
A Platform for Mobile 3D Map Navigation Development

Antti Nurminen
Helsinki University of Technology

antti.nurminen@hut.fi

ABSTRACT
We present a platform for developing mobile 3D map naviga-
tion interfaces in highly occluded urban environments. The
platform enables use of realistically textured city models in
mobile devices such as PDA’s and smart phones without
3D hardware, being able to render entire city centers at in-
teractive rates. The platform supports network-distributed
annotation of the environment with location-based informa-
tion. Texture resolution can be varied per building. Ma-
neuvering is not restricted, allowing implementation of any
navigation metaphor. Efficient collision avoidance is pro-
vided. Key optimization methods, the overall system and
supported features are presented along with guidelines for
efficient modeling. Generic feedback from a focused field
experiment is discussed.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: Graph-
ical user interfaces; I.3.6 [Computer Graphics]: Interac-
tion Techniqes; I.3.7 [Computer Graphics]: Virtual Re-
ality

General Terms
Experimentation, performance

Keywords
Mobile 3D maps, 3D user interfaces

1. INTRODUCTION
Mobile 3D maps are applications that represent environ-

ments using true 3D data for visualization, which can be
realistic. Such a view is supposedly more intuitive, as the
representation allows direct matching of visual cues with-
out interpreting and mentally transforming the symbols and
two-dimensional shapes of the classical 2D map to the real
environment. Subsequently, orientation to a new environ-
ment and navigation in it should become easy. In urban

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileHCI’06, September 12–15, 2006, Helsinki, Finland.
Copyright 2006 ACM 1-59593-390-5/06/0009 ...$5.00.

environments, such applications could also allow annotation
of the scene by location-based information, or provide access
to dynamic, real-time data.

Early studies on 3D maps often attempted to use PDA
devices with direct model viewing software such as Pock-
etCortona libraries. However, due to insufficient rendering
performance even with simplified 3D city models, field ex-
periments were conducted using prerendered images [9] or
laptop emulation [10]. To further limit the required ren-
dering power, models have been divided into a simple grid
structure [8], or visibility information has been included into
the model [3]. Most of the research hints that mobile 3D
hardware would be in key position in solving the problem
of poor performance [9, 3], or that sofware-based rendering
of realistic models would even be impossible at interactive
rates [2]. The development of mobile 3D maps and naviga-
tion interfaces has been seriously hindered by the lack of an
efficient 3D engine and suitable 3D models that would allow
such development and field experiments.

According to our benchmark tests, current mobile devices
such as smart phones and PDA devices possess sufficient
computational resources for producing realistic full-screen
3D graphics at interactive rates. Therefore, application of
real-time 3D rendering for large scenes, such as cities, should
be a mere question of optimization. The project m-LOMA
attacked this technical challenge successfully [6]. We present
the resulting platform and the features for 3D navigation
development.

2. A 3D ENGINE FOR CITIES.
In the m-LOMA project, a 3D engine was created that

would run realistic but lightweight 3D city models at inter-
active rates from any viewpoint, without restrictions on nav-
igation metaphors. Mobile platforms have limited computa-
tional resources (CPU power, memory, storage and wireless
network speed), and all computations consume batteries, so
it is advisable to perform as much computations offline as
possible. The following shortly describes a few selected opti-
mization principles used in the m-LOMA engine, which are
applicable to any efficient 3D city map.

Visibility. Urban environments are highly occluded:
buildings populate the environment, and only the closest
façades are visible from the street level. This scenario suits
the potentially visible set algorithm [1] well. We divide view
space to a three-dimensional grid and perform approximate
visibility calculations as a preprocess with a predefined visi-
bility range. Furthermore, objects contributing only little to
the rendered image (the hardly visible set) can be discarded.

101

The result is a set of visibility lists, difference packed to
clusters. At run time, we need to render only those objects
already deemed visible.

Lightweight modeling. In computer graphics, visual
information is well conveyed with textures, digital samples
of surface colors, which are fast to render. A color texture
doesn’t contain all surface properties such as reflection, and
is dependent on lighting conditions at sample time, but nev-
ertheless provides a good visual approximation of an oth-
erwise potentially complex surface. Contrary to textures,
geometry requires lots of computations. For buildings with
relatively flat façades, the geometry can be rather simple,
at least to a certain scale. We choose to create a reference
model for mobile 3D maps by approximating façades with
flat, textured surfaces and let later user studies validate the
decision. Textures are created by digital photography, ap-
plying image processing. In addition to buildings, we include
statues in our model, to provide unique cues to the environ-
ment. We approximate them as billboards, flat textures that
always face the viewer. Figure 1 compares the reality and
the m-LOMA model.

Figure 1: A lightweight, textured model (below) and
the real world (up).

Memory management and textures. Mobile devices
lack run-time memory, which is easily consumed by tex-
tures. m-LOMA features an explicit memory management
system with internal cache to limit memory usage. Only
one level-of-detail (LOD) version of a texture at a time is
used, namely the one that matches the estimated resolution
at screen. LOD textures are created during the preprocess.
The internal cache holds JPG versions of textures, and pri-
oritizes small, recently used textures. In certain situations,

such as when the viewpoint is raised above roof level, sev-
eral dozen new textures may be required immediately. We
limit loading to one texture per rendered frame to avoid I/O
congestion. Common textures are always shared.

Frustum culling. While overall visibility is determined
as an offline process, still most of the potentially visible ob-
jects lie outside our view space, the view frustum. We ap-
ply temporal coherence and perform a two-level hierarchical
frustum test for only a part of the objects per a rendered
frame.

Implementation. The client was programmed using the
standard OpenGL ES 3D API with the C language, applying
several rendering optimizations. Implementing m-LOMA on
Symbian required substantial reprogramming.

Engine performance. Our reference model of Helsinki
contains 14 statues and almost 300 buildings, of which about
200 are textured. The model contains a total of 475 indi-
vidual textures, packed to 2-9MB depending on the allowed
maximum resolution. The complete model consists of only
12610 triangles, totaling 714kB of binary meshes. Visibil-
ity lists require 2.6-6.3MB. Table 1 presents performance for
a 1.7GHz Pentium M laptop with NVIDIA Quadro FX700
graphics, a 604MHz PDA (Dell X30) and a smart phone
(Nokia 6630). 10fps is commonly reached. The laptop
demonstrates the effect of hardware acceleration with over
100fps in all situations. The configurable memory manage-
ment limits the use of memory. In smart phones it can be
even less than 4MB, sacrificing cache efficiency.

Platform Dell M60 Dell X30 Nokia 6630
Resolution 1024x768 240x320 176x208
View distance 800m 500m 300m
Street 300-600fps 20-25fps 10-15fps
Sky 150-250fps 8-15fps 7-12fps
Top-down view 200-300fps 10-16fps 8-14fps
Memory usage 12-50MB < 16MB 4-8MB

Table 1: m-LOMA frame rates and memory usage.

3. M-LOMA SYSTEM
The overall system block diagram is presented in figure 2.
Preprocess. The m-LOMA preprocess accepts a VRML

model with JPG or PNG textures. For a city, it is advisable
to model with at least two levels of hierarchy, where entire
buildings are grouped from separate Transform nodes con-
sisting of roofs and walls. The hierarcy, with building names,
is stored into a separate file. The preprocess outputs visi-
bility clusters, binary meshes (walls and roofs, the leafs in
the scene graph) and LOD versions of textures. Meshes are
given a default color based on the dominant color of their
texture. Everything is packed to cache files that can be
preinstalled into mobile devices.

Server. A server provides model data and location-based
information to clients via a possibly wireless internet con-
nection. It also pushes dynamic data, such as annotations
created by other users, to clients. The server supports track-
ing of GPS enabled users, at their discretion.

Clients. Clients browse the current visibility lists (from
local cache or server), load meshes and textures, and render
them. Loading, be it from local cache or a server via wireless
networks, doesn’t stall rendering. Location-based informa-
tion, represented by billboard icons, is rendered last.

102

Figure 2: m-LOMA overall system.

4. SYSTEM FEATURES
The m-LOMA system provides several features, which are

accessible via configuration files, function calls, or state vari-
ables for which more advanced functionality can be pro-
grammed. Figure 4 presents some of the described features.

3D rendering. The basic service of the system is efficient
management and rendering of a textured 3D model from any
viewpoint. Models can cover large areas and contain hun-
dreds of textures, and be renderable, given lightweight ge-
ometry. Texture LODs can be changed for individual build-
ings in administrator mode. The client executables can be
installed on desktop machines, PDA devices running Mo-
bileWindows, or Symbian Series 60 smart phones.

Widgets. The system provides a set of lightweight wid-
gets such as buttons, menus, lists, tickboxes, scrollboxes, a
virtual keyboard etc. These can be used to create common
user interface components. Figure 3 presents an interface
for routing.

Collision avoidance. Collision avoidance has been im-
plemented efficiently, and the effect on rendering speed is
negligible. It can be turned on or off with one function call.
When on, the viewpoint slides along the colliding surface.

Annotation. The model can be annotated at run time by
billboard icons, that can represent cues, location-based in-
formation, user messages or bookmarks. These icons should
be collected into one aggregate texture, along with a config-
uration file. Administrators can integrate external content
databases, such as restaurant or tourist databases. Each an-
notation also contains a bulletinboard, where users can have
discussions.

Picking. Anything in the scene can be selected or queried.
The pick coordinates and object pointers are returned, which
can be used to launch menus, retrieve further information
or for example set route start or end points.

Routing and street maps. Routing functions return
a path between two points. Routing topology can be de-
fined in two ways. One can draw connected node points in
roadmapping mode. Or, a separate topological road set can
be constructed from map data, yielding a scalable 2D street
map and facilitating address queries. The system can also
view traditional 2D raster maps, given they are divided to
suitable pieces, and the coordinate system calibrated via a
configuration file.

Landmarks. To facilitate visualization of major land-
marks that lie far beyond the view frustum but are probably
visible to a user, a set of icon files can be configured to be
rendered whenever the related model is not visible. In addi-
tion, minor landmarks such as statues or other identifiable
cues can be tagged. At run time, positions of local visible
landmarks can be queried.

Markers. The system provides marker arrows that point
to an appointed target, displaying the distance or the tar-
get’s name. Markers can be assigned automatically, for ex-
ample for route start and end points, or used for bookmark-
ing locations, or attached to other users. Markers can be
picked, for example to animate the viewpoint to a target.

Dynamic data. Dynamic data, such as GPS enabled
users, or public transportation vehicles, can be tracked via
server, and visualized at client side.

Navigation functions. The navigation state contains a
set of variables that affect movement. Virtual or physical
buttons can be mapped to affect these variables to create
motion. A set of functions for automatic viewpoint move-
ment are provided to smoothly interpolate both position
and orientation between given points. Navigation can be
restricted to follow the streets or a route.

GPS. GPS devices are supported via BlueTooth. The
current position is available as a navigation variable. For
example, the viewpoint can be attached to it, or a marker
can be assigned to point towards it.

Figure 3: Lightweight widgets: setting up a route.

5. FIELD EXPERIMENT AND FEEDBACK
The first version of the m-LOMA engine and the city

model, installed on a Dell X30 PDA, was put to a test in a
field study to research users’ orientation strategies [7]. The
experiment was not intended to test platform robustness
or model veridicality, but certain observations are justified.
There were no software crashes during the 1-2 hour exper-
iments. The frame rate was sufficient for conducting the
tests, even though some subjects would have preferred a bit
faster rendering. Subjects found it generally easy to recog-
nize properly textured targets when the viewpoint was close
to street level. When one subject had chosen a real façade
as an orientation cue that was not textured in the model, he
became severely disoriented. Similar problems were encoun-
tered if texture colors were unbalanced. On the other hand,
ground level textures were usually incorrect due to occluders
such as cars and people in digital photographs, but that did
not seem to affect overall recognizability. It would appear
that the subjects were able to adapt to consistent flaws in

103

Figure 4: A 3D view presenting a route, markers,
content icons and hotbuttons.

the model, but unexpected ones could easily disrupt their
orientation strategies.

As the purpose of the first field experiment was to provide
insight for developing a 3D interface, not to test one, it was
performed using a very simple egocentric navigation with
only the up vector constrained (drive mode, applying the fly-
ing saucer metaphor [4]). As anticipated, maneuvering was
considered difficult, controls requiring attention frequently,
causing heavy cognitive load. No visual aids such as markers
or GPS were provided. If a target was lost from the view
during maneuvering, it was difficult to relocate. Similarly,
the point of origin was easily lost, frustrating the subjects.

Based on feedback, the set of features described earlier
were developed, and most flaws in the 3D model corrected.
In addition, the first real attempt at creating a 3D naviga-
tion interface was made. Several hotkeys and modes were
developed. For example, a hotbutton provides a fast, au-
tomated viewpoint change between a bird view, top-down
view and street level. To resolve cases where the user is dis-
oriented, the view landmarks button causes the viewpoint to
be animated to a position where both the user’s current posi-
tion (GPS position or latest viewpoint location) and closest
landmark visible to the user are shown. Tracks can restrict
the viewpoint along roads, keeping users from getting too
close to buildings. The current street address can be con-
stantly shown on the display. Analog 2D controls for stylus
let the user move more freely, and more accurately. A field
experiment will be conducted to evaluate this new interface.

6. CONCLUSIONS
An efficient mobile 3D city map engine has been devel-

oped, providing several features for developing navigation
interfaces. The platform demonstrates that a realistic mo-
bile 3D map can be implemented on current mobile de-
vices without hardware support. When such hardware be-
comes commonplace (supporting the Common Profile of the
OpenGL ES used in m-LOMA), a major increase in render-
ing speed is to be expected. The current system will provide
scalability, memory management and features for navigation
and 3D map development along with good performance in
contrast to static scene graph renderers such as the JSR-184.

The platform will be used and modified to conduct a series
of field studies, each with a different focus, such as the effect

of local cues and model veridicality to recognizability and
navigation. Traditional usability studies will be performed
on the current navigation system. In near future, we will
attempt to further modularize the system and release it for
academic use.

7. ACKNOWLEDGMENTS
This work was supported by Interreg IIIA. Thanks to lead

programmers Ville Helin and Nikolaj Tatti, and to Hybrid
Graphics for the OpenGL ES implementation.

8. REFERENCES
[1] J. M. Airey. Increasing Update Rates in the Building

Walkthrough System with Automatic Model-Space
Subdivision and Potentially Visible Set Calculations.
PhD thesis, UNC Chapel Hill, 1990.

[2] M. Bessa, A. Coelho, and A. Chalmers. Alternate
feature location for rapid navigation using a 3d map
on a mobile device. In MUM ’04: Proceedings of the
3rd international conference on Mobile and ubiquitous
multimedia, pages 5–9, New York, NY, USA, 2004.
ACM Press.

[3] S. Burigat and L. Chittaro. Location-aware
visualization of vrml models in gps-based mobile
guides. In Web3D ’05: Proceedings of the tenth
international conference on 3D Web technology, pages
57–64, New York, NY, USA, 2005. ACM Press.

[4] S. Fuhrmann and A. M. MacEachren. Navigation in
desktop geovirtual environments: Usability
assessment. In Proceedings of the 20th ICA/ACI
International Cartographic Conference, pages
2444–2453, 2001.

[5] S. Hughes and M. Lewis. Attentive camera navigation
in virtual environments. In IEEE International
Conference on Systems, Man & Cybernetics, 2000.

[6] A. Nurminen. m-loma - a mobile 3d city map. In
Web3D ’06: Proceedings of the 11th international
conference on 3D Web technology, pages 7–18. ACM,
2006.

[7] A. Oulasvirta, A.-M. Nivala, V. Tikka, L. Liikkanen,
and A. Nurminen. Understanding users’ strategies
with mobile maps. In Mobile Maps 2005 - Interactivity
and Usability of Map-based Mobile Services, a
workshop. Mobile HCI, 2005.

[8] M. Przybilski, S. Campadello, and T. Saridakis.
Mobile, on demand access of service-annotated 3d
maps. In Proceedings of the 23rd IASTED
International Conference on SOFTWARE
ENGINEERING, pages 448–452. IASTED, 2005.

[9] I. Rakkolainen, J. Timmerheid, and T. Vainio. A 3d
city info for mobile users. Computers and Graphics,
25(4):619–625, 2001.

[10] T. Vainio, O. Kotala, I. Rakkolainen, and H. Kupila.
Towards scalable user interfaces in 3d city information
systems. In Mobile HCI ’02: Proceedings of the 4th
International Symposium on Mobile Human-Computer
Interaction, pages 354–358, London, UK, 2002. Mobile
HCI, Springer-Verlag.

104

