
Proceedings of the 20th IEEE Conference on Mass Storage
Systems and Technologidsoril 2003.

S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood.
Coherent Network Interfaces for Fine-Grain Communication
In Proceedings of the 23rd Annual International Symposium
on Computer Architecturgpages 247-258, May 1996.

P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Passing. In
Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (SC20QNovember 2001.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Bling a
Robust Software-Based Router Using Network Processors.
In Proceedings of the 18th ACM Symposium on Operating
Systems Principlepages 216-229, October 2001.

T. Simuni¢, L. Benini, and G. De Micheli. Cycle-Accurate
Simulation of Energy Consumption in Embedded Systems.
In Proceedings of the 36th Conference on Design
Automation (DAC 1999)pages 867—872, June 1999.

M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Bie,
and D. I. August. Microarchitectural exploration with
Liberty. In Proceedings of the 35th Annual International
Symposium on Microarchitectyrpages 271-282, November
2002.

H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection network
In Proceedings of the 35th Annual International Symposium
on Microarchitecture pages 294-305, November 2002.

Z. A. Ye, A. Moshovos, S. Hauck, and P. ithviraj Banerjee
Chimaera: A high—performance architecture with a
tightly—coupled reconfigurable functional unit. In
Proceedings of the 27th Annual International Symposium on
Computer Architecturgpages 225-235, June 2000.

