
ClickRemoval: Interactive Pinpoint Image Object Removal

Frank Nielsen
Sony Computer Science Laboratories, Inc

Tokyo, Japan

Frank.Nielsen@acm.org

Richard Nock
Antilles-Guyane University

Martinique, France

Richard.Nock@martinique.univ-ag.fr

ABSTRACT
In this paper, we explore the problem of deleting objects
in still pictures. We present an interactive system based
on an intuitive user-friendly interface for removing undesir-
able objects in digital pictures. To erase an object in an
image, a user indicates which object is to be removed by
simply pinpointing it with the mouse cursor. As the mouse
cursor rolls over the image, the current implicit selected ob-
ject’s border is highlighted, providing a visual feedback. In
case where the computer-segmented area does not match the
users’ perception of the object, users can further provide a
few inside/outside object cues by clicking on a small number
of object or nonobject pixels. A small number of such cues
is generally enough to reach a correct matching, even for
complex textured images. Afterwards, the user removes the
object by clicking the left mouse button, and a hole-filling
technique is initiated to generate a seamless background por-
tion. Our image manipulation system consists of two com-
ponents: (i) fully automatic or partially user-steered image
segmentation based on an improved fast statistical region-
growing segmentation, and (ii) texture synthesis or image
inpainting of irregular shaped hole regions. Experiments on
a variety of photographs display the ability of the system to
handle complex scenes with highly textured objects.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; I.4.6 [Image Processing and Com-
puter Vision]: Segmentation—Pixel classification; parti-
tioning

General Terms
Algorithms

Keywords
User interface, computational photography, user-steered seg-
mentation, inpainting, texture synthesis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

(a) (b)

(c) (d)

Figure 1: ClickRemoval is an interactive image ob-
ject removal system. As the user’s mouse cursor
rolls over the image, the current implicitly selected
object is highlighted, (a) and (b). By simple mouse
clickings objects are removed and background por-
tions are instantaneously synthesized, (c) and (d).

1. INTRODUCTION
Removing and cutting objects from digital pictures are

main operations of desktop publishing (DTP) for which many
dedicated tools have been designed and refined over the
years (e.g., the magnetic lasso or the magic wand of AdobeR©

PhotoshopR©). Image cutouts are typically pasted (compos-
ited) on a different background for photomontages. Remov-
ing objects is important in the movie industry to obtain
clean plates (say, remove camera tripods or other calibra-
tion materials that have been used on stage to facilitate
postprocessing computer graphics effects). Clean plates are
usually obtained by synthesizing the background mosaic by
tracking and registering a sequence of frames and removing
objects by manually painting them for each frame. With
the advent of image inpainting [2] and texture synthesis
technologies for generating seamlessly image portions, re-
moving objects in still pictures becomes today an essential
primitive of image retouching software. To remove objects
in photographs (Figure 1), we do not need a pixel accuracy
that requires to pull out the alpha matte but rather requires
a coarse bounding region that separates the selected object
from the remaining background of the scene. Because object
cognition by computers is still very far from human abilities,

315

the challenge consists in designing an intuitive user interface
(UI) and corresponding effective user-steered segmentation
algorithm for selecting objects by putting the user’s high-
level cognition in the loop.

1.1 Related work
Prior object selection work in images are classified into

two categories:
Contour-based selection. A user marks the object bound-
aries by coarsely and piecewisely sketching with the mouse
cursor the contours that are on-the-fly finely optimized to
fit the object boundaries. The first contour-based methods
were developed independently in 1995 using either dynamic
programming [7] (intelligent scissors) or gradient descent
optimization [4] (image snapping). Those methods are also
better known today as magnetic lassos. Intelligent scissor
techniques were later refined in [8]. Recently, a Monte-Carlo
probabilistic system, called jetstream [10], has been designed
to extract contours using particles. Contour-based selection
work particularly well for in-focus objects out-of-focus back-
ground images, where the objects consist of a single outer
contour. For more complex topology objects such as grid-
like objects containing many holes, those methods are time
consuming as they require users to trace each inner contour
(Figure 6).
Region-based selection. A user gives a few hints on which
portion of the image is the object and which image pixels
are the background, and an optimization algorithm then ex-
tracts the object based on these cues. The magic wand tool
of Photoshop is such a typical system. Other approches are
either based on segmentation and triangulation [3, 1, 14] or
graph cuts [12, 5].

Note that even for image cutouts, a coarse extraction is of-
ten enough as it allows to initialize a trimap (labeling of im-
ages into background/object/undefined areas) to precisely
extract objects with alpha mattes [13, 6] as a postprocess-
ing operation. Matte extraction is required for copy-pasting
translucent or furry objects that have potentially soft pixel
memberships (pixels being a mixture of object/background
colors).

1.2 System overview
Our system ClickRemoval consists of two basic modules:

(1) user-steered segmentation, and (2) hole-filling. In the
ideal scenario, the user just has to pinpoint objects s/he
wants to remove and press the left mouse button to re-
move and synthesize instantaneously the background part
(see Figure 1). Because automatic segmentation may yield
not expected results, we provide a simple mechanism to in-
put bias by clicking just a few object/background pixels
(see Figure 2). The next section describes the ClickRemoval
user interface. Section 3 present the novel statistical region-
growing algorithm, and Section 4 concludes the paper.

2. USER INTERFACE DESIGN
The user starts by loading a picture and moves the mouse

over the image (Figure 3.(1-3)a). Whenever the mouse moves,
the segmented area implicitly defined by the cursor position
is highlighted in real-time (Figure 3.(1-3)b). Computing
segmentations is done in almost linear-time, as described
in Section 3. Once an object is removed by the user, a
fast hole-filling texture synthesis procedure is triggered [15]
(Figure 3.1c, 3.2d and 3.3c).

(a) (b) (c)

Figure 2: Matching computer/human object defini-
tions by putting the user in the loop and iteratively
refining manually the segmentation. (a) depicts the
segmentation obtained after the user manually pin-
pointed object (red) and background (blue) cues.
(b) is the hole created by removing the slightly di-
lated object, and (c) is the result image after texture
synthesis.

ClickRemoval has three operation modes:

1. To remove the implicitly selected area Fig 3.(1b), the
user clicks the mouse left button. The system com-
putes a bounding box around the removed area (ex-
pands it by some factor) and initialize texture synthe-
sis using the remaining pixels inside the box (Figure
3.1.(1c)). We implemented the per-pixel texture syn-
thesis of Wei and Levoy [15] because of its flexibility
and real-time performance in our setting (see also [2]).

2. Sometimes, we prefer to design how to fill the hole
using another part of the image. We then scribble the
image by pushing the left1 mouse button and moving
the mouse cursor over the portion of the image we are
interested to initialize the texture synthesis (Figure
3.(2c)). We define the selected pixels by taking either
the bounding box of the stroke or choosing the image
pixels falling within some prescribed distance to the
stroke.

3. Automatic segmentation may fail to deliver appropri-
ate object decompositions. In case of failure, the user
presses the SHIFT key and the mouse left (object) or
right (background) mouse to indicate prior cues (Fig-
ure 2 and Figure 3.(3b)). ClickRemoval then refines
the segmentation to satisfy the constraints of the user’s
cues. Texture synthesis is either initialized automat-
ically the remaining pixels of an enlarged bounding
box, or user-steered (as described in 2.).

3. STATISTICAL IMAGE SEGMENTATION
Image segmentation is computed using a fast iterative

statistical region-growing process. The region-growing seg-
mentation framework dates back to the late 60s. Since
then, it has been a very popular method of image process-
ing/computer vision [11]. Region growing starts by initial-
izing to each pixel a corresponding single-pixel region (say,
pixel region Rl = {(x, y)} has initially ID number l = x+yw,
where w denotes the image width). At each iteration of the
region growing algorithm, we consider the region adjacency
graph (RAG), and based on a merging predicate, decide to
merge or not the pair of adjacent regions that is under con-
sideration. Usually the RAG is dynamically updated. The
segmentation result strongly depends on: (1) the merging

316

(1a) (1b) (1c)

(2a) (2b) (2c) (2d)

(3a) (3b) (3c)

Figure 3: The three different modes of the ClickRe-
moval interface: fully automatic, manual texture se-
lection, and both user-steered segmentation/texture
selection.

predicate, and (2) the order in which pairs of adjacent re-
gions are inspected. Let Ri and Rj denote a pair of adja-
cent regions. A typical merging predicate P (Ri,Rj) is to
test whether |Ri −Rj | ≤ max{σi, σj}k, where Ri, σi (resp.
Rj , σj) is the color mean and variance of region Ri (resp.
Rj), and k is a prescribed constant. Let |R| denote the
number of pixels defining region R. Let R(p) denote the re-
gion containing pixel p. In our recent segmentation work [9]
(2005), we developed a fast linear-time algorithm with prov-
ably guaranteed segmentation bound based on a statistical
image generation model. We presented: (1) a concentration
inequality based on statistical aggregation phenomena2 and
showed that in practice it is enough to consider (2) a static
order of region pairs. Because regions are disjoint sets of
pixels, we can easily merge regions and retrieve their IDs
(provided pixel handles) using the optimal union-find data-
structure of Tarjan. The algorithm is further shown robust
to noise and handle occlusions (that is, the method can seg-
ment as a single object several connected areas of the image
that belong to the same object). We summarize the static
order region-growing segmentation algorithm:

RegionMerging(I)
1. � 4-connectivity of pixels C4 �
2. P← {(pl, ql, Cl = |I(ql)− I(pl)|) | with ql ∈ C4(pl)}
3. � Sort P in increasing order according to key Cl �
4. Sort(P)
5. for i← 1 to |P|
6. do
7. if FindRegionID(pl) �= FindRegionID(ql)
8. then if MergePredicate(R(pl),R(ql))
9. then MergeRegions(R(pl), (ql))

2For example, the sum of independent uniform random vari-
ables yields a Gaussian random variable (central limit the-
orem). More generally, statistical aggregation phenomena
have been recently found for random variables satisfying
loose distribution assumptions [9].

The union-find data-structure is implemented as follows:

InitializeRegionID(x)
1. parent(x)← x
2. rank(x)← 0

FindRegionID(x)
1. � Walk from x to the leader pixel element �
2. while x �= parent(x)
3. do x← parent(x)
4. return x

MergeRegions(x, y)
1. � Union by rank and path compression �
2. xr ← FindRegionID(x)
3. yr ← FindRegionID(y)
4. if rank(xr) > rank(yr)
5. then parent(xr)← yr

6. else parent(yr)← xr

7. if rank(xr) = rank(yr)
8. then rank(xr)← rank(xr) + 1

The merging predicate is defined as:

P (R,R′) =

�
true iff |R′ −R| ≤�b2(R) + b2(R′)
false otherwise

,

with b(R) = 512
�

1
|R| log |R|

3N
, for a 8-bit RGB color im-

age of N = w × h pixels. Region-growing segmentation
tends to yield imprecise boundaries compared to graph-cut
edge-based segmentation methods [5]. Loosely speaking,
as regions become bigger the mean/variance statistics re-
flect better the region attributes but does not tell much on
whether merging two incident regions will provide a seam-
less merge at the region borders or not. Thus, to obtain bet-
ter object boundaries from the region-merging paradigm, we
rather consider the statistics of the region crusts (and not
the full regions as in [9]). The crust of region R is defined
as the pixels within distance c to its border ∂R. (Thus for
large enough c, there is no difference between regions and
their crusts, and the algorithm remains the standard region-
merging.) Furthermore, we only need to update the crust’s
mean/variance statistics when we merge regions. Updating
the crust statistics is done by retrieving the pixels of the
merged region belonging to its crust using a slightly modi-
fied flood-filling algorithm.3

Since fully automatic segmentation may give results that
differ from human perception, we provide a simple user-
steered mechanism to control interactively the segmentation.
A user may input object (foreground)/background cues by
pinpointing at a few pixel positions. Each time a user in-
put some bias, the segmentation is recomputed in real-time
(0.03s for VGA images on IntelR© PentiumR© IV 3.6 GHz),
as we do not need to reinitialize nor sort the region pair or-
der. We handle bias in our crust merging algorithm similarly
to [9]. First, let us rename regions into metaregions, and de-
fine pure metaregions as the metaregions that do not contain
any bias information. The other metaregions are said biased
and contain at least one object/background pixel pinpointed
by the user. When inspecting the adjacent metaregion pairs,
we never merge metaregion pairs that contain both mod-
els. Pairs with both pure metaregions are handled as in the
nonbias case. To decide whether to merge a biased metare-
gion with a pure metaregion, we choose among all metare-

3Flood-filling is used in painting systems to fill objects from
a seed pixel position given a specified foreground color.
Flood-filling-type segmentations are also called watershed-
ding.

317

Figure 4: 1-Click removal results (fully automatic
segmentation).

gions having the same bias ID (say, 1=object and 0=back-
ground), the one that statistically best matches the pure
metaregion and test using the merging predicate P whether
they should merge or not. At the last stage, we merge all bi-
ased object metaregions together, and all biased background
metaregions altogether. Note that ClickRemoval is different
from watershedding-like Photoshop’s magic wand since (1)
it performs global segmentation, and (2) accept both in-
side/outside object cues.

4. EXPERIMENTS AND CONCLUSIONS
We implemented in C++ using OpenGLR© the ClickRe-

moval system. The full code is a mere 1000 lines, including
both the novel crust segmentation algorithm and the per-
pixel texture synthesis procedure [15]. Figure 4 and Fig-
ure 5 displays a few examples obtained using ClickRemoval.
The accompanying video provides a sense of the UI and the
system responsiveness. Although our crust-based region-
growing segmentation algorithm does not provide as accu-
rate object boundaries as edge-based graph cut methods [5],
it is much faster, allows to handle light user-supplied bias
information, and is anyway enough for our object removal
application. Bias is input as a few inside/outside points
(the smallest “extra” information unit) and not by strokes
as in [5]. This UI is particularly advantageous for objects
with many contours, since “intelligent scissors” assume in
their UI that objects have a single outer contour (Figure
6). We are currently investigating further extensions to our
system: pulling out object mattes from trimaps obtained by
our segmentation (e.g., see [13, 6]), trading between texture
synthesis and image inpainting [2], testing various texture
synthesis methods (per-pixel, per-patch, per-tile, etc) while
keeping the system responsiveness.

We envision such an interactive system fed by live video
camera images with numerous applications in computational
photography [1] and augmented/modified reality.

Acknowledgments. The Berkeley Segmentation Dataset
and Benchmark (http://www.cs.berkeley.edu/projects/
vision/grouping/segbench/). The Approximate Nearest
Neighbor libary (http://www.cs.umd.edu/∼mount/ANN/).

Figure 5: Result with user-input bias: a few clicks
(a dozen) are enough to remove complex objects.

Figure 6: ClickRemoval allows to either catch a hole
or remove the whole net using a single click.

5. REFERENCES
[1] W. A. Barrett and A. S. Cheney. Object-based image

editing. In SIGGRAPH, pp. 777–784, 2002.

[2] A. Criminisi, P. Perez, and K. Toyama. Region filling
and object removal by exemplar-based inpainting.
IEEE Transactions on Image Processing,
13(9):1200–1212, 2004.

[3] A. X. Falcão, R. A. Lotufo, and G. Araújo. The Image
foresting transformation. TR #IC-00-12, 2000.

[4] M. Gleicher. Image snapping. In SIGGRAPH, pp.
183–190, 1995.

[5] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy
snapping. In SIGGRAPH, pp. 303–308, 2004.

[6] S. Lin, Q. Zhang, and J. Shi. Alpha estimation in
perceptual color space. In Proc. IEEE Acoustics,
Speech, and Signal Processing (ICASSP), 2005.

[7] E. N. Mortensen and W. A. Barrett. Intelligent
scissors for image composition. In SIGGRAPH, pp.
191–198, 1995.

[8] E. N. Mortensen and W. A. Barrett. Toboggan-based
intelligent scissors with a four-parameter edge model.
In CVPR, pp. 2452–2458, 1999.

[9] R. Nock and F. Nielsen. Semi-supervised statistical
region refinement for color image segmentation.
Pattern Recognition, 38(6):835-846, 2005.

[10] P. Pérez, A. Blake, and M. Gangnet. Jetstream:
Probabilistic contour extraction with particles. In
ICCV, pages 524–531, 2001.

[11] A. Rosenfeld. Picture Processing by Computer. 1969.

[12] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:
Interactive foreground extraction using iterated graph
cuts. In SIGGRAPH, pp. 309–314, 2004.

[13] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson
matting. In SIGGRAPH, pp. 315–321, 2004.

[14] K.-H. Tan and N. Ahuja. Selecting objects with
freehand sketches. In ICCV, pp. 337–344, 2001.

[15] L.-Y. Wei and M. Levoy. Fast texture synthesis using
tree-structured vector quantization. In SIGGRAPH,
pp. 479–488, 2000.

318

