
Stuck in the Middle: Challenges and Trends in Optimizing
Middleware

Daniel M. Yellin
IBM T. J. Watson Research Center

Hawthorne, NY 10532

dmy@us.ibm.com

1. INTRODUCTION
This paper summarizes the main themes of my talk of the
same title at the First ACM Workshop on Optimization of
Middleware and Distributed Systems.

To begin with, lets discuss what we mean by the term
“middleware”. Exactly what is middleware in the middle
of? There are two similar but slightly different approaches
to this question. One approach views middleware as being
in the middle of a sea of distributed components, such as
applications, directories, databases, etc. Middleware serves
as the glue that allows all of these components to interact
with one another. Using this approach, middleware is seen
as enabling the horizontal composition of components.
The second approach views middleware as the stuff in
between an application and lower level services offered by
the distributed network. In other words, middleware serves
as the abstraction layer that allows an application
programmer to easily access distributed services without
having to worry about the details of connectivity, protocol
conversion, data transformation, load balancing etc. Using
this approach, middleware is seen as enabling the vertical
composition of an application with lower level services.
Both approaches are correct and they describe two
important functions of middleware: enabling component
interaction and simplifying the programming model for
application writers.

Concretely, when we speak of middleware we refer to
things like Web Application Servers, Object Request
Brokers (ORBs), and Message Oriented Middleware
(MOM). All of these technologies present programming
models to the application programmer and facilitate the
collaboration between distributed components. It is hard to
define the functionality of middleware precisely as every
new middleware product release incorporates additional
features.

1.1 Business drivers: the growth in the
middleware market
By all estimates, the market for middleware has seen
explosive growth over the last few years. Figure below
shows the growth in just one segment of the marketplace,
the growth of revenue in integration broker suites. (These
numbers are taken from the Gartner Strategic Analysis
Report, Application Integration Middleware, September
2000.)

0

500
1000
1500

2000

Millions of
dollars

1998 1999 2000

Product License

Including
Services

There are several reasons why middleware has experienced
such robust growth. First, it greatly increases productivity
by encapsulating common tasks in a set of frameworks and
components. Second, many recent business trends require
a great deal of application integration to succeed, and
middleware is the technology of choice when it comes to
integration. According to a recent survey (Morgan Stanley
CIO Survey, May 2001), the “top strategic software
platform projects” companies were undertaking in the
coming year is application integration. The business trends
driving this phenomenon include enterprise resource
planning (ERP), supply chain management (SCM), and
customer relationship management (CRM). Consider
CRM in the insurance industry as an example. Many
insurance companies, in their desire to be customer-centric,
want to consolidate much of the information about their
customers into a single repository and to provide access to
integrated customer information, even when that
information resides in several different systems. This will
enable them, presumably, to better serve their customers.
As an example, when a customer calls in with a problem,
the service representative should be able to access all of the
insurance policies the customer has with the company (life,
auto, home…). Similarly, a change of the home address in

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
OM 2001, Snowbird, Utah, USA
© ACM 2001 1-58113-426-8/01/06…$5.00

1175

a homeowner’s policy should trigger a change of address in
the auto policy held by the same policyholder – even if
these policies are administered on totally different systems.

The Internet has further accelerated the need for
middleware. This is because as companies allow
consumers and business partners to interact with them on-
line, they need to electronically enable business processes,
and this requires information and processes to flow across
multiple systems. Consider the step-by-step processing
associated with on-line shopping. The buyer must first
browse a catalog and configure his order. Then she must
place her order, thereby causing the order to be confirmed
and logged. Next the transaction must be transferred to a
fulfillment system, which controls the operational aspects of
servicing the order. Of course, payment and financial
systems must also be included in the process. All of these
steps are usually performed in different specialized systems,
requiring a great deal of coordination and integration. The
movement towards business-to-business process integration
(B2B) will further accelerate the growth in the middleware
marketplace.

2. Paradigm Shift: from programs to
compusystems
The last section provided motivation for why middleware is
becoming so important. We now examine its technical
implications. In my view, the “rise in middleware” is
having a truly profound impact. It is accelerating a
paradigm shift from “micro” programming to “macro”
programming. By micro programming, I mean the
construction of a single application using a homogenous
programming environment (a single programming language,
a single mechanism for persisting and retrieving data from
secondary storage,...). By macro programming I mean the
construction of new applications primarily by integrating
existing logic dispersed across various systems, often
involving heterogeneous programming environments
(multiple programming languages, multiple transactional
systems, multiple paradigms for persisting and retrieving
data from secondary storage,...).

Evidence of this shift can be found in various sources. One
piece of evidence lies in the commercial marketplace for
application development tools; more and more products in
this marketplace attempt to address the issue of building
applications via composition and integration. New IDEs
(integrated development environments) provide visual
metaphors for composition and contain palettes of
components that can be used for common integration tasks.
Many products are geared towards providing the developer
a uniform programming model by which he can integrate
the components without having to understand the
underlying technologies upon which these components are

built. But perhaps the best evidence for this shift can be
found by contrasting project plans used today for large
development projects against those used a few years ago. I
believe that such an inspection will show that the
percentage of time and resources spent on programming
application functionality is dramatically decreasing in
contrast to the percentage of time and resources spent on
integration tasks.

This shift has profound implications not only for the
paradigms and tools we present to programmers, but also to
the way we think about computing. In this respect it is
interesting to make an analogy to nature. Webster defines
an ecosystem as follows:

A community of animals and plants and the environment with
which it is interrelated.

I would like to offer up a parallel definition of a compusystem:

A community of software and hardware components and the
middleware with which it is interrelated.

By defining a compusystem in this way, I am trying to
conjure up the fact that we need to start thinking about
computing systems differently. We have to stop thinking
about individual applications and individual systems. We
need to start viewing the systems we create like ecosystems
-- a set of interrelated computing “species”. As
middleware links more and more systems together, we need
better understanding of the consequences of these new-
found relationships. When we think of computing in this
way, we can begin to ask ourselves if there are common
aspects to all compusystems. Here are some of them:

• They are complex. The complexity comes from
the huge number of components that make up a
compusystem. Like an ecosystem, the different
component interactions in a compusystem are
often hard to understand. A single component in a
compusystem can cause another “remote”
component to exhibit sporadic pathological
behavior, even if there is no direct relationship
between the two components. This makes
compusystems especially hard to understand.
Although we have always built complex systems,
the systems we are building today are different.
We have built systems out of millions of lines of
Cobol in the past, but for the most part these
systems were constructed out of a limited number
of technologies. In contrast, systems built today
are made out of hundreds of heterogeneous
components. These systems may contain tens or
hundreds or even thousands of different machines,
often running different operating systems. They
include legacy systems running high volume Cobol
and CICS (transactional system) programs. They
include legacy as well as relational databases.
They often have a multi-tier structure, with HTTP

2176

servers on the front, followed by Web Application
Servers, followed by an integration server
connecting to back-end applications. No single
individual can grasp the end-to-end solution, or
anticipate all of the far-reaching effects when
hooking these systems together. Additionally,
although we built complex systems in the past,
these systems were not as ubiquitous as they are
today. In a recent survey (Information Week,
“Conquering Complexity”, April 2, 2001) 95% of
the population being surveyed felt that information
technology is more complex to manage today than
in the past. Mastering this complexity, in my
mind, is one of the major challenges of computer
science over the next decade.

• They are forever changing. Compusystems are
dynamic. By this I mean two things. First, like
an ecosystem, a compusystem experiences “bio-
rhythms”. Cyclic events occur during the day,
month, and year (caused by such “natural” events
as payroll processing) causing the compusystem to
experience fixed patterns of interactions. Second,
just as ecosystems evolve with climate changes or
the introduction of a new species, compusystems
evolve as new applications or hardware is added.
This implies that understanding a compusystem is
not a one-time event, but a continuous process. It
will require us to rethink the models we use to
analyze systems.

• They run forever. There is no such thing as
stopping a compusystem to test, debug, and fix it.
They are usually required to run 24 by 7, 365 days
a year. This has important implications for the
way we instrument systems. For example, many
program analysis tools have a lot of overhead and
affect the application they are analyzing. This
makes them poorly suited for live analysis of
compusystems. Instead, tools are required that can
be deployed “in the field” and have very little
effect on the running applications.

• They have a lot of history (calcification). By
running for a long time, compusystems acquire a
lot of constraints. This often means that elegant
solutions (like adding a field to a record) are
impractical (because of the tremendous number of
existing data records and APIs that were built
without the expectation of the extra field).
Maintaining and evolving compusystems will be a
major challenge and will seriously impede the
adoption of new technologies if not addressed.

3. Optimizing Middleware
In the rest of this paper I would like to focus on the role of
middleware in compusystems, as I defined above. In
particular, given the transformation of computing towards
compusystems, and the fundamental role middleware plays
in that transformation, what are the important research
directions in middleware? I would like to point out three
fundamental research areas:

1. Tools and methodologies for understanding
compusystems,

2. Development of new programming models for
building compusystems,

3. Building adaptive middleware that has self-healing
and self-optimizing properties.

3.1 Understanding compusystems
We already made the case that understanding
compusystems is very difficult. The middleware that unites
the many parts of compusystem introduces effects that can
be non-local, that can interfere with one another, and that
may only be visible sporadically (e.g., when loads are very
heavy). It is not enough to thoroughly understand the
components of the compusystem nor even pointwise
interactions between the components; one needs to
understand the characteristics of the compusystem as a
whole.

Consider a web transaction processing system. It will
typically accommodate many different types of front-end
devices (web browsers, “fat” clients, pervasive devices such
as cellular phones). It will be multi-tiered, with a front-end
http server (processing http requests) passing application
requests to an application server (supporting session and
state management, presentation and navigation) feeding an
integration server (supporting intelligent routing, protocol
conversion, and data transformation) that connects to many
back-end systems and databases. It will utilize multiple
security, authentication, and directory services. It will have
to support a variety of communication protocols.
Following even a single transaction as it weaves its way
through such a system is not an easy task. As thousands or
even tens of thousands of transactions flow through these
systems each minute, understanding the system as a whole
can be overwhelming.

Hence we need tools to help us reason about the dynamic
aspects of these systems. One example is a toolkit
developed in IBM Research. This toolkit allows you to
“spray” environmental monitors on many of the
components of the compusystem. It allows you to collect,
in real time, different vital signs of the system; e.g.,
traditional operating system-level metrics such as CPU
utilization, as well as component specific metrics, such as
the number of database locks held, the number of threads
being used by the http server, or the number of active

3177

MQSeries connections (for a description of MQSeries, the
most popular messaging system in commercial use, see
Distributed Computing with MQSeries, by see Len Gilman
and Richard Schreiber, Wiley, September 1996). By
capturing this information as the system runs and displaying
it (with constant updates) on a screen (we call it the
dashboard), one can get an immediate understanding of
how the system as a whole is operating. Part of the
challenge here is figuring out what to display at the highest
level – not to overwhelm the architect looking at the
dashboard, but to give him a sense of the compusystem as a
whole by displaying at first only the most useful
information and allowing him to go “deeper” as he unravels
the behavior of the compusystem. The toolkit allows one to
add additional environmental monitors and also includes a
tool that enables fast instrumentation of application code
without the need to access source code. Hence this
approach is both flexible and customizable.

We have found that displaying information on the
dashboard allows the viewer to find correlations between
components of the compusystem that otherwise would be
hard to detect. For instance, it may be apparent by looking
at the dashboard that idle threads in a downstream
component are due to the fact that an upstream component
doesn’t have a matching capacity to generate work. We
have also found the toolkit to be an effective ingredient in a
performance testing methodology. This methodology uses
a stress tester to generate increasing workloads on the
compusystem while an individual watches the results on the
dashboard, thereby uncovering when and where bottlenecks
appear. Future research is focusing on how far we can go
in automating this process – automatically detecting
recognizable patterns of aberrant behavior and even
automatically taking corrective actions.

The toolkit illustrates an attempt to understand the dynamic
(run-time) characteristics of a compusystem. It is also
important to understand its static (code) characteristics.
This can be illustrated by another project in IBM Research,
called “Asset Locator” (see “eCollabra: An Enterprise
Collaboration and Reuse Environment”, by Orit Edelstein,
Avi Yaeli, and Gabi Zodik, 4th International Workshop,
NGITS’99, Zikhron-Yaakov, Israel, July 1999” for an early
description of this work). The goal of this project is to
facilitate an understanding of the software resources within
some large scope (like an enterprise or a compusystem),
facilitate an understanding of the relationships among these
resources, and facilitate the reuse of software assets in new
contexts.

Asset Locator has three fundamental phases: information
gathering, repository analysis, and search. Information
gathering is like web crawling except it involves code
repositories not web pages. In this phase, performed at
regularly scheduled intervals, all the code repositories of
the compusystem are searched, and each code fragment that

is found is “labeled” by its code type (e.g., Java, Cobol,
HTML, XML, JSP, C++, etc.). The analysis phase
categorizes each code fragment discovered in the preceding
phase. The categorization rules are type specific; e.g.,
there are special categorization rules for Java code, for
HTML, etc. Based on this categorization, an index into all
of the code fragments is built. In the search phase, an end-
user can specify the semantic attributes and well as textual
key words of the code resource he is interested in. The
index is consulted and all matching fragments are retrieved.
The user can also browse dependencies between different
code fragments.

Asset Locator is a good tool not only for browsing a large
distributed code repository and for finding reusable code, it
is also useful for impact analysis – helping discover how
changes to one part of a compusystem may effect another.
In this regard, we need to further extend Asset Locator to
better identify dependencies between heterogeneous code
types. Ultimately this may require not only static analysis
of the compusystem, but dynamic analysis as well. Asset
Locator shows that it is useful to augment traditional deep
analysis of relatively small fragments of code to more
shallow analysis of very large code repositories.

3.2 New programming models
The 1990s saw the emergence of several distributed
programming models (such as DCE and CORBA). The
goals of these models were to facilitate the construction of
compusystems. In retrospect, these models were lacking in
several ways: they were fairly heavy weight to implement,
they required a substantial amount of agreement between
the communicating components to work correctly, and they
did not accommodate legacy systems very well. Based
upon this learning experience, and with the advent of the
Internet, a new distributed programming model is emerging.
Its key features include the following:

• It is based upon open standards, such as XML,
Web Services, WSDL, WSFL, UDDI, and others;

• It facilitates the integration of loosely coupled
systems, with clear separation of interface, content,
and business logic and with minimal connectivity
requirements between the components;

• It supports the late binding of components through
run-time discovery and dynamic binding
mechanisms.

There is much development yet to be done in building the
base infrastructure of this new computing model and it is
too early to judge its success. But if successful it will
certainly make it easier to build, optimize, and evolve
compusystems.

To optimize a compusystem, it is also important to
minimize the resources associated with the flow of a request

4178

through the system – to minimize the number of
components it must touch and the number of
transformations it must go through. Any programming
model for compusystems must address this issue. One
obvious way to limit the flow through a compusystem, at
least for web-based informational queries, is to rethink the
way caching is done. There are several dimensions to this
problem: figuring out where to cache, figuring out what to
cache, and coming up with good cache coherence protocols.
Once again, let me use a project in IBM Research to
explore these issues (see "High-Performance Web Site
Design Techniques", Arun Iyengar Jim Challenger, Daniel
Dias, and Paul Dantzig, In IEEE Internet Computing, vol. 4
#2, March/April 2000). This project focuses on how to
build highly scaleable web sites. Using this infrastructure,
for example, we were able to build sites handling 875
million hits per day, with a peak rate of 1.2 million hits per
minute, with 100% availability!

Building such robust and scaleable infrastructure requires
rethinking the way web pages are put together. This
project views each web page as being made up of a
hierarchy of embedded fragments. At the most elementary
level, each fragment is either a piece of text, a jpeg image, a
video clip, etc. These elementary fragments can be
combined into a new fragment, which may be recursively
combined with other fragments into a yet another fragment.
One can also maintain an index mapping each elementary
fragment into all the pages containing it. In this way,
whenever an elementary fragment becomes obsolete, one
can easily find the pages that have become obsolete with it.
Additionally, given a time period for each elementary
fragment in which it is guaranteed to be valid, one can
determine the minimal time period that each page is
guaranteed to be valid.

Using this approach, one can begin to cache throughout the
layers of the network—at cache servers placed at the origin
of the content, at “edge of network” servers, at ISPs, and so
forth. Each page cached is given a conservative expiration
date, facilitating cache coherence. Whenever an elementary
fragment changes, by using the index, new pages can be
generated for all affected web pages and propagated to the
caching servers. This approach proved to be very effective.
For all deployments of this technology, on the average only
a small percentage of web hits were processed by the
content engines themselves; cache servers somewhere on
the network absorbed the vast majority of the requests.
This approach shows that a programming model that
proactively generates and distributes content upon
availability can have significant performance improvements
over approaches that lazily generate content upon demand.
This methodology may not be applicable to all
compusystems. It is simply intended to show the sorts of
new approaches we need to take when building a
compusystem in order to optimize performance.

3.3 Adaptive systems
We already mentioned that compusystems show different
computational patterns at different times. It is therefore
often the case that trying to optimize the system for one sort
of behavior causes degradations for other behaviors.
Furthermore, compusystems evolve and change, so
optimizations may loose their effectiveness over time.

An important research direction beginning to address this
issue is the development of adaptive systems. An adaptive
system is one that monitors its behavior at runtime and
changes its behavior in order to optimize performance. One
example can be found in the work on dynamic data
distribution (see “An Algorithm for Dynamic Data
Distribution”, by Ouri Wolfson and Sushil Jajodia, in
Proceedings of the 2nd Workshop on the Management of
Replicated Data (WMRD-II), Monterey, CA, Nov. 1992.).
In this work, there are many clients trying to access a data
object. To optimize performance, one can create replicas
of this object. These replicas can critically affect
performance, since reading a local replica is less costly than
reading a remote data object. On the other hand, updates to
the data object become more costly as all the replicas need
to be updated. Hence the best strategy depends upon the
read/write characteristics of each data object, and these
characteristics may change over time. The work of
dynamic data distribution shows how to adaptively change
the replication scheme in response to the change in
read/write patterns to data objects.

Another example of an adaptive system is a project at IBM
Research that is applying control theory to server software.
In one experiment, the project looked at tradeoffs between
the number of clients serviced by a particular server, and
the response time for service requests. The goal was to
maximize the number clients being processed without
slowing up response time below a given threshold value
(the maximum delay acceptable was determined empirically
by system administrators). The experiment showed that
traditional control theory could be used to dynamically
converge to an optimal solution.

Both of these examples show very different ways of using
adaptive techniques to optimize middleware. As
compusystems link more and more systems together, it
becomes increasingly harder to statically predict
computational patterns and loads on the various
components of the system. Adaptive techniques will
become more and more important in this environment for
achieving high performance.

4. Summary
Middleware is growing very rapidly because it is the glue
that binds systems together, and there is great business need
in integrating systems today. I have argued that this growth

5179

has foreshadowed the emergence of compusystems-- large
systems containing enormous numbers of computational
components. The challenges in building, maintaining, and
optimizing these systems are great. I have demonstrated
three areas of research that promise help in this regard:
better models and tools for understanding compusystems,
new programming models to help us more effectively
construct, maintain, and optimize compusystems, and
adaptive middleware for optimizing compusystems based
upon the dynamic state of the system.

Acknowledgement
This paper has strongly benefited from discussions I have
had with many people. It would be impossible to name

them all, but I here acknowledge discussions with those
people whose gave me insight into their projects which I
referenced in this paper: Paul Dantzig (caching in large web
systems), Joe Hellerstein (applying control theory to
software servers), Doug Kimelman & Chet Murthy &
Darrell Reimer (toolkit for monitoring compusystems), and
Gabi Zodik (Asset Locator).

6180

