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1. INTRODUCTION 
Research and development related to content-based retrieval of 
music/audio has been receiving increasing attention. Its 
application potential is tremendous for any musical information 
retrieval context, including online purchase of music. This 
includes buying traditional audio CDs as well as, in a more 
recent paradigm, purchasing single songs/pieces by downloading 
them in some compressed format. This information retrieval 
paradigm consists of allowing the user to retrieve musical/audio 
material based on a query that is either hummed/sung or played 
on a MIDI keyboard (actual or virtual). We concentrate here on 
the tirst setting - the most practical and difficult one - which 
we propose to dub WYHIWYG (What You Hum Is What You 
Get). The input of the process is thus a digital audio signal 
resulting from the sampling of the users‘ vocal audio signal. The 
ouput is a list of pointers to music resources. Such a pointer may 
be a hyperlink to an online form for purchasing the musical piece 
or the CD containing it, or a hyperlink to a Midifile freely 
available on the WWW. 

Melodiscov - which stands for Melody Discovery - is a novel 
WYHlWYG system we have designed and implemented 

(prototype). The main two processing stages in Melodiscov are 
named transcription and search. Transcription transforms 
sampled acoustic data into an intermediate fomr suitable for 
subsequent search(es) of the target material, which we refer to as 
the database. Transcription applies both to the sung/hummed 
query, and to each of the database’s musical pieces when these 
are initially available in audio form (as opposed to, e.g., MlDI 
form). In this paper we will first describe in some detail 
Melodiscov’s transcription component. Key aspects of its search 
component will then be presented. A critical discussion of 
Melodiscov’s characteristics, enriched by preliminary 
experiments/tests with the system, will follow. 

2. TRANSCRIPTION 
Transcription is taken here to designate the process of converting 
an acoustic input into a ‘symbolic’ musical representation such 
as MIDI-type coding or standard music notation. The process of 
monophonic (monadic) transcription can be presemsd as a chain 
of several information processing steps: digital signal processing, 
segmentation, and quantization of segment duration and pitch 
(Fig. 1). The goal of signal processing is to extract temporal 
sequences (tracks) of useful features. The most widely used 
features are amplitude/power and pitch. The goal of the 
segmentation procedure is to divide an acoustic stream into 
notes. Quantization procedures are responsible for labeling each 
note with a discrete note name and a rhythmic value. 
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Fig. 1. Monophonic (monadic) transcription scheme. 
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As far as we know. the transcription of vocal music for melody 
retrieval was attempted by Ghias et al, at Cornell University 
121: McNab et al. at the University of Waikato [3],[4] and 
Pollastri at the University of Milan0 [6]. One key limitation 
identified in the corresponding transcription components is the 
constraints they place on the acoustic input, e.g. imposing the 
user to sing/hum separate notes and/or use percussive syllables 
such as “ta-ta“ or “da-da’.. Another is their strong sensitivity to 
the presence of vibrato and to out of tune singing. The 
transcription component we developed for Melodiscov is a 
contribution 11; overcoming these limitations (see section 5 for 
more discussion on this). This component, which follows the 
general scheme of Fig. l., has been dubbed ATRAMA for 
Automatic TRAnscription of Monophonic Audio. (In Lithuanian 
aframa means ‘support’). Originally, it was designed for the 
difficult problem of automatically transcribing strongly 
ornamented vocal signals such Lithuanian folk songs [7]. The 
algorithm breaks the acoustic signal into 33-40 ms overlapping 
frames and extracts a RMS-power (p) and a pitch (rc) estimate 
for each frame. Pitch extraction is based on a cross-correlation 
technique similar to the one described by [5]. The choice of 
correlation techniques was motivated by two reasons: they are 
robust and can make pitch estimates as accurate as desired by 
means of interpolation. Instead of taking pitch decision based 
on current frame’s content, our algorithm stores the set of 
prominent peaks of the cross-correlation function. These peaks 
represent pitch candidates for that frame. The final decision is 
delayed until candidate sets have been established for all 
frames. Thus, pitch decision is made more robust as it explores 
the full set of constraints imposed on pitch continuity. 
Additional features obtained during the step of signal 
processing include power and pitch derivatives (dp, dx) and 
their relative derivatives (Sp = dp/p, Sn = dK/x). 

Segmentation is preceded by an automatic vibrato detection 
phase. Vibrato is detected by searching the pitch track for 
regularly oscillating patterns. The segmentation algorithm 
integrates both power-based and pitch-based features. Easier 
segmentation cases are derived by means of empirically stated 
mles based on the combination of the aforementioned features. 
The power p is examined for silence threshold crossovers, Sp is 
inspected for cumulative increase/decrease in power, the 
integration being based on multiple time intervals of different 
length. The pitch track K is examined for significant frequency 
changes and for the succession of voiced and unvoiced frames. 
Difficult segmentation cases or “suspicious” cases (Fig. 2) are 
stated if a sound fragment matches segmentation rules partially. 
We distinguish several tmes of “suspicious” cases. The 
approach used for making decisions in difficult cases relies on 
machine learning techniques. This means that decision rules 
are automatically learnt from examples based of cases pairs, 
individually. 

ATRAMA makes no assumptions about the rhythmic structure 
of the musical content under investigation, but assumes locally 
constant tempo. The module of rhythm quantization uses 
histogram methods for clustering note durations. Duration 
clusters provide a starting point for an iterative relaxation 
algorithm. This algorithm brings local corrections to individual 
note durations until they converge or fail to converge towards 
the multiples of a basic duration unit. For the purposes of 

WYHlWYG applications, the quantization step may optionally 
be omitted. 
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Fig. 2. The illustration of a difficult segmentation case. 
Pitch contours of both sound fragments seem similar. 

Top: two notes performed in vibrato style. 
Boftorrr: one note with glissando (portamento) preceding it. 

(1 horizontal graduafion = 10 wu; 
vertical axis represents pitch in cents) 

The pitch quantization module assumes that s’nger‘s tuning 
may be imperfect. It is designed to deal with reasonably 
compressed or stretched melodic scales and with possible 
evolutions of this scale over time. The pitch quantlzation 
module realizes two tasks. First, it assigns a single continuous 
pitch “representative” to each segment. Second, it maps this 
representative to MIDI note number. Ahnost all known 
transcription systems use pitch average as a representative of 
segment pitch. Our algorithm considers this as the solution of 
last resort, when sustained parts or regulx vibrato are not 
present inside of a given segment. Continuous to discrete value 
mapping is realized through three steps. First, the relationship 
(constraint) graph is constructed where constraints encode both 
near and distant note-to-note relationships. Second, constraint 
propagation techniques are used to explore this graph. This step 
results in a number of disjoint subsets of internally quantized 
notes. Third, note subsets are unified. Here; the algorithm uses 
heuristics inspired by music theory. For example, if two 
concurrent quantization are possible, the one that best fits the 
diatonic scale is preferred. 

3. SEARCH 
The second stage in Melodiscov’s processing scheme, search: 
in turn divides into two sub-stages. One involves an enrichment 
or change of the representation of music, as explained below. 
The other is named pattern matching. Here, pattern matching 
refers to the process of looking for occurrences of a sequential 
pattern over a given alphabet within a set of sequences over the 
same alphabet. The sequential pattern is the result of 
automatically transcribing the hummed/sun, query while the 
sequence set is the music database. This is a classically solved 
string processing problem, which won’t be detailed here. The 
major point is that every algorithm of this kind relies on an 
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explicit or explicit sequential similarity model [lo]. In turn, 
every such model relies on a particular representation of 
sequences and their elements (viz. music pieces/songs and 
notes). The similarity model provides a quantitative measure 
(or. in certain cases, a qualitative one) of any pair of segments 
being compared. The proposition P(Pat,Pos,Seq), “having an 
occurrence of the query pattern Pat at position Pos of sequence 
Seq in the database” is defined using the model: 

P(Pat,Pos.Seq) is TRUE iff there exist a segment (or factor) 
Seg of Seq, starting at position Pos, such that the computed 

similarity between Seg and Pat is above a given threshold T. 

Previous research and development into musical content-based 
retrieval has used very simple representations of music such as 
note properties of absolute pitch or pitch interval size or 
direction, and durations or duration ratios. Similarity models 
used are also simplistic, namely basic edit distance-based ones 
(for efficiency optimization purposes, among others-see 
section 5). We claim that significant limitations of these 
systems are due to the straightforward character of these 
representations and similarity models. We base this claim on 
work that has been made in the areas of psychology of musical 
perception and cognition on one hand, and in computer 
science/artificial intelligence and music on the other (See e.g. 
[11>[101). 
First, appropriately modeling musical similarity requires the 
use of musical descriptions that match those identified by 
psychology and music theory at large. These are not limited to 
pitch intervals-identitied as playing a key role in perceiving or 
remembering melodies. In Melodiscov we designed and 
implemented a representation enrichment/change process. This 
process is carried out on the database prior to searching, and on 
each new query as a preprocessing sub-stage within search. It 
results in a structured representation of the query and database 
pieces/songs that uses object-oriented data structures. In 
Melodiscov, individual, local and global descriptions can be 
automatically computed from the initial representation of music 
(viz. MIDI-type encoding in the case of the transcribed query). 
An individual description (e.g. pitch, duration, intervals) 
concerns a particular element (note/rest). A local description 
(e.g. ascending contours or “gap-fills”) concerns a particular 
segment (passage). A global description (e.g. average pitch or 
duration, major/minor mode) concerns a particular sequence 
(melody). 

Second? appropriately modeling musical similarity requires 
gradual sequential comparison paradigms which take into 
account all relevant/chosen characteristics of notes and 
pieces/songs. We designed a model dubbed MVEM 
(multidescription valued edit model [S] and subsequently 
implemented it within Melodiscov. This model allows to 
simultaneously take into account any set of individual, local or 
global descriptions (stemm@ from the representation 
enrichment/change preprocessing). Each description receives a 
specific weight (defaulting to 1). Descriptions and weights are 
taken into account in computing the contribution of every 
allowed edition to the overall similarity. Allowed editions 
include insertions (of one or several notes), deletions (of one or 
several notes), substitutions (of one note by another), 
consolidations, fragmentations, swaps and generalized 

substitutions. The contribution of a “drastic” edition (e.g. the 
deletion of a very salient note: particularly long duration, 
atypically high pitch, etc.) will be a very negative number. 
Conversely, the contribution a “mild” edition (e.g.: replacement 
of a note by a note very similar to it for all descriptions) will be 
a moderately negative, or even a positive, number. By contrast, 
in most approaches, including previous WYHIWIG systems, 
insertion, deletions and substitutions receive a constant cost, 
regardless of the various musical characteristics involved. 

The user is placed at the core of both the representation 
enrichment/change process and the MVEM. Melodiscov 
provides the user with the possibility to both choose what 
descriptions should be used and what respective weights they 
should have in melodic comparison. This materializes the 
adoption of different viewpoints on meloc’ic similarity and, 
hence, on search results. For instance, the user may at some 
point privilege temporal descriptions (durations, metrics, etc.) 
w.r.t. frequential descriptions (pitches, intervals, etc.) to 
achieve more rhythmically-oriented searching. 

4. QUALITATIVE RESULTS 
Preliminary experiments have been conducted using a (small) 
database of pop songs downloaded as publicly available 
Midifiles from WWW sites. In each test, one of the subjects 
(most without any musical training) was requested to sing/hum 
a fragment of one of the songs he knew: Melodiscov then 
searched the database and returned best matches. This was 
repeated several times for each subject using a ditTerent song 
and/or a different input mode. This means that subjects 
alternatively used humming (mm-mm or aa-aa), ‘-percussive“ 
singing (da-da or ta-ta -different vowels were investigated) 
and singing with lyrics. Singing skills/ ability ranged from ven; 
poor to excellent. Of course, subjects were not allowed to listen 
to the songs just before making tests. These audio queries were 
used with another online (WWW) melcdic content-based 
retrieval system and with the audio-to-midi component of a 
widely used software sequencer, for comparison purposes. 
Obviously that comparison only concerned transcription 
aspects, as the databases were different. 

We obtained very satisfactory results overall, which went 
beyond our expectations. More than half of the queries were 
transcribed with over 90% accuracy in absolute pitch (MIDI 
note number). This included particularly .difficult‘ queries: 17 
notes long, only small (ambiguous) intervals, complex rhythm. 
In terms of intervalic direction or even interval size 
(small/large), among all the queries hardly any was transcribed 
with less than 100% accuracy. Concerning rhythmic aspects, 
ATRAMA’s performance was favorably evaluated through its 
capacity to correctly delimitate start- and end-times of 
transcribed notes. Even in the most difficult situation 
(inaccurate singer + lyrics) results were very good. 
Comparisons with the other system gave a very clear-cut 
advantage to Melodiscov’s ATRAMA. In a very illustrative 
example, the query consisted of 11 notes of the main part of the 
chorus in the Beatles’ song Penny Lane, sag with lyrics. 10 
out of the 11 notes were correctly transcribed by Melodiscov 
(absolute pitches and durations). With the online system only 3 
notes (the longest ones in the query) were transcribed, and with 
very excessive durations. 
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Additionally, tests were made where users made queries by 
whistling. Results obtained with Melodiscov were good and 
contrasted even more clearly with those of the other two 
systems using the same queries. It can be noted, though, that 
the online WYHTWYG system may not have been designed to 
handle such queries. 

Of course full-scale testing will be needed to quantitatively 
confirm these results (see below). 

5. DISCUSSION 
Based on these preliminary results it can be said that 
Melodiscov yields satisfactory transcription performance 
without imposing any constraint on the user’s way of 
singing/humming. In addition to whistled queries, as mentioned 
above, Melodiscov has also appeared to perfectly transcribe 
queries played on various musical instruments. The 
implementation (C language) of ATRAMA is not optimized for 
speed but gives satisfactory processing time (typically less than 
half the duration of the hummed/sung query). Not all 
potentially useful spectral features are presently taken into 
account (a topic currently under investigation). It would also be 
useful to enrich the set of “suspicious” pattern types handled 
(see Fig. 2). Similarly more learning examples would be 
needed to better handle difficult segmentation decisions. 

On the search side, Melodiscov allows the user to base the 
search on a (possibly personalized) rich set of musically- 
meaningful descriptions. This tremendously increases search 
sensitivity (returning all appropriate pieces) and, in certain 
cases, search accuracy (returning only appropriate pieces). 
Using a richer (more flexible) sequential similarity model with 
a richer representation of musical information, can result in an 
increase of the search stage’s execution time. For really large 
databases, our proposed solution is to offer the user, as an 
additional option, to choose between strict and flexible search 
mode. The slower flexible mode is then reserved for cases 
when the faster, strict mode has failed. 

6. ON-GOING AND FUTURE WORK 
The next step is the full-scale testing of our concepts, 
algorithms and system, possibly using publicly available 
folksong databases and a MIDI database of about 200 jazz 
transcriptions which we developed and used in another prqject 
started earlier (see e.g. [8],[9],[10]). A full-scale 
implementation, and the integration of a WWW interface, are 
scheduled to follow. Among longer-term perspectives is the 
following. We plan to apply FlExPat, an automated pattern 
discovery algorithm we designed and implemented [9], to 
further speed up search. FlExPat automatically locates all 
significant. repetitions - whether exact or approximate- 
within the various sequences of the database, as well as 
significantly similar segments between different sequences. For 
every group of resembling segments (and there are huge 
numbers of such groups in practice), it can be sufficient to 
compare the query pattenl once to the group’s representative 
than to compare it to all of the group’s segments. In addition to 
segment groups, FlExPat automatically computes such 
representatives (prototypes). In conclusion, tremendous 

efficiency increase w.r.t. existing WYHIWYG algorithms could 
be obtained via such a (pre)processing of the database before 
searching. 
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