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Abstract: Viewpoint modeling is currently seen as an effective technique for specifying complex software systems. How-
ever, having a set of independent viewpoints on a system is not enough. These viewpoints should be related,
and these relationships made explicit in order to count with a set of complete and consistent specifications.
RM-ODP defines five complementary viewpoints for the specification of open distributed systems, and es-
tablishes correspondences between viewpoint elements. ODP correspondences provide statements that relate
the various different viewpoint specifications, expressing their semantic relationships. However, ODP does
not provide an exhaustive set of correspondences between viewpoints, nor defines any language or notation to
represent such correspondences. In this paper we informally explore the use of MOF QVT for representing
ODP correspondences in the context of ISO/IEC 19793, i.e., when the ODP viewpoint specifications of a sys-
tem are represented as UML models. We initially show that QVT can be expressive enough to represent them,
and discuss some of the issues that we have found when modeling ODP correspondences with QVT relations.

1 Introduction

Viewpoint modeling is gaining recognition as an
effective approach for dealing with the inherent com-
plexity of the design of large distributed systems.
It comprises two major elements: model-driven de-
velopment (MDD) on the one hand, and viewpoints
on the other. The first one uses models as the key
elements to direct the course of understanding, de-
sign, construction, deployment, operation, mainte-
nance and evolution of systems. Models allow to state
features and properties of systems accurately, at the
right level of abstraction, and without delving into
the implementation details—or even without giving
a solution of how these properties can be achieved
(Große-Rhode, 2004). Viewpoints divide the system
design according to several areas of concerns, and
have been adopted by the majority of current soft-
ware architectural practices, as described in IEEE Std.
1471 (IEEE Std. 1471, 2000).

The Reference Model of Open Distributed Pro-
cessing (RM-ODP) framework (ISO/IEC 10746-1 to
10746-4, ITU-T X.901 to X.904, 1997) provides five
generic and complementary viewpoints on the system
and its environment:enterprise, information, com-

putational, engineeringand technologyviewpoints.
They allow different stakeholders to observe the sys-
tem from different perspectives (Linington, 1995). In
addition, five viewpoint languages define the concepts
and rules for specifying ODP systems from these
viewpoints.

ODP viewpoint languages are abstract, in the sense
that the RM-ODP defines their concepts and struc-
turing rules, but independently from any notation or
concrete syntax to represent them. This allows fo-
cusing on the modeling concepts themselves rather
than on notational issues, and also allows the use
of different notations, depending on the particular
needs and on the appropriateness of the specific no-
tation, e.g., Z for the information viewpoint, or Lotos
for the computational viewpoint. The RM-ODP ar-
chitectural semantics (ISO/IEC 10746-4, ITU-T Rec.
X.904, 1998) deals with the representation of ODP
concepts in different languages. Although ODP does
not prescribe the choice of specification language to
be adopted with the particular viewpoints, it does
advocate that the chosen languages should be for-
mal (Bowman et al., 1995). However, this notation-
independence may also bring along some limitations,
e.g., it may hinder the development of ODP tools. The



need to count with precise notations for expressing
ODP specifications, and to develop ODP tools, moti-
vated ISO/IEC and ITU-T to launch a joint project in
2004 which aims to define the use of UML for ODP
system specifications (ISO/IEC CD 19793, ITU-T
Rec. X.906, 2005). This new initiative (hereinafter
called UML4ODP) is expected to allow the develop-
ment of tools for writing and analyzing ODP speci-
fications, and to make use of the latest MDD prac-
tices for designing and implementing ODP systems.
UML4ODP defines a metamodel for each ODP view-
point language, and a set of UML Profiles for repre-
senting them. In this way, the ODP viewpoint spec-
ifications are expressed as a set of UML models of
the system. This initiative introduces very interesting
benefits: ODP modelers can use the UML notation
for expressing their ODP specifications in a standard
graphical way; UML modelers can use the RM-ODP
concepts and mechanisms to structure their UML sys-
tem specifications; and modeling tool suppliers can
develop UML-based tools that are capable of express-
ing ODP system specifications.

So far, most of the ODP community efforts have
focused on the definition of the five viewpoints and
their corresponding viewpoint languages. However,
having a set of independent viewpoints on a system
is not enough. These viewpoints should be somehow
related, and these relationships made explicit in order
to provide acompleteandconsistentspecification of
the system. The questions are: how can it be assured
that indeedone system is specified? And, how can
it be assured that no views impose contradictory re-
quirements? The first problem concerns the concep-
tual integrationof viewpoints, while the second one
concerns theconsistencyof the viewpoints.

RM-ODP tries to address these issues by estab-
lishing correspondences between viewpoint elements.
ODP correspondences do not form part of any one
of the five viewpoints, but provide statements that re-
late the various different viewpoint specifications—
expressing their semantic relationships. Hence, a
proper ODP system specification consists of a set of
viewpoint specifications, together with a set of corre-
spondences between them.

ODP does not provide however an exhaustive set of
correspondences between viewpoints (ODP is silent
about many of them), nor defines any language or
notation to represent correspondences. But without
explicitly representing them we cannot reason about
them, nor properly tackle the integration and consis-
tency issues mentioned above.

In this paper we explore the use of MOF QVT
(OMG, 2005) for representing ODP correspondences
in the context of UML4ODP, i.e., when the ODP
viewpoint specifications of a system are represented
as UML models. We show that QVT seems to be ex-
pressive enough to represent them, and discuss some

of the issues that we have found when modeling ODP
correspondences with QVT.

The structure of this paper is as follows. First, Sec-
tion 2 provides a brief introduction to ODP, describes
in detail the correspondences defined by ODP, and
also discusses some previous proposals for represent-
ing ODP correspondences. Section 3 provides a short
introduction to QVT. Then, Section 4 presents our ini-
tial proposal, describing how to represent ODP corre-
spondences with QVT. Section 5 discusses some the
issues that we have found during our work. Finally,
Section 6 draws some conclusions and outlines some
future research activities.

2 ODP

2.1 Introduction to ODP

RM-ODP is a reference model that aims at integrating
a wide range of present and future ODP standards for
distributed systems, maintaining consistency among
them. The reference model provides the coordina-
tion framework for ODP standards, and offers a con-
ceptual framework and an architecture that integrates
aspects related to the distribution, interoperation and
portability of software systems—in such a way that
hardware heterogeneity, operating systems, networks,
programming languages, databases and management
systems are transparent to the user. In this sense, RM-
ODP manages complexity through a “separation of
concerns”, addressing specific problems from differ-
ent points of view.

In ODP terms, aviewpoint(on a system) is an ab-
straction that yields a specification of the whole sys-
tem related to a particular set of concerns. ODP de-
fines five viewpoints, covering all the domains of ar-
chitectural design. These five viewpoints are:

• theenterpriseviewpoint (EV), which is concerned
with the purpose, scope and policies governing the
activities of the specified system within the organi-
zation of which it is a part;

• the information viewpoint (IV), which is con-
cerned with the kinds of information handled by
the system and the constraints on the use and inter-
pretation of that information;

• thecomputational viewpoint (CV), which is con-
cerned with the functional decomposition of the
system into a set of objects that interact at well-
defined interfaces;

• the engineering viewpoint (NV), which is con-
cerned with the infrastructure required to support
distribution;



• the technology viewpoint (TV), which is con-
cerned with the choice of technology used to im-
plement the system and to connect it with its envi-
ronment.

These viewpoints are of course mutually related,
but no temporal order of their development is implied.
They are (at least in theory) separately specified, and
sufficiently independent to simplify reasoning about
the complete system specification.

2.2 ODP Correspondences

ODP clearly states that a set of viewpoint specifica-
tions of an ODP system written in different view-
point languages should not make mutually contradic-
tory statements i.e., they should be mutually consis-
tent.

The key to consistency is the idea of correspon-
dences between different viewpoint specifications,
i.e., a statement that some terms or structures in one
specification correspond to other terms and structures
in a second specification.

The requirement for consistency between view-
point specifications implies that what is specified in
one viewpoint specification about an entity needs to
be consistent with what is said about the same entity
in any other viewpoint specification. This includes the
consistency of that entity’s properties, structure and
behavior.

The specifications produced in different ODP view-
points are each complete statements in their respective
viewpoint languages, with their own locally signifi-
cant names, possibly with different granularity, and
so cannot be related without additional information
in the form ofcorrespondence statementsthat make
clear how elements of different viewpoints are related,
and how constraints from different viewpoints apply
to particular elements of a single system to determine
its overall behavior.

The correspondence statements relate the various
different viewpoint specifications, but do not form
part of any one of the five basic viewpoints. They fall
into two categories (ISO/IEC 10746-3, ITU-T Rec.
X.903, 1996):

• Some correspondences are required in all ODP
specifications; these are calledrequired corre-
spondences. If the correspondence is not valid in
all instances in which the concepts related occur,
the specification is not a valid ODP specification.

• In other cases, there is a requirement that the spec-
ifier provides a list of items in two specifications
that correspond, but the content of this list is the
result of a design choice; these are calledrequired
correspondence statements.

RM-ODP only provides required correspondences
between the computational and engineering view-
points, and between the engineering and the tech-
nology viewpoints. For the rest of the viewpoints,
RM-ODP only states that elements of every viewpoint
should be consistent with the specification of the cor-
responding elements in the rest of the viewpoints, and
with the restrictions that apply to them. For instance,
the elements of the information viewpoint should con-
form to the policies of the enterprise viewpoint and,
likewise, all enterprise policies should be consistent
with the static, dynamic, and invariant schemata de-
fined by the information specification.

For the sake of completeness, the rest of the clauses
of this section describe the correspondences between
every pair of viewpoints, as defined in Part 3 of RM-
ODP (ISO/IEC 10746-3, ITU-T Rec. X.903, 1996),
the Enterprise Language (ISO/IEC 15414, ITU-T
Rec. X.911, 2006), and in UML4ODP (ISO/IEC CD
19793, ITU-T Rec. X.906, 2005). Those familiar
with ODP correspondences can skip the rest of this
section.

2.2.1 EV and IV specification correspondences

In general, not all the elements of the enterprise spec-
ification of a system need to correspond to elements
of its information specification. Where there is a cor-
respondence between enterprise and information ele-
ments (e.g., between an enterprise object and the in-
formation object that stores the relevant information
about it), the specifier has to provide:

EI-1 for each enterprise object in the enterprise spec-
ification, a list of those information objects (if any)
that represent information or information process-
ing concerning the entity represented by that enter-
prise object;

EI-2 for each role in each community in the enter-
prise specification, a list of those information ob-
ject types (if any) that specify information or infor-
mation processing of an enterprise object fulfilling
that role;

EI-3 for each policy in the enterprise specification, a
list of the invariant, static and dynamic schemata
of information objects (if any) that correspond to
the enterprise objects to which that policy applies
(an information object is included if it corresponds
to the enterprise community that is subject to that
policy);

EI-4 for each action in the enterprise specification,
the information objects (if any) subject to a dy-
namic schema constraining that action;

EI-5 for each relationship between enterprise ob-
jects, the invariant schema (if any) which constrains
objects in that relationship;



EI-6 for each relationship between enterprise roles,
the invariant schema (if any) which constrains ob-
jects fulfilling roles in that relationship.

2.2.2 EV and CV specification correspondences

Not all the elements of the enterprise specification of
a system need to correspond to elements of its com-
putational specification. In particular, not all states,
behaviors and policies of an enterprise specification
need to correspond to states and behaviors of a com-
putational specification. There may exist transitional
computational states within pieces of computational
behavior which are abstracted as atomic transitions in
the enterprise specification.

Where there is a correspondence between enter-
prise and computational elements, the specifier has to
provide:

EC-1 for each enterprise object in the enterprise
specification, the configuration of computational
objects (if any) that realizes the required behavior;

EC-2 for each interaction in the enterprise specifica-
tion, a list of those computational interfaces and op-
erations or streams (if any) that correspond to the
enterprise interaction, together with a statement of
whether this correspondence applies to all occur-
rences of the interaction, or is qualified by a predi-
cate;

EC-3 for each role affected by a policy in the enter-
prise specification, a list of the computational ob-
ject types (if any) that exhibit choices in the com-
putational behavior that are modified by the policy;

EC-4 for each interaction between roles in the enter-
prise specification, a list of computational binding
object types (if any) that are constrained by the en-
terprise interaction;

EC-5 for each enterprise interaction type, a list of
computational behavior types (if any) capable of
representing (i.e. acting as a carrier for) the enter-
prise interaction type;

EC-6 if a process-based approach is taken, the spec-
ifier has to provide, for each step in the process,
a list of participating computational objects which
may fulfil one or more of actor roles, artefact roles,
and resource roles.

2.2.3 EV and NV specification correspondences

Not all the elements of the enterprise specification of
a system need to correspond to elements of its en-
gineering specification. Where there is a correspon-
dence between enterprise and engineering elements,
the specifier has to provide:

EN-1 for each enterprise object in the enterprise
specification, the set of those engineering nodes (if

any) with their nuclei, capsules, and clusters, all of
which support some or all of its behavior;

EN-2 for each interaction between roles in the en-
terprise specification, a list of engineering channel
types and stubs, binders, protocol objects and in-
terceptors (if any) that are constrained by the enter-
prise interaction;

EN-3 the engineering channel types and stubs,
binders or protocol objects may be constrained by
enterprise policies.

2.2.4 IV and CV specification correspondences

RM-ODP does not prescribe exact correspondences
between elements of the information and computa-
tional specifications of a system. In particular, infor-
mation objects do not need to correspond to compu-
tational objects. Likewise, not all states of an infor-
mation specification need to correspond to states of a
computational specification. There may exist transi-
tional computational states within pieces of compu-
tational behavior that are abstracted as atomic transi-
tions in the information specification. However,

IC-1 where an information object corresponds to a
set of computational objects, static and invariant
schemata of an information object may correspond
to possible states of the computational objects; ev-
ery change in state of an information object corre-
sponds either to some set of interactions between
computational objects or to an internal action of
a computational object; and the invariant and dy-
namic schemata of the information object corre-
spond to the behavior and environment contract of
the computational objects.

2.2.5 IV and NV specification correspondences

The RM-ODP is silent about these correspondences.

2.2.6 CV and NV specification correspondences

ODP establishes some required correspondences be-
tween these two viewpoints.

CN-1 Each computational object that is not a binding
object corresponds to a set of one or more basic en-
gineering objects (and any channels which connect
them). All the basic engineering objects in the set
correspond only to that computational object.

CN-2 Except where transparencies which replicate
objects are involved, each computational interface
corresponds exactly to one engineering interface,
and that engineering interface corresponds only to
that computational interface. The engineering in-
terface is supported by one of the basic engineering
objects which corresponds to the computational ob-
ject supporting the computational interface.



CN-3 Where transparencies that replicate objects are
involved, each computational interface of the ob-
jects being replicated corresponds to a set of engi-
neering interfaces, one for each of the basic engi-
neering objects resulting from the replication. Each
of these engineering interfaces corresponds only to
the original computational interface.

CN-4 Each computational binding (either primitive
bindings or compound bindings with associated
binding objects) corresponds to either an engineer-
ing local binding or an engineering channel. This
engineering local binding or channel corresponds
only to that computational binding. If the com-
putational binding supports operations, the engi-
neering local binding or channel shall support the
interchange of at least: computational signature
names; computational operation names; computa-
tional termination names; and invocation and ter-
mination parameters (including computational in-
terface identifiers and computational interface sig-
natures).

CN-5 Except where transparencies that replicate ob-
jects are involved, each computational binding ob-
ject control interface has a corresponding engineer-
ing interface and there exists a chain of engineer-
ing interactions linking that interface to any stubs,
binders, protocol objects or interceptors to be con-
trolled in support of the computational binding.

CN-6 Each computational interaction corresponds to
some chain of engineering interactions, starting
and ending with an interaction involving one or
more of the basic engineering objects correspond-
ing to the interacting computational objects.

CN-7 Each computational signal corresponds either
to an interaction at an engineering local binding or
to a chain of engineering interactions that provides
the necessary consistent view of the computational
interaction.

CN-8 In an entirely object-based computational lan-
guage, data are represented as abstract data types
(i.e., interfaces to computational objects). Com-
putational interface parameters (including those for
abstract data types) can be passed by reference, and
then such parameters correspond to engineering in-
terface references. Computational interface param-
eters can also be passed by migrating or replicat-
ing the object supporting the interface. In the case
of migration such parameters correspond to cluster
templates.

2.2.7 TV specification correspondences with the
rest

There are neither required correspondences nor re-
quired correspondence statements between the enter-
prise, information or computational viewpoints, and

the technology viewpoint. There may be cases, how-
ever, where part of one of these three viewpoint spec-
ifications has a direct relationship with a technology
viewpoint specification, i.e, with a choice of tech-
nology. Examples include enterprise policies, invari-
ant schemata, or computational environment contracts
covering performance (e.g. response time), reliability,
and security. In these cases, the appropriate corre-
spondence statements between the related viewpoint
specification elements should the defined.

RM-ODP defines the following correspondences
between the engineering and the technology view-
point specifications.

NT-1 Each engineering object corresponds to a set
of one or more technology objects. The imple-
mentable standards for each technology object is
dependent on the choice of technology.

NT-2 Engineering interfaces correspond to technol-
ogy interfaces.

2.3 Expressing Correspondences

Different authors have dealt with the problem of
defining and expressing correspondences between
viewpoints, mainly when trying to address the issue
of viewpoint consistency checking.

Some of the proposals, e.g., (Boiten et al., 2000;
Große-Rhode, 2004), highlight the need to explicitly
define and establish these correspondences but do not
represent them as independent entities. Rather, they
form part of the logical framework they define for
checking the consistency of viewpoint specifications.

Other authors explicitly represent the correspon-
dences, specially when viewpoint specifications are
expressed as UML models, using different alterna-
tives. One interesting possibility is the use of OCL
to define relationships between the metamodel ele-
ments that represent the appropriate modeling con-
cepts, as suggested by, e.g., (Dijkman, 2006). This
approach works very well when the correspondences
are defined between all the instances of certain mod-
eling concepts, e.g., when every computational inter-
face corresponds exactly to one engineering interface
(correspondence CN-2). However, there are cases
in which correspondences need to be established be-
tween particular objects of an specification. The prob-
lem is that it is not possible at the metalevel to de-
termine which particular objects should be related.
Therefore, it is important that correspondences can be
established between specific model elements, too.

UML 2.0 abstraction dependencies, possibly con-
strained by OCL statements, are the natural mecha-
nism provided by UML to represent a relationship that
relates two elements or sets of elements that repre-
sent the same concept at different levels of abstraction



or from different viewpoints. Thus, ODP correspon-
dences between viewpoint specifications (for exam-
ple, between enterprise objects and information ob-
jects, or between enterprise policies and information
schemata) can be expressed as UML abstraction de-
pendencies between the corresponding UML model
elements.

However, as suggested by (Yahiaoui et al., 2005a;
Yahiaoui et al., 2005b), viewpoint correspondences
can also be used for other purposes, e.g., change man-
agement in multi-view systems. Change management
implies consistent evolution of system specifications:
if a view is modified for any reason (e.g., change of
some business rules or some QoS requirements), sev-
eral changes may need to be performed in other views
in order to maintain the overall viewpoint consistency.
In this context, correspondences act as “binds” that
link together the related elements, transforming them
if a change in one of them occurs, i.e., propagating
the changes to maintain consistency.

UML abstraction dependencies show to be insuffi-
cient for these purposes. The main reasons are that
they cannot store all the required information about
the correspondence they represent, and because they
can be used to express existence of the correspon-
dence but not to enforce it. Therefore, Yahiaoui et
al. define a new viewpoint, thelink viewpoint, whose
elements are “links” that establish binds between el-
ements in different viewpoints. These links explic-
itly represent the ODP correspondences, and store the
relevant information about the relationships between
the views and the information related to each one (as
attributes of the class that represents the link), thus
guaranteeing traceability. A (change manager) tool
has been developed for defining and enforcing these
links, thus providing automated support for change
management and propagation.

We do not think that such correspondences consti-
tute another ODP viewpoint. ODP explicitly states
that correspondences do not form part of any view-
point. In addition, ODP defines the concept of view-
pointon a system, whilst correspondences are defined
between two viewpoints. However, we do agree that
correspondences should be represented by something
more powerful than UML abstraction dependencies
for the reasons stated above: correspondences may
require to store more information than a single UML
abstraction dependency can convey, and they may be
required for other purposes—e.g., for enforcing and
propagating changes from one view to another.

The fact that change propagations can be consid-
ered particular cases of model transformations sug-
gests the use of QVT as the perfect solution to the
problem of representing ODP correspondences. The
use of relations was initially indicated by (Akehurst,
2004) for relating concepts from different viewpoint
at the metalevel but not explored any further for re-

lating instances, which is essential for establishing
proper correspondences.

RM-ODP itself explicitly states that correspon-
dences can be used to define transformations between
viewpoint elements to implement consistency checks:
“One form of consistency involves a set of correspon-
dence rules to steer a transformation from one lan-
guage to another. Thus given a specificationS1 in
viewpoint languageL1 and specificationS2 in view-
point languageL2, whereS1 andS2 both specify the
same system, a transformationT can be applied toS1

resulting in a new specificationT (S1) in viewpoint
languageL2 which can be compared directly toS2 to
check, for example, for behavioral compatibility be-
tween allegedly equivalent objects or configurations
of objects.” (ISO/IEC 10746-3, ITU-T Rec. X.903,
1996)

3 QVT

3.1 QVT Relations

MOF QVT (Query/View/Transformation) (OMG,
2005) is the OMG’s standard for specifying MOF
model queries, views and transformations. It is ex-
pected to play a central role in the Model Driven Ar-
chitecture (OMG, 2001). QVT defines three different
(but closely related) languages for specifying trans-
formations using declarative and imperative styles.
Black-box implementations of operations can also be
used to allow reuse of existing algorithms or domain
specific libraries in certain model transformations.

QVT Relations is a language to write declara-
tive specifications of the relationships between MOF
models. The QVT Relations language supports object
pattern matching, and implicitly creates trace classes
and their instances to record what occurred during a
transformation execution. Relations can assert that
other relations also hold between particular model el-
ements matched by their patterns.

QVT Relations allow for the following execution
scenarios (OMG, 2005):

• Check-only transformations to verify that models
are related in a specified way.

• Single direction and bi-directional transformations.

• The ability to establish relationships between pre-
existing models, whether developed manually, or
through some other tool or mechanism.

• Incremental updates (in any direction) when one re-
lated model is changed after an initial execution.

• The ability to create as well as delete objects and
values, while also being able to specify which ob-
jects and values must not be modified.



3.2 QVT Transformations

In the relations language, a transformation between
candidate models is specified as a set of relations
that must hold for the transformation to be success-
ful. A candidate modelis any model that conforms to
a model type, which is a specification of what kind of
model elements any conforming model can have. An
example is:

modeltype EL uses “odp.UML4ODP.EL UMLProfile”
modeltype IL uses “odp.UML4ODP.IL UMLProfile”
transformation EVtoIV (ev : EL, iv : IL) {

top relation EVrole2IVobjectType {...}
top relation EVobject2IVobject {...}
...

}

Relations in a transformation declare constraints
that must be satisfied by the elements of the candi-
date models, and specify a relationship that must hold
between the elements of the candidate models. Top
level relations are those that need to hold for a trans-
formation to be successfully executed.

A relation is defined by two or more domains and a
pair of when and where predicates. For instance, the
following relationEVrole2IVobjectType establishes
a relationship between roles in the EV specification
and object types in the IV specification, whereby ev-
ery enterprise role is related to one information object
type with the same name (but not necessarily vice-
versa, i.e., not every information object type should
correspond to an enterprise role).

relation EVrole2IVobjectType {
/* maps e-roles to i-objectTypes */
domain ev er:Class {name=r}
domain iv iot:Class {name=r}
when {

er.stereotypedBy(”EV Role”)
}
where {

er.stereotypedBy(”EV Role”) and
iot.stereotypedBy(”IV ObjectType”)

}
}

More precisely, relationEVrole2IVobjectType
checks that for each role in the EV specification (i.e.,
a class stereotypedEV Role) there is an object type
with the same name in the IV specification (i.e., a
class stereotypedIV ObjectType).

A transformation can be invoked either to check
two models for consistency or to modify one model
to enforce consistency. In the first case, the transfor-
mation checks whether the relations hold in all direc-
tions, and report errors when they do not hold. In

case of enforcement, one model acts as source and
the other as target; the execution of the transformation
proceeds by first checking whether the relations hold,
and for relations for which the check fails, attempt-
ing to make the relations hold by creating, deleting or
modifying only the target model, thus enforcing the
relationship.

QVT transformations can also be used for propa-
gating changes from one model to other. As men-
tioned in the QVT standard (OMG, 2005), “the effect
of propagating a change from a source model to a tar-
get model is semantically equivalent to executing the
entire transformation afresh in the direction of the tar-
get model. The semantics of object creation and dele-
tion guarantee that only the required parts of the target
model are affected by the change. Firstly, the seman-
tics of check-before-enforce ensures that target model
elements that satisfy the relations are not touched.
Secondly, key-based object selection ensures that ex-
isting objects are updated where applicable. Thirdly,
deletion semantics ensures that an object is deleted
only when no other rule requires it to exist.”

4 Modeling ODP Correspondences

We have seen how QVT transformations can be
specified to define general relationships between el-
ements of two ODP viewpoint specifications (e.g, be-
tween enterprise roles and information object types,
or between enterprise objects and information ob-
jects). However, these kinds of correspondences are
not very common in the specification of any ODP sys-
tem. Usually, correspondences are defined between
particular elements of the specification (e.g., between
particular objects, types, templates, or actions).

For instance, suppose that we have an ODP speci-
fication of a Banking system, in which bank accounts
are modeled in the computational viewpoint as ob-
jects that support a couple of interfaces for accessing
their services. In the engineering viewpoint specifi-
cation, we want each of these computational objects
to correspond exactly to two basic engineering ob-
jects that support the same interfaces (plus possibly
other interfaces only relevant to the engineering ob-
jects concerned). The specification of such part of
the system at the object template level, and using the
UML profiles defined in UML4ODP, is shown in Fig-
ure 1.

In order to represent such a correspondence, we
could use a set of UML abstraction dependencies be-
tween the related elements. However, this could be
done in a more precise and effective way using QVT.

At the object level, we need to define a relation
that establishes a correspondence between a compu-
tational object which is an instance of anAccount



Figure 1: Bank Account comp. objects and interfaces should be related to the corresponding eng. objects and interfaces

object template, and two engineering objects that rep-
resent it in the engineering specification:

relation cv-account2twonv-accounts {
domain cv a:InstanceSpecification
{name=n, classifier = “Account”}

domain nv a1:InstanceSpecification
{name=n + ’1’, classifier = “Account1”}

domain nv a2:InstanceSpecification
{name=n + ’2’, classifier = “Account2”}

when { a.stereotypedBy(”CV Object”) }
where {

a.stereotypedBy(”CV Object”) and
a1.stereotypedBy(”NV BEO”) and
a2.stereotypedBy(”NV BEO”) and
DuplTemplates(a.classifier,a1.classifier,a2.classifier)
}

}

We can see how it establishes that if there exists a
UML InstanceSpecification stereotypedCV Object,
whose classifier is anAccount, then there should

be two UML InstanceSpecifications stereotyped
NV BEO, whose classifiers areAccount1 and Ac-
count2, respectively. In addition, a relation called
DuplTemplates should also hold between the classi-
fiers of all these instance specifications. Such a QVT
relation is precisely the one that establishes the cor-
respondence between the appropriate computational
object templates (Fig. 1):

relation DuplTemplates{
domain cv a:Component {name=n}
domain nv a1:Component {name=n + ’1’}
domain nv a2:Component {name=n + ’2’}
when { a.stereotypedBy(”CV ObjectTemplate”) }
where {

a.stereotypedBy(”CV ObjectTemplate”) and
a1.stereotypedBy(”NV ObjectTemplate”) and
a2.stereotypedBy(”NV ObjectTemplate”) and
sameODPInterfaces(a,a1) and
sameODPInterfaces(a,a2)
}

}



This relation establishes that a given computational
object template should be related to two engineering
object templates (whose names should be the same,
but suffixed with ‘1’ and ‘2’), and that the ODP in-
terfaces of the computational object template should
be supported by the corresponding interfaces of the
engineering object templates—as stated by the ODP
required correspondenceCN-3. This required cor-
respondence is expressed using thesameODPInter-
faces relation, that checks that every interface de-
fined for a computational object template is supported
by an interface of a given engineering object tem-
plate. In the UML4ODP context, both computational
and engineering object templates are modeled using
UML components, and both computational and en-
gineering interfaces are represented by UML ports.
Thus, the QVT relation checks that every port of the
UML component representing the computational ob-
ject template has an associated port with the same
name in the given UML component representing the
basic engineering object template, and that the set of
provided and required interfaces of each port are the
same in the two specifications.

relation sameODPInterfaces {
domain cv cot:Component {}
domain nv eot:Component {}
when {

cot.stereotypedBy(”CV ObjectTemplate”) and
eot.stereotypedBy(”NV ObjectTemplate”)
}
where {
eot.ownedPort.name-> includes(cot.ownedPort.name)
and cot.ownedPort-> forAll (p | p.required =

eot.ownedPort-> select (name=p.name).required)
and cot.ownedPort-> forAll (p | p.provided =

eot.ownedPort-> select (name=p.name).provided)
}

}

This last relation can be reused as-is in other QVT
relations to enforce the required correspondence,CN-
3, in other ODP correspondence statements.

5 Issues for Discussion

Once we have briefly seen how QVT could be used
to represent both ODP correspondence statements and
ODP required correspondences, let us discuss in this
section some issues that may require further investi-
gation.

5.1 Bi-directionality and cardinality
of correspondences

The RM-ODP is silent about the possible bi-
directionality of the ODP correspondences. How-
ever, we believe such correspondences must be bidi-
rectional so it is possible to navigate from any of the
two views to the other. The idea is to be able to trace
elements, i.e., given an element of a viewpoint, find
all the elements in the rest of the viewpoints which
are related to it (objects, policies, rules, actions, etc.).

In addition, RM-ODP seems to define correspon-
dences just between pairs of viewpoints. However,
sometimes correspondences between one and more
viewpoints might be required, i.e., between one ele-
ment in one viewpoint and several elements in other
viewpoints. Defining this kind of 1-M correspon-
dences is possible with QVT relationships, although
something not defined in RM-ODP.

5.2 Transitivity of correspondences

The QVT relations presented here can be used for
change propagation. This occurs when a change hap-
pens in one of the viewpoint specifications, and we
want to propagate the change to all related elements
in the rest of the viewpoint specifications. In this case
we can consider QVT relations as model transforma-
tions, enforcing the relationships on the target models
as mentioned earlier. However, this may raise some
redundancy or duplication issues due to transitivity of
the relations.

Suppose elementsα, β andγ in viewpointsA, B
and C respectively, related as follows:α is related
with β andγ, andβ is related withγ. How to deal
with the potential redundancy that may happen when
a change in elementα is propagated toγ both directly
fromα toγ, and indirectly throughβ? There are cases
where this does not imply any problem, as it happens
when the relations just check that the elements have
the same name, and we change the name ofα. How-
ever, what happens when the relations add something
to the elements’ structure or behavior? E.g., suppose
they add a suffix to the name of the element? Will we
end up with a duplicated suffix in the name ofγ?

Please notice how this is an example that could jus-
tify the need for establishing N-M correspondences
between viewpoints.

5.3 Full consistency of specifications

In order to check the consistency of the specifications,
we can use the ODP correspondences if we consider
them as model transformations, as mentioned in the
RM-ODP standards. However, complete consistency



between viewpoint specifications cannot be guaran-
teed by ODP correspondences only. Analysis of con-
sistency depends on the application of specific consis-
tency techniques, most of which are based on checks
for particular kinds of inconsistency, and thus cannot
prove complete consistency.

This latter issue has been addressed by several peo-
ple, from different perspectives. The interested reader
can consult, e.g., the works by Derrick, Bowman et
al. (Boiten et al., 2000), the interesting book (Große-
Rhode, 2004), and also the recent and complete work
done by Remco Dijkman in his PhD thesis (Dijk-
man, 2006). How to combine the use of model-driven
techniques and QVT in those contexts is something
we would like to explore further as part of future re-
search.

6 Conclusions

In this paper we have sketched how QVT relations
can be used to represent ODP correspondences in the
context of the UML4ODP project, in an initial attempt
to show that this approach is feasible. QVT rela-
tions provide more powerful mechanisms than those
provided by plain OCL or UML abstraction depen-
dencies for relating elements in different ODP view-
points, can be modularly and independently speci-
fied, be reused to build more powerful QVT transfor-
mations, and serve both for checking the correspon-
dences and for enforcing them.

There are still several issues open for investigation.
Apart from the questions mentioned above, it is not
clear whether this method is better or not than the
other ones discussed here, e.g., the one proposed by
Remco Dijkman (Dijkman, 2006), or by Yahiaoui et
al. (Yahiaoui et al., 2005a; Yahiaoui et al., 2005b).
Furthermore, apart from specifying the correspon-
dences, can the QVT relations provide any other ad-
vantages? Can they be used, for instance, to rea-
son about the system specifications and their consis-
tency? And if so, how this can be achieved? Which
is the underlying logic in which the reasoning can be
done? Apart from consistency, what other properties
can be proved from the QVT specifications of the cor-
respondences? These are interesting questions, some
of them we plan to address in a near future.
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