
Spinach: A Liberty-based Simulator for Programmable
Network Interface Architectures ∗

Paul Willmann, Michael Brogioli, and Vijay S. Pai
Electrical and Computer Engineering

Rice University
Houston, TX 77005

{willmann, brogioli, vijaypai}@rice.edu

ABSTRACT
This paper presents Spinach, a new simulator toolset specifically
designed to target programmable network interface architectures.
Spinach models both system components that are common to all
programmable environments (e.g., ALUs, control and data paths,
registers, instruction processing) and components that are specific
to the embedded systems and network interface environments(e.g.,
software-controlled scratchpad memory, hardware assistsfor DMA
and medium access control).

Spinach is built on the Liberty Simulation Environment (LSE)
and exploits LSE’s modularity to support easy reconfiguration of
programmable network interface cards (NICs) and embedded sys-
tems, enabling wide design space exploration with little orno code
variation. For example, the same underlying C code is used whether
supporting a uniprocessor Gigabit network interface, a multipro-
cessor Gigabit interface, or a multiprocessor 10 Gigabit interface
with a highly heterogeneous memory system. The only difference
is in a small number of lines of high-level scripting code used to
configure the various modules into a simulation model.

Spinach is validated by modeling the Tigon-2 programmable Eth-
ernet controller by Alteon Websystems running actual Ethernet pro-
cessing firmware and by comparing the reported results to actual
hardware benchmarks. Spinach is then used to obtain new insights
about the performance of Gigabit and 10 Gigabit network inter-
faces.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems—
Modeling Techniques; B.4.4 [Input/Output and Data Communi-
cations]: Performance Analysis and Design Aids—Simulation

∗This work is supported in part by a donation from Advanced
Micro Devices and by the National Science Foundation under
Grant Nos. ACI-03050691, ANI-0216467, CCR-0209174, and
CCR-0238187.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04,June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

General Terms
Measurement, Performance, Design

Keywords
Programmable Network Interfaces, Simulation, Embedded Systems

1. INTRODUCTION
A computer system’s network interface translates between the

formats understood on the external network and the local intercon-
nect. The most common are network interface cards (NICs) that
support the Ethernet protocol externally and the PCI bus internally.
Because the standard Ethernet protocol is well-defined, a NIC has
a minimal set of required features, allowing most previous NICs
to be built as ASICs. However, recent trends toward offloading
networking services from the host CPU have motivated the useof
programmable processors on NICs, as programmable processors
provide increased flexibility, easier debugging and modification to
support evolving protocols, and potentially lower design costs. Ex-
amples of tasks supported directly on programmable NICs include
interrupt reduction, TCP protocol processing, caching of frequently
requested content, TCP/IP checksum offloading, iSCSI protocol
implementations, or message-passing [2, 5, 6, 8, 13, 15].

As NICs start to take on more tasks traditionally performed by
the host CPU, the design and evaluation of programmable NICs
will become a more important component of system architecture.
Just as architectural simulation has become the dominant mode
of evaluation for general-purpose programmable processors, it can
also serve well for the field of programmable NICs. However, ex-
isting architectural simulators are not well-suited to programmable
NIC designs. First, NICs with programmable processors alsoin-
corporate nonprogrammable units such as direct memory access
(DMA) and medium access control (MAC) units that asynchronously
interact with the host I/O interconnect, the external Ethernet, and
the local NIC memory system. Second, NICs are by their very
nature I/O intensive, and the workload consists not only of the
firmware to implement those tasks, but also the I/O interactions
of the NIC with the host and the Ethernet.

This paper presents Spinach, a new simulation infrastructure for
programmable NIC architectures. Spinach models both system com-
ponents that are common to all programmable environments (e.g.,
ALUs, control and data paths, registers, instruction processing) and
components that are specific to the embedded system and NIC envi-
ronments (e.g., software-controlled scratchpad memory, hardware
assists for DMA and medium access control). Ease of configurabil-
ity is fundamental to Spinach; this modularity and configurability
allows the same modules of C source code to be used whether de-

signing a uniprocessor Gigabit network interface, a multiprocessor
Gigabit network interface, or a multiprocessor 10 Gigabit network
interface with a highly heterogeneous memory system. Spinach is
validated through modeling of and comparison with the Tigon-2
programmable Ethernet controller by Alteon Websystems, running
actual Ethernet processing firmware. The Spinach Tigon-2 model
relies only on high-level architectural parameters determined from
publicly available documentation, exploratory benchmarks that re-
veal processor details, and visual inspection of the hardware’s com-
ponents, such as memory. For all configurations evaluated, the re-
sultant Spinach model is accurate within 8.9% of real hardware
performance and within 4.5% on average.

Spinach is an execution-driven simulator, but its I/O interactions
are processed in a trace-driven fashion using a special-purpose har-
ness that mimics the behavior of the host and Ethernet. This har-
ness exploits the fact that Ethernet frames are processed in-order
to avoid any intricate interactions with the actual execution of the
firmware.

Spinach is comprised of 19 modules for the Liberty Simula-
tion Environment (LSE), a system that enables extensive reuse of
software building block modules and easy reconfiguration ofde-
signs [18]. Existing LSE-based simulators and modules, however,
rely on an underlying emulator to maintain architectural state and
use high level modules for system timing only. Such an emulator
backend can introduce correctness issues in dealing with the asyn-
chronous state interactions of the non-programmable NIC units and
harness and can also complicate reconfigurability by requiring ad-
ditional low-level state to be incorporated into the emulator for each
functional change in the NIC design. In contrast to standardLSE
modules, Spinach modules maintain architectural state internally.
This removes the burden of maintaining and understanding com-
plex state interactions and module source code beyond what the
modules themselves exchange, and also allows Spinach to provide
a one-to-one mapping of real system hardware to software mod-
ules.

This paper uses Spinach to obtain or confirm several key in-
sights about programmable NIC design. Spinach confirms the re-
sults of Kim et al. indicating the benefits of multiprocessing in a
NIC [7] and use the results presented there as a method of verifying
the Spinach model of the Tigon-2 NIC architecture. Spinach then
varies the memory bandwidth of a multiprocessor NIC to verify
Kim’s speculation that bandwidth is indeed a performance limiter
for multiprocessor NICs. Finally, this paper shows Spinachmod-
eling a 10 Gigabit network interface and discusses how Spinach
facilitated the architectural design decisions for that system.

The remainder of this paper proceeds as follows. Section 2 gives
background information on the operation of NICs and the Lib-
erty Simulation Environment (LSE). Section 3 describes thenew
Spinach modules. Section 4 describes how Spinach is validated
against an actual programmable NIC, and Section 5 describesstud-
ies that use Spinach to explore other NIC architectures. Section 6
discusses additional types of modeling performed using Spinach.
Section 7 describes related work, and Section 8 concludes the pa-
per and discusses future directions.

2. BACKGROUND
This section describes Spinach’s background, focusing on the

programmable network interface systems Spinach targets and the
Liberty Simulation Environment on which Spinach is based.

2.1 Programmable Network Interfaces
Typical network interfaces have a PCI hardware interface tothe

host system and a wired, wireless, or fiber-optic link to an Ether-

net network. The basic tasks of an Ethernet network interface card
(NIC) are the same regardless of whether the NIC is programmable
or not; the only difference is whether the flow of Ethernet frame
processing through various states is controlled by a programmable
CPU or an ASIC. Even programmable NICs typically have ASIC
units to assist with performance-sensitive tasks such as direct mem-
ory access (DMA) interactions with the host or the actual transmis-
sion of data on the network.

The network interface is responsible for sending and receiving
data by transferring data between the host memory and the net-
work. The key difference between these two tasks is that a send is
initiated by the host, whereas a receive arrives unsolicitedly from
the network. Since the received data must ultimately be deposited
in the host memory, the receive process actually consists oftwo por-
tions: one in which the host first informs the NIC of pre-allocated
memory available for later receives, and one in which the NICac-
tually transfers received data into the host memory. Although NICs
vary somewhat in their particular implementation, the basic steps
for sending and receiving are as described below.

To inform the NIC that a host memory buffer either has been pre-
pared for sending as an Ethernet frame or has been pre-allocated
for a later receive, the device driver in the host operating system
writes the address and length of the host memory buffer in a spe-
cial structure in host memory called abuffer descriptor. The device
driver then informs the NIC of a new buffer descriptor through a
programmed I/O operation. The NIC initiates a DMA read of the
buffer descriptor from host memory. For sends, the NIC then uses
the buffer descriptor to initiate a DMA read of the actual frame
specified by the address and length. The result of that DMA is
stored in the NIC’s memory, and the NIC uses its MAC transmit
unit to send the data on the network when allowed by Ethernet
medium access policies.

Data from the Ethernet network is first received by the NIC’s
MAC receive unit, and the NIC then creates a buffer descriptor for
the data. The NIC then writes the actual data and the buffer de-
scriptor to host memory through DMA.

After any of the send, receive pre-allocation, or data receive se-
quences, the NIC may interrupt the host CPU to inform it that a
send was completed or data was received. Because of the high rate
of packet arrivals and completions, most Gigabit Ethernet NICs do
not interrupt the host CPU until some threshold has been crossed,
such as a certain number of frames sent or received or a timeout.

Ethernet frames may vary in size from 64 bytes to 1518 bytes.
The above protocol processing steps do not depend on the sizeof
the frame; however, the DMA and MAC units must each touch ev-
ery bit of every frame, so all data must be touched at least twice in
the NIC memory. This may lead to a memory bandwidth bottleneck
at higher throughput rates, as suggested by previous work [7]. In-
sufficient bandwidth limits not only the DMA and MAC units, but
may also slow down the firmware if the NIC processor contends
with these units for memory bandwidth.

2.2 Liberty Simulation Environment
Spinach is built using the Liberty Simulation Environment (LSE),

a system for creating simulators by composing hierarchicalmod-
els comprised of individual code modules [18]. The programming
model for Liberty consists of modules written in C and composed
into higher-level modules using a language for specifying struc-
tural connections between modules. These structural connections
are called ports, and they consist of data, enable, and acknowledge
signals. Modules react to signals on their input ports; all invoca-
tion of modules takes place as a response to port activity rather
than function calls (as in simulators that use functional interfaces

between components) or through the scheduling of an event (as in
explicit discrete event-driven simulators). As in most simulators,
the modules can take ordinary values as their parameters. Unlike
most other simulators, however, the modules can also take user-
written functions as parameters; these functions are allowed to pre-
process the input data and set the behavior of the module accord-
ingly. Thus, key advantages of the LSE include the straightforward
retargetability and reconfiguration of modules into simulators of
various systems, as well as the easy integration of various simula-
tors with each other. The latter is particularly straightforward since
even a top-level simulator is itself an LSE module.

Vachharajani et al. have previously described the model of com-
putation within the LSE, compared it to other simulation alterna-
tives, and used the LSE to study microarchitectures [18]. Although
not discussed in their paper, a major feature of the Liberty Simu-
lation Environment is theemulatorinterface, in which a fast func-
tional simulator maintains the architectural state of the system and
the modules are only used for timing.

3. SPINACH MODULES
This section shows how to construct and configure Spinach mod-

ules to simulate the various structures in a programmable network
interface. Section 3.1 explains how Spinach modules differfrom
standard LSE modules and motivates Spinach’s specific contribu-
tions. Section 3.2 covers the modules common to all programmable
systems, such as processors and local memories. Section 3.3details
the modules that are unique to this environment, such as those that
manage host and Ethernet interactions, as well as some of thespe-
cialized memory modules specific to embedded architectures.

3.1 Comparison to Standard LSE Modules
Unlike standard Liberty modules, Spinach does not use LSE’s

emulator interface described in Section 2. Spinach is intended
for architectures that include multiprocessing, self-modifying code,
and memory interactions that are asynchronous to instruction exe-
cution via the nonprogrammable assists and harness. In suchsys-
tems, the timing of instruction execution and state modifications
may have an impact on the actual instruction sequences that are
computed [9]. More importantly, by not maintaining system state in
an underlying emulator, significantly less software engineering ef-
fort is required to migrate to multiprocessor based systemsand be-
yond. For example, modifying an emulator-based system to model
a dual processor design instead of a uniprocessor requires emula-
tor modifications to support additional fetch engines, register files,
access to shared memory regions, scratchpads, and other architec-
tural state. This problem is only exacerbated when adding custom
instruction sets or migrating to four- or eight-processor architec-
tures required in 10 Gigabit NIC configurations. Spinach, how-
ever, encapsulates all architectural state into the modules them-
selves; modifying this state requires interactions over module ports.
For instance, migrating from a uniprocessor NIC to an eight-way
multiprocessor NIC simply required creating seven more processor
and cache module instances and connecting them to the on-chip
memory module via their port connections. No additional simula-
tor code was required, nor was any additional system state needed.
Hence, Spinach encourages exploration of radically different ar-
chitectures by freeing the computer architect from understanding
simulation implementation details that may affect correctness.

While LSE allows the user to build arbitrarily flexible simula-
tors, Spinach allows the user to create and use modules that have a
one-to-one mapping to corresponding hardware structures.This en-
ables the user to accurately and easily verify concrete architectural
changes to the system via simple high level module connections,

effectively providing composable and heterogeneous multiproces-
sor systems with asynchronous actions.

3.2 General-Purpose Modules
Tables 1 and 2 present the Spinach modules that are generallyap-

plicable for programmable processors and their memory systems.
A key benefit of Spinach in this context is that processor and mem-
ory modules acquired from other LSE users could be easily inte-
grated in place of these modules; this paper uses new modulesbe-
cause the LSE still has few users and existing modules tend touse
the emulator interface described in Section 2.

The processor modules are used to maintain the state of the pro-
cessor pipeline. These include an ISA-specific fetch unit, an ISA-
specific decode unit, and a configurable number of generic ALUs
for the execute stage. Processor units such as the register file and
pipeline latches are implemented through memory and pipe mod-
ules, described below.

Memory state modules maintain memory state internally, and
other modules access this state through references to the address
input ports with accompanying data and type specifiers. Addresses
and data are arbitrarily wide, and the user may configure the num-
ber of ports. All writes in a given cycle are processed beforereads,
enabling internal forwarding. The same type of module is used for
all memories in the system, including register files, scratchpads,
main memory, and memory-mapped registers. The state informa-
tion for the memory is maintained in the memory module itself;
when coupled hierarchically with simple pipelined delay elements,
the hierarchical module then manages both timing and state.

For the main memory, the burst timing is maintained through
the memory controller module. The memory controller is config-
ured by the user to detect contiguous memory bursts of desired
length and enforce latency penalties between bursts. Furthermore,
the memory controller segments the memory address space into
separate regions; these are used in Spinach to separate accesses to
memory-mapped registers from main-memory references.

Spinach provides one controller each for SRAM and DRAM.
The SRAM memory controller has burst detection, parameterizable
fixed initial latency, and enforces in-order completion andissue.
The DRAM controller is similar except that the initial latency is
variable according to parameterizable row activation latencies; the
current model also enforces in-order completion and issue.Both
controllers model burst-mode memories with a higher-latency ini-
tial access and higher bandwidth for later sequential accesses. The
burst-mode parameters (initial latency, sequential access time, and
burst/row-length) of each segmented physical memory region the
controller manipulates are user-configurable. This allowsSpinach
to accurately model the bandwidth and latency of an SRAM-based
NIC; future work will expand these memory controllers to support
out-of-order memory completion via split transaction buses and
will examine higher-bandwidth DRAM NIC architectures.

Instances of configurable memory arbiters handle all bus arbi-
tration. The memory arbiter uses an algorithmically parameterized
policy to choose which memory reference to issue next from a vari-
ety of different sources (CPUs or other hardware units). Themem-
ory arbiter is also used to handle arbitration for the separate DMA
assist units that may simultaneously request host attention.

Spinach also includes five general-purpose utility modulesthat
act as glue logic between the components units: an N-to-1 multi-
plexer, a 1-to-N demultiplexer, afunction that determines its per-
cycle output based on its inputs and a user-specified algorithmic
parameter,teethat fans out one input port to several different out-
puts, and apipe to provide a configurable pipelined delay between
its input and output ports.

Module Name Description Inputs Outputs
ALU General-purpose math unit. Supports integer

and floating-point operation.
Two data inputs, one op-
code

One output, one flags port
for condition codes.

MIPS Fetch Unit Integrated program counter register, instruc-
tion register, and simulation controller for
start and stop conditions. Accesses memory
hierarchy for instructions. Specific to MIPS
ISA.

Input PC, Instruction in,
Halt Detect

Next PC (sent to pipeline),
Instruction Out, Load PC
(sent to memory to fetch
next instruction.)

MIPS Decode
Unit

Decodes a MIPS instruction into individual
control signals for the pipeline that are gener-
ally ISA-independent.

MIPS instruction Control Signals (Register
Write, Instruction Format,
Immediate Field, Memory
Read, Memory Write, etc.)

Table 1: Description of general-purpose processor modules

3.3 Special-Purpose Modules
Table 3 lists the special-purpose modules in Spinach. The DMA

and MAC assists are fully autonomous modules that act indepen-
dently of the processor modules and control the transfer of data
between the NIC memory and its external media. The external me-
dia for the DMA and MAC assists are the PCI bus and the physical
layer of the network, respectively. The DMA assist and the trans-
mit MAC assist poll a memory-mapped register that tells themto
initiate their actions (using dedicated ports not shown in Figure 2),
while the receive MAC assist initiates its actions when it sees in-
put data from the physical network. Each of these units then has
a queue in the NIC’s memory that consists of structures indicating
the memory addresses and lengths of the data of interest. In the
case of the DMA assist, the structure includes the host-sideaddress
and the NIC-side address; the data is transferred between the two
according to whether it is a DMA read or write. The queues for the
MAC unit give the NIC memory addresses from which to transmit
or into which to receive network data. Since both DMA and MAC
assists must read and write from the NIC memory, they share the
portions of their code that performs those tasks. A more aggres-
sive approach for future versions of Spinach may be to unify those
assists into a common module and then have the actual access to
the external medium (whether PCI or Ethernet) controlled through
a user-configurable function parameter.

The scratchpad filter module is a unit that combines filtering
and arbitration to separate shared-memory references fromprivate-
memory references based on a configurable address map. Arbitra-
tion is included to allow a single port into the scratchpad memory
being shared by the instruction fetch and data memory stagesof the
processor pipeline.

4. EXPERIMENTAL VALIDATION
Spinach is validated by composing a simulator that models the

hardware and software of an existing programmable Gigabit Ether-
net controller, the Tigon-2 by Alteon Websystems [1], and compar-
ing the reported results against actual hardware benchmarks. The
follwing sections describe the model and the experimental results.

4.1 Architectural Simulation Model for a
Tigon-2 NIC

Figure 1 depicts the key components of the Tigon-2 architecture.
The Tigon-2 includes two 88 MHz MIPS R4000-based CPUs, a
private on-chip memory (called ascratchpad) for each processor, a
shared off-chip SRAM, small hardware-controlled instruction and
data caches, and nonprogrammable units to perform direct mem-
ory access (DMA) transfers to and from host memory and to send

S c r a t c hP a d A S c r a t c hP a d BC P U A C P U B
M e m o r yB u s A r b i t e r E x t e r n a lS R A MD M AW r i t eD M AR e a dP C I I n t e r f a c e M e d i u m A c c e s s

M e m o r y B u s
P C I B u s F u l l � d u p l e x G i g a b i tE t h e r n e t I n t e r f a c e

T i g o n (2N I C

Figure 1: Block diagram of a programmable network interface
based on the Alteon Tigon-2 programmable Gigabit Ethernet
controller

or receive data on the network controlled by Ethernet mediumac-
cess control (MAC). The scratchpad is of particular interest, as it is
a fast software-managed memory that stores frequently usedcode
and data. All firmware is initially loaded into the shared SRAM;
any code that the firmware wishes to execute from the scratch-
pad must first be written into the scratchpad by the firmware it-
self, an example of self-modifying code. Each processor also in-
cludes small hardware-controlled caches that only cache contents
from main memory (not the scratchpad). The instruction cache is a
single 128-byte line for prefetching firmware code that is not found
in the scratchpad. The data cache is a single 8-byte line withwrite-
through and a no-write-allocate policy; this cache line size is cho-
sen simply because the memory bus is 8-bytes wide and the cache
allows the full memory width of memory to be used even though
most instructions only operate on 4 bytes. The fact that the caches
are only a single line indicate that they are intended primarily as
spatial-locality prefetch buffers. Both caches and the scratchpad
have single-cycle access.

Figure 2 shows how the Tigon-2 model is configured using the
Spinach modules. Note that the 19 basic Spinach modules de-
scribed in Section 3 are composed hierarchically into higher-level
modules such as processor cores. Main memory, memory-mapped

Module Name Description Inputs Outputs
Memory State Maintains modifiable state on an array of

bytes (endianness is user-configurable). Sup-
ports concurrent access through multiple
ports, each one of which can either perform a
read or write in a single memory cycle. Reads
are not performed until all writes complete,
enabling internal forwarding. Can be con-
figured to “listen” to actions on specific ad-
dresses and generate output on special ports.
Latency is modeled with separate modules.

Multiple channels of refer-
ences (address, data, write-
enable, and datatype)

Multiple channels of sta-
tus, read-data (only valid
on read), snooped port ac-
tion.

Memory Con-
troller

SRAM/DRAM memory controller with con-
figurable support for variable-latency memo-
ries - may control multiple memory modules
(each with different latencies) segmented by
address. Ensures in-order retirement of mem-
ory state and in-order arrival of loaded data.
‘Ack’ on input ports signals reference accep-
tance.

Address, write-enable,
data-to-write, datatype
(size, alignment)

Read-data, latency until
operation commits, and
control signals to memory
modules.

Memory Arbiter Configurable memory channel arbiter. User
may specify, with a function parameter, an
arbitration policy according to which channel
was last acknowledged (successfully won ar-
bitration to higher level.) Stackable. Default
arbitration policy is round-robin.

Multiple channels of
address, write-enable,
datatype, and data-to-write

Address, write-enable,
datatype, and data-to-write
of selected operation.
Also, passed-back read-
data and latency of
operation.

Cache Controller Configurable cache controller and cache
modules for both instruction and data stor-
age. Supports caches of arbitrary line lengths,
associativity, and number of sets. Supports
variable latency operations, write-back and
write-thru policies, LRU and random replace-
ment, prioritization of critical references on a
cache miss, and address snooping for line in-
validation in MP systems.

Requested reference (ad-
dress, write-enable, data,
datatype), cache data, fill
data, and snooped address

Fill reference (address,
write-enable, data,
datatype) and cache
reference (address, write-
enable, data, and datatype.)

Table 2: Description of general-purpose memory modules

Figure 2: Mapping the Tigon architecture to Spinach modules

registers, and the scratchpads are all instantiations of the memory
state module. Memory references are acknowledged using theac-

knowledgment signal on the LSE port, and acknowledgments are
passed through the various levels of arbiters and filters back to the
originator of the reference, such as the processor cores or assists.
Thus, every level only needs to carry state about whether or not the
reference was acknowledged by the next higher level, facilitating
the simulation of this system’s heterogeneous memory hierarchy.

This model results only from visual inspection, benchmarks, and
research of publicly available documentation. The simulation mod-
ules are generic and include no low-level implementation details,
such as an RTL description. Inspection of the Tigon-2 yieldsinfor-
mation about the specific SRAM it uses. Benchmarking the com-
putation and memory system provides further insight into its mi-
croarchitectural charachteristics. Combining this information with
the Alteon documentation yields an accurate, detailed architectural
model that maps directly to Spinach modules.

Alteon Websystems released the firmware source code for their
network interface [2]. This study specifically uses firmwarebased
on Alteon’s version 12.4.13, which was the last one distributed.
This firmware version uses only one processor for all Ethernet data
processing, using the second processor only for a timer loop. The
firmware is self-modifying in that it explicitly copies codeseg-
ments into the scratchpad memory and then executes those code
segments. All versions of the Tigon firmware in this paper include
minor changes to speed up initialization and account for thelack

Module Name Description Inputs Outputs
DMA Assist Configurable for unidirectional or bidirec-

tional operation; this assist transfers data be-
tween the external interface bus (typically
PCI) and the NIC memory system. It is con-
figured based on parameters at fixed locations
in the memory-mapped register region acces-
sible to the DMA assist. Events detected by
polling dedicated ports to memory-mapped
registers.

Read-data from accessible
memories and bus data In
(data from PCI.)

Memory reference groups
(address, data, write-
enable, and datatype)
for main data memory,
memory mapped registers,
and optional dedicated
descriptor-only memory.
Bus Data Out (data to
PCI.)

MAC Assist Configurable for unidirectional or bidirec-
tional operation; this assist transfers data be-
tween the external physical layer and the
NIC memory system. It is also configured
based on parameters at fixed locations in the
memory-mapped register region accessible to
the MAC assist.

Physical Data In, NIC read
data

Memory reference groups
(address, data, write-
enable, and datatype)
for main data memory,
memory mapped registers,
and optional dedicated
descriptor-only memory.
Physical Data Out.

Scratchpad Filter Specialized arbiter and filter used to steer
memory references to a private memory unit
and memory mapped registers. Also enforces
higher-numbered channels must complete ar-
bitration to higher levels before the lower-
number channels are permitted to attempt ar-
bitration; this ensures ordering of pipelined
memory references which occur simultane-
ously but are time-shifted.

Multiple channels of refer-
ences (address, data, write-
enable, and datatype) and
one channel each of re-
turned load data from pri-
vate memory, main mem-
ory, and memory-mapped
registers

Passed-through channels
of memory references
(address, data, write-
enable, and datatype) to
private memory, memory-
mapped registers, and
main memory hierarchy.

Table 3: Description of special-purpose modules

of a host device driver in the system under study, as the device
driver normally initializes certain memory regions in the network
interface according to the host system’s configuration. Theunipro-
cessor firmware in this paper runs all code (including the timer)
on the single processor; the multiprocessor firmware uses the par-
allelization strategy of Kim et al. [7]. All of these changesstill
result in valid Ethernet firmware for the actual NIC, as the Ethernet
frame-processing steps remain unchanged.

The network interface under test is studied using a set of Spinach
modules that form an evaluation harness. The evaluation harness
mimics the host and Ethernet interactions of the network interface,
playing back traces of buffer descriptors based on actual sends, re-
ceive pre-allocations, and data receives of UDP traffic withpacket
sizes ranging from minimum-sized to maximum-sized (18-byte and
1472-byte payloads). The harness plays back the three traces as fast
as possible while maintaining the ratio of actions of each the three
types at any point in the simulation. In a real system, sends and
receives would actually be correlated (e.g., TCP data transmissions
and acknowledgments), but this behavior is not directly exploited
by the Ethernet layer and is not captured by this harness. A more
complex harness, however, could capture these behaviors byusing
TCP connection identifiers to determine which frames have been
processed by the simulated NIC. The evaluation harness includes
an Ethernet timing model and also includes a simple PCI model
that adds a configurable amount of overhead to DMA transfers to
and from host memory; the overhead is currently set to 30% based
on the results reported by Kim et al. [6]. Because the simulated
NIC has very little state that must warm up over the course of the
run (e.g., no branch predictor, caches with only a few lines), con-
vergence to a given throughput level is achieved within as few as
100 Ethernet frames.

4.2 Validation Results
Figure 3 shows the UDP payload data bandwidth achieved in

megabits per second on a Tigon-2 NIC operating with only one of
its processors. Each graph compares Spinach modeling the Tigon-
2 (labeledUniprocessor - Spinach) against the performance of a
3Com Tigon-2 NIC (labeledUniprocessor - Hardware); both the
simulation system and the hardware system run the same version
of the Tigon firmware that has been modified to operate on only
one processor. The theoretical maximum UDP payload bandwidth
on a 1 Gbit/sec physical link is provided as a reference; receive-
only traffic has a theoretical maximum representative of itssimplex
nature.

Figure 3(a) presents total UDP throughput for bidirectional traf-
fic, while Figure 3(b) shows total UDP throughput under a receive-
only workload. For both the Spinach and 3Com tests, the bidirec-
tional bandwidth reported is the maximum sum bandwidth mea-
sured under varying mixes of transmit-to-receive ratios. Typically
this ratio is approximately 1:2 for both the Spinach model and
3Com NIC. This reflects the processing requirements for the two
types of packets and the prioritization of the receive handler over
the send handler, which ensures higher receive throughput [2]. Send
packets require at minimum two data transfers from the host (one
each for the header and payload) while receive packets require only
one data transfer to the host. Each completed transfer requires pro-
cessing by the NIC. Receive-only workloads are used as an addi-
tional reference point for verifying Spinach’s model of theTigon-
2. For each uniprocessor case tested in both the bidirectional and
receive-only scenarios, the performance of the Spinach system is
within 8.8% of the 3Com NIC’s performance and within 4.9% on
average. As with the 3Com NIC, the Spinach model saturates only
66% of theoretical peak bandwidth when utilizing one processor.

18 200 400 600 800 1000 1200 1472
0

200

400

600

800

1000

1200

1400

1600

1800

2000

UDP Datagram Size (Bytes)

T
hr

ou
gh

pu
t (

M
b/

s)

Ethernet Limit (Duplex)
Uniprocessor − Spinach
Uniprocessor − Hardware

(a) Bidirectional traffic

18 200 400 600 800 1000 1200 1472
0

100

200

300

400

500

600

700

800

900

1000

UDP Datagram Size (Bytes)

T
hr

ou
gh

pu
t (

M
b/

s)

Ethernet Limit (Simplex)
Uniprocessor − Spinach
Uniprocessor − Hardware

(b) Receive-only traffic

Figure 3: Spinach modeling uniprocessor Tigon

18 200 400 600 800 1000 1200 1472
0

200

400

600

800

1000

1200

1400

1600

1800

2000

UDP Datagram Size (Bytes)

T
hr

ou
gh

pu
t (

M
b/

s)

Ethernet Limit (Duplex)
Parallel − Spinach
Parallel − Hardware

Figure 4: Spinach modeling Tigon with parallel firmware

Figure 4 shows the UDP payload bandwidth in megabits per sec-
ond on a Tigon-2 NIC running Kim’s parallelized firmware on both
processors. The figure compares the 3Com Tigon-2 NIC (labeled
Parallel - HW) against the Spinach model of the Tigon-2 architec-
ture (labeledParallel - Spinach). Traffic is full-duplex; in contrast
to the uniprocessor case, traffic is mostly balanced on both pro-
cessors since the firmware parallelization strategy puts most send-
related tasks on one processor and most receive-related tasks on
the other, avoiding resource contention among the processors . For
each frame size tested, the multiprocessor Spinach model iswithin
8.9% of the benchmarks measured using the 3Com NIC. On aver-
age, the Spinach multiprocessor Tigon-2 model is within 3.2% of
the real hardware. For maximum-sized UDP frames of 1472 bytes,
both the Spinach model and 3Com NIC saturate 81% of the theo-

retical UDP peak throughput – an increase of 23% over the unipro-
cessor case. Creating a two-processor Tigon-2 Spinach model re-
quired less than 100 additional lines of high-level templated code
in a script file.

5. FURTHER INVESTIGATIONS WITH
SPINACH

Although validating Spinach against actual hardware is a useful
exercise that shows the efficacy of modeling a network interface
with this toolset, the true value of any simulator arises from its
ability to model systems that have not yet been implemented.Such
systems may be incremental modifications to existing architectures
or radical changes to support vastly different goals. This section
discusses using Spinach first to model a Tigon-2-based system with
greatly increased memory bandwidth and second to model a novel
10 Gigabit per second Ethernet controller architecture.

5.1 Exploring the Tigon Memory Bottleneck
Kim et al. hypothesized that because firmware processing re-

quirements are invariant of frame-size, limitations such as external
SRAM bandwidth prevents the Tigon-2 architecture from achiev-
ing 100% of theoretical Ethernet peak throughput at maximum-
sized UDP frames [7]. Spinach allows the verification of thishy-
pothesis, since it is possible to increase the memory bandwidth
while holding the processor frequency constant at 88 MHz by sim-
ply changing one parameter in one configuration file. Figure 5
shows the UDP payload bandwidth in megabits per second of two
Tigon-2 Spinach models, comparing the base multiprocessorTigon-
2 Spinach model that uses 100 MHz SRAM (labeled “Parallel -
Spinach (Base - 100 MHz SRAM)”) and the same model modified
to use SRAM operating at 250 MHz (labeled “Parallel - Spinach
(250 MHz SRAM)”). As predicted by Kim’s hypothesis, Spinach
shows that the Tigon-2 architecture can fully utilize a 1 Gbit/sec
full-duplex link when given adequate memory bandwidth. Interest-
ingly, increased bandwidth also improves throughput for minimum-
sized Ethernet frames, since the processors’ memory accesses suf-

18 200 400 600 800 1000 1200 1472
0

200

400

600

800

1000

1200

1400

1600

1800

2000

UDP Datagram Size (Bytes)

T
hr

ou
gh

pu
t (

M
b/

s)

Ethernet Limit (Duplex)
Parallel − Spinach, 250 MHz SRAM
Parallel − Spinach, 100 MHz SRAM

Figure 5: Spinach modeling Tigon with 250 MHz SRAM

fer fewer additional latencies caused by contention with DMA and
MAC assist traffic. Spinach enables the investigation of this non-
intuitive performance increase without perturbing the system as a
runtime hardware profiler might.

5.2 Supporting 10 Gigabit Ethernet
As local area link speeds increase, a key target for modern net-

work architectures is 10 Gigabit Ethernet. The greater speed of 10
Gigabit Ethernet obviously requires more processing powerthan
Gigabit Ethernet; however, it is a challenge to incorporatethe req-
uisite processing power and memory bandwidth within the power
constraints of the network interface environment. An exploration of
the computation power and memory hierarchy requirements of10
Gigabit Ethernet suggests that a NIC design with 8 MIPS R4000-
based cores, a banked on-chip SRAM for frame metadata, high-
bandwidth off-chip graphics DRAM for frame data, and separate
instruction caches for each core can provide the needed level of
throughput. However, such a system also requires firmware that
can exploit a far greater level of parallelism than the systems de-
scribed in Section 4.

Due to Spinach’s inherent scalability, expanding beyond the Tigon-
2 based multiprocessor design described in Section 2 required no
additonal simulator source code or toolset modifications. Rather,
to increase the number of processors, memory banks, caches and
cache controllers, the number of module instances was simply in-
creased and their respective input and output ports were connected
to the on-chip memory interface module via high-level templated
code.

Since no real hardware exists on which to develop the custom
parallel firmware that runs on the 8-processor 10 Gigabit NIC, Spinach
functions as a software development tool as well. Extensivede-
bug information is maintained by all module instances, providing
information such as instruction traces, memory reference traces,
and timing. Spinach also includes non-intrusive source code pro-
filing tools for the MIPS code that runs on the MIPS processor
module used in these Spinach-based NIC simulators. The result-
ing firmware is based on a distributed task-queue model, withall
task-processing functions written in a re-entrant style toenable si-
multaneous execution on multiple cores.

Figure 6 shows how the desired 10 Gigabit Ethernet controller
architecture can be mapped to Spinach modules. Note that these

Figure 6: A scalable 10 Gigabit NIC architecture implemented
in Spinach

are predominantly the same modules as used in the Tigon-2 model,
simply connected in different ways. An implementation with8 pro-
cessors running at 200 MHz each, an on-chip memory network with
4 banks, instruction caches of 2 kB each, and GDDR SDRAM oper-
ating at 500 MHz fulfills the computational and memory bandwidth
requirements needed to saturate the link; all elements are simulated
with the base Spinach modules presented in this paper. Preliminary
experimental results verify that this architecture saturates 98.6% of
the theoretical peak full-duplex bandwidth, while initialscalability
results show that operating with just 6 processor cores active shows
97.6% throughput.

6. DISCUSSION
In addition to simulating NICs, Spinach is designed to be ar-

bitrarily flexible in simulating other types of embedded systems.
Spinach includes user-configurable cache controllers and cache mod-
ules, as well as arbitration modules for the memory hierarchy, and
variable-latency memory modules that can be used to simulate on-
chip SRAM as well as off-chip SRAM and off-chip DRAM of
various sizes. Using a different ISA would simply require a new
ALU module definition and a new decode stage for the processor
pipeline. Similarly, Spinach’s flexibility also enables configuration
of VLIW systems. Since the processor pipeline definition contains
only high level module listings and no actual module source code,
a DSP-style VLIW pipeline could be configured by replicatingthe
width of the pipeline.

Virtually any special-purpose hardware that the user can envision
in the system can be incorporated into a Liberty Simulation Envi-
ronment module and plugged into the Spinach simulator of choice
with relative ease. For example, recent work has added a recon-
figurable functional unit into the execute stage of the NIC’spro-
cessor to run application-specific instructions selected by the com-
piler. This reconfigurable unit is written as a Liberty module and

follows a design similar to that of Ye et al. [20], with up to nine in-
put source registers and a single output register. The compiler then
folds basic blocks or other appropriate instruction sequences into
a single reconfigurable fabric instruction when possible. Although
the actual reconfigurable fabric is not a base module of Spinach,
a user created an LSE module using C code to simulate the addi-
tional hardware needed and then added this module to the high-
level module listings of a Spinach NIC simulator. The writerof the
reconfigurable module required no intimate knowledge of thepro-
cessor’s internal workings; rather, the module only views processor
state through the values on its input ports at the start of every clock
cycle.

7. RELATED WORK
Sections 1 and 2 describe the background for Spinach. This sec-

tion describes other related work in detail.
Crowley et al. have investigated the performance characteristics

of programmable network interfaces and their impact on proces-
sor design, but the workloads evaluated have been computation-
bound kernels (MD5, encryption, and IP-forwarding) ratherthan
I/O-bound Ethernet firmware [3]. Consequently, that work used
conventional processor simulators without the need to include sup-
port for special-purpose features such as DMA or MAC assist logic.
In contrast, Spinach enables investigation of I/O interactions and
their impact on bottlenecks such as memory bandwidth, whichhas
been highlighted as a problem for networking performance bysev-
eral recent works [7, 12, 16].

Efforts to simulate communication intermediaries in multipro-
cessor systems have substantial similarities with Spinach. For ex-
ample, Heinrich et al. used simulation to determine the perfor-
mance overhead of the MAGIC programmable communication con-
troller in the Stanford FLASH multiprocessor through compari-
son to a system that could process communication protocol op-
erations with no latency [4]. They found that the overheads of a
realizable programmable controller were either small or could be
hidden effectively for many full-scale multiprocessor applications.
Kranz et al. studied the performance impact of integrating message-
passing and shared-memory communication models in the MIT
Alewife machine [10]. Although their system also included newly
designed processors and networks, this integration was achieved
largely through their network coprocessor, titled the Communica-
tion and Memory Management Unit (CMMU). Mukherjee et al.
found substantial performance improvements for fine-grained com-
munication by adding cacheability and coherence to the device state
of a network interface that connects the nodes of a tightly coupled
multiprocessor system to its coherent interconnect [14]. Each of
these works coupled the simulator for a network controller to a
larger simulator designed specifically for the multiprocessor sys-
tem under study. In contrast, Spinach is a set of standalone modules
based on the Liberty Simulation Environment, enabling thissimu-
lator to be easily retargeted and integrated with arbitraryLiberty-
based system models.

8. CONCLUSIONS
Spinach provides the architecture community with a simple set

of tools to evaluate an increasingly important class of systems.
Built with only 19 base modules, Spinach allows for the easy recon-
figuration of the systems under test and the integration of various
architectural advances. While monolithic simulators are typically
difficult to adapt and extend, the structural and composablenature
of Spinach makes it highly flexible, requiring only high-level tem-
plated code to migrate from a uniprocessor Gigabit network inter-

face to a multiprocessor Gigabit network interface to a multipro-
cessor 10 Gigabit network interface with a highly heterogeneous
memory system. This paper then uses Spinach to confirm or obtain
key insights on the performance of programmable NICs, allowing
for study of systems that might otherwise be intractable because of
their interaction with operating-system and network resources.

Future plans include the integration of Spinach with the Orion
network models built using the LSE [19], power models for em-
bedded systems such as Avalanche or the ARMulator extensions
of S̆imunić et al.[11, 17], and full-system simulators that support
operating-system-intensive applications and enable the use of ac-
tual I/O rather than a trace-based harness.

Acknowledgments
The authors thank Hyong-youb Kim for assistance with the vari-
ous Tigon firmware versions used in this paper, Scott Rixner for
comments on the paper, and Neil Vachharajani for support with the
Liberty backend.

9. REFERENCES
[1] Alteon Networks.Tigon/PCI Ethernet Controller, August

1997. Revision 1.04.
[2] Alteon WebSystems.Gigabit Ethernet/PCI Network

Interface Card: Host/NIC Software Interface Definition, July
1999. Revision 12.4.13.

[3] P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad.
Characterizing Processor Architectures for Programmable
Network Interfaces. InProceedings of the 14th International
Conference on Supercomputing, pages 54–65, May 2000.

[4] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter,J. P.
Singh, R. Simoni, K. Gharachorloo, D. Nakahira,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy.
The Performance Impact of Flexibility in the Stanford
FLASH Multiprocessor. InProceedings of the Sixth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
274–285, October 1994.

[5] Y. Hoskote, B. A. Bloechel, G. E. Dermer, V. Erraguntla,
D. Finan, J. Howard, D. Klowden, S. G. Narendra, G. Ruhl,
J. W. Tschanz, S. Vangal, V. Veeramachaneni, H. Wilson,
J. Xu, and N. Borkar. A TCP Offload Accelerator for 10 Gb/s
Ethernet in 90-nm CMOS.IEEE Journal of Solid-State
Circuits, 38(11):1866–1875, November 2003.

[6] H. Kim, V. S. Pai, and S. Rixner. Improving Web Server
Throughput with Network Interface Data Caching. In
Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 239–250, October 2002.

[7] H. Kim, V. S. Pai, and S. Rixner. Exploiting Task-Level
Concurrency in a Programmable Network Interface. In
Proceedings of the 2003 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, June 2003.

[8] K. Kleinpaste, P. Steenkiste, and B. Zill. Software Support
for Outboard Buffering and Checksumming. InProceedings
of the ACM SIGCOMM ’95 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 87–98, August 1995.

[9] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the
Validity of Trace-Drive Simulation for Multiprocessors. In
Proceedings of the 18th Annual International Symposium on
Computer Architecture, pages 244–253, May 1991.

[10] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and
B.-H. Lim. Integrating message-passing and shared-memory:
Early experience. InProceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 54–63, May 1993.

[11] Y. Li and J. Henkel. A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems. InProceedings of the 35th Conference on Design
Automation (DAC 1998), pages 188–193, June 1998.

[12] Y.-D. Lin, Y.-N. Lin, S.-C. Yang, and Y.-S. Lin. DiffServ
over Network Processors: Implementation and Evaluation. In
Hot Interconnects X, August 2002.

[13] K. Z. Meth and J. Satran. Design of the iSCSI Protocol. In
Proceedings of the 20th IEEE Conference on Mass Storage
Systems and Technologies, April 2003.

[14] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood.
Coherent Network Interfaces for Fine-Grain Communication.
In Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 247–258, May 1996.

[15] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Passing. In
Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (SC2001), November 2001.

[16] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors.
In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 216–229, October 2001.

[17] T. S̆imunić, L. Benini, and G. De Micheli. Cycle-Accurate
Simulation of Energy Consumption in Embedded Systems.
In Proceedings of the 36th Conference on Design
Automation (DAC 1999), pages 867–872, June 1999.

[18] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August. Microarchitectural exploration with
Liberty. In Proceedings of the 35th Annual International
Symposium on Microarchitecture, pages 271–282, November
2002.

[19] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks.
In Proceedings of the 35th Annual International Symposium
on Microarchitecture, pages 294–305, November 2002.

[20] Z. A. Ye, A. Moshovos, S. Hauck, and P. ithviraj Banerjee.
Chimaera: A high–performance architecture with a
tightly–coupled reconfigurable functional unit. In
Proceedings of the 27th Annual International Symposium on
Computer Architecture, pages 225–235, June 2000.

