
Supporting Real-time Multimedia Behaviour in
Open Distributed Systems: An Approach Based on Synchronous

Languages

G. S. Blairl, M. Papathomasl , G. Couk.on *, Philippe Robin’, J. B. Stefani2, F. Hom2 and L. Hazard2

*Distributed Multimedia Research Group, Computing Department

Lancaster University, Lancaster LA] 4Y~UK. E-mail: mpg@comp.lartcs. ac.uk

%entre National d’Etude des T&5communications, 38,40 rue du Gal Leclerc,
92131 ISSY Ies Moulineaux, FRANCE. E-mail: stefani, horn, hazard @issy.cnet.fr.

Abstract
There is currently considerable interest in developing multimedia
applications in open distributed systems. However, it is now be-
coming clear that existing architectures for open distributed sys-
tems do not support the particular requirements of continuous me-
dia types such as digital audio and video. This is particularly the
case in the important areas of quality of service support and real-
time synchronization. This paper presents results from dte Sumo
project which aims at supporting continuous media types within
the framework defined by the draft Open Distributed Processing
standard. The paper advocates the use of synchronous languages
within this framework for specifying and implementing real-time
synchronization and QoS monitoring. A computational model and
the realization of an infrastructure supporting this view are pre-
sented.

1. Introduction
Distributed multimedia computing has emerged in the last couple
of years as a major area of research. This work is motivated by the
wide range of ptential applications such as desktop conferencing,
multimedia mail and video -cmdemand services. Neverdteless,
significant technical challenges remain before the potential ofdis-
txibuted multimedia computing can be fully released.

One of the major problems in distributed multimedia com-
puting is heterogeneity. It is likely that most distributed multimed-
ia environments will be heterogeneous, consisting of a number of
different workstations interconnected by one or more types of net-
work. The distributed systems community has addressed this prob-
lem of heterogeneity by developing platform and language inde-
pendent architectures such as the Oyn Software Foundation’s
Distributed Computing Environment (DCE) and the Object Man-
agement Group’s Common Object Request Broker Architecture
(CORBA). There has also recently been standardization work, in-
itiated by 1S0 and I’ll], to develop draft standards for Open Dis-
tributed Processing (ODP)[18]. However, it now becoming clear
that such architectures and standards do not provide adequate sup-
port for multimedia computing. This state of affairs is prirnarly
due to the fast moving and technologically-driven nature of the
field but it is also partly due to the lack of standards frameworks
in which research efforts can be structured. The ODP reference

Permission to co y without fee all or part of this material is
Egranted provided t at the copies are not made or distributed for

direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinew. To coPy otherwise, or to republish, requires a fee
and/or Sp-seificperinission.
Muttimeda 94- 10/94 San Francisco, CA, USA
Q 1994 ACM 0-89791 -686-784/0010..$3.50

model standard promises to be a good starting point in this direc-
tion,

This paper addresses the problem of supporting multimedia
computing in heterogeneous environments. More specifically, the
paper discusses extensions to the ODP draft standard to meet dse
s~ific requirements of multimedia (including continuous media
types such as audio and video). Tbe main focus of the paper is on
the role of syncbrotrous Ianguagesin such environments; a novel
approach to supporting such languages is also proposed. The paper
is structured as folfows. Section 2 presents an extended ODP ar-
chitecture for multimedia applications; the role of synchronous
languages in this extended architecture is highlighted. Section 3
then examines synchronous languages in some depth, with partic-
ular focus on the synchronous language Esterel. Some require-
ments 10 support Esterel are then derived. Following this, section
4 presents a novel approach to supporting synchronous languages
in art ODP environment. Secion 5 discusses related work. Finafly,
section 6 contains some concluding remarks.

2. An Extended ODP Environment
It has long been recognized in the standards community that Open
Systems Interconnection standards (0S1) are primarily concerned
with communication between end systems. In a distributed sys-
tem, it is equally important to consider standards widrin end sys-
tems, thus aflowing the full functionality of a dktributed system to
be described. The task of ISO’s ODP standardization process is to
define a Reference Model which addresses these wider issues.

The complexity inherent in this process is managed by par-
titioning the standard into five viewpoints: enterprise, information,

computational, engineering and technology. Each viewpoint is a

complete and self contained pmpective of a distributed system in
a language appropriate to the target audience. For example, the en-
terprise viewpoint is targeted towards business managers and or-
ganizational analysts. In our research. we have concentrated on the
computational and engineering viewpoints. The computational
viewpoint is essentially a programming language model of disWib-
uted objects and interaction. The engineering viewpoinr. in con-
trast, described how the computational model should be realized at
the systems level. In this section, we focus on dte computational
viewpoint and define extensions to the existing computational lan-
guage for tnultirnedia. We return to engineering issues in section 4.

2.1 The Proposed Computational Language

2.1.1 The Existing Computational Language
The existing Computalionaf language is baaedon a location-inde-
pendentobjectmodel whereall interactingentities are &eateduni-
formly as encapsulatedobjects. Objects are accessed through in-
terfaces which define named operations @get-her with constraints

299

on their invocation. Interfaces are described in an abstract data
type language known as Interface Definition Notation (IDN).

Activity takes place in the model when objects invoke
named operations in the interfaces of other objects. Interface ref-
erences are used to create either implicitly or explicitly a binding
to the object supporting the interface. Interfaces may also be ex-
ported to a special object known as the trader.An object wishing
to interact with a particular interface must then import the interface
from the trader. At this stage, an implicit binding is created to the
object supfmrting the interface. This process is summarized in fig-

urel.

-f
TRADER

‘):’’’’:=”
iii) A binding is created to this object

Figure 1 Trading and Binding in ODP

The ODP community has recognized the importance of
multimedia and has recently proposed some extensions to the
computational language to support the style of interaction required
by continuous media communications. in particular, the language
now suppork the concept of stream bindings which represent a
flow of continuous media data between stream interfaces. In addi-
tion, quality of service (QoS) annotations can be specified on
stream interfaces.

We believe that the above extensions are necessary but not
sufficient to support multimedia. From our analyses. we also per-
ceive a need for:

● a more comprehensive treatment of quality of service specif-
ication (and subsequent management) in stream bindings, and

● support for real-times ynchronization between different activ i-
ties in a distributed environment.

To meet these requirements, we propose an extended computa-
tional model which provides linguistic support for QoS annota-
tions and which also supports the concept of reactive objeds.
These concepts are described briefly below; further details and
justification can be found in [10].

2.1.2 QoS Annotation on Interfaces
We propose that interface descriptions should be extended to in-
clude quality of service annotations which enforce constraints on
the legality of bindings between interfaces. In more detail, QoS arr-
notations consist of lwo clauses:

1. a required clause describing the level of service that the inter-
face expects from its environment (e.g. other objects or the un-
derlying system). and

2. a provided clause describing the level of service the interface
can provide to clients.

For a binding to be legal, the two interfacesto be boundmust be
both type compatible and QoS compatible [22].

In our approach, the individual clauses are written in a real-
time logic cafled QL. This logic aflows the service provider to
specify the required behaviour (including real-time behaviour) of
events pertaining to the object (for example, the rate of emission
of invocations from the interface). Further details of QL can be
found in [22] which demonstrates how QL can be used to express
a range of QoS properties such as throughput and jitter. The paper
also considers issues such as the expressive power and decidabi}ity
of the QL language.

2.1.3 Reactive Objects
Our second proposal is to add the mncept of reactive objects to the
computational language. Reactive objects are objects which have
guaranteed reaf-time behaviour in terms of their reaction to incom-
ing events and their generation of corresponding outgoing events.
They are necessary to provide an element of real-time control in
distributed multimedia applications. More specifically, there are
two key areas where reactive objects are required in such applica-
tions:

1, rerd-rime syncfrroniz~ion: reactive objects are required to con-
trol the precise timings of events in a mixed media presenta-
tion, e.g. to implement lip synchronization between a separate
audio and video stream binchng.

2. QoS management: reactive objects are also required to moni-
tor the quality of service provided by the underlying infra-
structure, to react to quality of service violations and to initiate

‘re-negotiation of the QoS currently provided (note that we are
currently investigating the possibility of generating QoS man-
agers diredfy from QL statements).

In addition, we propose Mat reactive objects should conform to the
synchrony hypothesis (discussed below) and be implemented us-
ing a synchronous language. We believe that this style of progratn-
ming has major benefits in real-time programming. This aspect of
the computational language is discussed in more depth in section
3.

2.2 Applying the Computational Language

The cument ODP computational language is entirely asynchro-
nous. Objects communicate asynchronously (without time
bounds) with other objects. In addition, objeds react with indeter-
minate delay to incoming events. This is not acceptable for multi-
media applications. The motivation for the changes to the compu-
tational language is therefore to provide more predictable real-
time behaviour over both communications (bindings) and selected
objects(reactive objects).This view of real-time systems is sum-
marized in the following sta[ement:

REAL-TIME = QoS- CONTROLLED BINDINGS + REA C-
TWE OBJECTS

In our enhanced language, an application consists of a
number of interacting objects some of which are reactive and some
of which are non-reactive. Reactive objects provide the necessary
Ievel of real-time control in the application. QoS annotations we
then used where appropriate to place bounds on the real-time be-
haviour of communication between objects.

As mentioned above, synchronous languages have a partic-
ularly important role in this model of computation in providing a
vehicle for the development of reactive objects. The rest of the pa-
per examines this role in more detail and looks at implementation
strategies for supfmrting synchronous languages in a distributed
system.

3. The Use of Synchronous Languages
3.1 Motivation and Benefits

Synchronous languages are based on an assumption known as the
synchrony hypothesis which states that the reaction of a system to
external events takes no time. This assumption leads to notations
that are well suited for specifying the behaviour of a reactive sys-
tem[4][16].

Although all synchronous languages rely on the synchrony
hypothesis they may come in different flavours. Lustre[7] and Sig-
nal [17], for instance, are synchronous dataflow languages. Esterel
[5] on tbe other hand is an imperative parallel synchronous lan-
guage.

module SynchedDisplay:

IWUIleftRea@, rightReady;
outprstdLsplayRlghl,diaplayLelt;

[awail lallReedy II ewalt rlghtRee@];
emit dlaplayRight; emit diaplayLelr:

end module

(a)

Figure 2 Sy

Some particular benefits from the use of synchronous lan-
guages for programming reactive systems are:

●

●

✎

They support high level constructs allowing a concise descrip-
tion of the complex relationships between events governing the
behaviour of a reactive system.

They have a clearly defined semantics with respect to temporal
execution and allow the behaviour of reactive systems to be
specified formally [5].

Programs in such languages are deterministic. They can be
translated into a deterministic finite automata that can be used
for an efficient implementation. The automaton may be also
used [o formally analyse behavioral properties and derive ex-
ecution bounds.

Although a particular synchronous language, Esterel, is
used in the rest of this paper the issues addressed are generrd and
the research can be applied to any synchronous language.

3.2 Programming Reactive Objects in Esterel

3.2.1 Introducing Esterel

An Esterel program consists of a set of parallel processes that ex-
ecute synchronously and communicate with each other and with
the environment by sending and receiving signals,

‘Ile signals present at each instant are broadcast instantane-
ously to all processes. Signals may carry a value, in which cme
they are called valued signals. or be used just for synchronization,
in which case they are called pure signals. Several occurrences of
a valued signal may be present at the same instant, In this case their
values can be combined using a value combination function. If no
such function is specified for a valued signal, several occurrences
of the signal at the same instant is considered as an error. A pro-
gran may also communicate with its environment through sen-
sors. A sensor has a value defined at each instant. However, there
is no signal associated with a sensor. It is also not possible to get
notified of a change to its value.

To comply with the synchronous hypothesis, the execution
of statements takes no time, This allows the construction of pro-
grams with temporal paradoxes. However, the presence of such
paradoxes is detected by the Esterel compiler. For instance. the
program fragment below tests for the absence of a signal, eomeS-
ignal, and then emits this same signal. However, as statements take
no time, this means that the signal has to be both absent and
present at the same instant.

presmt aomeSgnal else
emiieomesignel
end

Render
left

Display left

Position
tracker

(1)

Render right Display right

(b)

ronized display

3.2.2 Examples

‘he most interesting and relevant parts of Esterel are the state-
ments used to specify temporal behaviour and synchronization. In
this section we ~esent some examples illustrating the expressive
power of the tempral statements for some synchronization prob-
lems in distributed and multimedia applications. These examples
also used to drive the discussion on the runtime suppmt environ-
ment for Esterel in sections 3.5 and 4.2. The examples are used for
presentation purposes and they are not meant to be complete or re-
alistic.

Example 1: Synchronized Video Display

This example concerns the synchronized display of the left and
right eye frames on a stereo head-mounted video display. Figure 2
(b) shows the structure of this application. The ‘“position tracker”
object encapsulates a device and the computation needed to track
a user’s movements and output his/her position in a virtual world.
The Render left and Render right objects maintain the model of the
virtual world and render tie left and right eye frames corresporrd-
ing to the user’s position. We assumethat the current position is
updated after it has been obtained by both of the Render objects at
(1),(2).The frames are rendered in parallel on two separate work-
stations and time taken for rendering may vary for each worksm-
tion and frame. Figure 2 (a) shows the Esterel code of the reactive
object that is used to synchronize the display of the left and right
images. The signals leftReady (4) and rightf3eady(3) are used to
communicate with the Render compments. IeftReady is sent by
the Render left object whereas rightReady is sent by Render right
to signal that the corresponding frame is ready. The parallel state-
ment, 11,used in the program terminates only after both await state-
ments have terminated. Then, the two emit statements are execut-
ed simultaneously, according to the synchronous computation
model their execution takes no time, and the signals dispieyLeft (5)
and display Right (6) are sent to the Display left and Display right
objects for displaying the corresponding frames.

Example 2: Video Decompression and Playback

In this example, compressed video frames are read from the disk,
are decompressed and displayed at a fixed frame rate, Figure 3
shows the structure of the application. Object (a) reads compressed
video frames into a buffer in memory, The compressed frames are
decompressed by object (b) and displayed by object (d). llse reac-
tive object (c) coordinates the operation of the other components
to maintain a fixed frame rate. From time to time decompression
of a frame may take longer than the inter-frame display period. In
this case the previous frame or a special frame are displayed in-
stead.

301

module VideoDC:
type Frame_lD;
input daadiine,df_end(Frarm_ lD);

OUtpUt dc_slart, dls@y(Frema_lD):
constant FIRST_FRAME:Frame_lD;

Reactive

varIrarrm:Frama_lD in
frame :=FIRST_FRAME;
loop

emil cb_start;
do

awatfdqeti, hma:= 7dc_eti,
upto deadline;
emil dlaplay(frame);

end
end
end module Decompress frames

(a) (b)

Figure 3 Video decompression

The prowsm of the reactive object is shown in figure 2(a). We as-.-
sume that object (a) has already read some compr~ssed frames into
memory when the reactive object starts executing and that it keeps
doing so, so there are always some frames in memory. (1) and (5)
represent the data flow between the attached components which
could be realised through using shared memory. The signal
dc_stafl (2) is sent to object (b) to start decompressing a frame.
When it has decompressed a frame it sends the signal dc_end (3)
with a value identifying the frame. The signal deadline is received
when it is time to display the next frame; then (c) sends the signal
display (4) to object (d). The value of the display signal identifies
the frame to display. The “do-upto” statement is USIXIto make sure
that frames are displayed precisely at the required rate indicated by
the receipt of the deadline signal. If decompression finishes before
the occurrence of the deadline signal, this statement delays the ex-
=tztion of the program until it occurs. If not, ii aborts the statement
executed in its body when deadline occurs. The value that has been
assigned to the frame vtuiable controls whether a frame decom-
pressed in time or a previous frame is displayed. The id of a de-
compressed frame is obtained as the value of the dc_end signal,
?dc_en4 or at the beginning of the program by the constant
FIRST_FRAME.

Example 3: Observing the relative timing of events

Here, we examine two shortexamples to illustratethe difficulty of
determining whether external events should be presented simulta-
neous~y to an Esterel automaton.

Figure 2(a) shows an example of a program controlling a
system used for a quiz game. After a question has been asked to
two users, the one who pushes a button first gets the right to an-
swer. The system determines which user was fust and indicates the
outcome. Note that it is also possible for the users to push the but-
tons simtzkarteously, in which case we have a tie.

The signals buttonl and button2 are used by the environ-
ment to indicate that the respective user pushed his button. The
multiple await statement used in this program causes the program
to wait until an instant when the signal in some of the cases are
present. This statement is deterministic: if the signals for several
cases are present the first one is chosen. To keep the example sim-
ple we do not treat the case where none of the users push their but-
ton.

Figure 2(b) shows an example of a door control system re-
quiring that two buttons be pushed simultaneously to open the
door. The signals buftonl and button2 are sent by the environment
when the respective buttons are depressed. The signal open_door
is sent to the environment to open the door.

roduleQuiz:
II

module DoorControl:

put buttonl, button2; k’pul buttonl, button2;
ufpufuaerl, uaer2, Ile; output opan_dooc
w
await @

case [buttonl and butlon2]do await [butfonl and butfon2];
emk tie; emit qwr_dooc

case buflonl do end
arniluaerl;

case butfon2do end module
emil uaar2;

end
nd
nd module

Figure 4 Timing of occurrence of external events

llre awaitibuttonl and btttton21statement causesthe mo-
uarn to wait unth an instant where ~th buttonl and buttort? ~i2-
~als are present. The presence of just one of these signal has no e~-
feet. The corresponding sigrtrd is lost and no signal is emitted by
the program.

3.3 Requirements for Supporting Esterel
llre following issues have to be addressed for using Esterel as sug-
gested by the examples in the previous section:

providing support for the execution of the Esterel program
within an asynchronous computing system and providing an
interface so that it may interact with it.

establishing a corresprdence between the Esterel notion of
time andreal time. That is, establish a relation between events
in the distributed system and instants in the synchronous exe-
cution model. The term anchoring has bear used for this in the
literature [5].

ensuring that the integration of the Esterel program within the

●

✎

✎

asynchronous environment is done in such a way that the as-
sumptions, derived from the synchrony hypothesis, are appro-
ximatedin a satisfactory way in the distributed system.

‘fIre integrated system may be fhougbt of as a virtuef synchronous

execution machine. The issue is then the correct execution of this
machine. In 3.4 we discuss how to integrate err Esterel program in
a larger distributed environment for constructing such a virtual
synchronousmachine. In 3.5 we discussthe requirementsfor exe-
cuting distributed applications controlled by Esterel programs in
such a way that the synchronous hypothesis is correctly approxi-
mated.

302

3.4 A Virtual Synchronous Machine

lle Esterel compiler [11] translates programs into a module imp-
lemented in some host language (in our case C). This module im-
plements an automaton representing the Esterel program. The in-
terface of the automaton with its environment is realized by a set
of functions, the most interesting of which are:
●

✎

✎

Inpul functions: for each input signal declared in the Esterel
program,thecompiler generatesa C function PROG_l_aomeS-
ignalo where aomesignal is the name of the associated signal.
This function is called by the program using the automaton to
indicate the presence of the associated signal at the current in-
stant.

The automaron transition function: A function named PROG()
is called to cause the automaton to react. The signals present at
this instant are the ones for which a call to their associated C
input function prwxded the cafl to PROG().

Ourput func~ions: for each output signal declared in the Esterel
progr~, a C function named- PRO_G_O_eomeSigrraio,where
eomesignal is’the name of an ouput signal, should by supplied
by the environment. These functions are called by the automa-
ton transition function to indicate that the associated output sig-
nal was emitted as part of the reaction of the Esterel program to
signals present at the current instant.

To integrate the synchronous module into a distributed system, it
is necessary to provide some software that does the following: i)
Gets notified of externrd events and maps them to the correspond-
ing signals declared in the synchronous program. ii) Using the in-
terface described above, triggers the automaton after setting the
appropriate set Of signals. iii) Collects the signals produced in an
automaton reaction, maps them to external events and presents
these events to the environment.

llre mechanisms for getting notified and signaling external events
may vary depending on dre host environment.

3.5 Correctness of a Virtual Synchronous
Machine

3.5.1 Properties of a Synchronous Machine
In order to implement a virtual synchronous machine, it is neces-
sary to address the following questions:
.

.

.

.

How are asynchronous events mapped to instantsin the execu-
tion of the synchronous program?

How are instarrts in the execution of the synchronous program
mapped to real-time (e.g. when the automaton runs)?

How much time is needed for executing an automaton transi-
tion ?

Is the synchronous hwcrdresis acmroximated in interactions
with asykcftronous obj~cts in the d-i~tributed application 10sus-
tain the synchronous virtual machine abstraction?

In the next section we further discuss these questions in the context
of the example applications presented in section 3.2. The discus-
sion illustrates the particular requirements of virtual machines and
the need for a flexible engineering infrastncture for meeting these
requirements.

3.5.2 The Examples Revisited
The synchronization requirements of example 1 are to impose
bounds derived from tolerances of the humanvisual perception:i)
on the latency from a change in the user’s position to the instant
the corresponding images are displayed, and ii) on the jitter in the
display of the left and right eye images. Tbe latency requirement
can be expressed in the model discussed in section 2 by the iippro-
priate QoS constraints on the bindings between the interfaces of
the participating object, imposing a bound on time taken for ren-

dering, and by a bound on the reaction time of the reactive object
so that dre synchrony hypothesis is approximated in a satisfztory
way. The jitter requirement cart be expressed by the appropriate
QoS constraints on the bindings to the display objects, and by m-
requiringthat the implementations of the reactive and display ob-
jects correctly approximate the synchrony hypothesis.

1ssa similar way llte requi~ment of a fixed frame rate in ex-
ample 2 imposes boundson the reaction time of the reactive ob-
ject. What is important in this example is that the automaton reacts
fast enough to the deadline signal and that the emission of display
signals have acceptable latency and jitter. T?re constraints on the
reaction with respect to signals from the decompressor is more re-

laxed as the application can tolerate that some frames are not being
decompressed in time.

llre main requirement imposed on the reactive objects in
the frrst two examples is that they react fast enough to the occur-
rence of some external events. In the programs discussed in exam-
ple 3, the time it takes for the reactive object to react to events is
not as critical. What is more importantis to be able to accurately
detect the time of occurrence of external events and to then map
them to instants in the execution of the synchronous program.
These examples also show the need to explicitly specify the real-
time granularity characterizing simultaneous events. This should
be used by the infrastructure to comedy approximate the notion
of simultaneous in the synchronous program. If this granularity
was left unspecified it would lead to programs with infrastructure-
dependent behaviour. For instance, in the Quiz example the timing
should be chosen so that it matches the way users perceive the oc-
currence of events such as pushing a button.

The precise way such requirements are expressed and are
associated witfr the components of a distributed application is out-
side the scope of this paper; more on this issue can be found in
[22]. The next section concentrates on an infrastructure that can be
used to implement virtual synchronous machines that satisfy such
requirements.

4. Implementing the Computational
Language

4.1 EngineeringSupportfor ReactiveObjects
4.1.1 The Use of the Chorus Micro-Kernel
Our computational language requires careful engineering to pro-
vide the predictable levels of performance required by multimedia
applications. It is now becoming clear that this level of support
cannot be achieved using conventional operating systems such as
Unix[15][21]. We are thereforeinvestigating the use of micro-ker-
nels, in particular the Chorus micro-kemel[6], to support mukime -
dia.

Chores is a useful startirtg point for the research because it
is lightweight and exhibits a number of real-time features. Howev-
er, in common with other micro-kernels, it fails to address some
key requirements of multimedia. Firstly. Chorus is message-ori-
ented whereas. as discussd above, continuous media types re-
quire stream-oriented communications. Secondly, Ctmrus offers
no quality of service control over communications and only coarse
grained priority-based control over thread scheduling. In order to
overcome these deficiencies. we have introduced a number of new
facilities to the Chorus micro-kernel. These facilities are presented
in detail in the literature[9]. In this paper. we concentrate on the
features required to support reactive objects.

4.1.2 Key Extensions to Chorus
‘l’l’semain extension to the Chorus micro-kernel is the corwept of
rtports. Rtports are an extension of standard Chorus ports and
serve as end-points for skeam bindings. The key difference be-

303

—

input signal sequencer clock

collector

output event

input event

collector

rthandlers

input rtports output rtporta

Figure a t5enertc arcmtecwre for Irrplernenung an tsterel exectmon macnme

tween rtports and standard ports is that rtports have an associated
quality of service which is ‘used, for ex~ple, to manage buffers
within the rtport. Rtpxts can have associated rthmdlers, which are
user defined procedures which manipulate real-time data coming
from or going to an rtport. Rthandlers are upcalkl from their as-
sociated rtpxt whenever data is required at a source rtport or has
been delivered, by a binding, to a sink rtport.

Applications can use rthandlers either for the notification of
events alone, or for both event notification and data transfer. We
feel that this separation of nott~cation and delivery is important
for continuous media applications. It permits applications to
choose whether they want to actively process continuous media
data in user space, or merely to track the passage of continuous
media generated and consumed in supervisor space. This latter
case arises when the device under consideration is, for example, a
kernel managed video device with associated frame buffer which
is receiving data directly from the network card. Here, efficiency
can be maximized as continuous media data need not cross prote-
ctiondomains.

When data arrives at an rtpor~ the thread dealing with Ure
incoming data upcalls the rthandler. The same thread will then
continue and is given a deadline derived from the quality of serv-
ice of the associatedbinding. There is therefore co-ordination be-
tween the communications and scheduling subsystems to ensure
end-to-end deadfines are met. Note that data is not copied to the
application. Rather, the rthandler is given access to the buffer, con-
taining the incoming data, directly.

In our scheme, there is an assumption that rthandfers will be
fairly lightweight and can therefore complete processing within
that deadline. Should the deadline expire, then the buffer contain-
ing the incoming data may be reclaimed by the system. A quality
of service violation would also be notified to the application. Note
that the rthandler thread can communicate with other threads in the
processing of the incoming event. Communication is achieved by
the use of semaphores. Signalled threads inherit the deadline of the
handler.

‘The scheduling implementation exploits the concept of
user-level lightweight threads to minimize the overhead due to
context switches. It is now recognized that user level threads pack-
ages can be an order of magnitude faster than kernel leveI threads
packages which are, in turn, an order of magnitude faster than wn-
ventional heavyweight processes. Threads are scheduled accord-
ing to an earliest deadline fiist policy. The deadline (as mentioned
above) is derived fmm the quality of service of the associated
binding.

4.2 Implementing a Virtual Esterel Machine

inorder to address the varying requirements of Esterel execution
machines that we discussed in section 3.3, we have designed an
object-oriented framework for supporting the implementation of
Esterel machines. The appropriate selection of components in this
framework can be used to awommodate different execution ma-
chines. Furthermore, object-oriented techniques can be used for
integrating new compmrents in the tkarnework or refining existing
ones using class inheritance.

In contrast to the previous sections, the terms component
and object are used in this section to denote lightweight software
entities such as C++ classes and instances.

4.2.1 A Generic Architecture
‘he Esterel machine is implemented as a single Chorus actor that
communicates with the envirortment using a set of rtports. One
sink rtport is used for each input signaf and one source rtport is
used for each output signal declared in the Esterel program.

Figure 5 shows the components used in the generic imple-
mentation of an Esterel machine. Dashed arrows are used to repre-
sent dataflow between components whereas continuous ones rep-
resent control flow.

External events are notified, asynchronously to the execu-
tion of the machine, through input rtports. The arrival of a message
on an rtport triggers the execution of its associated rthandler. Each
rthardler is in turn associated with an object of class Signal that
maintains information about external events and their associated
Esterel signals. The set of Signal objects is stored in the Input
event collector object. The Signal class is important for scheduling
and buffer management and is discussed in detaif in section 4.2.2.

The main execution loop of the machine is encapsulated in
the sequencer. The sequencer is activated by the clock objecL then,
it activates in turn the other machine components. First it activates
the input signal collector. This object interacts with the input event
collector and. according to the encapsulated signal collection pol-
icy, it constructs at set of input signals. This set is represented by
the “input signal set” and is used as input to the automaton. The
automaton object is activated next. This object encapsulates the
automaton module produced by the Esterel compiler plus the code
needed to feed the signals in the input set to the automaton module,
trigger its reaction and construct an output signal set. After the au-
tomaton, the sequencer activates the output event collector which
distributes the external events that correspond to the Estereloutput
signals thmrrgh the output rtporta. Fhmfly, the sequencer activatss
the input signal set to release the resources associated with the sig-
nals that where used as input to the current automaton transition

304

(more on this in the next section). Having completed the machine
execution cycle, the sequencer waits for the next clock tick before
continuing with the next cycle.

4.2.2 Scheduling and Buffer Management

The real-time scheduling and buffer management integrated into
rtports have been incorporated in our framework in the design of a
signal class hierarchy. The classes in this hierarchy have been de-
signed in such a way so that

● the deadlines of rthandlers associated to selected rtports are in-
herited by the execution machine.

● the buffers associated with rtports are released as soon as they
are not needed by the Esterel execution machine,

● these features are encapsulated in the design of the signal class-
es in such a way that Urey can be used through data abstractions
that hide the details of their implementation.

A signal object is associated with each input rtport. When the han-
dler associated with the rtport is invoked, it calls the method notify
defined for all objects of the class hierarchy. There is a set of class-
es in the signal class hierarchy. Depending on the class of the sig-
nal objec~ it is possible to obtain differenl behaviors with respect
to scheduling and buffer management.

Figure 6 (a) shows the signal classes and their inheritance
relationships (if need be, more classes may be added in the future),

The Signal class is used when the Esterelsignal that is asso-

ciated to the rtfxmt is a pure signal and the deadline of the rthrurdler

does not affect the automaton (This can be deterrmned by the anafysis

of the requirements of the execution macbi ❑e ar discussed in section 3.5).
When the rdtandler calls the notify method of a signal object of this
class, the information needed by the framework, such as Lhetimes-
tamp of the event, is saved in the object’s instance variables; the
rthandler then returns and the associated buffer is released. The
deadline associated with the rthandler then has no effect on tie ex-
ecution of the Esterel machine.

llte ValuedSignal class is used when the Esterel signal as-
sociated to the rtportis a valued one, In this case, to avoid copying
the value, the buffer should not be released. The implementation
of the notify method for this class achieves this by blocking the

rthandler that called it on a semaphore. When the buffer is no long-
er needed the semaphore is signalled, causing the rthandler to
complete its execution and the buffer is then released. The sema-
phore may be signalled only indirectly by calling other methods of
the ValuedSial class, in particular release and capyValue. The
former is called at the end of an execution cycle of the Esterel ma-
chine on signals that have beerr used as input to the cument autom-
aton transition and they are no longer needed. The latter is called
when, during the execution of the Esterrd machine, it is determined
that the value is no longer needed. A releaaeValue that simply sig-
nals the semaphorw is also supported for increased flexibility.

The prrqmse of the QoSSignal classis to causethe execu-
tion machine to inherit the deadline of the rthandler of its associ-
ated rtport. The choice to associate this sigrrafclass with a partic-
ular rtport is driven by considerations discussed in section 3.5. The
inheritance of deadlines takes place by having the rthandler wait
on a semaphore that is signalled by the main machine thread at the
end of the machine execution cycle. The approach taken for
achieving this is very similar to the one used for the ValuedSignal
class expect that the rtlrandler’s deadline is inherited by the autom-
aton.

Finally. the QoSValuedSiWal class provides a combination
of the functionality of the classes discussed above and is implem-
ented in a much the same way.

(a) (b)
Figure 6 (a) Signal class inheritance dag

(b) Some methods of the signal class

4.2.3 Accommodating the Requirements of
Different Machines

To illustrate the flexibility offered by the object-oriented design,
we discuss some ways of tailoring the generic machine to meet the
needs of the example applications.

Changing the input signal coUection policy

‘he simplest approach for constructing the input signal se~ is to
include all the signals associated with events stored in the input
event collector. However, in an application like the Quiz game
cotrtrolleror the door control system, an important issue is whether
or not the signals associated to input events should be presented si-
multaneously to the Esterel automaton. A flexible way for control-
ling this is to have a collection policy that is based on time-stamps
and which is parameterised by a threshold used to determine
whether events should be considered simultaneous. For this, we
define a subclassof the “standard”input signal collector. The in-
terface of this class has an additional method for setting the thresh-
old and accessing the threshold’s value. The algorithm implement-
ed in this class for constructing an input signal set selects all events
that have occurred close enough in time, according to the thresh-
old.

Changing the clock
lle clock component determines how often the Esterel machine
should go through its cycle. A pulse method is used to advance the
clocks time. A tick method is called to signal a new instant for run-

ning a machine cycle. Several possibilities for running the ma-
chine can be encapsulated within subclasses of the clock class.
some of them are briefly discussed below:

● to run periodically. This is supported by a cyclic thread that
waits for given time, then calls pulse.

● on the occurrence of input events. The occurrence of a prsrticu-
htr input event or a set of them is used to cafl pulse.

Q on the invocation of an rthandler associated to an output rtport.

5. Related Work
Other work on using synchronous languages in an asynchronous
environment is reported in [1][2][3][8]. [8] describes the use of Es-
terel in robotics, [1][2][3] describe a mixed synchronous/asyn-
chronous approach based on Esterel for the implementation of au-
tomatic control systems. In contrast, the work presented in this pa-
per focuses on providing a general way to supprt the
implementationof synchronousprogramsin a distributedenviron-
ment. Moreover, our work integrates synchronous programming
with real-time QoS constraints, and takes advantage of the inte-
grated scheduling and QoS support provided by our engineering
infrastructure.

The use of object-based models for supporting the construc-
tion of distributed multimedia applications is reported in [12][23]
and[20]. The approach proposed by Nicolaou in [20] has a lot in
common with ours. The most important differences are the con-

305

cept of reactive object and tie use of synchronous languages in our
model for supporting real-time synchronization. In [20] this is
achieved by using lower level synchronization mechanisms. In the
approach proposed by the Object Systems Group at the University
of Geneva synchronization is specified through temporal compo-
sition 13]. In this approach objects that encapsulate multimedia
activities have to support temporaJ operations allowing them to be
positioned, oriented and scaled relative to other objects in time, in
way anaJogous to positioning graphics objects in space. A number
of ways baa been also suggested for maintaining synchronization.
This fratnewotir provides an elegant way to describe and imple-
ment (although this work does not address QoS and OS support)
synchronization of temporal activities by positioning them onto
the time-line, it is difficult to see how it can be used for synchro-
nizing activities with respect to events that can not be placed on the
time line. For instance it is hard to see how the second example in
section 3 could be expressed in their framework. In fact, in appli-
cations [14] [23] where synchronization did not match the time-
Iine model, synchronization between components has been imple-
mented in an ad hoc way using conventional Unix, IPC mecha-
nisms. We believe that our approach provides a more general way
for addressing synchroni=tion issues (some of which are further
discussed in [19]) in multimedia systems structured as interacting
objects. On the other hand, their synchronization framework,
which could be implemented using the approach proposed in this
paper, would be more convenient to use in some cases. Also, in
their work, more support is provided for end user tools for con-
structing applications. Itwould be interesting to apply this aspect
of their work to support the construction of applications based on
the model presented in this paper.

6. Concluding Remarks
This paper has presented an approach to supporting multimedia in
an open distributed processing environment. The approach relies
on two key concepts, namely QoS-managed bindings (for predict-
able end-to-end communication) and reactive objects (for real-
time control and synchronization). Using this approach, the real-
time synchronization aspects can be programmed using a synchro-
nous language, a notation which is highly suitable for expressing
such real-time concerns.

We presented an underlying infrastructure which provides
the necessary integration of communications, real-time process
scheduling and buffer management to support our approach. The
features provided by the infrastructure are incorporated into an ob-
ject-oriented framework that can be tailored to match the needs of
particular classes of applications.

We are currently completing the implementation of rtpata,
rthandlers and threads scheduling as reported in this paper. Details
of this implementation are reprted in [9].

Acknowledgments
Lancaster University was supported for this work by France Tele-
com through grant no. 93-5B-067. We would fike to thank the
Swiss FNRS for i~ support through grant no. 82204)37225. We
would also like to thank Phil Adcock, Andrew Campbell and the
reviewers for their suggestions for improving thepresentation of
this paper.

References
[1] C. Andre and L. Fancelli, “A Mixed Implementation of a Real-

Tlme System, ” Microprocessing and rnrcro-programnring,vol.
30, North-Holland,1990.

[2] C. Andre, J.P. MarmcratandJ.P. Paris,Execution Mcrchinesfor
Esteref, Proceedings ECC ’91, Grenoble,Frartce.

[3] C. Andre and M.A. PeraJdi, Effective in@rnesrtation oj Esterel
progrrmrs, 1993, Euromicro Workshop on Real-Time Systems,
GrrIu,Finland.

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

11]

12]

[13]r

[14]

[15]

[16]

[17]

G. Besry and G, Gonthier,“TheESTERELSynchronous Pro anr-
nring Language:Design, Semantics and Implementation,“ 84? lN-
RIA, 1988.
G. Berry and L Coasaal, The ESTERELSynchronousProgramm-
ing Lan uage and its Mathematical Semantics, LNCS, vol. 197,

$Springer erlag, 1985.
A. Bricker, M. Gien, M. Guillemot, M., Lipkis, J.,Orr,D., and
M. Rorier, “Arctritcctural Issues in Microkernel-based Operating
Systems: tie CHORUS Ex~ience”, Computer Communications,
Vet. 14, No 6, w 347-357, July 1991.

P. Caepi, D, Pilaud, N. Hatbwachs and J. Plaice, “LUSTR~ a De-
clarativeLan uage for Rest-Time Programming,” Prrxeedings
POPL’87, A&, Munich.
E. Coste-Maniere, “Utitisation d’t?sterel rfansun contexte asyn-
chrone: une application robotique,” Research report 1139,INRIA,
Dec. 1989,(in French).
G. Coulson, G.S. Blair, P. RobinandD. Shepherd “Extendingtfw,
chorus MiamKernel to Sup~ContinuOUsMedi’

a%’$%zgPror. of the4/h lnterna[iorra woAshop onNetwork
System Supportfor Digital Audio and Video.Nov. 1993, Lmcas-
ter,UK.
G. Coulson, G.S. Blair, F. Horn, L. Hazard,J.B. Stefani,’’Support-
ing the ReaJ-Time Requirements of Continuous Media in Open
Dtibuted Processing,” [o appesr in Computer Networks and
~S~~ Systems, (Spcciat Issue on Open Dktributed Processing),

E.rterelV3 Langua e Re$emrce ManuaJ, Version 3.1 release 4,
CISIINGENIERJ4 Age- ProvenceEat,Les CardotdinesB1,
06560 Valbome, France.
S. Gibbs, “CO

r
its Multimediaand Active Objects,” Prcm

00PSL4 ’91S1 PM Notices, vol. 26, no. 11, ACM, 1991, pp.
97-112.

S. Gibts, L Darniand D. Tsichritzis,”An Object-Oriented Frame-
work for Multimedia Corrqsositionand Synchronization,” proc. of
Eurographics Multimedia Workshop, Stockholm 1991,
S. Gibbs, V. de Mey, C. Breiteneder and M. Pspathornas, “Video
Widgtis and Video Actors,’” UIST’93 Conference pr-ocetzfirrgs.
ACM.

Harrko,J,G., Keurner, E.M., Northcutt, J.D. and G.A. Wall, “Work-
station Suppoti fcs Time CriticalApplications”,Pr-oc. Second /n-
temational Workrhop on Network and Operating System Support
jorDigitalAudio and Video, Heidelberg, Springer Verlag, Novem-
ber lg-19 1991,

D. Harel and A. Pttueli, “On the Development of Reactive Sys-
tems,” &gi~ and Mmiek of Concurrent Systems , K. Apt (Ed.),
NATO ASI series, Springer,1985.
P. Le Guemic, A. Benveniste,P. Bournai aad T. Gauthier, “SIG-
NAL: a Data Ftow Oriented Language for SignaJ Processing,” Re-
port 246, lRLSA,Irisa,Rennea,France, 1985.

[18] ODP, Basic ReferenceModelJor Open Drktributed Processing
Parr 3: Pre-rcnptive Model, ANSI, 1430 Broadway, New Yak,
NY l~lg, USA, June 1993, ISO /lEC JTCt/SC2J/WG7 Draft
Reeomtnendation X.903.

[19] M. Papathonraa,C. Breiteneder, S. Gibbs and V. de Mey, “Syn-
ehroni~tion in Virtual Worlds,” Mulrimetia and Virtual Wor/a!r,
M.N Tlralrnam and D. Thatnuurtt (Ed.), John Wiley, 1993.

[201 C. Nicotaou.”An architecture fcs rest-tirne communication sYs-
tern,” IEEE,‘Journal an Selected Areas in Comnumirxtirms, (oL 8,
no.3, pp. 391-400, April 1990.

[21] Jason Nieh, J.N. NortJrcut4J. G. Hanko, “SVR4 UNIX Scheduler
Unacceptable Fcs Multimedia Applications”, Prac. Faurrh Inter-
national Workrho on Network and OpenztirrgSystem Sup n for
DigitalAudioancfVtieo, LancasterUniversity,Latrcasterfil
4YR, UK October93.

[22] J.B. Stefani, “ Corrptationat Aspecis of QoS in art Gbject-Baaed
Distributed Architecture.” 3rd International Wo&.rhopan Re.rpr-
sive Computer Systems, Lincoln, NH, USA, September 1993.

[23] Vicki de Mey and Simon Giblx, “A Multimedia Component Kit,”
Proceedings ACM Multimedia ’93, Artnaheim,CA, Aug 4-6,1993.

306

