
Spark — A Generic Simulator for
Physical Multi-agent Simulations

Oliver Obst, Markus Rollmann

7/2004

Fachberichte
INFORMATIK

Universität Koblenz-Landau
Institut für Informatik, Universitätsstr. 1, D-56070 Koblenz

E-mail: researchreports@uni-koblenz.de,

WWW: http://www.uni-koblenz.de/fb4/

Spark — A Generic Simulator for Physical

Multi-agent Simulations

Oliver Obst Markus Rollmann

June 14, 2004

In this paper we describe a new multi-agent simulation system, called
Spark, for physical agents in three-dimensional environments. Our goal in
creating Spark was to provide a great amount of flexibility for creating new
types of agents and simulations. To achieve this, we implemented a flexible
application framework and exhausted the idea of replaceable components in
the resulting system. In comparison to specialized simulators, users can ef-
fortless create new simulations by using a scene description language. Spark is
a powerful and flexible tool to state different multi-agent research questions.
It is used as official simulator for the first three-dimensional RoboCup Sim-
ulation League competition. We present the concepts we used to achieve the
flexibility in our system and show how we seamlessly integrated the different
subsystems into one user-friendly framework.

1 Introduction

Simulated environments are a commonly used method for researching artificial intel-
ligence methods in physical multi-agent systems. Simulations are especially useful for
two different types of problems: (1) to experiment with different sensors, actuators or
morphologies of agents and (2) to study team behavior with a set of given agents. Ad-
ditionally, the connection between both types of problems is an interesting research
problem.

To address each of these problem types without simulators, the actual hardware would
have been to be built and set up in several experiments. Doing so with a number of real
robots is often an expensive and also a difficult task because of the amount of param-
eters generally involved. For many approaches, like for instance in machine learning,
experiments have to be repeated a great number of times.

2 Related Work 2

In this paper we describe a multi-agent simulation system, called Spark, for physical
agents in three-dimensional environments. Spark is a generic tool for creating simulations
that can be used to address all of the above mentioned problem types. It was our goal to
provide a great amount of flexibility, so that for somebody creating new simulations it
is possible to choose how much attention should be paid to each of these problems. We
show how we achieved this flexibility by exhausting the idea of replaceable components
in the underlying framework.

For simulation designers, this flexibility comes together with a user-friendly way to
create simulations by using a scene description language and pluggable components. For
users of the system creating agents for a given simulation it is interesting that they do not
need to know internals of the system because agents are decoupled from the simulator.
To achieve reliable and reproducible results, we built Spark integrating prior work in
both physical and multi-agent simulation.

2 Related Work

A large number of simulators has been developed in both multi-agent and robotics
research. From the multi-agent perspective, the primary interest is usually to study
team behavior on an more or less abstract level of detail. In this domain, RoboCup
Simulation League [Noda et al., 1998] is a prominent benchmark. The primary domain
of RoboCup are robotic soccer games in which teams of robots or software agents have
to cooperate and make decisions in real time. One of the landmark goals for RoboCup
is that by mid-21st century, a team of fully autonomous humanoid robot soccer players
shall win against the champion of the most recent World Cup. The official simulator
[Noda, 1995] for the annual RoboCup competitions has been developed since around
1992. In Soccer Simulation League competitions, two teams of 11 autonomous agents,
represented as circles, compete in a two dimensional, discrete-time simulation. From
the first official RoboCup competition1 up to now the simulator has continuously been
enhanced. However, one of the fundamental restrictions of the simulator – its limitation
to a two dimensional world – remained. In order to accomplish the vision of the RoboCup
Initiative, it is absolutely necessary to move the simulation into a three-dimensional world
(cited from [Kitano and Asada, 1998]).

On the RoboCup 2003 Symposium, we proposed a new approach to a three-dimensional
physically realistic soccer simulator [Kögler and Obst, 2004]. This system was a proto-
type of the simulator we describe in this paper and not specially designed to simulate only
soccer competitions, but a universal system for simulation of physical agents. However,
the specific features for reproducible and distributed simulations, simple construction of
articulated bodies and the scene description language we describe here were missing.

1The first Robot World Cup Soccer Games and Conferences were held in conjunction with the Inter-
national Joint Conference on Artificial Intelligence (IJCAI) in 1997.

2 Related Work 3

Despite this, in a road map discussion for Soccer Simulation League on RoboCup
2003, a huge majority of participants voted for adding the three-dimensional simulation
to the competitions; this year a simulation built on top of Spark is used officially for
the first three-dimensional RoboCup Simulation League competition. In contrast to the
two-dimensional simulation, our implemented three-dimensional simulation possesses a
higher complexity with respect to the possible team behavior while it maintains a good
degree of abstraction with respect to the possible agent actions and sensations.

An entire different tool to study the behavior of a large number of agents in two- or
three-dimensional continuous virtual worlds is XRaptor [Mark et al., 1998; Bruns et al., 2001].
For XRaptor, an agent is either a point, a circular area or a spherical volume. A detailed
physical simulation is not supported by XRaptor, though in principle possible. The agent
processes are not entirely decoupled from the simulation loop, unlike in Spark. Conse-
quently, XRaptor is primarily useful for reactive agent types.

For roboticists, the primary purpose of a simulation system is often to set up repro-
ducible experiments and provide prototyping environments for mobile robots. Some of
the existing simulators are tailored to specific robots platforms, most however address a
number of robot types. The simulators below fall more or less into this category.

Webots [Cyb, 2004] is a commercially available mobile robotics simulation software
that is intended as a rapid prototyping environment for modeling, programming and
simulating mobile robots. It includes robot libraries that allow the direct transfer of
control programs to existing mobile robots platforms. Like Spark, it uses the ODE library
for accurate physics simulation. It comes with tools for visualization and for editing
properties of objects in the world. The focus of Webots is the accurate modeling of
existing robot platforms. This affects the level of abstraction of the provided sensors
and effectors. These are low level in order to match their real life counterparts. In this
type of simulation a major part of the robot’s job is the classification of sensor data
for self-localization and obstacle avoidance. In comparison the focus of Spark is more
towards general principles of multi-agent research as for example coordination or learning
in multi-agent systems.

Übersim [Browning and Tryzelaar, 2003] is a simulator specifically designed as a robot
development tool for the RoboCup small-size soccer league. It uses a fixed level of ab-
straction to model the perception and action interfaces for the simulated robots. It
provides a set of predefined robot models and can be parameterized only at compile
time. Like Spark, Übersim is an Open Source project and uses the ODE physics library.

M-ROSE [Buck et al., 2002] is a 2D simulator used for the rapid development of robot
controllers. It features a three step approach for learning a desired controller behavior.
First the individual motion profile of a robot is learned using a neural net. The learned
profile is then the basis for a simulator specialized for this robot type, in which the
controller learning tasks are performed. The trained controller is then transfered to the
real robot to validate its performance. This simulator is specialized for the development
of controllers for robots with realistic sensor inputs. The approach is quite different to

3 The Zeitgeist Application Framework 4

ours in that it lacks features like for instance a full physical collision detection.
The ultimate simulation system addresses all of these questions, and in fact this at

least the direction Spark is aiming for. Admittedly, it does so from the multi-agent side
of the spectrum, because with RoboCup Soccer Simulation League as one implemented
application this is where its origin lies. With our underlying physics system and the way
sensors and effectors are realized, simulations built with Spark are not constrained to
high-level abstractions of multi-agent systems.

The remainder of this paper is organized as follows: The following section describes the
application framework we created as base for the whole simulation system. In Sect. 4, we
explain the functionality and integration of the core simulator engine. Section 5 shows
how we integrated the underlying physics engine and provided a user-friendly way to
access it by introducing the idea of connecting different simulation primitives via path
expressions through a scene graph. Section 6 gives some details of the way network
support has been added to the simulator, while Sect. 7 introduces a scene description
language for setting up different kinds of simulations. Finally, Sect. 8 concludes the
paper.

3 The Zeitgeist Application Framework

One of the first implementation steps was to create a flexible application framework,
called Zeitgeist. Zeitgeist was invented2 as application framework for the simulator, but
has also been used successfully to create other applications such as software agents and
monitors for the simulation. The flexibility of Zeitgeist was one of the the key reasons
why it was possible to refactor and build upon the prototype implementation instead
of starting from scratch again. A variant of the reflective factory design pattern can be
identified as key element for the flexibility of Zeitgeist. The reflective factory pattern
was extended with methods supporting an object hierarchy of both created objects and
factories in the same tree. We describe this pattern in the subsequent paragraphs. To our
knowledge, a description of this element as design pattern cannot be found elsewhere,
even though it is very likely that this pattern also occurs in other applications. We
believe that it is also useful for other applications which have to provide a system of
exchangeable and scriptable components.

3.1 Reflective Factory Pattern

The reflective factory pattern [Hargrove, 2000] is also known as the Class Object pattern.
It allows the factory based instantiation of objects at runtime, given the class name as
a string. Products of the factory, i.e. instantiated classes, maintain references to the
factory that created them.

2original implementation by Marco Kögler, see also [Kögler, 2003; Kögler and Obst, 2004]

3 The Zeitgeist Application Framework 5

The property that each instantiated object has the knowledge which factory cre-
ated it distinguishes the reflective factory pattern from the abstract factory pattern
[Gamma et al., 1995]. It enables every object to access meta data stored in the associ-
ated class object at runtime. Zeitgeist exploits this to store class names and information
about supported interfaces in the class objects, allowing for queries about the class type
and supported interfaces at runtime. By using this information we made all objects in
the simulator accessible to a scripting language. The availability of this kind of meta data
is native to object oriented programming languages, such as Objective C [Cox, 1986],
Smalltalk [Goldberg and Kay, 1976] or Ruby [Matsumoto, 2001], but not to C++. We
have chosen C++ as primary implementation language and adding this information “by
hand” anyway, because it provided the most freedom in integrating external libraries.
For instance the agent middleware system we are using (SPADES, see also below) offers
only a C++ interface.

3.2 Reflective Factory with Object Hierarchy

In combination with the reflective factory pattern, Zeitgeist organizes factories and ob-
jects created by factories in a tree like structure, comparable to a virtual file system.
To this end, each object stores its node name along with references to its parent and its
child nodes. Based on these means we have a flexible mechanism to locate and reference
objects at runtime: Given a path expression, similar to that used in a UNIX like file
system, Zeitgeist is able to retrieve the corresponding object instance.

The object hierarchy is useful for implementation of a concept called pathname space
mapping. Pathname space mapping appeared already in the QNX operating system and
has been used to realize the QNX resource manager concept [QNX, 2003]. Resources are
addressed by a path through the hierarchy given as string. The managed resources here
are Spark services, called servers in our terminology. Servers are simply objects installed
somewhere in the object hierarchy; they expose their functionality at locations which are
known to applications. Applications can get services at runtime by querying the known
location.

Zeitgeist itself relies on the combination of the reflective factory in conjunction with
the object hierarchy for the following reason: The factories themselves are installed at
determined locations in the hierarchy. This can be used to create objects of classes that
are unknown at compile time of the simulation system. This feature is useful because
additional functionality can be added to the system with no recompilation of the whole
system, but just by adding plugins. From these custom classes realized as plugins, it
is possible to get instances via configuration scripts and install the instances as servers
again. Zeitgeist makes further use of the pathname space mapping concept when the
implementation of services is delegated to helper classes. In the object hierarchy, these
helper classes are installed immediately below the server node. This leaves the server ob-
ject as a lean mediator to several exchangeable sub-services with one common interface.

4 Core Simulator 6

An example application is the file server in Spark, a service that provides access to
various mounted file systems. File systems are realized by objects implementing the
file system interface used to access different file stores, like the standard file hierarchy
of the operating system or like a file archive contained in a zip file. The file server
implementation provides a single interface to transparently access different file system
objects. During simulator run time, it is possible to create the file server and required file
systems by using the file server factory and file system factories. The created file server
is linked into the object hierarchy at a known location and the created file systems are
installed directly below the file server. From there, it is possible to use different variants
of file systems with a common interface.

Other useful applications of this facility are for instance protocols used between agents
and the simulator or between the simulator and monitor programs. The great flexibility
of the Spark system stems from the fact that all services have been implemented in this
fashion. Adding this kind of flexibility does not add much overhead to the system: the
lookup of the objects in our framework usually happens during initialization time and
is cached by ordinary pointers.

4 Core Simulator

For an entire simulation, the simulator, agents, and monitors to watch simulations are
all different processes that have to work together. The core of our simulator is the part
of the system that contains the run loop and does the event management. It cares for the
timing, and controls the communication between the simulator and external processes.

The core part of the system is realized in the same spirit as other services described
in the previous section. Thus even the run loop of the simulator is replaceable. We
realized two different kinds of run loops, which users of the Spark simulation system
can choose for their simulations: a straightforward implementation that realizes agent
actions in the order in which they arrive at the simulator, and an implementation that
cares for maximum reproducibility of distributed simulations. With the straightforward
implementation, simulations and agents can be realized easily. The other implementation
was implemented using SPADES [Riley and Riley, 2003], a middleware system for agent-
based distributed simulations. This system provides an abstraction that allows world
model and agent designers to ignore machine load on different machines, networking
issues and reasoning about distributed event realization.

4.1 SPADES-based Simulations

SPADES operates on simulation events that are sequentially realized. Agents simply
receive sensations and send actions. For a simulation designer, two kinds of latencies
are of interest: firstly, the latency inherent in the communication between agents and
simulator, and secondly the modeled latency (dead time) of real sensors and effectors.

4 Core Simulator 7

SPADES is able to address both kinds of latencies. It hides away the network latency
using simulation time stamps, so that this kind of latency is non-existent from the
agents point of view. It further allows for explicitly modeling the dead times of sensors
and effectors, addressing the second kind of latency.

The system models agents as computational entities that receive sensation events from
the simulation and return actions to be executed after some computation. Apart from
the requirement that an agent can read and write to UNIX pipes, its internal architecture
is not constrained in any way. In particular it is not required that agents are written in
a special programming language or linked against a specific library.

Agents are not executed as part of the simulator loop. This means that actions of
agents do not have to be synchronized with the simulator. Therefore no single joint
operation of agent and simulator is required at any particular time.

4.2 System Structure

SPADES is one of the possible instantiations of the simulator run loop. From the
SPADES point of view, a simulation is structured into several groups of components:
These are a simulation engine, a world model, one or more communication servers, agents
participating in the simulation and possibly some connected monitors.

The simulation engine contains the main run loop of the SPADES system. It im-
plements the event system and coordinates all network communication with connected
monitors and communication servers.

A communication server must be run on each machine on which agents run. It connects
via TCP to the simulation engine and manages the communication with agents on the
host machine through a Unix pipe as well as tracking their CPU usage to calculate
their thinking latency. SPADES provides an integrated communication server that is
part of the simulation engine process, useful for single machine setups to avoid the TCP
overhead.

The world model holds the state of the simulated world and advances it up to the
time of the next event as requested by the simulation engine. It is further responsible to
realize events, that means to change the state of the world in response to an occurring
event. The most common source of an event is an act event in order to carry out an
agent action. Finally, the world model generates sensations that are sent to participating
agents. These events carry perception data about the current state of the world.

4.3 Event Processing

In the interaction with the world model, SPADES advances the world model several time
quanta until the next pending event. In the interaction with the agents, SPADES is a
discrete event simulator, following its model of agents. In this model agents react only

4 Core Simulator 8

in response to sensations from the world model. Actions an agent takes in response to a
sensation are processed as new events which the world model carries out at a later time.

Events are therefore the basis for a straight forward interaction between an agent and
the simulation: An agent waits until it receives a sensation event from the communication
server it is connected to. Based on this sensation it then generates a set of actions that
it sends back to the communication server. The thinking cycle is finished as soon as the
communication server receives a done thinking message from the agent.

After a sensation is sent to an agent, the corresponding communication server tracks
the machine time used until it receives a done thinking message. The total amount
of machine time used in the think cycle is then translated into simulation time. By
correlating the consumed machine time with the corresponding simulation time SPADES
assures that the simulation is reproducible and unaffected by network delays or load
variations among machines hosting the agents. These factors only affect the overall
simulation speed and not the generated sequence of events. SPADES offers multiple
timer models that offer different compromises between precision and overhead. These
are for example a jiffies based and a perfctr 3 based timer.

To keep track of the simulation time an agent used during a thinking cycle, it can
request think time messages from SPADES. This is a type of inform message that does
not start a new thinking cycle.

SPADES exploits concurrency by overlapping of events. It guarantees however that the
order of event realization will not violate causality. That means no causally related events
are realized out of order, for example like a sensation and a subsequent act event of an
agent. In many cases however, the sense, think and act components can be overlapping
in time.

4.4 Spades Integration

In order to build a simulation, SPADES expects an implementation of a world model
and custom event realizations for sense and act events. Both, the simulation engine and
the custom world model become part of the same process.

In this way the Spark simulator implements the SPADES world model interface. We
attached great importance to the separation between SPADES specific code and other
Spark components. This allows for using simulation engines other than SPADES. Cur-
rently the user can choose between SPADES, providing reproducibility with high accu-
racy and a custom simulation server focusing on raw speed. Here, we drop the repro-
ducibility SPADES provides with the remaining concepts being similar. We implemented
this engine because we think that it will be useful in application domains where a large
number of agent configurations and control parameters have to be evaluated, as for
example in genetic evolution or machine learning.

3a Linux kernel driver for low-level performance-monitoring counters, and support for per-process coun-
ters http://sourceforge.net/projects/perfctr/.

http://sourceforge.net/projects/perfctr/

5 Physical Simulation 9

5 Physical Simulation

Another equally important part is the physical simulation of the system. Instead of
implementing an own physics subsystem, we integrated ODE [Smith, 2004], the Open
Dynamics Engine. ODE is a free, high quality library for simulating articulated rigid
body dynamics.

5.1 Basic Concepts

Rigid bodies are the basic entity of the physical simulation. They have several constant
properties like mass, their center of mass and mass distribution. Other properties change
over time. These are their position and orientation in space and further linear and angular
velocity.

Without any external influences a rigid body keeps its properties unchanged, resulting
in a monotonous movement over time. ODE provides forces and torques as the two basic
concepts used to act on rigid bodies. These two concepts model all interesting properties
one expects from a physical simulation.

A good example for properties that are modeled using forces are shape and extent of
a simulated object. These are not direct properties of rigid bodies and are irrelevant to
their simulation unless two objects collide. In this case they should influence each other,
which can be accurately described in terms of forces and torques that are applied on the
two colliding bodies.

ODE models shapes of a simulated objects with a so called collider. It represents a
geometric object whose only purpose is to detect intersections with other colliders. A
collider does usually not model the exact shape of the associated visible object but a
computationally less expensive shape. ODE supports boxes, spheres, capped cylinders
and planes as collision primitives. Technically it is also possible to detect collisions with
triangle precision. This allows collision detection of objects with arbitrary shapes and
extents. Though not yet supported by Spark, we are currently about to implement this.

5.2 Articulated Bodies and Joints

When a collision is detected it must be resolved. The correct forces that prevent the
objects to interpenetrate must be applied to the bodies. This is done with the help of
contact joints that are generated in response to a detected collision.

Joints are used to actively enforce a relationship between two connected bodies. In
the case of the contact joint mentioned above, the joint prevents two bodies from inter-
penetrating each other. Other joint types model constraints that come more closely to
the notion of a real life joint connecting two objects.

Supported joint types of ODE are ball and socket joint, hinge joint, two-hinge joint,
slider joint and universal joint. These joints constrain the relative movement of the

6 Network Support 10

two connected bodies along one or more axes. Additionally joints can act as motors by
enforcing the movement along the non-restricted axes. A set of bodies that are connected
with joints form an articulated structure, used to simulate vehicles or legged creatures.

5.3 Enhanced Usability of ODE Concepts

ODE is a library with a plain C interface. Spark provides easy object oriented access to
all ODE concepts, implemented on top of the Zeitgeist framework. All ODE concepts,
rigid bodies, colliders and joints, are encapsulated by C++ objects. Instances of these
objects are installed into the scene graph. Specific groupings of objects express their
responsibility for each other. This enables the objects to automatically care for the
proper interaction. This concept is more natural for an object-oriented framework and
hides the handle-based ODE interface.

To relate arbitrary objects in the scene graph, for example to install joints between
bodies, we use path expressions in the scene graph. This dramatically simplifies the
construction of articulated bodies in comparison to the original handle-based ODE ap-
proach. As these expressions are relative to the joint node, they further support the
reuse of construction scripts and scene description languages that build upon them, as
we show in one of the next sections.

Spark also uses an object-oriented approach to handle the collisions occurring in a
simulation. These are handled by collision handler classes grouped to colliders of sim-
ulated objects in a similar fashion as we implemented the native ODE concepts. This
allows simulation dependent reactions when two objects collide. Examples are playing a
sound if a body touches the ground or triggering special simulation events. The latter
approach is used in the RoboCup soccer simulation to detect if a goal is scored: this is
the case if the ball collides with the goal box collider of the opposite team.

The default reaction to a collision however is to resolve it. As described above, contact
joints are used to prevent the bodies from interpenetrating each other. A contact joint
takes several parameters that describe the contact surface: The resulting friction, if and
how the two bodies slide along the contact surface and the “bouncyness” are some
example parameters. Spark associates a surface description with each collider holding
these parameters. When two objects collide, a resulting contact surface description is
automatically calculated and applied by a contact joint handler.

6 Network Support

Spark supports both the separation of the simulation core from the connected monitoring
applications and from agents participating remotely in the simulation. The network
implementation focuses on modularity and reusability and a strict separation of protocol
layers.

6 Network Support 11

Each monitor protocol implementation is contained within a single class that imple-
ments the monitor interface. It is responsible to generate updates for and parse com-
mands from a connected monitor. The monitor update protocol implementation itself
does not know about further network details, for instance which transport and which
meta protocol is used. The meta protocol is responsible to classify and assemble the
different message fragments received via the transport protocol. Conversely it is also
responsible to prepare messages to be dispatched over the network. One possible meta
protocol is to treat messages as strings that are prefixed with their type and length.

A similar concept applies to the communication with agent processes. An indepen-
dent meta protocol identifies messages received from an agent. A parser plugin is then
responsible to convert these messages into an internal fixed representation. This is
a nested list of named predicates, each with an arbitrary number of typed parame-
ters. The parser plugin we currently use supports an external language based on S-
expressions [McCarthy, 1960]. All perceptor and effector plugins within the simulator
that act on behalf of an agent only work on the internal representation. This effectively
separates their implementation from varying protocol details between the simulator and
connected agents and allows them to be reused with different agent types. The external
protocol is not constrained by the simulator. By simply exchanging the parser plugin,
it is possible to switch for instance to an XML-based language. This parser can be im-
plemented without regard to any other network detail. For custom simulations however,
this should generally not be necessary as S-expressions can be used to encode arbitrary
(also binary) data. For a diagram on the data flow between agents and simulator, we
refer to Fig. 1.

Process
Agent

Parser
Meta

Predicate List

EffectorSensor

Parser
Meta

data flow

function

process boundary

data store

fkt

data

iface interface name

Actions Senses
Actions Senses

Agent
Parser

Predicates

Predicates

Scene Graph

SimulatorAgent

message fragments

Figure 1: Data flow between agents and simulator

7 Scene Description Language 12

7 Scene Description Language

Spark provides access to the managed scene graph in several ways. Besides the internal
C++ interface and external access via script language, an extensible mechanism for
scene description languages is implemented. This allows for both a procedural and a
description-based scene setup.

A scene is imported using one of any number of registered scene importer plugins,
each supporting a different scene description language. Currently one S-expression-based
importer is implemented. The language we implemented as reference language, called
RubySceneGraph, maps the scene graph structure to the nesting of Lisp-like expressions.
A node in the scene graph is described with the (node <ClassName>) expression. The
importer relies on the Zeitgeist class factory services to create an object of the requested
type. A node expression can further be parameterized with function calls in order to
access properties of a scene node. A function call expressed as S-expression is realized
using the script function exported from corresponding the C++ class. This design de-
cision allowed us to rapidly implement a complete scene description language during
the development of the simulator, that is automatically extended as new functions are
exported to Ruby, our scripting language. Implementing a completely new scene de-
scription language with its own set of functions and property names would require the
reimplementation of functionality that was otherwise readily available from our script
interface.

An example of the two concepts combined is the setup of a transform node. These
node types are used to position and orient nodes along a path in the scene graph rel-
ative to their respective parent node. The transform node therefore provides a method
SetLocalPos to set the offset to the parent node.

(RubySceneGraph 0 1)
(
(node Transform

(setName myTransform)
(setLoca lPos 1 0 2 0 5)
(node Box

(s e tExtent s 1 1 1)
)

)
)

Listing 1: A minimal RubySceneGraph example

Listing 1 starts with the RubySceneGraph header giving the version number. It then
creates a single transform node myTransform, and sets its offset relative to the parent
node. This node is not explicitly given in the above example. In the hierarchy below the
transform node a box node is constructed. This is a node that simply renders a box with
the extents in the subsequent setExtents function call.

7 Scene Description Language 13

A second more elaborate example demonstrates two additional concepts available in
this language. It allows the definition of scene graph templates, that take parameters
to construct a set of similar scenes. The demo graph in Listing 1 is not complete as it
omits two additional aspects of the box that are needed for it to take part in the physical
simulation. These are a collider and an associated rigid body. All three properties are
usually aligned to each other, concerning their extents and assigned mass. This repetitive
task can be expressed using a template, as shown in Listing 2.

(RubySceneGraph 0 1)
(
(template $lenX $lenY $lenZ $dens i ty $mate r i a l)
(node Box

(s e tExtent s $lenX $lenY $lenZ)
(s e tMa t e r i a l $mate r i a l)
)

(node Body
(setName boxBody)
(setBox $dens i ty $lenX $lenY $lenZ)
)

(node BoxCol l ider
(setBoxLengths $lenX $lenY $lenZ)
)

)

Listing 2: A RubySceneGraph template

The language further allows the reuse of scene graph parts, that are not necessarily
templates, in a macro like fashion. This enables the construction of a repository of
predefined partial scenes, or complete agent descriptions. The macro concept is not
part of the language itself but implemented as a script function called importScene. It
delegates its task to the generic scene graph importer, from where scenes are imported
with one of the registered plugins. This allows the nesting of scene graph parts expressed
in different graph description languages. An example application of this feature is that
parts of a scene could be created by application programs to create 3D models. By now,
we do not exploit this feature yet.

(RubySceneGraph 0 1)
(
(node Transform ; create the char chassis

(setName ch a s s i s)
(se tLoca lPos 0 0 0 . 5)
(importScene box . r s g 1 3 0 . 8 1 0 matRed)
(node Transform

(setLoca lPos 0 1 . 3 0 . 5 5)
(node Box

(s e tMa t e r i a l matBlue)

7 Scene Description Language 14

(s e tExtent s 1 0 . 1 0 . 3)
)

)
)

(node Transform ; i n s ta l l the l e f t back t i re
(setName l e f tBack)
(setLoca lPos −0 .5 −1 .5 0)
(importScene sphere . r s g 0 . 4 2 matWhite)
(node Transform

(s e tLoca lRo ta t i on 0 1 8 0 0)
(node Hinge2Joint ; i n s ta l l the joint

(a ttach . . / . . / sphereBody . . / . . / . . / c h a s s i s /boxBody)
(setAnchor 0 0 0)
(setMaxMotorForce 1 4000) ; enable the joint motor
(node Hinge2Perceptor)
(node Hinge2E f f e c to r)
)

)
)

; i n s ta l l remaining wheels in a similar fashion
; [. . .]
)

Listing 3: Buggy Construction Example (partial)

Listing 3 is a partial example constructing a simple buggy that consists of a box
connected to four spheres as its wheels. Each tire is connected to the buggy chassis
using a two-hinge joint. This joint type behaves like two hinges connected in series. The
framework facilitates the straight forward installation of joints, as two connected bodies
are referenced with path expressions relative to the joint node. The joint anchor is given
in coordinates relative to the joint. The resulting buggy can be seen in Fig. 2.

Figure 2: Constructed buggy from Listing 3

The buggy is further equipped with a motor that controls the left front wheel, together
with a perceptor that reads back the current orientation of the wheel. Connecting this
buggy scene to a controlling agent process using Spark gives a good example for the
construction of agents featuring articulated bodies.

8 Results and Conclusions 15

8 Results and Conclusions

In this paper we introduced Spark, a generic three-dimensional physical simulation sys-
tem. Spark is built as an extensible set of plugins on top of Zeitgeist, an application
framework that brings features of scripting languages to C++. As fundamental concept
in Zeitgeist, we identified reflective factories used together with an object hierarchy as
implementation pattern, which we believe to be useful for creating other applications as
well.

Spark features a scene graph language and network support, delivering a simulator
that is ready for usage in research and education. Spark can be used to address problems
of both multi-agent researchers like team behavior as well as research questions like the
influence of changes in the morphology of single agents.

However, even if simulations can facilitate experiments in many cases, they are ab-
stractions of other systems and usually cannot totally replace an implementation on the
target system [Gat, 1995]. Consequently, a goal of simulation is not specialized solu-
tions but the identification of general principles [Bruns et al., 2001]. For this, creating
reproducible experiments is of great value, which is supported through the integration of
the SPADES middleware into Spark. An alternative simulation engine focuses on speed,
giving up the exact reproducibility. Both engines come with full network support. Our
system already shows its real world applicability as the official simulator of RoboCup
Simulation League 2004. Because we are using simple types of agents in this first compe-
tition, interesting questions will be if approaches previously successful in two-dimensional
soccer are still applicable despite the higher complexity of the environment. It might also
be interesting to see if different kinds of team strategies lead to success in 3D.

We also started some work in developing wheeled and legged robot models so that
we hope to be able to introduce a legged simulation league to RoboCup. The necessary
primitives to do this are already implemented in our framework. In the current 3D
soccer simulation, the agents’ sensor data describe the complete object type and position
of sensed objects. To address problems other than team behavior alone it is however
possible to implement a realistic distance sensor or a camera.

For future work we hope to be able to support description languages of other, more
specialized simulators. There is already some interest from people doing research using
real robots.

References

[Browning and Tryzelaar, 2003] Brett Browning and Erick Tryzelaar. Übersim: a multi-
robot simulator for robot soccer. In Proceedings of AAMAS 2003, pages 948–949,
2003.

[Bruns et al., 2001] Günter Bruns, Daniel Polani, and Thomas Uthmann. Eine virtuelle

References 16

kontinuierliche Welt als Testbett für KI-Modelle. Künstliche Intelligenz, (1):60–62,
2001.

[Buck et al., 2002] Sebastian Buck, Michael Beetz, and Thorsten Schmitt. M-ROSE: A
multi robot simulation environment for learning cooperative behavior. In H. Asama,
T. Arai, T. Fukuda, and T. Hasegawa, editors, Distributed Autonomous Robotic Sys-
tems 5. Springer, 2002.

[Cox, 1986] Brad Cox. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, Reading, MA, USA, 1986.

[Cyb, 2004] Cyberbotics Ltd. Webots User Guide, April 2004.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[Gat, 1995] Erann Gat. On the role of simulation in the study of autonomous mobile
robots. In Proceedings of the AAAI 1995 Spring Symposium, pages 112–115, 1995.

[Goldberg and Kay, 1976] Adele Goldberg and Alan Kay. Smalltalk-72 instruction man-
ual. Technical report, Learning Research Group, Xerox PARC, Palo Alto Research
Center, March 1976.

[Hargrove, 2000] Chris Hargrove. Reflective factory.
http://www.gamedev.net/reference/articles/article1415.asp, December
2000.

[Kitano and Asada, 1998] Hiroaki Kitano and Minoru Asada. RoboCup humanoid chal-
lenge: That’s one small step for a robot, one giant leap for mankind. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 419–424, 1998.

[Kögler and Obst, 2004] Marco Kögler and Oliver Obst. Simulation league: The next
generation. In Daniel Polani, Andrea Bonarini, Brett Browning, and Kazuo Yoshida,
editors, RoboCup 2003: Robot Soccer World Cup VII, Lecture Notes in Artificial In-
telligence. Springer, Berlin, Heidelberg, New York, 2004. To appear.

[Kögler, 2003] Marco Kögler. Simulation and Visualization of Agents in 3D Environ-
ments. Technical report, Universität Koblenz-Landau, 2003.

[Mark et al., 1998] Alexandra Mark, Daniel Polani, and Thomas Uthmann. A frame-
work for sensor evolution in a population of braitenberg vehicle-like agents. In
Christoph Adami, Richard K. Belew, Hiroaki Kitano, and Charles E. Taylor, edi-
tors, Artificial Life VI, Proceedings of the Sixth International Conference on Artificial
Life, pages 428–432. MIT Press, 1998.

http://www.gamedev.net/reference/articles/article1415.asp

References 17

[Matsumoto, 2001] Yukihiro Matsumoto. Ruby In A Nutshell. O’Reilly, 2001.

[McCarthy, 1960] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, Part I. Communications of the ACM, 3(4):184–195, April
1960.

[Noda et al., 1998] Itsuki Noda, Hitoschi Matsubara, Kazuo Hiraki, and Ian Frank. Soc-
cer Server: a tool for research on multi-agent systems. volume 12, pages 233–250, 1998.

[Noda, 1995] Itsuki Noda. Soccer Server: A simulator of RoboCup. In Proceedings of
AI symposium ’95, pages 29–34. Japanese Society for Artificial Intelligence, 1995.

[QNX, 2003] QNX Software Systems Ltd. QNX Neutrino Realtime Operating System:
System Architecture, 2003.

[Riley and Riley, 2003] Patrick Riley and George Riley. SPADES — a distributed
agent simulation environment with software-in-the-loop execution. In S. Chick, P. J.
Sánchez, D. Ferrin, and D. J. Morrice, editors, Winter Simulation Conference Pro-
ceedings, volume 1, pages 817–825, 2003.

[Smith, 2004] Russell Smith. Open Dynamics Engine (ODE) User Guide, May 2004.

Available Research Reports (since 1999):

2004

7/2004 Oliver Obst, Markus Rollmann.Spark — A
Generic Simulator for Physical Multi-agent
Simulations.

6/2004 Frank Dylla, Alexander Ferrein, Gerhard
Lakemeyer, Jan Murray, Oliver Obst, Thomas
Röfer, Frieder Stolzenburg, Ubbo Visser,
Thomas Wagner.Towards a
League-Independent Qualitative Soccer Theory
for RoboCup.

5/2004 Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt, Thomas Kleemann.Model Based
Deduction for Database Schema Reasoning.

4/2004 Lutz Priese.A Note on Recognizable Sets of
Unranked and Unordered Trees.

3/2004 Lutz Priese.Petri Net DAG Languages and
Regular Tree Languages with Synchronization.

2/2004 Ulrich Furbach, Margret Groß-Hardt, Bernd
Thomas, Tobias Weller, Alexander Wolf.Issues
Management: Erkennen und Beherrschen von
kommunikativen Risiken und Chancen.

1/2004 Andreas Winter, Carlo Simon.Exchanging
Business Process Models with GXL.

2003

18/2003 Kurt Lautenbach.Duality of Marked
Place/Transition Nets.

17/2003 Frieder Stolzenburg, Jan Murray, Karsten
Sturm.Multiagent Matching Algorithms With
and Without Coach.

16/2003 Peter Baumgartner, Paul A. Cairns, Michael
Kohlhase, Erica Melis (Eds.).Knowledge
Representation and Automated Reasoning for
E-Learning Systems.

15/2003 Peter Baumgartner, Ulrich Furbach, Margret
Gross-Hardt, Thomas Kleemann, Christoph
Wernhard.KRHyper Inside — Model Based
Deduction in Applications.

14/2003 Christoph Wernhard.System Description:
KRHyper.

13/2003 Peter Baumgartner, Ulrich Furbach, Margret
Gross-Hardt, Alex Sinner.’Living Book’ :-
’Deduction’, ’Slicing’, ’Interaction’..

12/2003 Heni Ben Amor, Oliver Obst, Jan Murray.
Fast, Neat and Under Control: Inverse Steering
Behaviors for Physical Autonomous Agents.

11/2003 Gerd Beuster, Thomas Kleemann, Bernd
Thomas.MIA - A Multi-Agent Location Based
Information Systems for Mobile Users in 3G
Networks.

10/2003 Gerd Beuster, Ulrich Furbach, Margret
Groß-Hardt, Bernd Thomas.Automatic
Classification for the Identification of
Relationships in a Metadata Repository.

9/2003 Nicholas Kushmerick, Bernd Thomas.
Adaptive information extraction: Core
technologies for information agents.

8/2003 Bernd Thomas.Bottom-Up Learning of Logic
Programs for Information Extraction from
Hypertext Documents.

7/2003 Ulrich Furbach.AI - A Multiple Book
Review.

6/2003 Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt.Living Books.

5/2003 Oliver Obst.Using Model-Based Diagnosis to
Build Hypotheses about Spatial Environments.

4/2003 Daniel Lohmann, J̈urgen Ebert.A
Generalization of the Hyperspace Approach
Using Meta-Models.

3/2003 Marco Kögler, Oliver Obst.Simulation
League: The Next Generation.

2/2003 Peter Baumgartner, Margret Groß-Hardt, Alex
Sinner.Living Book – Deduction, Slicing and
Interaction.

1/2003 Peter Baumgartner, Cesare Tinelli.The Model
Evolution Calculus.

2002

12/2002 Kurt Lautenbach.Logical Reasoning and
Petri Nets.

11/2002 Margret Groß-Hardt.Processing of Concept
Based Queries for XML Data.

10/2002 Hanno Binder, J́erôme Diebold, Tobias
Feldmann, Andreas Kern, David Polock,
Dennis Reif, Stephan Schmidt, Frank Schmitt,
Dieter Zöbel.Fahrassistenzsystem zur
Unterstützung beim Rückwärtsfahren mit
einachsigen Gespannen.

9/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
4. Workshop Software Reengineering (Bad
Honnef, 29./30. April 2002).

8/2002 Richard C. Holt, Andreas Winter, Jingwei Wu.
Towards a Common Query Language for
Reverse Engineering.

7/2002 Jürgen Ebert, Bernt Kullbach, Volker Riediger,
Andreas Winter.GUPRO – Generic
Understanding of Programs, An Overview.

6/2002 Margret Groß-Hardt.Concept based querying
of semistructured data.

5/2002 Anna Simon, Marianne Valerius.User
Requirements – Lessons Learned from a
Computer Science Course.

4/2002 Frieder Stolzenburg, Oliver Obst, Jan Murray.
Qualitative Velocity and Ball Interception.

3/2002 Peter Baumgartner.A First-Order Logic
Davis-Putnam-Logemann-Loveland Procedure.

2/2002 Peter Baumgartner, Ulrich Furbach.
Automated Deduction Techniques for the
Management of Personalized Documents.

1/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
3. Workshop Software Reengineering (Bad
Honnef, 10./11. Mai 2001).

2001

13/2001 Annette Pook.Schlussbericht “FUN -
Funkunterrichtsnetzwerk”.

12/2001 Toshiaki Arai, Frieder Stolzenburg.
Multiagent Systems Specification by UML
Statecharts Aiming at Intelligent
Manufacturing.

11/2001 Kurt Lautenbach.Reproducibility of the
Empty Marking.

10/2001 Jan Murray.Specifying Agents with UML in
Robotic Soccer.

9/2001 Andreas Winter.Exchanging Graphs with
GXL.

8/2001 Marianne Valerius, Anna Simon.Slicing Book
Technology — eine neue Technik für eine neue
Lehre?.

7/2001 Bernt Kullbach, Volker Riediger.Folding: An
Approach to Enable Program Understanding of
Preprocessed Languages.

6/2001 Frieder Stolzenburg.From the Specification of
Multiagent Systems by Statecharts to their
Formal Analysis by Model Checking.

5/2001 Oliver Obst.Specifying Rational Agents with
Statecharts and Utility Functions.

4/2001 Torsten Gipp, J̈urgen Ebert.Conceptual
Modelling and Web Site Generation using
Graph Technology.

3/2001 Carlos I. Ches̃nevar, J̈urgen Dix, Frieder
Stolzenburg, Guillermo R. Simari.Relating
Defeasible and Normal Logic Programming
through Transformation Properties.

2/2001 Carola Lange, Harry M. Sneed, Andreas
Winter.Applying GUPRO to GEOS – A Case
Study.

1/2001 Pascal von Hutten, Stephan Philippi.
Modelling a concurrent ray-tracing algorithm
using object-oriented Petri-Nets.

2000

8/2000 Jürgen Ebert, Bernt Kullbach,
Franz Lehner (Hrsg.).2. Workshop Software
Reengineering (Bad Honnef, 11./12. Mai
2000).

7/2000 Stephan Philippi.AWPN 2000 - 7. Workshop
Algorithmen und Werkzeuge für Petrinetze,
Koblenz, 02.-03. Oktober 2000 .

6/2000 Jan Murray, Oliver Obst, Frieder Stolzenburg.
Towards a Logical Approach for Soccer Agents
Engineering.

5/2000 Peter Baumgartner, Hantao Zhang (Eds.).
FTP 2000 – Third International Workshop on
First-Order Theorem Proving, St Andrews,
Scotland, July 2000.

4/2000 Frieder Stolzenburg, Alejandro J. Garcı́a,
Carlos I. Ches̃nevar, Guillermo R. Simari.
Introducing Generalized Specificity in Logic
Programming.

3/2000 Ingar Uhe, Manfred Rosendahl.Specification
of Symbols and Implementation of Their
Constraints in JKogge.

2/2000 Peter Baumgartner, Fabio Massacci.The
Taming of the (X)OR.

1/2000 Richard C. Holt, Andreas Winter, Andy Schürr.
GXL: Towards a Standard Exchange Format.

1999

10/99 Jürgen Ebert, Luuk Groenewegen, Roger
Süttenbach.A Formalization of SOCCA.

9/99 Hassan Diab, Ulrich Furbach, Hassan Tabbara.
On the Use of Fuzzy Techniques in Cache
Memory Managament.

8/99 Jens Woch, Friedbert Widmann.Implementation
of a Schema-TAG-Parser.

7/99 Jürgen Ebert, and Bernt Kullbach, Franz
Lehner (Hrsg.).Workshop
Software-Reengineering (Bad Honnef, 27./28.
Mai 1999).

6/99 Peter Baumgartner, Michael K̈uhn.Abductive
Coreference by Model Construction.

5/99 Jürgen Ebert, Bernt Kullbach, Andreas Winter.
GraX – An Interchange Format for
Reengineering Tools.

4/99 Frieder Stolzenburg, Oliver Obst, Jan Murray,
Björn Bremer.Spatial Agents Implemented in a
Logical Expressible Language.

3/99 Kurt Lautenbach, Carlo Simon.Erweiterte
Zeitstempelnetze zur Modellierung hybrider
Systeme.

2/99 Frieder Stolzenburg.Loop-Detection in
Hyper-Tableaux by Powerful Model
Generation.

1/99 Peter Baumgartner, J.D. Horton, Bruce Spencer.
Merge Path Improvements for Minimal Model
Hyper Tableaux.

	Introduction
	Related Work
	The Zeitgeist Application Framework
	Reflective Factory Pattern
	Reflective Factory with Object Hierarchy

	Core Simulator
	SPADES-based Simulations
	System Structure
	Event Processing
	Spades Integration

	Physical Simulation
	Basic Concepts
	Articulated Bodies and Joints
	Enhanced Usability of ODE Concepts

	Network Support
	Scene Description Language
	Results and Conclusions

