
Exact Real Arithmetic: A Case Study in Higher Order Programming

Hans-J. 8oehm
Robert Cartu~right

Mark Riefle
Michael J. O'Donnell

Rice University University of Chicago

A b s t r a c t

Two methods for implementing ezact real arithmetic
are explored One method is based on formulating real
numbers as functions that map rational tolerances to
rational approximations. This approach, which was
developed by constructive mathematicians as a concrete
formalization of the real numbers, has lead to a surpris-
ingly successful implementation. The second method for-
mulates real numbers as potentially infinite sequences of
digits, evaluated on demand. This approach has frequently
been advocated by proponents of lazy functional languages
in the computer science community Ironically, it leads to
much less satisfactory implementations. We discuss the
theoretical problems involved m both methods, give algo-
rtthms for the basic arithmetic operations, and give an
empirical comparison of the two techniques. We conclude
wtth some general observations about the lazy evaluation
paradigm and its implementation.

1. In t roduc t ion

Although many theoretical computer scientists are
familiar with the notion of the representable or construe-
tire real numbers, there has been s~prtsingly httle
research on the subject of performing exact real arithmetic
on computers. Engineers and scientmts have traditionally
solved computational problems involving real numbers by
using a subset of the rational numbers to approximate real
numbers and limited-precision arithmetic to approximate
true arithmetic. Since physical measurements have only
finite accuracy, calculated values that depend on measured
data are inherently inexact. Consequently, limited-
precimon arithmetic has a strong physical justification
assuming that the round-off errors introduced by limited-

This research wu partially supported by NSF grant number
DCR84-03530.

Permission m copy without fee all or part of this material is grantm
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appeal and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

precision arithmetic are comparable in size to the errors
introduced by the inaccuracy of the original data. During
the last thirty years, numerical analysts have devised a
wide variety of clever methods for computing important
functions that are relatively insensitive to "round-off"
error. Given the success of this enterprise, it is not surpris-
ing that existing programming languages completely ,gnore
the possibility of performing exact real arithmetic

In this paper, we explore the feasibility of performing
exact real arithmetic on a computer with an emphasis on
implementations that employ lazy evaluation. As we
explain in more detail in Section 3, lazy evaluation has
been suggested as an important optimization in the imple-
mentation of higher order data like the real numbers
because it adroitly avoids recalculating digits that were
already calculated at an earlier point in a computation.
The lazy implementation of the representable reals
deeper and more interesting subject than might be
expected. In particular, the computability of basic arith-
metic operations such as addition critically depends on the
choice of data representation.

The obvious representations based on positional
radix notation and continued fractions are formally inade-
quate. Fortunately there are some more sophisticated
representations with all the necessary mathematical proper-
ties, but even these more sophmticated representations are
plagued by performance problems in practice.

We contrast this approach with one based on the
constructive mathematicians' definition of real numbers (cf
IBis 67]), which we argue does lead to a reasonably efficient
implementation of exact real arithmetic

1.1. Mot iva t ion

In the lg n project at Rice University, we became
interested in the subject of exact real arithmetic because
we had an immediate practical need for it. As part of the
IR n Fortran programming environment, we are building a
program validation system that tests programs against exe-
cutable formal specifications. The program validation sys-
tem is a pragmatic alternative to a formal program
verification system. Instead of trying to prove that a pro-
gram satisfies its formal specifications, the program valida-
tion system evaluates the program and its specifications on
a representative collection of test data [Cart81J In
essence, the validation system tests the the verification

© 1986 ACM 0-8979!-200-4/86/0800-0162 75¢ 162

condition8 for the program rather than proving them. We
call this proce~ formal program testing.

We are mterested in formally specifying numerical
programs in s very high level executable specification
language called TTL (Tentatively Typed LISP) that
roughly resembles a lexically scoped dialect of LISP (e.g.
SCtIEME) augmented by s comprehensive constructive
data type definition facility [Cart 80,82a,83] that accommo-
dates lazy data constructors. Since the natural way to
specify the behavior of a numerical algorithm is to relate
the calculated answer to the true answer s, to serve as a
specification language for numerical software, TTL must
accommodate the real numbers and standard arithmetic
operations (addition, subtraction, multiplication, division,
exponentlation, comparison etc.) on them. Since TTL
expressions must be executable, there is no alternative but
to support exact real arithmetic in TTL.

Although the design and implementation of the R u
programming environment is the catalyst that prompted us
to study exact real arithmetic, we beheve that a reasonably
efficient ~mplementation of the representable reals is a
potentmlly useful tool to help numerical analysts, scien-
tists, and engmeers solve computational problems where
they either need very high precision or want to bypass the
myriad of programming details (e.g. scaling, order of
evaluation, and error estimates) required in conventional
numerical programming The representable reals provide a
more abstract, mathematically elegant framework for per-
forming computations where efficiency is not a primary
concern In some cases (e.g. Gaussian elimination with
iterative refinement) the precision advantages can be main-
tained even if only a small fr~ction of the necessary calcu-
lations are carried out using representable real numbers;
floating point arithmetic may still be used for the
remainder.

Although any computation involving the represent-
able reals ~ no matter how efficient the underlying imple-
mentation - - will almost certainly require more computa-
tional resources than the corresponding computation usmg
conventional floating pomt artthmetic, the plummeting cost
of these resources suggests that exact arithmetic may
become an attractive option in some scientific and
engineermg applications. Moreover, since many of the
atomic steps in exact arithmetic operations (e.g. operations
on indiwdual dzgits) can be performed in parallel, p&allel
architectures should further improve the situation. In the
future, we anticipate that exact real arithmetic will be a
standard feature in very high level programming languages
intended for program prototyping and effective
specification ~ just as floating point arithmetic is s stan-
dard feature in general purpose high-level languages.

IAn alternative is to write specifications based on backward
error analu#ie IWil 05~. In this ease, program assertions relate the
perturbed problem solved exnetly by the calculated answer to the
original problem. This approgcb impc6~ the same computational
requirements on the specification language as the approach
(eorrczpondiag to forward error analysis) discussed above.

2. F o r m a l F o u n d a t i o n s

Smce there are uncountably many real numbers but
only countably many possible data representations, we
obviously cannot represent every real number in a com-
purer Fortunately, there is a countable subset of the real
numbers, appropriately dubbed the conetrsctive real8
IBis 67], recureive reale, or the repre6entable real6 that is
closed under all the functions that normally arise in
analysis. Moreover, all of the basic operations (+, -, * , / }
are computable on the representable reals - - assuming that
the numbers are expressed in a suitable representation

The intuition underlying the definition of the
representable reals is simple: for the representation of a
real number z to have computational significance, there
must be a procedure for computing finite approximations
to z to arbitrary accuracy. More formally, a real number r
is representable if and only if there exists a computable
function / o n the rational numbers with the following pro-
perty, for any given rational tolerance 6, L~6) - rl <~ 6.
Any such function / is called a functional repreeentation
for z Two functional representations [and g are
equivalent, denoted [~- g iff they represent the same real
number.

A function F on the representable reals is computable
iff there exists a corresponding computable functional F ;
such that for any functional representation f of a real
number z, F~/) is a representation for F(z). In particular,
F' must yield equivalent results if applied to equivalent
arguments. This definition applies whether or not the
range of F also consists of the representable reals. Of
course many functions on functional representations do not
correspond to functions on the representable reals because
they do not respect the equivalence relation -~.

Although it may seem pedantic, the distinctmn
between a representable real number and its representa-
tions is important for two reasons First, as we mentioned
earlier, the ¢omp~tabilit~ o/the baei¢ operatione hinge6 on
the choice of repre6entation. Second, as we discuss in sec-
tion 5, there are difficulties in limiting the available opera~
lions on representable reals to those that axe completely
independent of representation.

Although all of the basic arithmetic operations on
representable real numbers are computable, the standard
comparison operation <~ is not. It is easy to prove this
fact using a simple reduction argument that reduces the
halting problem to whether or not a particular function
represents s real number less than a given constant. In
practice, we can partially avoid this problem by either
tolerating a partial ~ operation that diverges if the two
operands are equal, or equivalently ~ by defining a quasirela~
t,onal comparison operator ~ e that is accurate to the
specified rational tolerance ~. Given any rational number
e, ~ e has the following definition:

~Some facility for execution interleavlng is necessary to
define <c in terms of the partial <.

163

z <,~ =

{ tru¢ if z ~ ~ - e

fals¢ if z > ~ + e
ei ther trw¢ or false otherwise

Such an operation is total, but does not correspond
to a computable function on the representable reals,
because its behavior depends on the particular represents-
tion for inputs that lie within the specified tolerance e.

3. A l t e r n a t e R e p r e ~ n t a t i o n s

Although it is clearly possible to construct an imple-
mentation of the representable reals based purely on func-
tional representations, this representation does not appear
well-suited to general computations in which an itemtive or
recurslve flow of control may repeatedly force the reevalua-
tion of particular numbers to differing accuracies.' A pure
functional implementation must recalculate the requested
rational approximation from scratch every time it is
invoked.

Any implementation will clearly benefit from some
facility for remembering the most precise previously calcu-
lated approximation One posslbility is to simply extend
the representation to include the most precise known
approximation along with the function to compute arbi-
trary approximations. Another more drastlc, and particu-
laxly elegant, approach is to use a lazy infinite sequence of
digits to represent a real number In this scheme, subse-
quent requests for more accurate approximations simply
extend the evaluated portion of the sequence.

Although the lazy representation of the representable
real numbers appears natural and elegant, it is surprisingly
difficult to devise a satisfactory formulation The classical
mathematical literature ([see Knu 69]) describes two funds-
mentally different systems of notation for the real numbers
that can be implemented as lazy data structures: the posi-
tional radix model and the continued fraction model In
naive form, the positional radix model defines a represent-
able real as an infinite lazy sequence consisting of a leading
unbounded integer specifying the mgned whole (integral)
part of the number followed by a sequence of bounded
digits (/j~...) specifying the fractional part O.f lJ's " " "
of the number. The continued fraction representation has
a mmdar format: it m a potentially infinite lazy sequence
consisting of a signed unbounded integer specifying the
whole part of the number followed by a potentially infinite
sequence of unbounded positive integers (dl,d~...) specify-
ing the denominator tetras in the continued fraction
representation

8A related problem arises even with simple nested multipli-
cations. In a practical implementation it is necessary to obtain
upper bounds on the operaads in order to bound the necessary
precision required to obtain the result. Depending on the details
of the representation this may require I or more trial evaluations
of the operand to low precision.

1
1

d l 4 d 2 + . . .

of the fractional part of the number. The continued frac-
tion is finite iff the represented number is rational.

Unfortunately, there is a subtle flaw in both of these
formulations. The evaluation mechanism underlying lazy
sequences is monotonic in the sense used in domain theory
[Sco 81]: Once a digit has been computed it never changes.
(In the case of positional radix notation, this implies mono-
tonicity with respect to the numeric ordering.) Although
this property is what makes lazy representations so attrac-
tive from the standpoint of efficiency, it makes the stan-
dard arithmetic operations uncomputable in some cases, as
the following example demonstrates.

Consider the following situation in the naive posi-
tional radix model with radix I0. Let z and y denote the
repeating decimal numbers .4444 ... sod .5555 . respec-
tively. The sum z + y has the value .9999 1.0 but
the addition operation cannot determine whether the umts
digit in the fraction should be 0 or I - - no matter how
many digits of z and ~/ it inspects. The unknown contents
of their infinite tails could force the units &git to be either
a 0 or 1. If the sum of the unexplored tail of z plus the
unexplored tail of y generates a carry then the units digit
in the result must be I. On the other hand, if the sum of
the unexplored tails m less than an infinite sequence of 9's,
then the units digit must be 0. In cases like thin one, the
addition operation must collect an infinite arnount of infor-
mation before it can generate the first digit in the answer.

The preceding example is not an isolated
phenomenon. Exactly the same problem arises m many
different contexts in both the radix expansion model and
the continued fraction model It is easily shown formally,
for example, by reduction from the halting problem, that
neither addition, subtraction, multiplication, nor divmlon is
computable using these naive representations

In general, for any reasonable lazy sequence
representation of a nontrivial subset of the reals and some
representable number x, there must be a representation p
for x such that every prefix of 0 can be extended to a
representation of each number in an open interval sur-
rounding x. This is false for the decimal or continued frac-
tion representation of 1. A more formal statement and
proof is given in the appendix.

The situation for the continued fraction scheme is, m
some sense, even worse. The principal theoretical advan-
tage of this representation scheme is its most significant
computational liability. In regular continued fraction nots-
tion, every real number has a unique representation; more-
over, the unique representation of every rational number is
a finite sequence. If we require that we be able to detect
finitenem of the representation, this immediately leads to a
contradiction. The calculation of V~ * V~ must clearly
generate an infinite sequence as its result.

Fortunately, there is a simple generalization of the
positional radix model that overcomes these problems We
can allow the range of digits to be larger than the base,

164

making the notation highly redundant. I t is most con-
venient to use a variant of balanced radix notation
[Knu 69], in which we simply allow digits to be negative as
well as positive. Thus the decimal number 1.1 could also
be represented as 2 (-9).

Representational redundancy enables the evaluator
to generate carnes (up to a bound determined by the
degree of redundancy) for a digit that has already been
generated and store them in the generating digit position
by using redundant digit values (Similar techniques have
also been widely used to minimize carry propagation in
arithmetic hardware)

4. A l g o r i t h m s

We have developed reasonably efficient algorithms
for computing all of the standard arithmetic and quasirela-
tionai operations for a modified form of the functional
representation. We have also developed corresponding
algorithms using the balanced redundant positional radix
notation The latter are described m detail below. They
are basically the standard arithmetic algorithms taught in
grammar school, adapted to produce digits in left to right
order

4.1. A d d i t i o n a n d Subtraction

We first give the addition algorithm for the func-
tional representation. In thin modified functional represen-
tation, a real number z is represented by a program that
maps each (usually negative) integer n into an integer rn
such that

(m - l) b" < z < (m + l) b"

where b is a given positive base ~ 1. Informally an integer
n is mapped into a scaled approximation of z , accurate to
4-b ~. The modified functional representation, which is
derived from a representation proposed by Bishop IBis 67],
is computationally more convenient than the original one
presented in Section 3

To add two real numbers z and y, represented by
functions z t and yt , we must construct a representation
z I such that for all n

(z ' (n) - 1) b " < z + y < (z ' (n) - 1) b "

To produce such a representation it suffices to return a
function that evaluates z and y to one more digit of precl-
slon than that required of the result, and then returns an
appropriately scaled version of the sum.

fn_rr_add
lambda (x' , yJ)

lambda (n) (xl(n-l) 4- xl(n-l))/b

where integer divmion is rounded.

Here we have assumed b > 4. To argue informally,
that the result function correctly represents z + y, it
suffices to observe that the approximations of z and y

1
each contribute a t most T to the error m the result pro-

duced by the representatlon of z + y. The rounding
involved m the division introduces another poeslble error of

1
at most - ~ Thus the total possible error is less than 1

We define a lazy representation as a pair [e , f] con-
sisting of of an (immediately evaluated) unbounded integer
exponent ¢, together with a lazy sequence f of digits in a
redundant balanced radix representation scheme where the
maximum digit value rnazdig is the additive inverse of the
minimum digit value rnindig and the base b ~ greater
than rnazdig but less than 2mazdig The lazy sequence
representing the mantissa is always a fraction, with an
implied decimal point on the left. Thus [e, f] denotes

OO

b ~ E b-~/~
im!

Although it is not difficult to devise algorithms for
minimally redundant representations (where
b -~- 2rnazdlg), these algorithms are less efficient because
they require one more position of look-ahead in the inputs
Some form of partial normalization is desirable m practice,
but omitted here for the sake of simplicity. We use the
lazy constructor (*.*) to form lazy lists. This constructor
is identtcal to LISP cons except that it ts lazy m its
second argument. We use pattern-matching notation to
denote the selectors corresponding to pairing [*,*J and the
stream constructor (*- ' / . Matching a pattern vartable
against the tail of a lazy sequence does not force evaluation
of the tail For example,

let (x0.xtl) ~ f

brads z 0 to the first element and binds ztl to the delayed
tall of f , which is forced only when ztJ is evaluated (It is
enlightening to convince oneself that this is a necessary
constraint)

The following addition routine lazy_add adds two
unnormalized lazy real numbers and produces an unnor-
realized result. The meat of the algorithm is embedded m
the routine ff_add_tv¢, which takes two lazy sequences
denoting fractional mantissas as inputs and produces lazy
sequence of digits consisting of the carry digit m the sum
followed by the fractional par t of the sum

lazy_add -------
lambda ([xe,xf], [ye,yf])

if xe ~ ye then
[xe 4- I, ff_add_wc(xf,yf)]

else if xe ~ ye then
[xe + I, ff_add_wc(xf,shift(yf,xe-ye)]

else
lYe + I, ff_add..wc(shift(xf,ye-xe),yf)]

shift
lambda (f,n);

if n ---- 0 then
f

else
(0 . shift(f,n-1))

165

(Add boo la:1 digit sequences representing }
{ fractlons. The leadin¢ digit of the result }
{ sequence ©orre~pon& to the generated carry. }
if_add_we
lumbda ((xO.xtl),(yO.ytl)):

let sum =~ xO + yO
I c a r ~ , ~ l ffi

if (sum >_ m~xdig) then
I t, s u m - b]
{ Compensate for anticipated carry)

else if (sum < mindig) then
l-l, sum + bl

{ Compensate for anticipated borrow }
e~ {0, sum]

{ sum f carry * b + ,O }
{ mindig < zO < mazdio)

in
(carry. dr_add(zO, ff_add_wc(xtl, ytl)))

{ Add a single digit to the first digit of a fraction, }
(assuming no carry can be generated. }
df_add -----

lambda (d,(fO.ftl));
((d + re). m)

The algorithm works by summing two digits to pro-
duce a carry and a remainder where the carry cannot be
allotted by a subsequent carry from the next digit position
into the remainder position.

This algorithm directly genemlises to a polyadic
addition tha t accommodates up to (mazdig-mindig}-b
operands. To accommodate more operands the algorithm
must look more than one digit ahead in the inputs.

Negation algorithms are trivial in either system of
representation in the lazy scheme we simply complement
each digit, In the functional scheme we produce a new
function tha t returns the negation of the value returned by
the original function. For future reference, we give the
algorithm for negating fractional mantissas represented as
a lazy sequence of digits:

ft..minus
lambd~((xO.xtl));

(-xO. ff_minus(xtl))

4.2. M u l t i p l i ~ t i o n

Multiplication is a little more complicated than addi-
tion, but still manageable. A ~a led functional implemen-
tation of multiplication is similar to the implementation of
addition, with the added complication of precomputing an
a priori bound on the arguments in order to determine the
precision needed for the arguments. Bishop simply uses
the integer par t plus 1. Our implementation uses a more
prec~e algorithm, which is not presented here. It is worth
noting tha t m either case the arguments must be evaluated
more than once, usually with differing precisions. (In some
other representations, such our lazy sequence representa~
#ion, the exponent can be used to give a pessimistic
bound.)

The following lazy multiplication algorithm assumes
mindi¢ ~ - b + l and mazdig ~ b - l . This serves to
simplify the present,#ion

iazy_mult
l~mbda([xe,xq, [ye,ylD; lxe+ye, II_mult(xf,yf)]

if_muir -----
lambda ((xO.xtl), (yO.ytl));
I Decompose the product into four partial products.)
,0 and ,1 repreoent the product of the boo)

{ leading digits. }
let z0 - - x0*y0 div b

zl ~- x0*y0 reln b
in

if_add((z0. (zl . f l , mult(xti,ytl)),
K_add..wc(df_mult(xO,ytl), df.snult(yO,xtl)))

{ Multipty a *inole d/0/t, voith on implied decimal }
{ point on the left, by a fraction, obtaininf }
{ another fraction.)
df_mult --~
lambda(d,(f0.(ll.ltl)));

let z2 ----- d*fl rein b
zOl ---- d , f0 + d*il div b
zl ----- z01 rein b
gO ----- z01 div b

{ (fO ,b+f i) , d = ,O,b' + ,i,b + z~)
{ Carr~ from remainder of czpaneion ma~)
(aUect ,I by ±I. }
(Absval(:Oi) is bounded by (b-1)b.)
{ Thus either absval(,O} < b-I or }
{ abs~al(~O < b-1 }

{adj_z0, adj_zt] ---- if zl ---- b- I then
[~0+1, zl-b]

else if zl ~ -(b-l) then
[gO-l, zl+b]

else
[zo, zll

in
(adj_zo. df_add(adL--~,

df_~d_wc(,-2, df_mult(d,m))))

{ The routine t~..add aoain 6uume8 no carry)
{ can be generated }
if_add =ffi

lambda((x0.xtl),(y0.yti));
df_add(xO + yO, ff_add_wc(xtl,yti))

166

df_add_wc
lambda(d, (f0.ftl))

let sum ---- d + f0
[carry, z0] ~--- If (sum > b-l) then

{1, sum-b]
else if (sum < - b + l) then

[-1, sum-t-b]
else

0
in

(carry. (zo ftl))

4 . 3 . Divis ion

There axe a number of alternatives for division, both
for the functional and lazy approaches. In the functional
approach, it m p ~ l b l e to proceed as before, and effectively
perform a division on large integers Since this is relatively
expensive on conventional architecture, a competitive
alternative is to approximate the inverse iteratively using
Newton's method, until the desired precision is reached
Thin is paxtmularly attractive if a previous approximation
ts avadable as a starting point.

The same alternatives exist for the lazy sequence
approach. Here we present the central algorithm revolved
in the direct (not Newton's method) approach As dis-
cussed below, this is not the most efficient algorithm

The algorithm below takes two mantissas as argu-
ments, and produces the mantissa of the quotient. We res-
trict our attention to the case b >_ 16, and continue to
assume mazdig ~ - m i n d i g - m - b - 1 . We also assume
that the dividend and the divisor have been scaled so that
the dividend ts smaller than the divisor, and the lea~img

6
digit of the divisor m at least ~-. (This may require multi-

plying both dividend and divisor by a, single dtgit, as sug-
gested m [Knu 69]. The normalization of the divisor may
diverge d it is 0, but then division must inherently diverge
m this case.)

{ Return (x - (digit/b) * y)*b. }
{ It is knovon that abs(result) < 1 }
remainder
lambda(z, y, digit)

let

in
(tO. rtl) ~ if_add(z, if_minus(d/_m¢lt(d,y)))

if rO = 0 then
rtl

else if rO ---- 1 then
dr_add(b, rtl)

else {tO ---- -1}
df_add(-b, rtl)

{ Return a fraction corresponding to x/y, }
(The oeer6nds x and y)
{ are scaled as described above. }
ff_div ~-

lambda(x, y);
let

(xo.(xl.xtl)) ; x,
(y0.(yl.ytl)) ~ y;
x01 ----- xO*b 2 + xl*b;
yO1 ~ yO*b + yl ;
qO ~ round(xOl/yOl)

In
(q . ff_div(remainder(x, y, q), y))

nl

The heart of the correctness proof is to show that
the recursive call to f f _ d i v satisfies the normalization
assumptions on the arguments, and m particular to show
that

remainder (z , y ,q) < y

This can be expanded as follows

< lyl

I b~-(ylround(~'6T) < I~,1

,~ x O l ,
We need to argue that rouna(.-27-~.) approximates

bz
with sufficient accuracy .

Y
The quantity y01 approximates b~ll with an abso-

error of at most I, and thus, since y ~ ~-~-, by a lute

relative error of at most b -2. Thus ~ approximates

I with a relative error of less than 3b -~ Since

b, the absolute error introduced by spproximab
p01 3 3

mg p by its two leading digits Is at most -~- and thus 1"-6"

Smce z01 approximates bsz to within b, this approxlma~
tion introduces an absolute error into the quotient approxl-

1 1 1 16 1
mat,on of at most (T X - r . ~ -) or (T) (-~ - -) or at most T'

Rounding introduces an absolute error of at most
2

Thus

b -,'o,,n,qT6 T) < + T + < 1

z01] b~'-(Y)"ou"d(T6 T) < lYl

167

4 . 4 . Discussion

In comparing the algorithms for the functional and
sequence approaches, it becomes apparent that each has
weaknesses. As was pointed out above, the functional
approach, at least in its simple form, is prone to excessive
reevaluation of expre~ions.

The lazy sequence approach discussed above suffers
from a less obvious, but in practice more crucial, perfor-
mance problem. We would like to take advantage of
machine arithmetic for the operations on digits In order
to minimize the number of machine arithmetic instructions
revolved, each digit should be approxtmately the size of a
machine word. But consider an expression such as

• , + + + (" " +

Assume we are only interested in the integral part of the
result. The repeated application of the binary addition
algorithm will result in the evaluation of zi to i digits
beyond the decimal point. Thus z= will be evaluated to n
fractional digits, and thus typically 16n or 32n fractional
bits, when It is clear that at most n (and really only]ogn)
fractional bits are necessary.

This problem is particularly severe for the division
algorithm presented above The calculation of the n th
digit of the quotient effectively requires the n + l 't digit of
a remamder produced by an expression of the form

d iv idend - q lb - l divi6or q~_ib-a+I divi~or

Since the result of the above expression is required to n
digits, and the dividend is nested inside n-1 subtractions,
by the above argument, it will be evaluated to 2n &gits.
Thus the evaluation of the expression

z /3 /3 /3 /3 / . . . /3 (m divisions)

to a single digit will force the evaluation of z to 2 m digits.
Similar problems occur with the divisor They can of
course be at least partially solved by more clever and less
elegant coding. For example, the divmion algorithm could
take an unevaluated sum (and a shift count) as its first
argument, so that the remainder expression abovecould be
evaluated right to left

The basic problem with lazy representations is that
of the granularity they require in precision specifications.
Each approximation must be accurate to an integral
number of dsgits. When arithmetic operations are per-
formed, they must discard information about the inputs,
because they cannot present the most accurate answer.
After an addition operation has computed the arguments
to :t:b -# it can only produce an answer with a known accu-
racy of d:b l-k m spite of the fact that enough information
Is available to generate the answer to a tolerance of 2b h .

In the functional scheme we can avoid the problem
by making the precision argument as precise as possible,
subject to the practical constraint that calculations on pre-
cision arguments should remain mexpensive In our version
we axe still limited to a tolerance that is a power of the
base But there ts no efficiency penalty for using a small
base

5 . Representable Reals as an A b s t r a c t D a t a T y p e T

It is tempting to provide the user of representable
reals with a small collection of functions, such as the arith-
metic operations, and to let him/her use these to construct
other computable functions that might be needed Ideally
this would be done in such a way that the representation is
completely hidden.

We already encountered one problem with this
approach - - a total comparison operation must inherently
be approximate, and furthermore its exact behavior must
depend on the representation. In fact, it is a corollary of
Rice's Theorem from computability theory that any com-
putable, total, boolean valued function on the represent-
able reals must be constant.

We take a program to be sequential if it diverges
whenever it attempts a divergent subcomputation. Now
consider a sequential program P that computes a function
from representable real numbers to representable real
numbers Assume that P is only allowed to apply total
computable (and thus non-representation-revealing) first-
order 4 functions from a finite set F to representable real
arguments None of the if- or while- conditions in P may
depend on the input to P . Thus P ' s control flow can't
depend on its input. Thus P must either diverge, or be
equivalent to a fixed composition of the functions in F

An easy diagonal argument shows that for each such
set F of total functions, there is a computable total func-
tion on representable reals that is not computed by any
program P of the above form.

The preceding argument can be strengthened to
allow partial functions in F by observing that if a boolean
expression in P depends on P ' s input, then the value of
that boolean expression cannot be a total function of the
input parameter Thus, if P is purely sequential, it cannot
compute a total function. In particular, it can still not
compute the diagonal function from the preceding argo-
sent.

It thus appears difficult to model the representable
reals as an abstract data type without representation-
dependent functions.

6 . Pract ical Experience

Our first implementation m based on the modified
functional approach using scaled approximations and is
written in Russell [Boe 85a,85b] [Dem 85]. A number x is
represented primarily as a function mapping an unbounded
integer n to an unbounded integer m such that

The implementation keeps track of the best known approx-
imation to a number in addition to the function, so that
reevaluation can be minimized. Muitiplicative inverses are
computed directly for small precisions, with Newton's
method used to refine results to higher precisions. In the

4parameters and results to functions in F should be
representable real numbers or integers, Boolean values etc. We
disallow functions u parameters or results.

168

latter case, the best previous approximation is used as the
starting point. A square root function is implemented
using a similar approach. The exponential function and
natural logarithm are unplemented using Taylor series
approxlmatlons, with some initial scahng to hasten conver-
gence Several desk calculator style interfaces have been
budt for this implementation.

In addition, we have several partial implementations
based on the lazy sequence of diglts view Below we dis-
cuss two of these. They are both d~rect translations of the
above algorithms, one into Scheme, and one into Russell.
The Russell implementation includes the four basic arlth-
metic operations. The Scheme version currently lacks divi-
sion

These efforts have so far been less successful. Table
1 presents a timing comparison for multiplication based on
the following benchmark program"

{ In the following, x and third are constructive reals,)
{ i is an integer.)
x :----- 1;
third :~-~ 1/3;

{ For lazy sequence versions, third is directly)
{ bound to a list of Be.)
{ In the functional case, the division is }
{ performed once. }

for l :----- l to 5 do
x :---- x * third;

{ Constructive real multiplication)
fori.~--- l t o 5 d o

X "~---X * 3;
{ Constructive real multiplication }

print x;

The lazy sequence implementations used base 10 with a -9
to 9 digit range. The choice of base 10 is clearly not
optimal. We adjusted for thin by only requiring 10 digtts
to be printed for the sequence based implementations, but
requiring either 50 or 100 decimal digits to be printed by
the functional version. (The timings for the functional ver-
sion include base conversion overhead, the sequence t,m-
ings do not.)

All timing results refer to a VAX 11/750 running
UNIX s. All measurements were made repeatedly, alternat-
ing between different implementations No sigmficant vari-
ations were observed Mean measurements are reported
here.

The Scheme version was compiled using Kent
Dybvig's Chez Scheme compiler (version 1 1), the fastest
implementation available to us For the Scheme version,
program load time was subtracted from the total execution
time The measurements are probably somewhat biased
against Scheme for several reasons. First, Russell is stati-
cally typed, thus making the code generator's lob easier
Second, lazy lists are a built-in data type in Russell. Thus
their implementation was carefully hand-coded. Third, one
of the authors is very familiar with the internals of the

r'Trademarks of Digital Equipment Corporation and AT&T
Bell Laboratories, respectively.

Russell compiler, and was thus probably more successful at
tumng the constructive reals implementation for Russell
than for Scheme.

The times reported are user-mode cpu seconds
(System-mode times were comparable for the lazy sequence
implementations, but with high random variations They
were also much less for the functional vermon) The
Scheme version used a mazimum of about 600 Kbytes real
memory, the Russell sequence version used about 1 2
Mbytes, and the functional implementation used about 180
Kbytes e. All implementations based on Russell preallocate
1 Megabyte of virtual memory, whtch is then expanded as
necessary

The last 2 lines of table 1 refer to versions that print
the result to the indicated precision after each multiplica-
tion This forces incremental evaluation to increasing pre-
cision, and should thus demonstrate the advantage of the
lazy sequence approach. This kind of incremental evalua-
tion would presumably not add significantly to the times
for lazy sequences.

The last line refers to execution times for the pack-
age with a desk calculator interface. Multiphcations by
one third were replaced by divimons by 3 (which are con-
mderably more expensive). The arithmetic operations were
typed in from the keyboard. Each loop was (manually)
executed 10 rather than 5 times

These results have lead us to the following conclu-
sions regarding the functional implementatton:

1 Execution speed is acceptable for this apphcatton
and, by extrapolation, for some of the applications
mentioned in the introduction

2 There appears to be much more overhead revolved
m bookkeeping than in performing the necessary
operations on huge integers During the multtplica-
tion and &vision experiment described in the last
hne of figure 1, the processor only spent about 18
percent of its time performing large integer multlpli-
cattons and divisions. In this case, scahng high pre-
cision results to lower precmon values is also fairly
significant, about 9 percent of the time was spent
performing more than 1900 shift operattons on
integers. As expected, this does change for
extremely high precision calculations A calculation
of exp(1) to 1000 digits (which takes about 160 cpu

Lazy sequences (Scheme) 66 4
Lazy sequences (Russell) 30 3
Functional (Russell, 50 decimal dtglts) 1 2
Functional (Russell, 100 decimal digits) 1 5
Functional (Russell, 50 digs., w/printing) 2 2
Functlonal calc., 20 Iter, 70 digs about 20

Table I

eThese figures were measured by the Berkeley UNIX (C
Shell) time and ps commands.

169

seconds) spends 80 percent of its time multiplying
integers.

3. In a number of cases, more complicated analysis of
the necessary operations could have led to significant
performance improvement. For example, a long
sequence of additions results in a demand for
unnecessary precision on the first argument. An
explicit, and much less elegant, representation of real
numbers as expression trees could eliminate this
problem with a preliminary tree balancing phase.

As is apparent from figure 1, the lazy sequence
implementations currently show less promise. This is not
as surprising as it seems at first In our benchmark, the
first multiplication is eventually carried out to 20 more
digits than the final one. The total number of procedure
calls (exci. garbage collector and run-time system) exceeds
90,000. Virtually all of these return closures, and thus
require heap allocated activation records.

Our experiences in building the lazy sequence based
implementations can be summarized as follows.

1 This approach to implementing the constructive
reals appears not to be competit,ve given existing
programming language implementations on conven-
tional hardware.

2. Many existing compilers were not designed to sup-
port higher order data and lazy evaluation
efficiently. In spite of this, it appea~ unlikely that
an improvement in compiler technology alone would
drastically alter our comparison. The Russell based
,mplement~tion executes approximately one user
level procedure call every 330/~sees. Each call typi-
cally requires the heap allocation of a closure.
(Currently the majority of calls allocate at least an
act,ration record, a cons node, and a closure) It is
very unlikely that any compiler would be able to
reduce the average execution time of such a pro-
cedure to 60/Jseos on the given machine. (One invo-
cation of a C language recursive Fibonacci function
requires about 35 /~ecs.) It also appears extremely
difficult to reduce the total number of procedure
calls by more than a factor of 2 through procedure
int~gsatlon. Thus a factor of 10 improvement in
execution time through better compilation tech-
niques seems remotely po~ible, but unlikely. Yet
even this would not result in a competitive imple-
mentation.

3. It is relatively easy to convince oneself of the partial
co r rec tn~ of a program based on lazy lists. The
only subtlety is introduced by the fact that free
assignable variables appearing in lazily evaluated
exprssslons refer to their value at trine of (delayed)
evaluation. Thus lazy evaluation in imperative
languages cannot simply be viewed as delaying
evaluation to save time.

On the other hand, even in purely applicative
languages, termination is a very subtle issue. (For
example, ff_add_w¢ diverges If dr_add forces
evaluation of / t / to a cons cell with a closure

representing the tail.) Resource requirements are
even more subtle. We know of no good technique
for reasoning about space requirements of the lazy
algorithms

As mentioned above, we found support for lazy data
structures to be marginal in some implementations which
claimed to support them. Code optimization appears even
more critical in this context than in massive flo~ting point
programs. The following two problems appear common in
existing compilers:

1 If programming with higher order objects is to be
encouraged, closures must be kept small. A lazy list
should not take up significantly more space than the
prefix that has been evaluated. At least one conven-
tional LISP implementation T fails b~lly in this
respect, most probably by failing to collect certmn
activation records. This also argues for copying par-
tial environments into closures as in [Card 84],
rather than building closures that point to activation
records The latter approach does not make it clear
to the garbage collector that a given closure relies
only on a small number of bindings, and not the
complete environment at the point at which it was
formed. This can make irrelevant data appear acces-
sible and thus uncollectible

2. It ~ important to keep hardware arithmetic func-
tions efficiently accessible. This is frequently not the
case due to tag bits used by the run-time system to
facilitate garbage collection and perhaps dynamic
type checking.

7. Re la ted W o r k

The only alternative to limited precision arithmetic
that has received much attention from computer research-
ers Is exact arithmetic on rational numbers. Every rational
number can obviously be represented by two unbounded
integers (e.g., a hat consisting of two LISP bignun,-~). The
principal advantage of rational arithmetic is that it is pos-
sible to implement the fundamental arithmetic operations
{+, -, *, /) exactly, avoiding round-off errors. Unfor-
tunately, rational arithmetic has two serious disadvantages
that make it unsuitable for many of the potential applica-
tions of exact real arithmetic First, it does not accommo-
date computations involving the use of functions that map
rational inputs into irrational results (such as exponential
and trigonometric operations). Second, rational ar, thmetic
is unsuitable for long calculations because it typically pro-
duces rational numbers with huge numerators and denomi-
nators. The advantage of representable real arithmetic is
that the actual amount of computation is driven by the
required precision of the result, whereas rational arithmetic
always computes full precision results, whether or not they
are needed.

The theory of constructive real numbers has been
explored by a number of mathematicians IBis 67] [Bri 79]
[Myh 72] Their emphasis has been on formal foundations

7Not Chez Scheme.

170

rather than efficient computation. Some of the msues
involved have also been explored by recursion theorists (cf
[Rog 67])

A few unpublished papers [PJ 84] [Cart 82b] contain
fragmentary discussions of proposed lazy representation of
the representable reals using the naive implementations
d~scussed in Section 4 The most interesting account is an
unpublished MIT technical note e in which Bill Gosper pro-
poses a lazy evaluation scheme before any of the seminal
papers on the subject were published. Gosper recognizes
that hzs algorithms do not work for all inputs and suggests
implementing s hybrid system that uses approximate arith-
metic as a last resort

The computability issues arming with the sequence of
digits view were explored by [Myh 72]. The basic problems
involved in this view were apparently well know to recur-
slon theorists before then (cf [ROg 67], [Wie 80]). Myhdi
also discusses (and dismisses) another approach based on
"located" real numbers

The use of redundant notation to limit carry propa-
gation is well known among hardware designers In a
slightly disguised from, it forms the basis of fast hardware
multlphcatlon algorithms Its uses in variable precision
arithmetic were explored by [Avi 61], [Avi 64I, [Atk 75],
[Owe 79]

The use of redundant notation in the context of con-
structlve real arithmetic was suggested in [Wie 80], in an
unpublished paper by Carl Pixley °, and in [O~o 85]. It
was independently rediscovered (once more) by the other
authors of this paper. [O~)o 85] gives an equational ver-
sion of the addition algorithm.

8. F u t u r e W o r k

Although we feel that we have an adequate imple-
mentation of representable real numbers, there is clearly s
lot of potential for improvement m performance. Some of
the possible sources of improvement are trivial, for example
the use of hardware flc~tmg point when its precision is
adequate, the use of faster integer multiplication algo-
rithms for huge integer calculations, etc.

There are at least two possible ways to obtain more
substantial performance improvements First, the algo-
rithms used in our implementations could probably benefit
from further tuning. Secondly, as mentioned above, there
appears to be room for improvement in the implementation
of the underlying programming languages, particularly in
the treatment of closures and machine arithmetic.

It is an open question whether there is any way to
build s competitive implementation based on lazy
sequences. In an attempt to eliminate the granularity of
precision problem discussed in section 4.4 we are exploring
vartations on the lazy formulation of the real numbers.
These variations technically violate the monotomcity

SGosper, Bill, "Continued Fraction Arithmetic", HAKMEM
Item IO1B, It, f i T AI Memo 239, Feb 1972 (?).

~'Demand Driven Arithmetic", around 1984.

condition that prohibits a digit from changing once it has
been computed. In particular, the last digit in an approxi-
mation may change, as long as the preceding digits remain
fixed. We call this property weak monotonicity Instead of
forcing the precision of an approximation to be an integral
number of digits, the precision of the last digit is exphcltly
stored, along with the closure needed to generate more
accurate approximations. As long as the sum of the abso-
lute value of the last digit and the tolerance Is less than
the base b, more accurate approximations can be obtained
simply by changing the last digit and appending additional
digits (including another tolerance for the last digit). This
makes it possible to avoid discarding information in arith-
metic operations. Unfortunately, the cost is added com-
plexity in the the algorithms for arithmetic operations.

It is also conceivable that the lazy sequence algo-
rithms given here might become practical with some sub-
stantial support from the underlying hardware (e.g in
somehow allowing small digit sizes without penalty).

We are only starting to explore the applications of
representable real arithmetic For testing purposes, it
would be useful to run standard numerical programs using
exact arithmetic to produce exact results. It is clear that
this m not always possible without additional information
from the programmer, particularly for iterative algorithms.
On the other hand, it seems pc~ible in at least some cases
The real question is how much difficulty is introduced by
the lack of s traditional comparison operator.

Such s facility for executing numerical programs
exactly might also gwe other useful information to the pro-
grammer. It would be easy to keep track of the number of
digits needed st each point m the computation to derive
the result with the desired accuracy. This should make it
easier to determine how much floating point precision is
needed st various points in the program.

9. Acknowledgements

We would like to thank Mike Fagan and Jerry
Fowler for their contributions to an earlier draft of thin
paper, and for some preliminary implementations of lazy
sequence based constructive reals. We would also like to
thank Venita De Souzs for implementing most of the lazy
sequence based algorithms discussed above Her implemen-
tations were used to obtain the timing comparisons
presented above The members of the program committee
provided us with many helpful comments.

References

[Avi 61] Avizienis, A., "Signed-Digit Number Represen-
tations for Fast Parallel Arithmetic", Institute
of Radio Engineers Transactions on Electronic
Computers, 1961, p. 389.

[Avi 64] Avizienis, A , "Binary-Compatible Signed-Digit
Arithmetic", AFIFS Conference Proceedings 26,
1 (1964), pp. 663-672

[Atk 75] Atkins, D. E., "Introduction to the Role of
Redundancy m Computer Arithmetic, IEEE
Computer 8, 6 (1975), pp. 74-76

171

IBis 67]

[Bri 79]

[Boe 8Sal

[Boe SSb I

[Card 84]

[Cart s0]

[Cart 81}

[cart 82aJ

[Cart 82b]

[Cart 83]

[Dem 85]

[ao 83]

[Knu 69]

[Myh 72]

[O'Do 8S]

Bishop, Errett, Foundations of Constructive
Anal~lMs, McGraw-Hill, New York, 1967.

Bridges, D. S., Constructive Functional
Anal~leio, Pitman, London, 1979.

Boshm, Hans, Alan Demers, and James
Donahue, "A Programmer's Introduction to
Russell", Technical Report 85-16, Department
of Computer Science, Rice University.

Boehm, Hans, and Alan Demers, "Implementing
Ruesell", Techmeal Report 85-25, Department
of Computer Science, Rice University. Was
also presented at the SIGPLAN '86 Compder
Construction Conference.

Cardelli, Luca, "Compiling a Functional
Language", Conference Record of the 1984
Symposium on LISP and Functional Program-
ming, pp. 208-217.

R. Cartwright, "A Constructive Alternative to
Axiomatic Data Type Definitions", Proceedings
of 1980 Symposium on LISP and Functional
Programming, Stanford University, August
1980, pp. 46-55.

R. Cartwright, "Formal Program Testing,"
Proceedings of the Eighth Annual Symposium
on Principles of Programming Languages, Wilh-
amshurg, Va, January 1981, pp. 125-132

R. Cartwrlght and J. Donahue, "The Semantics
of Lazy and Industrious Evaluation," Confer-
ence Record of the 1982 ACM Symposium on
LISP and Functional Programming, Carnegie-
Mellon Umversity, August 1982.

Cartwright, Robert S, et al., "Rn: An Expert-
mental Computer Network to Support Numeri-
cal Computatton", Technical Report,
Mathemati~l Sciences Department, Rice
University, 1982.

R. Cartwright, "Recursive Programs as
Definitions in First Order Logic", SIAM J.
Computing, May 1984

Demers, Alan, and J. Donahue, "Data Types
are Values", ACM Transactions on Program-
ming Languages and Systems 7, 3 (July 1985),
pp 426-445.

Golub, Gene H., and Charles F. Van Loan,
Matriz Computations, Johns Hopkins University
Prees, Baltimore, 1983.

Knuth, Donald E., The Art of Computer Pro-
gramming, Vol. 8, Seminumerical Algorithms,
Addison Wesley, 1969.

Myhill, J., "What is a Real Number?", Ameri-
can Mathematical Monthly 79, 7 (1972), pp.
748-754

O~Donneil, Michael J., Equational Logic as a
Programming Language, MIT Pre~, 1985

[Owe 70]

[PJ 84]

[Rog 67]

[Scot 81]

[Wle 80]

iwil 6s]

Owens, R. M. and M. F. Irwin, "On-Line Algo-
rithms for the Design of Pipeline Architec-
tures", Annual Symposium on Computer Archi-
tecture, Philadelphia, 1979, pp 12-19

Peyton Jones, Simon L., "Arbitrary Preclston
Arithmetic Using Continued Fractions",
INDRA Note 1530, Department of Computer
Science, University College London, 1984

Rogers, Hartley Jr., Theory of Recursi~e Func-
tions and Effective Computability/, McGraw-Hill,
1967. See especially p. 371.

D Scott, Lectures on a Mathematical Theory of
Computation, Technical Monograph PRG-19,
Oxford University Computing Laboratory,
Oxford, 1981.

Wiedmer, E., "Computing with Infinite
Objects", Theoretical Computer Science 10
(1980), pp. 133-155

Wdkmson, J H., The Algebraic Eigenvalu¢
Problem, Academic Press, London, 1965

Appendix

The purpose of this section is to show that any "rea-
sonable" implementation of exact real arithmetic that is
based on lazy sequences must have what we will refer to as
the "interior containment" property. Roughly stated, this
means that each number z must have a representation
such that any prefix determines an interval containing x,
such that z is not one of the endpoints. Neither the stan-
dard decunal representation nor any obvious variant of the
continued fraction representation share this property.

This theorem is trivial tf we insist that there be a
computable mapping from the "standard" functional
representation to this lazy sequence representation. In the
following we show that it is necessary even d we only insist
that addition and subtraction be computable. In particu-
lar, we do not even reqmre that the collection of numbers
representable in this scheme is the same as our standard
notion of the "representable reals".

A iazsl representation of the real numbers a~igns to
some subset of the real numbers infinite computable
sequences {a,-} where al E D. D may be mfinite.

A lazy representation is said to be an interval
representation if it satisfies the following constraints.

(1) All rational numbers are representable by some
sequence.

(2) There is a computable function .M that maps any
I

finite sequence {ai}i_ 1 into (the endpoints of) a

rational (open or closed) interval ~ such that the
rational numbers contained in the interval are
exactly those that can be obtamed by extendmg

(3) Every sequence represents a number. That is, for
every sequence { a t } there is a number z, such that

172

(4)

o o I

n U({a , }) - -
s I i==l

For some representable number z, there is a
OO

representation, z = M({pi}i_t) such that every

finite prefix is mapped to an interval of nonzero
length. That is, for every n, there ts some sequence

m I wi

{~b,}l such that z ~ M ({ p i } ; _ l II where

" II " denotes sequence concatenation We say this
~s densel~ represented

Thin asserts that for some representation, the tail of
the sequence is important.

A point, z is in the interior of an interval, ~, iff
there exists a rational e such that an e-neighborhood of z
m contained m @.

Definition: An interval representation has the pro-
perty interior containment iff for any real number z that
has a representation, there is a representation, p, such that

is in the interior of the interval defined by every prefix
of p

Note that this requirement will exclude the standard
decimal and continued fraction representations

Definition: If an interval representation supports
total computable addition and subtraction operators, it is a
computable interval representation; or abbreviated as CIR.

Note that for an operation to be considered comput-
able, it must be possible to produce an arbitrarily long
prefix of the result representation from finite prefixes of the
operand representations.

Theorem: Any CIR has the interior containment
property

Proof: Assume we have an interval representation
coding that does not have the interior containment pro-
perty Then there is a representable number z such that

OO

for all r ep re sen t a t i ons , { P i } i - I ~ X, there ts an n such

that M ({ p i } , _ l) does not have x in its interior. We will

reduce a recursively msspaxable set problem to the
existence of computable addition and subtraction opera,
tors on this representation. First several lemmas are neces-
saxy.

Lemma : The two sets

St -~ (z , y) [~ . (z) hal ts before ~ (y)

= I hal ts before ~b,(z)

axe recurslvely msepaxable. Here ~ , (z) denotes the
computation of the z ~ Turmg machine on input z.
Proof : Well known, e.ll. by reduction from [Rog 67]
p. 9 4

Lamina I: Any CIR must have the number 0 densely

represented.
Proof." Let z be densely represented. Consider the
representation for z - z.

Lamina ~: Any CIR must have a representation,
0 0

{p~ }. , for the number 0 that has 0 in the interior of
, m |

m

M ({ p l } , _ ,) for all n.

Proof: Assume we axe gtven a pair (z , y) Let X be 0 if
~bs(z) does not halt, and denote some e > 0 where

n i t

E M({p ,}¢_I) and 0 ~ M ({ p l } i _ l) if ~bs(z) halts

in n steps. Let Y be similaxly defined for y. Clearly
such X and Y are expressible in any CIR since 0 is
densely represented. Now consider the representation
for X - Y, it is zero if ~b,(z) and ~b,(y) do not halt,
some ~ > 0 d ~#(z) halts before ~ , (I /) or some ~ < 0
d ~u(~) halts before ~b#(z). If zero does not have a
representation with the interior containment property,
then some finite prefix of the representation of X - Y
must either exclude all positive numbers or all nega-
tive numbers.

Let S be the set of all (z , y) pairs such that pomtlve
numbers are excluded from X - Y. Since this can b e

detected, ,5' is recursive. Since ,5' separates St from
S 2 this is a contradiction.

By the lemma, a representation for 0 must exist ruth rote-
nor containment for 0. So consider z + 0, where 0 is
represented as in lemma 2

Corollary: In a CIR, no number may have a decidable
equality relation between all its representations.

173

