
Using Hindley-Milner Type Inference to Optimise List RepresentationCordelia V. Hall,Computing Science Dept,Glasgow University,Glasgow, Scotland,cvh@dcs.glasgow.ac.ukAbstractLists are a pervasive data structure in functional programs.The generality and simplicity of their structure makes themexpensive. Hindley-Milner type inference and partial evalua-tion are all that is needed to optimise this structure, yieldingconsiderable improvements in space and time consumptionfor some interesting programs. This framework is applica-ble to many data types and their optimised representations,such as lists and parallel implementations of bags, or arraysand quadtrees.1 IntroductionLists are a popular data structure among programmers us-ing strongly-typed functional languages such as ML andHaskell[HdEtAl92]. For this reason, it is important to rep-resent and use them as e�ciently as possible.There are a variety of optimisations on simple list rep-resentation, and it isn't di�cult to think of new ones. Thehard problem, and the one solved in this paper, is to au-tomatically infer where an optimised representation can beused. The approach we take can be summarized as follows;� Each pair of constructors in a simple list is replacedin a compressed list by one `hydra' constructor withtwo heads. If the list has an odd length, then a singleheaded constructor appears at the end.� Lists are treated as an abstract data-type (ADT). Thenew list ADT exports a simple list representation, andoperations on both the simple and the compressed rep-resentations.� A systematic transformation, guided by an analysisphase, transforms a user program written entirely interms of simple lists into one which uses compressedlists in as many places as possible.

benchmark timeadder 82%cosine transform 92%fast fourier transform 88%life 51%peano 37%sigma 66%transitive closure 69%Figure 1: Summary of results (optimised execution time di-vided by unoptimised execution time)The analysis and transformation propagates local con-straints on list structure by using Hindley-Milner typeinference on a list type modi�ed to represent both com-pressed and simple lists.A two-stage process handles global constraint propaga-tion. First, the type inference uses a standard trans-formation to convert the type-checked source programinto a restricted form of the second order polymorphiclambda calculus. In this `core language', each poly-morphic function application receives extra type ar-guments which instantiate the polymorphic variablesof the function's type. Some of these type argumentsexpress local constraints on list structure.Partial evaluation then statically reduces these typeapplications, propagating global constraints to each in-stance of an operation on lists and replacing it with areference to a version whose type expresses the sameconstraints.Given the appropriate pragmas, this framework is ap-plicable to many data types and their optimised represen-tations, such as lists and parallel implementations of bags[KuGl93], or arrays and quadtrees. Unlike many transfor-mations, it is fully higher order.The analysis and transformation has been implementedin the Glasgow Haskell compiler, and has signi�cantly im-proved execution times on a number of small programs (seeFigure 1) | up to a factor of two or more on list inten-sive programs. A later section of the paper gives additionalstatistics, such as total space allocation ratios and changesin code size.The next section describes the basic ideas in more de-tail, and is followed by comparisons with related work. The

analysis and transformation are speci�ed using type infer-ence rules and a partial evaluation algorithm, followed by anextended example. Finally, we show that the transformationis safe and terminates, and give performance �gures.2 The ideaCompilers often perform an optimisation called `loop un-rolling', in which the loop body is substituted once for itscall. This is applicable when a loop test is expensive and thebody of the loop is small. It trades code size for the timeand space needed to perform the loop test.Here is an unrolled version of map [HlWs89], written inHaskell [HdEtAl92]. The list constructor cons is written :,and nil is [].map f (x1:x2:xs)= f x1 : f x2 : map f xsmap f (x1:[])= f x1 : []map f []= []The optimised map constructs half as many thunks forrecursive calls. We can make map even more e�cient bygiving it a compressed list type that builds only half thenumber of cons cells. This new list type contains a \hydra"constructor Cons2, a cons-cell with more than one head.data List2 a= Cons2 a a (List2 a)| Cons1 a| NilHere is map's de�nition using the compressed representa-tion. We refer to this version as map O O, because it receivesand returns an optimised list.map_O_O :: (a -> b) ->List2 a -> List2 bmap_O_O f (Cons2 x1 x2 xs)= Cons2 (f x1) (f x2) (map_O_O f xs)map_O_O f (Cons1 x1)= Cons1 (f x1)map_O_O f Nil= NilSimilarly, we write map S O for the version of map withtype(a -> b) -> List Simple a-> List u bThe version map O O is signi�cantly more e�cient thanthe original, but it isn't directly usable because it refers toList2. Instead, we develop a transformation that automat-ically inserts references to it at compile time.Theoretically, there are four possible versions of map towork with, and these have the following types:map_S_O :: (a -> b) ->[a] -> List2 bmap_O_S :: (a -> b) ->List2 a -> [b]map_O_O :: (a -> b) ->List2 a -> List2 bmap_S_S :: (a -> b) ->[a] -> [b]

In fact, it seems reasonable to assume that each opera-tion on lists will have 2n versions if its type has n list types.However, this assumes that it is always a good idea to com-press a list. Our goal is to compress lists only if that doesn'tcreate extra work which might slow the program down.It turns out that some functions cannot use List2 with-out performing extra work. For example, the append func-tion (++) should not take an optimised list as its secondargument. Suppose that its call wasappend(Cons2 1 2 (Cons1 3))(Cons2 4 5 Nil)The result would be(Cons2 1 2(Cons2 3 4(Cons1 5 Nil)))which means that the second argument had to be recopied.Restricting the second argument to be a simple list forcesthe result of append to be simple as well. We can still decidewhether or not to optimise the �rst argument, as this listhas to be traversed and rebuilt anyway.Thus while eight versions of append are available, onlytwo, which have the following types, are bene�cial:append_S_S_S :: [a] -> [a] -> [a]append_O_S_S :: List2 a -> [a] -> [a]This demonstrates that the transformation must be ableto decide where it should use compressed lists and where itshould not. The goal is to select the most optimised versionavailable, then settle for something worse when necessary.Notice that it never has to coerce one type to another, whichwould be ine�cient. The compressed and simple types arecompletely separate.2.1 Using type inference to distinguish between formsof the typeThe transformation must infer where lists are constrainedto be simple before determining which versions can be used.This is done in two stages, the �rst being Hindley-Milnertype inference.The compiler uses a list-type de�nition that includes anew �eld called a selector �eld. For example, the usual list-type, de�ned asdata List a = Nil| Cons a (List a)is extended as follows:data List t a = Nil t| Cons t a (List t a)The extra type variable t is only relevant to the analysis.Uni�cation will instantiate this selector �eld if either aproducer or consumer of a given list requires it to be simple,otherwise it will remain polymorphic. If it remains poly-morphic, then both producer and all consumers can handlecompressed lists, so the compiler is at liberty to substituteoptimised versions of the functions. Thus there are only twoforms that selector types can take on | the Simple type ora type variable.The function map can take and produce any form of list,so we give it the type:

map :: (a -> b) ->List t a -> List u bwhere t and u are unconstrained selector �elds. The selector�elds in this type can be instantiated in any one of fourways, allowing the transformation to select one based uponcontext.However, we give append the type:append :: List t a-> List Simple a-> List Simple bwhere Simple is some prede�ned type known to the com-piler. This indicates that the �rst argument to append maybe either a simple list or a compressed list, but both itssecond argument and its result must be simple lists.We need the full power of uni�cation because constraintson list structure
ow up and down the parse tree. For ex-ample, suppose we have the expressionmap f (append xs ys)When this is typechecked, the argument type of map f willbe uni�ed with the type of (append xs ys). This type, andthe type of ys, are constrained to be simple by our type forappend, and this in turn constrains the argument type ofmap.On the other hand, the expressionappend xs (map f ys)shows that constraints can cause function results to be sim-ple lists.2.2 Propagating context informationIn the same way that more than one version of map may beneeded, so the transformation may have to generate morethan one version of a user de�ned function. For example,suppose that the program de�nes the functionglue front middle back= append front(append middle back)The type inference will assign glue the polymorphic typeglue :: List t a -> List u a-> List Simple a-> List Simple awhich allows for the possibility that the �rst two argumentsmay be compressed. It would be a mistake to assume thatthese must be compressed, because the function may be usedin a context that constrains its arguments to be simple. Forexample, one of them may receive a value created by append.Thus in each application of glue, the transformation has toensure that the application's context determines the appro-priate version.There is a simple way to do this. We can make thetypechecker translate a program into the second order poly-morphic lambda calculus in which types are manipulateddirectly, almost like values themselves. In particular, a poly-morphic function will have a number of type parameters. Aninstance of the function is expressed as a type application inwhich the function receives the actual instance types, whichare then bound to the type parameters within that functionbody.For example, the polymorphic function glue is translatedinto the following form:

glue = � t. � front middle back.append t front(append t middle back)The type variable t is bound by the type lambda form �,and is in turn passed as an argument to the two instances ofappend, where it will take on the type of the list elements.Note, however, that when lists are being optimised, the de�-nition of glue contains some extra polymorphism introducedby the selector �eld (in small caps here).glue = � sel1 t sel2.� front middle back.append sel1 t front(append sel2 t middle back)If glue is ever used in a context where its �rst argument,say, is unoptimised, then it will be applied to the type Sim-ple, which is bound to (and instantiates) the polymorphictype variable for this argument. Thus all that has to be doneto propagate these contexts safely is to use partial evalua-tion with respect to type applications, creating new versionswhen necessary.For example, the partial evaluation of glue in the appli-cationglue Simple Char tv front middle backwill be � front middle back.append Simple Char front(append tv Char middle back)which is translated into� front middle back.append S S S front(append O S S middle back)Here, partial evaluation has performed a compile-timebeta-reduction of type applications (in practice, the type-lambda forms are left in place to enable other optimisations).The result is a version of glue in which all the informationneeded to select versions of append is now present.

3 Comparison with other workThere is an old LISP technique called cdr-coding which isrelated to this approach. Whenever a copy garbage collec-tion occurred, list elements would be laid out in successivelocations, and the cells tagged to indicate representation.This superseded technology selects list representation dy-namically, whereas our approach allows static choices.One question that might reasonably be asked is: canoverloading of data types as de�ned by Jones [Jo93] handleour problem? Jones does this by de�ning a class of data-types, and then instantiating the class type variable withthe appropriate type.Unfortunately, this does not work. It is easy to see whywhen we look at the Functor class, de�ned asclass Functor f wheremap :: (a -> b) -> f a -> f bThis has to be modi�ed so that it can handle two di�erentlist types, one for the argument and an independent one forthe result. That requires us to add another class variable,as inclass Functor f1 f2 wheremap :: (a -> b) -> f1 a -> f2 bUnfortunately, overloading at more than one class type vari-able is often ambiguous, and unlikely to handle cases such aszip, which has two independent list arguments and returnsa list result.Shao, Reppy and Appel [ShReAp93] present an e�cientrepresentation for lists in ML which is slightly di�erent fromthe one given here. The odd element appears at the be-ginning of the list, rather than the end, which produces abetter version of tail. They use an algorithm based onre�nement types to determine list parity, introducing opti-mised versions of cons when possible. Their results are alsopromising, and it would be interesting to compare our twomethods for programs in ML. However, their approach ap-plies to this problem only, and not to the general problemof introducing optimised representations for abstract datatypes.Xavier Leroy [Le92] uses coercions wrap and unwrap andHindley-Milner type inference to determine where unboxedtypes can be used. However, he observes that recursive datatypes require boxed elements at all times. The data type wepropose in e�ect �nesses this problem by unboxing all of thetails of the list represented by a hydra constructor. Leroy'sapproach also requires wrapping and unwrapping overheadwhenever the list is constructed or accessed, which is notnecessary in this framework.Could deforestation [GiLaPJ93] largely or completely getrid of lists, making this work unnecessary? We have foundthat the two approaches are complimentary. In addition,current deforestation algorithms tend to degrade in the pres-ence of higher order functions, and cannot handle sharing,whereas our technique compresses shared lists and is fullyhigher order.Wadler's views [Wa87] are somewhat related to this prob-lem. Both problems involve manipulating di�erent represen-tations of a data-type. However, the idea behind views isthat it allows a variety of representations to be exportedfrom an abstract data-type and used by the programmer atthe source level, which is quite di�erent from the approachgiven here.

map_O_O

map_S_S

map_O_S map_S_O Figure 2: Lattice relating versions of map4 The type inference rulesType inference takes place after the program has been typechecked, desugared, and after any analysis, such as strictnessanalysis, that supplies information it needs.4.1 List operation versionsFor each operation on lists, the transformation needs an`optimal' version, one that uses the compressed data-typewherever possible. This is currently provided by the ADTlibrary, but automatic version generation is also possible.Given the type of an optimal version, that library must alsosupply all versions with types below that type in the com-plete �nite lattice induced by the Hindley-Milner polymor-phic type ordering on the selector argument of the list type.For example, the most general type for map is(a -> b) -> List t a -> List u bThe complete lattice of map versions appears in Figure 2.If it isn't possible to use the `best' version because notall versions below it exist, then a poorer `optimal' versionmust be provided instead. For example, if the ADT couldnot provide map O S, then the best version would have to bemap S S. However, none of the rest of the algorithm needsto be modi�ed if this happens, as this worse version is stilltreated as the best available.The reason for requiring a complete lattice of versionsis that there must be a version available for every possibleinstantiation of the selector �elds in the type of the bestversion. Initially the type inference rules use the best versiontype for each operation on lists, however the subsequenttransformation must be able to instantiate that type freely.4.2 The type environment and operations on itThe type inference rules take a program in the `core lan-guage' of the compiler (Figure 3) and transform it into thesecond order polymorphic lambda calculus (Figure 4).The core language is a standard intermediate languagefor functional compilers. It is the source and target languageof the analysis and transformation. We assume that fix isa built-in function.Extension of the type environment, �, is de�ned as�1M�2 = � i: i 2 dom �2 ! �2 i;�1 iThe function dom returns the domain of an environment.

Expressions:e ::= v variablesj con e1 : : : en; n � 0 constructor applicationsj e1 e2 applicationj � v e lambda bindingj case e (p1; e1) : : : (pn; en); n � 1 case analysisj let v e1 e2 let bindingPatterns:p ::= v variable patternsj con p1 : : :pn; n � 0 constructor patternsFigure 3: The core languageTypes:� ::= � type variablesj � �1 : : : �n; n � 0 constructor typesj �1 ! �2 function types� ::= 8 �1 : : : �n:�; n � 0 polymorphic typesExpressions:e ::= v variablesj con e1 : : : en n � 0 constructor applicationj e1 e2 applicationj e �1 : : : �n; n � 0 type applicationj � �1 : : : �n: e; n � 0 type lambda bindingj � v e lambda bindingj case e (p1; e1) : : : (pn; en); n � 1 case analysisj let v e1 e2 let bindingPatterns:p ::= v variable patternj con p1 : : :pn; n � 0 constructor patternFigure 4: The second order polymorphic lambda calculusThe usual initial type assignment, �init, maps primitivefunctions and constructors to their types.The type assignment �list maps list operations to thetype of the best version for the operation, and the construc-tors Nil and Cons to the type List applied to Simple.Thus the initial type assignment used by these rules is�0 = �init M �list4.3 Inference rulesThe rules themselves appear in Figure 5. They are straight-forward, and are similar to others given elsewhere [MiHa88].There are three judgement forms. They all have a similarstructure, � ` e : � ; ein which � is the type assignment, e the expression beingtyped, and e the translation of that expression.
The �rst, `polyexp, infers a polymorphic type for an ex-pression, while the second, `, infers a monomorphic type.The third, `pat, infers a type, and a type assignment forbound pattern variables.Notice that type-lambda forms may enclose let-boundfunction de�nitions, but never are enclosed themselves (un-less surrounded by a let). The reason for this is thatHindley- Milner types do not permit universal quanti�ca-tion unless it takes place over all type variables in the type;in other words, it must be at the outermost level.5 Partial evaluationThe partial evaluator, T , takes a program in the second or-der polymorphic lambda calculus and converts it back intothe core language, inserting the appropriate operation ver-sion names.

� v = �� `polyexp v : � ; v� `polyexp v : 8�1 : : : �n:� ; v� ` v : � [�1=�1 : : : �n=�n] ; v �1 : : : �n� con = � �1 : : : �n� ` e1 : �1 ; e1: : :� ` en : �n ; en� ` con e1 : : : en : � �1 : : : �n : ; con e1 : : :en� ` e1 : �1 ! �2 ; e1� ` e2 : �1 ; e2� ` e1 e2 : �2 ; e1 e2�Lfv : �1g ` e : �2 ; e� ` (� v e) : �1 ! �2 ; � v e� ` e : �e ; e� `pat p1 : (�e;�1) ; p1�L�1 ` e1 : � ; e1: : :� `pat pn : (�e;�n) ; pn�L�n ` en : � ; en� ` case e (p1; e1) : : : (pn; en) : � ; case e (p1;e1) : : : (pn;en)� ` e : � ; e8 i; 1 � i � n; �i 62 �� `polyexp e : 8�1 : : : �n:� ; ��1 : : : �n:e� `polyexp e1 : � ; e1�Lfv : �g ` e2 : � ; e2� ` (let v e1 e2) : � ; (let v e1 e2)� v = �� `pat v : (�; fv : �g) ; v� con = � �1 : : : �n� `pat p1 : (�1;�1) ; p1: : :� `pat pn : (�n;�n) ; pn� `pat con p1 : : : pn : (� �1 : : : �n;�1L : : :L�n) ; con p1 : : :pnFigure 5: Type inference rules

5.1 The partial evaluation algorithmMore speci�cally, the rules examine each type application,f �1 : : : �nThey distinguish between list operations and other func-tions as follows.5.1.1 List operationsIf f is a list operation, the sequence of type arguments isused to select the version.We de�ne a function provided by the compiler,	 :: Name ! [�] ! Namewhich maps the name of the best version of the list op-eration, labelled with this type argument sequence, into thecorrect version for this particular occurrence of the opera-tion.This function �rst forms a substitution s from the poly-morphic type of the best version,8�1 : : : �n : �and the sequence of types from the application. How-ever, the idea is to instantiate only those type variables cor-responding to the selector arguments, since these are whatdetermine the version required. So from s, 	 creates anothersubstitution s0, that maps all type variables to themselves,unless the variable is bound to Simple.s0 = f(�;�) j (�; �) 2 s; � 6= Simpleg [f(�;Simple) j (�;Simple) 2 sgFor example, suppose that[Int, Simple, Bool, tv]is a type argument sequence for the operation map. Thesubstitution created is[(a,a),(t,Simple),(b,b),(u,u)]When applied to map's optimal version type, it producesthe type(a -> b)-> List Simple a-> List u band so the version selected is map S O.Thus the transformation must build substitutions, using� 2 Subst :: Tv ! Ty:The function aps applies a substitution to a type.The initial substitution is�0 = � �:unbound:

5.1.2 User de�ned functionsIf the function f is user-de�ned, then the sequence of typearguments must be propagated into its body, eventually toapplications of list operations.The de�nition of f is partially evaluated with respect tothese type arguments, which are always static values. If aversion of f has already been partially evaluated with re-spect to the same type arguments, then no new partial eval-uation takes place. Instead, a reference to that version isinserted.5.2 The code and version environmentsIn order to create versions, the partial evaluation rules needto be able to retrieve function de�nitions. This is done usingthe code environment� 2 Env :: Name ! Expwhich maps let bound variables to their de�nitions. Theinitial code environment is�0 = � n: unbound:Function versions are uniquely identi�able by a type ar-gument sequence, which is used as a label:Label :: [Ty]We write a labelled variable as v� .The versions of a particular function are stored in anenvironment' 2 Vfun :: (Name;Label) ! ExpWhen a let expression is translated back into the corelanguage, ' provides the versions of the locally de�ned func-tion. We alter the grammar of the source language slightly,changing only the let form, which is rede�ned aslet ' eand adding labels to variables.Versions for all let-bound functions in a particular scopeare stored in a version environment� 2 VEnv :: Name ! Vfunwhich is altered using update, de�ned asupdate � v v� e = �[((� v)[e=v�])=v]The initial version environment is�0 = � n: unbound:5.2.1 The partial evaluatorThe partial evaluator T takes an expression, a substitution,a code environment, a version environment and a tuple con-taining the operation type assignment �list and the abstractdata type function 	. Each rule returns an expression andthe new version environment, threading around the accumu-lated information on versions already created.T :: Exp ! Subst ! Env! VEnv ! (TyEnv; Adtf)

T [[v]] � � � � = ([[v[]]]; �)T [[con e1 : : :en]] � � � �= let (e01; �1) = T e1 � � � �: : :(e0n; �n) = T en � � �n�1 �in ([[con e01 : : :e0n]]; �n)T [[e1 e2]] � � � �= let (e01; �1) = T e1 � � � �(e02; �2) = T e2 � � �1 �in ([[e01 e02]]; �2)T [[v �1 : : : �n]] � � � �@(�list;)= let � 01; : : : ; � 0n= aps � �1; : : : ;aps � �n� = [� 01; : : : ; � 0n]incase (v 2 dom �list) ofTrue ! (v � ; �)False ! let (� �1 : : : �n: e) = � v(e0; �0) = T e (�[� 01=�1]:::[� 0n=�n]) � � �in ([[v�]]; update �0 v v� e0)T [[case e (p1;e1) : : : (pn;en)]] � � � �= let (e0; �0) = T e � � � �(e01; �1) = T e1 � � �0 �: : :(e0n; �n) = T en � � �n�1 �in ([[case e (p1;e01) : : : (pn; e0n)]]; �n)T [[� v:e]] � � � �= let (e0; �1) = T e � � � �in ([[� v:e0]]; �1)T [[let v e1 e2]] � � � �= let (e0; �1) = T e2 � (�[e1=v]) � �in ([[let (�1 v) e0]]; �1[?=v])Figure 6: Partial evaluation of core expressions

! (Exp; VEnv)The interesting rules are those handling variables andlet.Variables that are not applied to a series of types arelambda bound, in which case the variable is given a labelindicating that it is monomorphic and returned.A function applied to zero or more types is either a listoperation or is de�ned by the program. If it is an operation,it will be in the domain of the type assignment for opera-tions, in which case the appropriate version is found by 	.Otherwise, its de�nition is retrieved, the substitution is ex-tended with a binding for each type variable bound by thatde�nition, and it is partially evaluated. Finally, the versionenvironment is updated with the new de�nition.6 An exampleIn this section, we show what happens during compilationto this small program:inc x = x + 1inclist xs = map inc xsmain resps = list (AppendChan stdout(show(inclist(inclist(1:2:[])))))Initially, the compiler inserts references to the best ver-sions for each list operation, and converts lists appearingin the user program into applications of Cons and Nil toSimple.inc x = x + 1inclist xs = map O O inc xsmain resps = list (AppendChan stdout(show(inclist(inclist(Cons Simple 1(Cons Simple 2(Nil Simple)))))))When Hindley-Milner type inference takes place, it con-verts the program into the second order polymorphic lambdacalculus (we've abstracted away from Haskell overloadinghere!):inc = � x. x + 1inclist = � sel1 sel2. � xs.

map O O Int sel1 Int sel2 inc xsmain resps= list (AppendChan stdout(show(inclist tv1 tv2(inclist Simple tv3(Cons Simple Int 1(Cons Simple Int 2(Nil Simple)))))))Notice that one of the instances of inclist is applied toa simple list, while the other is applied to the result of the�rst call to inclist. This last list can be compressed, whilethe �rst cannot, so the compiler must generate versions.Partial evaluation starts from the main program, cre-ating a version for inclist which expects a simple list ofintegers. When it encounters inclist again, it creates anew version which expects a compressed list.inc = � x. x + 1inclist S O= � xs. map S O inc xsinclist O O= � xs. map O O inc xsmain resps= list (AppendChan stdout(show(inclist O O(inclist S O(1:2:[])))))In practice, the constant lists were created by versionsof a special list operation, so in fact the �nal program doesnot contain any constructors with selector �elds.7 Termination and safetyIn this section, we prove that the transformation terminatesand is safe. Termination is always an issue when a transfor-mation creates versions of recursive programs, but Hindley-Milner type inference allows this to be controlled withoutmodifying the partial evaluation algorithm.Theorem 1 T creates a �nite number of function versions.Proof: By structural induction. The interesting case isletrec (here, let and fix). Hindley-Milner type inferenceforces all recursive references to a given function to have thesame monomorphic type, thus sub-recursive references willnot be partially evaluated. 2A `safe' program is one in which no function expectingone list representation receives the other one instead. Thetransformed program will refer to functions using two dis-tinct types for lists, so it is su�cient to prove that the entireanalysis and transformation produces a well-typed programwhen given one.

Lemma 1 If the initial program e is well-typed, then so ise0, where �0 ` e : � ; e0.Proof: This is a standard [MiHa88], well-understood trans-lation. 2Lemma 2 If the translation e0 is well-typed, then(T [[e0]] �0 �0 �0 (�list;)) # 1is well-typed.Proof: By Lemma 1, all type-lambda expressions in e0are well-typed. Mitchell and Harper give rules typing ex-pressions in the second order polymorphic lambda calculus[MiHa88], including the following type inference rule for typeapplications (TAPP):� � M : �t : U1:�� � M � : [�=t]�Thus, compile-time beta reduction of type applicationspreserves the original typing.2Theorem 2 Let e be well-typed and let e00 be(T [[e0]] �0 �0 �0 (�list;)) # 1where �0 ` e : � ; e0:Then e00 is well-typed.Proof: The transformation receives a well-typed pro-gram, e. By Lemmas 1 and 2, each type application re-ferring to a list operation contains the correct monomorphictype for each selector �eld in the type of the best version forthat operation. When creating a substitution, 	 partitionsthese types into two equivalence classes: one containing onlySimple and the other containing all the remaining monomor-phic types (which will be type variables). It then selects aversion by forming a one-to-one mapping between equiva-lence classes and list types, ensuring that e00 is well typed.28 Some �gures for benchmarksThe benchmark table in Figure 7 gives the following �gures:� the execution time taken by the optimised programdivided by the time taken by the unoptimised program,� the total number of bytes allocated by the optimisedprogram divided by the total number of bytes allocatedby the unoptimised program,� the number of extra versions of user-de�ned functionscreated by the transformation.These programs were compiled by the Glasgow Haskellcompiler, version 0.16, modi�ed to optimise lists using thistransformation. They were executed on a Sun SPARCsta-tion 1 with 28M of RAM, using a two-space garbage col-lector. The list representation used was unrolled 5 times,rather than 2.In estimating the value of the transformation on lists,the ratios expressing space consumption are probably the

no. benchmark time space versions1) adder 82% 90% 102) cosine transform 92% 93% 03) fast fourier transform 88% 98% 14) life 51% 89% 35) peano 37% 78% 06) sigma 66% 87% 07) transitive closure 69% 77% 1Figure 7: Percentages for the optimised list transformationimplemented in glhc, Version 0.16, executing on a Sun 4/25.most useful, since timings can vary from machine to ma-chine, and Sun SPARCstation 1 machines executing func-tional programs behave poorly when cache misses occur andthe cache is direct mapped [HaBuHo93].The programs themselves varied, but were between 10to 100 lines long. Figures for the entire Haskell `no�b' suitewould be more convincing, however the implementation isnot yet ready for it. For example, it does not handle im-ported modules, and manipulating simple lists still trips overthe tricky code structure that can be expected at core level(these are restrictions incurred only by the prototype - thereis no fundamental reason why this technique can't be usedwith modules). However, several smaller benchmarks werewritten in the classic functional style that this transforma-tion currently supports.� adder implements a combinational binary adder cir-cuit;� cosine transform is part of Rex Page's Fourier bench-mark in the `spectral' section of the Glasgow Haskellcompiler nofib suite [Pa92];� fast fourier transform is another part of the samebenchmark;� life is John Launchbury's implementation of Con-way's Life [Gr83], also in the `spectral' section of thenofib suite;� peano performs multiplication using lists to representthe natural numbers;� sigma adds up a series of numbers;� transitive closure implements a transitive closurealgorithm based on the usual inductive de�nition. Itis one of the programming assignments for a course onfunctional programming.The number of versions indicated by the table is the num-ber of additional user-de�ned function versions created bypartial evaluation.While some of these test cases were intended to push therepresentation as hard as possible to see what it could dounder supposedly ideal circumstances (peano,sigma), othersneeded to do a substantial amount of �ltering (transitiveclosure), or did odd things with list elements such as shiftthem to the left or right (life), or had many componentswhich appeared in di�erent contexts (adder), or containedcyclic structures which sometimes required that the wholestructure be made simple (cosine transform, fast fouriertransform). Handling cyclic structures is still a research

problem, and requires intervention by hand at times to avoidblack holes.It is worth noting that the strictness analysis used wasaggressive | lists were unrolled if they contained no tailsthat were unde�ned, which is much stronger than the usualtail strictness requirement. This worked well in practice,but probably will hurt programs with space leaks. On theother hand, ML programs do not require strictness analysisat all, and so they should do particularly well under thistransformation.9 Conclusion and further workWe have given a general framework for integrating opera-tions over unoptimised data types with versions that use anoptimised implementation. This has been successfully ap-plied to operations on lists, and we expect it to apply to anumber of other data types.For example, a parallel implementation of bags [KuGl93]has been suggested as providing a new way to take advan-tage of implicit list parallelism in functional languages. Pro-grammers import functions that handle bags, such as mapand foldr, and then use them where sequential lists are notrequired by the program. The implementation of these func-tions, which is imperative, is hidden within the abstract datatype. It should be possible to infer coercions between bagsand lists using this framework if the programmer can supplypragmas identifying associative and commutative functionsfor foldr. The compiler would have to receive versions forlist operations that have unoptimised types if the operationsequentially accesses a list. For example, the nth function,which retrieves the nth element of a list, would have a typethat forces its argument to be unoptimised.10 AcknowledgementsJohn Launchbury contributed much to the presentation ofthe basic ideas, and made other useful comments, as did theconference referees.Dennis Howe, John T. O'Donnell, Simon Peyton Jones,Andre Santos and Phil Wadler all provided helpful feedbackon this and earlier drafts.References[Gr83] Gardner, M., Wheels, Life and Other Mathe-matical Amusements, W.H.Freeman and Com-pany, New York, 1983.[GiLaPJ93] Gill, A, J. Launchbury and S.L. Peyton Jones,\A short cut to deforestation", Proc. Func-tional Languages and Computer Architecture,Copenhagen, DK, Springer-Verlag, (1993).[HlWs89] Hall, C. V. and D. S. Wise, Generating func-tion versions with rational strictness patterns,Science of Computer Programming 12 (1989)39-74.[HdEtAl92] Hudak, P., S. L. Peyton Jones, and P. Wadler,editors, Report on the Programming LanguageHaskell, version 1.2, ACM Sigplan Notices,27(5), 1992.

[HaBuHo93] Hammond, K., G. L. Burn and D. B. Howe,Spiking Your Caches, In K. Hammond and J.T. O'Donnell, eds., proceedings of FunctionalProgramming, Glasgow 1993.[Jo93] Jones, M. P., A system of constructor classes:overloading and implicit higher-order poly-morphism, Proc. Functional Languages andComputer Architecture, Copenhagen, DK,Springer-Verlag, (1993).[KuGl93] Kuchen, H. and K. Gladitz, Parallel Implemen-tation of Bags, Proc. Functional Languagesand Computer Architecture, Copenhagen, DK,Springer-Verlag, (1993).[Le92] Leroy, X. Unboxed objects and polymor-phic typing, in Proc. Principles of Program-ming Languages, New Mexico, USA, Springer-Verlag, (1992).[MiHa88] Mitchell, J.C. and R. Harper, The Essenceof ML, Proc. Principles of Programming Lan-guages, San Diego, California, Springer-Verlag,(1988).[Pa92] Partain, W., The no�b benchmark suite ofHaskell programs. In J. Launchbury and P.Sansom, eds., Functional Programming, Glas-gow 1992, Springer-Verlag, (1992).[PJnLn91] Peyton Jones, S. L. and J. Launchbury, Un-boxed values as �rst class citizens, Proc. Func-tional Languages and Computer Architecture,Boston, Springer-Verlag, (1991).[ShReAp93] Shao, Z. J. H. Reppy and A. W. Appel, Un-rolling Lists, December 3, 1993, to appearin Proc. LISP and Functional Programming,(1994).[Wa87] Wadler, P. Views: A way for pattern matchingto cohabit with data abstraction, Proc. Princi-ples of Programming Languages, Munich, Ger-many, Springer-Verlag, (1987).

