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A b s t r a c t  

Two methods for implementing ezact real arithmetic 
are explored One method is based on formulating real 
numbers as functions that map rational tolerances to 
rational approximations. This approach, which was 
developed by constructive mathematicians as a concrete 
formalization of the real numbers, has lead to a surpris- 
ingly successful implementation. The second method for- 
mulates real numbers as potentially infinite sequences of 
digits, evaluated on demand. This approach has frequently 
been advocated by proponents of lazy functional languages 
in the computer science community Ironically, it leads to 
much less satisfactory implementations. We discuss the 
theoretical problems involved m both methods, give algo- 
rtthms for the basic arithmetic operations, and give an 
empirical comparison of the two techniques. We conclude 
wtth some general observations about the lazy evaluation 
paradigm and its implementation. 

1. In t roduc t ion  

Although many theoretical computer scientists are 
familiar with the notion of the representable or construe- 
tire real numbers, there has been s~prtsingly httle 
research on the subject of performing exact real arithmetic 
on computers. Engineers and scientmts have traditionally 
solved computational problems involving real numbers by 
using a subset of the rational numbers to approximate real 
numbers and limited-precision arithmetic to approximate 
true arithmetic. Since physical measurements have only 
finite accuracy, calculated values that depend on measured 
data are inherently inexact. Consequently, limited- 
precimon arithmetic has a strong physical justification 
assuming that the round-off errors introduced by limited- 
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precision arithmetic are comparable in size to the errors 
introduced by the inaccuracy of the original data. During 
the last thirty years, numerical analysts have devised a 
wide variety of clever methods for computing important 
functions that are relatively insensitive to "round-off" 
error. Given the success of this enterprise, it is not surpris- 
ing that existing programming languages completely ,gnore 
the possibility of performing exact real arithmetic 

In this paper, we explore the feasibility of performing 
exact real arithmetic on a computer with an emphasis on 
implementations that employ lazy evaluation. As we 
explain in more detail in Section 3, lazy evaluation has 
been suggested as an important optimization in the imple- 
mentation of higher order data like the real numbers 
because it adroitly avoids recalculating digits that were 
already calculated at an earlier point in a computation. 
The lazy implementation of the representable reals 
deeper and more interesting subject than might be 
expected. In particular, the computability of basic arith- 
metic operations such as addition critically depends on the 
choice of data representation. 

The obvious representations based on positional 
radix notation and continued fractions are formally inade- 
quate. Fortunately there are some more sophisticated 
representations with all the necessary mathematical proper- 
ties, but even these more sophmticated representations are 
plagued by performance problems in practice. 

We contrast this approach with one based on the 
constructive mathematicians' definition of real numbers (cf 
IBis 67]), which we argue does lead to a reasonably efficient 
implementation of exact real arithmetic 

1.1. Mot iva t ion  

In the lg n project at Rice University, we became 
interested in the subject of exact real arithmetic because 
we had an immediate practical need for it. As part of the 
IR n Fortran programming environment, we are building a 
program validation system that tests programs against exe- 
cutable formal specifications. The program validation sys- 
tem is a pragmatic alternative to a formal program 
verification system. Instead of trying to prove that a pro- 
gram satisfies its formal specifications, the program valida- 
tion system evaluates the program and its specifications on 
a representative collection of test data [Cart81J In 
essence, the validation system tests the the verification 
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condition8 for the program rather than proving them. We 
call this proce~ formal program testing. 

We are mterested in formally specifying numerical 
programs in s very high level executable specification 
language called TTL (Tentatively Typed LISP) that 
roughly resembles a lexically scoped dialect of LISP (e.g. 
SCtIEME) augmented by s comprehensive constructive 
data type definition facility [Cart 80,82a,83] that accommo- 
dates lazy data constructors. Since the natural way to 
specify the behavior of a numerical algorithm is to relate 
the calculated answer to the true answer s, to serve as a 
specification language for numerical software, TTL must 
accommodate the real numbers and standard arithmetic 
operations (addition, subtraction, multiplication, division, 
exponentlation, comparison etc.) on them. Since TTL 
expressions must be executable, there is no alternative but 
to support exact real arithmetic in TTL. 

Although the design and implementation of the R u 
programming environment is the catalyst that prompted us 
to study exact real arithmetic, we beheve that a reasonably 
efficient ~mplementation of the representable reals is a 
potentmlly useful tool to help numerical analysts, scien- 
tists, and engmeers solve computational problems where 
they either need very high precision or want to bypass the 
myriad of programming details (e.g. scaling, order of 
evaluation, and error estimates) required in conventional 
numerical programming The representable reals provide a 
more abstract, mathematically elegant framework for per- 
forming computations where efficiency is not a primary 
concern In some cases (e.g. Gaussian elimination with 
iterative refinement) the precision advantages can be main- 
tained even if only a small fr~ction of the necessary calcu- 
lations are carried out using representable real numbers; 
floating point arithmetic may still be used for the 
remainder. 

Although any computation involving the represent- 
able reals ~ no matter how efficient the underlying imple- 
mentation - -  will almost certainly require more computa- 
tional resources than the corresponding computation usmg 
conventional floating pomt artthmetic, the plummeting cost 
of these resources suggests that exact arithmetic may 
become an attractive option in some scientific and 
engineermg applications. Moreover, since many of the 
atomic steps in exact arithmetic operations (e.g. operations 
on indiwdual dzgits) can be performed in parallel, p&allel 
architectures should further improve the situation. In the 
future, we anticipate that exact real arithmetic will be a 
standard feature in very high level programming languages 
intended for program prototyping and effective 
specification ~ just as floating point arithmetic is s stan- 
dard feature in general purpose high-level languages. 

IAn alternative is to write specifications based on backward 
error analu#ie IWil 05~. In this ease, program assertions relate the 
perturbed problem solved exnetly by the calculated answer to the 
original problem. This approgcb impc6~ the same computational 
requirements on the specification language as the approach 
(eorrczpondiag to forward error analysis) discussed above. 

2. F o r m a l  F o u n d a t i o n s  

Smce there are uncountably many real numbers but 
only countably many possible data representations, we 
obviously cannot represent every real number in a com- 
purer Fortunately, there is a countable subset of the real 
numbers, appropriately dubbed the conetrsctive real8 
IBis 67], recureive reale, or the repre6entable real6 that is 
closed under all the functions that normally arise in 
analysis. Moreover, all of the basic operations (+,  -, * , / }  
are computable on the representable reals - -  assuming that 
the numbers are expressed in a suitable representation 

The intuition underlying the definition of the 
representable reals is simple: for the representation of a 
real number z to have computational significance, there 
must be a procedure for computing finite approximations 
to z to arbitrary accuracy. More formally, a real number r 
is representable if and only if there exists a computable 
function / o n  the rational numbers with the following pro- 
perty, for any given rational tolerance 6, L~6) - rl <~ 6. 
Any such function / is called a functional repreeentation 
for z Two functional representations [ and g are 
equivalent, denoted [ ~- g iff they represent the same real 
number. 

A function F on the representable reals is computable 
iff there exists a corresponding computable functional F ;  
such that for any functional representation f of a real 
number z, F~/) is a representation for F(z). In particular, 
F' must yield equivalent results if applied to equivalent 
arguments. This definition applies whether or not the 
range of F also consists of the representable reals. Of 
course many functions on functional representations do not 
correspond to functions on the representable reals because 
they do not respect the equivalence relation -~. 

Although it may seem pedantic, the distinctmn 
between a representable real number and its representa- 
tions is important for two reasons First, as we mentioned 
earlier, the ¢omp~tabilit~ o/the baei¢ operatione hinge6 on 
the choice of repre6entation. Second, as we discuss in sec- 
tion 5, there are difficulties in limiting the available opera~ 
lions on representable reals to those that axe completely 
independent of representation. 

Although all of the basic arithmetic operations on 
representable real numbers are computable, the standard 
comparison operation <~ is not. It  is easy to prove this 
fact using a simple reduction argument that reduces the 
halting problem to whether or not a particular function 
represents s real number less than a given constant. In 
practice, we can partially avoid this problem by either 
tolerating a partial ~ operation that diverges if the two 
operands are equal, or equivalently ~ by defining a quasirela~ 
t,onal comparison operator ~ e  that is accurate to the 
specified rational tolerance ~. Given any rational number 
e, ~ e  has the following definition: 

~Some facility for execution interleavlng is necessary to 
define <c in terms of the partial <. 
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z <,~ = 

{ tru¢ if z ~ ~ - e  

fals¢ if z > ~ + e 
ei ther  trw¢ or false otherwise  

Such an operation is total, but  does not correspond 
to a computable function on the representable reals, 
because its behavior depends on the particular represents- 
tion for inputs that  lie within the specified tolerance e. 

3. A l t e r n a t e  R e p r e ~ n t a t i o n s  

Although it is clearly possible to construct an imple- 
mentation of the representable reals based purely on func- 
tional representations, this representation does not appear 
well-suited to general computations in which an itemtive or 
recurslve flow of control may repeatedly force the reevalua- 
tion of particular numbers to differing accuracies.' A pure 
functional implementation must recalculate the requested 
rational approximation from scratch every time it is 
invoked. 

Any implementation will clearly benefit from some 
facility for remembering the most precise previously calcu- 
lated approximation One posslbility is to simply extend 
the representation to include the most precise known 
approximation along with the function to compute arbi- 
trary approximations. Another more drastlc, and particu- 
laxly elegant, approach is to use a lazy infinite sequence of 
digits to represent a real number In this scheme, subse- 
quent requests for more accurate approximations simply 
extend the evaluated portion of the sequence. 

Although the lazy representation of the representable 
real numbers appears natural and elegant, it is surprisingly 
difficult to devise a satisfactory formulation The classical 
mathematical literature ([see Knu 69]) describes two funds- 
mentally different systems of notation for the real numbers 
that  can be implemented as lazy data structures: the posi- 
tional radix model and the continued fraction model In 
naive form, the positional radix model defines a represent- 
able real as an infinite lazy sequence consisting of a leading 
unbounded integer specifying the mgned whole (integral) 
part of the number followed by a sequence of bounded 
digits (/j~...) specifying the fractional part O.f lJ's " " " 
of the number. The continued fraction representation has 
a mmdar format: it m a potentially infinite lazy sequence 
consisting of a signed unbounded integer specifying the 
whole part of the number followed by a potentially infinite 
sequence of unbounded positive integers (dl,d~...) specify- 
ing the denominator tetras in the continued fraction 
representation 

8A related problem arises even with simple nested multipli- 
cations. In a practical implementation it is necessary to obtain 
upper bounds on the operaads in order to bound the necessary 
precision required to obtain the result. Depending on the details 
of the representation this may require I or more trial evaluations 
of the operand to low precision. 

1 
1 

d l 4  d 2 + . . .  

of the fractional part  of the number. The continued frac- 
tion is finite iff the represented number is rational. 

Unfortunately, there is a subtle flaw in both of these 
formulations. The evaluation mechanism underlying lazy 
sequences is monotonic in the sense used in domain theory 
[Sco 81]: Once a digit has been computed it never changes. 
(In the case of positional radix notation, this implies mono- 
tonicity with respect to the numeric ordering.) Although 
this property is what  makes lazy representations so attrac- 
tive from the standpoint of efficiency, it makes the stan- 
dard arithmetic operations uncomputable in some cases, as 
the following example demonstrates. 

Consider the following situation in the naive posi- 
tional radix model with radix I0. Let z and y denote the 
repeating decimal numbers .4444 ... sod .5555 . respec- 
tively. The sum z + y  has the value .9999 . . . .  1.0 but 
the addition operation cannot determine whether the umts 
digit in the fraction should be 0 or I - -  no matter how 
many digits of z and ~/ it inspects. The unknown contents 
of their infinite tails could force the units &git to be either 
a 0 or 1. If the sum of the unexplored tail of z plus the 
unexplored tail of y generates a carry then the units digit 
in the result must be I. On the other hand, if the sum of 
the unexplored tails m less than an infinite sequence of 9's, 
then the units digit must be 0. In cases like thin one, the 
addition operation must collect an infinite arnount of infor- 
mation before it can generate the first digit in the answer. 

The preceding example is not an isolated 
phenomenon. Exactly the same problem arises m many 
different contexts in both the radix expansion model and 
the continued fraction model It is easily shown formally, 
for example, by reduction from the halting problem, that 
neither addition, subtraction, multiplication, nor divmlon is 
computable using these naive representations 

In general, for any reasonable lazy sequence 
representation of a nontrivial subset of the reals and some 
representable number x, there must be a representation p 
for x such that  every prefix of 0 can be extended to a 
representation of each number in an open interval sur- 
rounding x. This is false for the decimal or continued frac- 
tion representation of 1. A more formal statement and 
proof is given in the appendix. 

The situation for the continued fraction scheme is, m 
some sense, even worse. The principal theoretical advan- 
tage of this representation scheme is its most significant 
computational liability. In regular continued fraction nots- 
tion, every real number has a unique representation; more- 
over, the unique representation of every rational number is 
a finite sequence. If we require that  we be able to detect 
finitenem of the representation, this immediately leads to a 
contradiction. The calculation of V~ * V~ must clearly 
generate an infinite sequence as its result. 

Fortunately, there is a simple generalization of the 
positional radix model that overcomes these problems We 
can allow the range of digits to be larger than the base, 
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making the notation highly redundant. I t  is most con- 
venient to use a variant of balanced radix notation 
[Knu 69], in which we simply allow digits to be negative as 
well as positive. Thus the decimal number 1.1 could also 
be represented as 2 (-9). 

Representational redundancy enables the evaluator 
to generate carnes (up to a bound determined by the 
degree of redundancy) for a digit that  has already been 
generated and store them in the generating digit position 
by using redundant digit values (Similar techniques have 
also been widely used to minimize carry propagation in 
arithmetic hardware ) 

4. A l g o r i t h m s  

We have developed reasonably efficient algorithms 
for computing all of the standard arithmetic and quasirela- 
tionai operations for a modified form of the functional 
representation. We have also developed corresponding 
algorithms using the balanced redundant positional radix 
notation The latter are described m detail below. They 
are basically the standard arithmetic algorithms taught in 
grammar school, adapted to produce digits in left to right 
order 

4.1. A d d i t i o n  a n d  Subtraction 

We first give the addition algorithm for the func- 
tional representation. In thin modified functional represen- 
tation, a real number z is represented by a program that  
maps each (usually negative) integer n into an integer rn 
such that  

( m - l )  b" < z < ( m + l )  b" 

where b is a given positive base ~ 1. Informally an integer 
n is mapped into a scaled approximation of z ,  accurate to 
4-b ~. The modified functional representation, which is 
derived from a representation proposed by Bishop IBis 67], 
is computationally more convenient than the original one 
presented in Section 3 

To add two real numbers z and y, represented by 
functions z t and yt , we must construct a representation 
z I such that  for all n 

( z ' ( n ) - 1 ) b "  < z + y  < ( z ' ( n ) - 1 ) b "  

To produce such a representation it suffices to return a 
function that  evaluates z and y to one more digit of precl- 
slon than that  required of the result, and then returns an 
appropriately scaled version of the sum. 

fn_rr_add 
lambda (x' , yJ ) 

lambda (n) (xl(n-l) 4- xl(n-l))/b 

where integer divmion is rounded. 

Here we have assumed b > 4. To argue informally, 
that  the result function correctly represents z + y, it 
suffices to observe that  the approximations of z and y 

1 
each contribute a t  most T to the error m the result pro- 

duced by the representatlon of z + y. The rounding 
involved m the division introduces another poeslble error of 

1 
at  most - ~  Thus the total possible error is less than 1 

We define a lazy representation as a pair [e , f ]  con- 
sisting of of an (immediately evaluated) unbounded integer 
exponent ¢, together with a lazy sequence f of digits in a 
redundant balanced radix representation scheme where the 
maximum digit value rnazdig is the additive inverse of the 
minimum digit value rnindig and the base b ~ greater 
than rnazdig but  less than 2mazdig The lazy sequence 
representing the mantissa is always a fraction, with an 
implied decimal point on the left. Thus [e, f ]  denotes 

OO 

b ~ E b-~/~ 
im! 

Although it is not difficult to devise algorithms for 
minimally redundant representations (where 
b -~- 2rnazdlg), these algorithms are less efficient because 
they require one more position of look-ahead in the inputs 
Some form of partial normalization is desirable m practice, 
but omitted here for the sake of simplicity. We use the 
lazy constructor (*.*) to form lazy lists. This constructor 
is identtcal to LISP cons except that  it ts lazy m its 
second argument. We use pattern-matching notation to 
denote the selectors corresponding to pairing [*,*J and the 
stream constructor (*- ' / .  Matching a pattern vartable 
against the tail of a lazy sequence does not force evaluation 
of the tail For example, 

let (x0.xtl) ~ f 

brads z 0  to the first element and binds ztl to the delayed 
tall of f ,  which is forced only when ztJ is evaluated (It is 
enlightening to convince oneself that  this is a necessary 
constraint ) 

The following addition routine lazy_add adds two 
unnormalized lazy real numbers and produces an unnor- 
realized result. The meat  of the algorithm is embedded m 
the routine ff_add_tv¢, which takes two lazy sequences 
denoting fractional mantissas as inputs and produces lazy 
sequence of digits consisting of the carry digit m the sum 
followed by the fractional par t  of the sum 

lazy_add ------- 
lambda ([xe,xf], [ye,yf]) 

if xe ~ ye then 
[xe 4- I, ff_add_wc(xf,yf)] 

else if xe ~ ye then 
[xe + I, ff_add_wc(xf,shift(yf,xe-ye)] 

else 
lYe + I, ff_add..wc(shift(xf,ye-xe),yf)] 

shift 
lambda (f,n); 

if n ---- 0 then 
f 

else 
(0 .  shift(f,n-1)) 
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( Add boo la:1 digit sequences representing } 
{ fractlons. The leadin¢ digit of the result } 
{ sequence ©orre~pon& to the generated carry. } 
if_add_we 
lumbda ((xO.xtl),(yO.ytl)): 

let sum =~ xO + yO 
I c a r ~ , ~ l  ffi 

if (sum >_ m~xdig) then 
I t, s u m -  b] 
{ Compensate for anticipated carry ) 

else if (sum < mindig) then 
l-l, sum + bl 

{ Compensate for anticipated borrow } 
e~ {0, sum] 

{ sum f carry * b + ,O } 
{ mindig < zO < mazdio ) 

in 
(carry. dr_add( zO, ff_add_wc(xtl, ytl))) 

{ Add a single digit to the first digit of a fraction, } 
( assuming no carry can be generated. } 
df_add ----- 

lambda (d,(fO.ftl)); 
((d + re). m)  

The algorithm works by summing two digits to pro- 
duce a carry and a remainder where the carry cannot be 
allotted by a subsequent carry from the next digit position 
into the remainder position. 

This algorithm directly genemlises to a polyadic 
addition tha t  accommodates up to (mazdig-mindig}-b 
operands. To accommodate more operands the algorithm 
must look more than one digit ahead in the inputs. 

Negation algorithms are trivial in either system of 
representation in the lazy scheme we simply complement 
each digit, In the functional scheme we produce a new 
function tha t  returns the negation of the value returned by 
the original function. For future reference, we give the 
algorithm for negating fractional mantissas represented as 
a lazy sequence of digits: 

ft..minus 
lambd~((xO.xtl)); 

(-xO. ff_minus(xtl)) 

4.2.  M u l t i p l i ~ t i o n  

Multiplication is a little more complicated than addi- 
tion, but still manageable. A ~a led  functional implemen- 
tation of multiplication is similar to the implementation of 
addition, with the added complication of precomputing an 
a priori bound on the arguments in order to determine the 
precision needed for the arguments. Bishop simply uses 
the integer par t  plus 1. Our implementation uses a more 
prec~e algorithm, which is not presented here. It  is worth 
noting tha t  m either case the arguments must be evaluated 
more than once, usually with differing precisions. (In some 
other representations, such our lazy sequence representa~ 
#ion, the exponent can be used to give a pessimistic 
bound.) 

The following lazy multiplication algorithm assumes 
mindi¢ ~ - b + l  and mazdig ~ b - l .  This serves to 
simplify the present,#ion 

iazy_mult 
l~mbda([xe,xq, [ye,ylD; lxe+ye, II_mult(xf,yf)] 

if_muir ----- 
lambda ((xO.xtl), (yO.ytl)); 
I Decompose the product into four partial products. ) 
,0 and ,1 repreoent the product of the boo ) 

{ leading digits. } 
let z0 - -  x0*y0 div b 

zl  ~- x0*y0 reln b 
in 

if_add( (z0.  (zl . f l ,  mult(xti,ytl)), 
K_add..wc(df_mult(xO,ytl), df.snult(yO,xtl) ) ) 

{ Multipty a *inole d/0/t, voith on implied decimal } 
{ point on the left, by a fraction, obtaininf } 
{ another fraction. ) 
df_mult --~ 
lambda(d,(f0.(ll.ltl))); 

let z2 ----- d*fl  rein b 
zOl ---- d , f0  + d*il  div b 
zl ----- z01 rein b 
gO ----- z01 div b 

{ ( fO ,b+f i ) , d  = ,O,b' + ,i,b + z~ ) 
{ Carr~ from remainder of czpaneion ma~ ) 
( aUect ,I by ±I. } 
(Absval(:Oi) is bounded by (b-1)b. ) 
{ Thus either absval(,O} < b-I or } 
{ abs~al(~O < b-1 } 

{adj_z0, adj_zt] ---- if zl  ---- b- I  then 
[~0+1, zl-b] 

else if zl  ~ -(b-l)  then 
[gO-l, zl+b]  

else 
[zo, zll 

in 
(adj_zo. df_add(adL--~, 

df_~d_wc(,-2, df_mult(d,m)) ) ) 

{ The routine t~..add aoain 6uume8 no carry ) 
{ can be generated } 
if_add =ffi 

lambda((x0.xtl),(y0.yti)); 
df_add(xO + yO, ff_add_wc(xtl,yti)) 
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df_add_wc 
lambda(d, (f0.ftl)) 

let sum ---- d + f0 
[carry, z0] ~--- If (sum > b-l)  then 

{1, sum-b] 
else if (sum < - b + l )  then 

[-1, sum-t-b] 
else 

0 
in 

(carry. (zo ftl)) 

4 . 3 .  Divis ion  

There axe a number of alternatives for division, both 
for the functional and lazy approaches. In the functional 
approach, it m p ~ l b l e  to proceed as before, and effectively 
perform a division on large integers Since this is relatively 
expensive on conventional architecture,  a competitive 
alternative is to approximate the inverse iteratively using 
Newton's method, until the desired precision is reached 
Thin is paxtmularly attractive if a previous approximation 
ts avadable as a starting point. 

The same alternatives exist for the lazy sequence 
approach. Here we present the central algorithm revolved 
in the direct (not Newton's method) approach As dis- 
cussed below, this is not the most efficient algorithm 

The algorithm below takes two mantissas as argu- 
ments, and produces the mantissa of the quotient. We res- 
trict our attention to the case b >_ 16, and continue to 
assume mazdig ~ - m i n d i g - m - b - 1 .  We also assume 
that  the dividend and the divisor have been scaled so that  
the dividend ts smaller than the divisor, and the lea~img 

6 
digit of the divisor m at least ~-. (This may require multi- 

plying both dividend and divisor by a, single dtgit, as sug- 
gested m [Knu 69]. The normalization of the divisor may 
diverge d it is 0, but then division must inherently diverge 
m this case.) 

{ Return ( x -  (digit/b) * y)*b. } 
{ It is knovon that abs(result) < 1 } 
remainder 
lambda(z, y, digit) 

let 

in 
(tO. rtl) ~ if_add(z, if_minus(d/_m¢lt(d,y))) 

if rO = 0 then 
rtl 

else if rO ---- 1 then 
dr_add(b, rtl) 

else {tO ---- -1} 
df_add(-b, rtl) 

{ Return a fraction corresponding to x/y, } 
( The oeer6nds x and y ) 
{ are scaled as described above. } 
ff_div ~- 

lambda(x, y); 
let 

(xo.(xl.xtl)) ; x, 
(y0.(yl.ytl)) ~ y; 
x01 ----- xO*b 2 + xl*b; 
yO1 ~ yO*b + yl ;  
qO ~ round(xOl/yOl) 

In 
(q .  ff_div(remainder(x, y, q), y)) 

nl 

The heart of the correctness proof is to show that 
the recursive call to f f _ d i v  satisfies the normalization 
assumptions on the arguments, and m particular to show 
that  

remainder ( z , y ,q )  < y 

This can be expanded as follows 

< lyl 

I b~-(ylround(~'6T) < I~,1 

,~ x O l ,  
We need to argue that rouna(.-27-~. ) approximates 

bz 
with sufficient accuracy . 

Y 
The quantity y01 approximates b~ll with an abso- 

error of at  most I, and thus, since y ~ ~-~-, by a lute 

relative error of at  most b -2. Thus ~ approximates 

I with a relative error of less than 3b -~ Since 

b, the absolute error introduced by spproximab 
p01 3 3 

mg p by its two leading digits Is at  most -~- and thus 1"-6" 

Smce z01 approximates bsz to within b, this approxlma~ 
tion introduces an absolute error into the quotient approxl- 

1 1 1 16 1 
mat,on of at most ( T X - r . ~ - )  or (T) ( -~ - - )  or at most T' 

Rounding introduces an absolute error of at most 
2 

Thus 

b -,'o,,n,qT6 T) < + T + < 1 

z01 ] b~'-(Y)"ou"d(T6 T) < lYl 
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4 . 4 .  Discussion 

In comparing the algorithms for the functional and 
sequence approaches, it becomes apparent that each has 
weaknesses. As was pointed out above, the functional 
approach, at least in its simple form, is prone to excessive 
reevaluation of expre~ions. 

The lazy sequence approach discussed above suffers 
from a less obvious, but in practice more crucial, perfor- 
mance problem. We would like to take advantage of 
machine arithmetic for the operations on digits In order 
to minimize the number of machine arithmetic instructions 
revolved, each digit should be approxtmately the size of a 
machine word. But consider an expression such as 

• , + + + ( " "  + 

Assume we are only interested in the integral part of the 
result. The repeated application of the binary addition 
algorithm will result in the evaluation of zi to i digits 
beyond the decimal point. Thus z= will be evaluated to n 
fractional digits, and thus typically 16n or 32n fractional 
bits, when It is clear that at most n (and really only ]ogn) 
fractional bits are necessary. 

This problem is particularly severe for the division 
algorithm presented above The calculation of the n th 
digit of the quotient effectively requires the n + l  't digit of 
a remamder produced by an expression of the form 

d iv idend  - q lb - l  divi6or . . . . .  q~_ib-a+I divi~or 

Since the result of the above expression is required to n 
digits, and the dividend is nested inside n-1  subtractions, 
by the above argument, it will be evaluated to 2n &gits. 
Thus the evaluation of the expression 

z /3 /3 /3 /3 /  . . . /3 (m divisions) 

to a single digit will force the evaluation of z to 2 m digits. 
Similar problems occur with the divisor They can of 
course be at least partially solved by more clever and less 
elegant coding. For example, the divmion algorithm could 
take an unevaluated sum (and a shift count) as its first 
argument, so that the remainder expression abovecould be 
evaluated right to left 

The basic problem with lazy representations is that 
of the granularity they require in precision specifications. 
Each approximation must be accurate to an integral 
number of dsgits. When arithmetic operations are per- 
formed, they must discard information about the inputs, 
because they cannot present the most accurate answer. 
After an addition operation has computed the arguments 
to :t:b -# it can only produce an answer with a known accu- 
racy of d:b l-k m spite of the fact that enough information 
Is available to generate the answer to a tolerance of 2b h . 

In the functional scheme we can avoid the problem 
by making the precision argument as precise as possible, 
subject to the practical constraint that calculations on pre- 
cision arguments should remain mexpensive In our version 
we axe still limited to a tolerance that is a power of the 
base But there ts no efficiency penalty for using a small 
base 

5 .  Representable  Reals as an A b s t r a c t  D a t a  T y p e T  

It is tempting to provide the user of representable 
reals with a small collection of functions, such as the arith- 
metic operations, and to let him/her use these to construct 
other computable functions that might be needed Ideally 
this would be done in such a way that the representation is 
completely hidden. 

We already encountered one problem with this 
approach - -  a total comparison operation must inherently 
be approximate, and furthermore its exact behavior must 
depend on the representation. In fact, it is a corollary of 
Rice's Theorem from computability theory that any com- 
putable, total, boolean valued function on the represent- 
able reals must be constant. 

We take a program to be sequential if it diverges 
whenever it attempts a divergent subcomputation. Now 
consider a sequential program P that computes a function 
from representable real numbers to representable real 
numbers Assume that P is only allowed to apply total 
computable (and thus non-representation-revealing) first- 
order 4 functions from a finite set F to representable real 
arguments None of the if- or while- conditions in P may 
depend on the input to P .  Thus P ' s  control flow can't 
depend on its input. Thus P must either diverge, or be 
equivalent to a fixed composition of the functions in F 

An easy diagonal argument shows that for each such 
set F of total functions, there is a computable total func- 
tion on representable reals that is not computed by any 
program P of the above form. 

The preceding argument can be strengthened to 
allow partial functions in F by observing that if a boolean 
expression in P depends on P ' s  input, then the value of 
that boolean expression cannot be a total function of the 
input parameter Thus, if P is purely sequential, it cannot 
compute a total function. In particular, it can still not 
compute the diagonal function from the preceding argo- 
sent.  

It thus appears difficult to model the representable 
reals as an abstract data type without representation- 
dependent functions. 

6 .  Pract ical  Experience 

Our first implementation m based on the modified 
functional approach using scaled approximations and is 
written in Russell [Boe 85a,85b] [Dem 85]. A number x is 
represented primarily as a function mapping an unbounded 
integer n to an unbounded integer m such that 

The implementation keeps track of the best known approx- 
imation to a number in addition to the function, so that 
reevaluation can be minimized. Muitiplicative inverses are 
computed directly for small precisions, with Newton's 
method used to refine results to higher precisions. In the 

4parameters and results to functions in F should be 
representable real numbers or integers, Boolean values etc. We 
disallow functions u parameters or results. 
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latter case, the best previous approximation is used as the 
starting point. A square root function is implemented 
using a similar approach. The exponential function and 
natural logarithm are unplemented using Taylor series 
approxlmatlons, with some initial scahng to hasten conver- 
gence Several desk calculator style interfaces have been 
budt for this implementation. 

In addition, we have several partial implementations 
based on the lazy sequence of diglts view Below we dis- 
cuss two of these. They are both d~rect translations of the 
above algorithms, one into Scheme, and one into Russell. 
The Russell implementation includes the four basic arlth- 
metic operations. The Scheme version currently lacks divi- 
sion 

These efforts have so far been less successful. Table 
1 presents a timing comparison for multiplication based on 
the following benchmark program" 

{ In the following, x and third are constructive reals, ) 
{ i is an integer. ) 
x :----- 1; 
third :~-~ 1/3; 

{ For lazy sequence versions, third is directly ) 
{ bound to a list of Be. ) 
{ In the functional case, the division is } 
{ performed once. } 

for l :----- l to 5 do 
x :---- x * third; 

{ Constructive real multiplication ) 
fori.~--- l t o 5 d o  

X "~---X * 3; 
{ Constructive real multiplication } 

print x; 

The lazy sequence implementations used base 10 with a -9 
to 9 digit range. The choice of base 10 is clearly not 
optimal. We adjusted for thin by only requiring 10 digtts 
to be printed for the sequence based implementations, but 
requiring either 50 or 100 decimal digits to be printed by 
the functional version. (The timings for the functional ver- 
sion include base conversion overhead, the sequence t,m- 
ings do not.) 

All timing results refer to a VAX 11/750 running 
UNIX s. All measurements were made repeatedly, alternat- 
ing between different implementations No sigmficant vari- 
ations were observed Mean measurements are reported 
here. 

The Scheme version was compiled using Kent 
Dybvig's Chez Scheme compiler (version 1 1), the fastest 
implementation available to us For the Scheme version, 
program load time was subtracted from the total execution 
time The measurements are probably somewhat biased 
against Scheme for several reasons. First, Russell is stati- 
cally typed, thus making the code generator's lob easier 
Second, lazy lists are a built-in data type in Russell. Thus 
their implementation was carefully hand-coded. Third, one 
of the authors is very familiar with the internals of the 

r'Trademarks of Digital Equipment Corporation and AT&T 
Bell Laboratories, respectively. 

Russell compiler, and was thus probably more successful at 
tumng the constructive reals implementation for Russell 
than for Scheme. 

The times reported are user-mode cpu seconds 
(System-mode times were comparable for the lazy sequence 
implementations, but with high random variations They 
were also much less for the functional vermon ) The 
Scheme version used a mazimum of about 600 Kbytes real 
memory, the Russell sequence version used about 1 2 
Mbytes, and the functional implementation used about 180 
Kbytes e. All implementations based on Russell preallocate 
1 Megabyte of virtual memory, whtch is then expanded as 
necessary 

The last 2 lines of table 1 refer to versions that print 
the result to the indicated precision after each multiplica- 
tion This forces incremental evaluation to increasing pre- 
cision, and should thus demonstrate the advantage of the 
lazy sequence approach. This kind of incremental evalua- 
tion would presumably not add significantly to the times 
for lazy sequences. 

The last line refers to execution times for the pack- 
age with a desk calculator interface. Multiphcations by 
one third were replaced by divimons by 3 (which are con- 
mderably more expensive). The arithmetic operations were 
typed in from the keyboard. Each loop was (manually) 
executed 10 rather than 5 times 

These results have lead us to the following conclu- 
sions regarding the functional implementatton: 

1 Execution speed is acceptable for this apphcatton 
and, by extrapolation, for some of the applications 
mentioned in the introduction 

2 There appears to be much more overhead revolved 
m bookkeeping than in performing the necessary 
operations on huge integers During the multtplica- 
tion and &vision experiment described in the last 
hne of figure 1, the processor only spent about 18 
percent of its time performing large integer multlpli- 
cattons and divisions. In this case, scahng high pre- 
cision results to lower precmon values is also fairly 
significant, about 9 percent of the time was spent 
performing more than 1900 shift operattons on 
integers. As expected, this does change for 
extremely high precision calculations A calculation 
of exp(1) to 1000 digits (which takes about 160 cpu 

Lazy sequences (Scheme) 66 4 
Lazy sequences (Russell) 30 3 
Functional (Russell, 50 decimal dtglts) 1 2 
Functional (Russell, 100 decimal digits) 1 5 
Functional (Russell, 50 digs., w/printing) 2 2 
Functlonal calc., 20 Iter, 70 digs about 20 

Table  I 

eThese figures were measured by the Berkeley UNIX (C 
Shell) time and ps commands. 
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seconds) spends 80 percent of its time multiplying 
integers. 

3. In a number of cases, more complicated analysis of 
the necessary operations could have led to significant 
performance improvement. For example, a long 
sequence of additions results in a demand for 
unnecessary precision on the first argument. An 
explicit, and much less elegant, representation of real 
numbers as expression trees could eliminate this 
problem with a preliminary tree balancing phase. 

As is apparent from figure 1, the lazy sequence 
implementations currently show less promise. This is not 
as surprising as it seems at first In our benchmark, the 
first multiplication is eventually carried out to 20 more 
digits than the final one. The total number of procedure 
calls (exci. garbage collector and run-time system) exceeds 
90,000. Virtually all of these return closures, and thus 
require heap allocated activation records. 

Our experiences in building the lazy sequence based 
implementations can be summarized as follows. 

1 This approach to implementing the constructive 
reals appears not to be competit,ve given existing 
programming language implementations on conven- 
tional hardware. 

2. Many existing compilers were not designed to sup- 
port higher order data and lazy evaluation 
efficiently. In spite of this, it appea~ unlikely that 
an improvement in compiler technology alone would 
drastically alter our comparison. The Russell based 
,mplement~tion executes approximately one user 
level procedure call every 330/~sees. Each call typi- 
cally requires the heap allocation of a closure. 
(Currently the majority of calls allocate at least an 
act,ration record, a cons node, and a closure ) It is 
very unlikely that any compiler would be able to 
reduce the average execution time of such a pro- 
cedure to 60/Jseos on the given machine. (One invo- 
cation of a C language recursive Fibonacci function 
requires about 35 /~ecs.) It  also appears extremely 
difficult to reduce the total number of procedure 
calls by more than a factor of 2 through procedure 
int~gsatlon. Thus a factor of 10 improvement in 
execution time through better compilation tech- 
niques seems remotely po~ible, but unlikely. Yet 
even this would not result in a competitive imple- 
mentation. 

3. It  is relatively easy to convince oneself of the partial 
co r rec tn~  of a program based on lazy lists. The 
only subtlety is introduced by the fact that free 
assignable variables appearing in lazily evaluated 
exprssslons refer to their value at trine of (delayed) 
evaluation. Thus lazy evaluation in imperative 
languages cannot simply be viewed as delaying 
evaluation to save time. 

On the other hand, even in purely applicative 
languages, termination is a very subtle issue. (For 
example, ff_add_w¢ diverges If dr_add forces 
evaluation of / t /  to a cons cell with a closure 

representing the tail.) Resource requirements are 
even more subtle. We know of no good technique 
for reasoning about space requirements of the lazy 
algorithms 

As mentioned above, we found support for lazy data 
structures to be marginal in some implementations which 
claimed to support them. Code optimization appears even 
more critical in this context than in massive flo~ting point 
programs. The following two problems appear common in 
existing compilers: 

1 If programming with higher order objects is to be 
encouraged, closures must be kept small. A lazy list 
should not take up significantly more space than the 
prefix that has been evaluated. At least one conven- 
tional LISP implementation T fails b~lly in this 
respect, most probably by failing to collect certmn 
activation records. This also argues for copying par- 
tial environments into closures as in [Card 84], 
rather than building closures that point to activation 
records The latter approach does not make it clear 
to the garbage collector that a given closure relies 
only on a small number of bindings, and not the 
complete environment at the point at which it was 
formed. This can make irrelevant data appear acces- 
sible and thus uncollectible 

2. It  ~ important to keep hardware arithmetic func- 
tions efficiently accessible. This is frequently not the 
case due to tag bits used by the run-time system to 
facilitate garbage collection and perhaps dynamic 
type checking. 

7. Re la ted  W o r k  

The only alternative to limited precision arithmetic 
that has received much attention from computer research- 
ers Is exact arithmetic on rational numbers. Every rational 
number can obviously be represented by two unbounded 
integers (e.g., a hat consisting of two LISP bignun,-~). The 
principal advantage of rational arithmetic is that it is pos- 
sible to implement the fundamental arithmetic operations 
{+, -, *, / )  exactly, avoiding round-off errors. Unfor- 
tunately, rational arithmetic has two serious disadvantages 
that make it unsuitable for many of the potential applica- 
tions of exact real arithmetic First, it does not accommo- 
date computations involving the use of functions that map 
rational inputs into irrational results (such as exponential 
and trigonometric operations). Second, rational ar, thmetic 
is unsuitable for long calculations because it typically pro- 
duces rational numbers with huge numerators and denomi- 
nators. The advantage of representable real arithmetic is 
that the actual amount of computation is driven by the 
required precision of the result, whereas rational arithmetic 
always computes full precision results, whether or not they 
are needed. 

The theory of constructive real numbers has been 
explored by a number of mathematicians IBis 67] [Bri 79] 
[Myh 72] Their emphasis has been on formal foundations 

7Not Chez Scheme. 
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rather than efficient computation. Some of the msues 
involved have also been explored by recursion theorists (cf 
[Rog 67]) 

A few unpublished papers [PJ 84] [Cart 82b] contain 
fragmentary discussions of proposed lazy representation of 
the representable reals using the naive implementations 
d~scussed in Section 4 The most interesting account is an 
unpublished MIT technical note e in which Bill Gosper pro- 
poses a lazy evaluation scheme before any of the seminal 
papers on the subject were published. Gosper recognizes 
that hzs algorithms do not work for all inputs and suggests 
implementing s hybrid system that uses approximate arith- 
metic as a last resort 

The computability issues arming with the sequence of 
digits view were explored by [Myh 72]. The basic problems 
involved in this view were apparently well know to recur- 
slon theorists before then (cf [ROg 67], [Wie 80]). Myhdi 
also discusses (and dismisses) another approach based on 
"located" real numbers 

The use of redundant notation to limit carry propa- 
gation is well known among hardware designers In a 
slightly disguised from, it forms the basis of fast hardware 
multlphcatlon algorithms Its uses in variable precision 
arithmetic were explored by [Avi 61], [Avi 64I, [Atk 75], 
[Owe 79] 

The use of redundant notation in the context of con- 
structlve real arithmetic was suggested in [Wie 80], in an 
unpublished paper by Carl Pixley °, and in [O~o 85]. It  
was independently rediscovered (once more) by the other 
authors of this paper. [O~)o 85] gives an equational ver- 
sion of the addition algorithm. 

8. F u t u r e  W o r k  

Although we feel that we have an adequate imple- 
mentation of representable real numbers, there is clearly s 
lot of potential for improvement m performance. Some of 
the possible sources of improvement are trivial, for example 
the use of hardware flc~tmg point when its precision is 
adequate, the use of faster integer multiplication algo- 
rithms for huge integer calculations, etc. 

There are at least two possible ways to obtain more 
substantial performance improvements First, the algo- 
rithms used in our implementations could probably benefit 
from further tuning. Secondly, as mentioned above, there 
appears to be room for improvement in the implementation 
of the underlying programming languages, particularly in 
the treatment of closures and machine arithmetic. 

It  is an open question whether there is any way to 
build s competitive implementation based on lazy 
sequences. In an attempt to eliminate the granularity of 
precision problem discussed in section 4.4 we are exploring 
vartations on the lazy formulation of the real numbers. 
These variations technically violate the monotomcity 

SGosper, Bill, "Continued Fraction Arithmetic", HAKMEM 
Item IO1B, It, f i T  AI  Memo 239, Feb 1972 (?). 

~'Demand Driven Arithmetic", around 1984. 

condition that prohibits a digit from changing once it has 
been computed. In particular, the last digit in an approxi- 
mation may change, as long as the preceding digits remain 
fixed. We call this property weak monotonicity Instead of 
forcing the precision of an approximation to be an integral 
number of digits, the precision of the last digit is exphcltly 
stored, along with the closure needed to generate more 
accurate approximations. As long as the sum of the abso- 
lute value of the last digit and the tolerance Is less than 
the base b, more accurate approximations can be obtained 
simply by changing the last digit and appending additional 
digits (including another tolerance for the last digit). This 
makes it possible to avoid discarding information in arith- 
metic operations. Unfortunately, the cost is added com- 
plexity in the the algorithms for arithmetic operations. 

It is also conceivable that the lazy sequence algo- 
rithms given here might become practical with some sub- 
stantial support from the underlying hardware (e.g in 
somehow allowing small digit sizes without penalty). 

We are only starting to explore the applications of 
representable real arithmetic For testing purposes, it 
would be useful to run standard numerical programs using 
exact arithmetic to produce exact results. It is clear that 
this m not always possible without additional information 
from the programmer, particularly for iterative algorithms. 
On the other hand, it seems pc~ible in at least some cases 
The real question is how much difficulty is introduced by 
the lack of s traditional comparison operator. 

Such s facility for executing numerical programs 
exactly might also gwe other useful information to the pro- 
grammer. It would be easy to keep track of the number of 
digits needed st each point m the computation to derive 
the result with the desired accuracy. This should make it 
easier to determine how much floating point precision is 
needed st  various points in the program. 
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Appendix  

The purpose of this section is to show that any "rea- 
sonable" implementation of exact real arithmetic that is 
based on lazy sequences must have what we will refer to as 
the "interior containment" property. Roughly stated, this 
means that each number z must have a representation 
such that any prefix determines an interval containing x, 
such that z is not one of the endpoints. Neither the stan- 
dard decunal representation nor any obvious variant of the 
continued fraction representation share this property. 

This theorem is trivial tf we insist that there be a 
computable mapping from the "standard" functional 
representation to this lazy sequence representation. In the 
following we show that it is necessary even d we only insist 
that addition and subtraction be computable. In particu- 
lar, we do not even reqmre that the collection of numbers 
representable in this scheme is the same as our standard 
notion of the "representable reals". 

A iazsl representation of the real numbers a~igns to 
some subset of the real numbers infinite computable 
sequences {a,-} where al E D. D may be mfinite. 

A lazy representation is said to be an interval 
representation if it satisfies the following constraints. 

(1) All rational numbers are representable by some 
sequence. 

(2) There is a computable function .M that maps any 
I 

finite sequence {ai}i_ 1 into (the endpoints of) a 

rational (open or closed) interval ~ such that the 
rational numbers contained in the interval are 
exactly those that can be obtamed by extendmg 

(3) Every sequence represents a number. That is, for 
every sequence { a t } there is a number z, such that 
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(4) 

o o  I 

n U({a , }  ) - -  
s I i==l 

For some representable number z,  there is a 
OO 

representation, z = M({pi}i_t  ) such that every 

finite prefix is mapped to an interval of nonzero 
length. That  is, for every n,  there ts some sequence 

m I wi 

{~b,}l such that  z ~ M ( { p i } ; _ l  II where 

" II " denotes sequence concatenation We say this 
~s densel~ represented 

Thin asserts that  for some representation, the tail of 
the sequence is important. 

A point, z is in the interior of an interval, ~,  iff 
there exists a rational e such that an e-neighborhood of z 
m contained m @. 

Definition: An interval representation has the pro- 
perty interior containment iff for any real number z that 
has a representation, there is a representation, p, such that 

is in the interior of the interval defined by every prefix 
of p 

Note that  this requirement will exclude the standard 
decimal and continued fraction representations 

Definition: If an interval representation supports 
total computable addition and subtraction operators, it is a 
computable interval representation; or abbreviated as CIR. 

Note that  for an operation to be considered comput- 
able, it must be possible to produce an arbitrarily long 
prefix of the result representation from finite prefixes of the 
operand representations. 

Theorem: Any CIR has the interior containment 
property 

Proof: Assume we have an interval representation 
coding that does not have the interior containment pro- 
perty Then there is a representable number z such that 

OO 

for all r ep re sen t a t i ons ,  { P i } i - I  ~ X, there ts an n such 

that M ( { p i } , _ l  ) does not have x in its interior. We will 

reduce a recursively msspaxable set problem to the 
existence of computable addition and subtraction opera, 
tors on this representation. First several lemmas are neces- 
saxy. 

Lemma : The two sets 

St -~ ( z , y ) [~ . ( z )  hal ts  before ~ ( y )  

= I hal ts  before ~b,(z) 

axe recurslvely msepaxable. Here ~ , ( z )  denotes the 
computation of the z ~ Turmg machine on input z. 
Proof : Well known, e.ll. by reduction from [Rog 67] 
p.  9 4  

Lamina I: Any CIR must have the number 0 densely 

represented. 
Proof." Let z be densely represented. Consider the 
representation for z - z.  

Lamina ~: Any CIR must have a representation, 
0 0  

{p~ }. , for the number 0 that  has 0 in the interior of 
, m |  

m 

M ( { p l } , _ , )  for all n. 

Proof: Assume we axe gtven a pair ( z , y )  Let X be 0 if 
~bs(z ) does not halt, and denote some e > 0 where 

n i t  

E M({p ,}¢_I  ) and 0 ~ M ( { p l } i _ l  ) if ~bs(z ) halts 

in n steps. Let Y be similaxly defined for y. Clearly 
such X and Y are expressible in any CIR since 0 is 
densely represented. Now consider the representation 
for X - Y, it is zero if ~b,(z) and ~b,(y) do not halt, 
some ~ > 0 d ~#(z)  halts before ~ , ( I / )  or some ~ < 0 
d ~u(~) halts before ~b#(z). If zero does not have a 
representation with the interior containment property, 
then some finite prefix of the representation of X -  Y 
must either exclude all positive numbers or all nega- 
tive numbers. 

Let S be the set of all ( z , y )  pairs such that pomtlve 
numbers are excluded from X -  Y. Since this can b e  

detected, ,5' is recursive. Since ,5' separates St  from 
S 2 this is a contradiction. 

By the lemma, a representation for 0 must exist ruth rote- 
nor containment for 0. So consider z + 0, where 0 is 
represented as in lemma 2 

Corollary: In a CIR, no number may have a decidable 
equality relation between all its representations. 
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