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ABSTRACT
In this paper, we propose a unified shot boundary detection
framework by extending the previous work of graph parti-
tion model with temporal constraints. To detect both the
abrupt transitions (CUTs) and gradual transitions (GTs,
excluding fade out/in) in a unified way, we incorporate tem-
poral multi-resolution analysis into the model. Furthermore,
instead of ad-hoc thresholding scheme, we construct a novel
kind of feature to characterize shot transitions and employ
support vector machine (SVM) with active leaning strategy
to classify boundaries and non-boundaries. Extensive exper-
iments have been carried out on the platform of TRECVID
benchmark. The experimental results show that the pro-
posed framework outperforms some others and achieves sat-
isfactory results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—abstracting methods

General Terms
algorithms, management

Keywords
graph partition, temporal multi-resolution, active learning

1. INTRODUCTION
Shot boundary detection is a prerequisite step of content

based video retrieval. A large number of methods have been
proposed to perform shot boundary detection. In this pa-
per, we propose a novel shot boundary detection framework
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which shows superiority to the existing methods when eval-
uated on the platform of TRECVID benchmark.

In the previous work [4], we propose a graph partition
model with temporal constraints to perform temporal data
segmentation. The model tries to minimize the association
between the two subgraphs while maximize the association
within each subgraph with the following criterion:

Mcut(A, B) =
cut(A, B)

assoc(A)
+

cut(A, B)

assoc(B)
. (1)

For temporal data, the optimal segmentation can be got at
some i with the minimal score (i ∈ {1, · · · , N − 1}):

score(i) = Mcut({1, 2, · · · , i}, {i + 1, i + 2, · · · , N}). (2)

In this paper we apply and extend the previous work to
fulfil temporal video segmentation. We incorporate a novel
temporal multi-resolution analysis algorithm into the model
thus the CUTs and GTs can be detected in a unified way. In
addition, with a novel constructed feature, we employ SVM
with active learning strategy to classify boundaries and non-
boundaries.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces how to employ the graph partition model
to perform temporal video segmentation. Section 3 presents
the temporal multi-resolution method. Section 4 introduces
the support vector machine framework with active learning
strategy. Section 5 evaluates the algorithms on the plat-
form of TRECVID benchmark. And finally we conclude the
paper in Section 6.

2. TEMPORAL VIDEO SEGMENTATION
WITH GRAPH PARTITION MODEL

Given a video sequence, we treat each frame as a node and
link each other with an edge, and a weighted graph G(V, E)
can be constructed. Thus, the shot boundary detection is
formulated as a graph partition problem.

2.1 How to define the edge weightwij?
Let Hi be a k bins color histogram of the i-th frame and

adopt histogram intersection method to measure the simi-
larity, a reasonable definition of wij is:

wij =
X

k

min(Hi
k, Hj

k)

Hi
k

×
(

e
−‖i−j‖22

σ2 if |i− j| < r
2

0 otherwise.
(3)

where σ is a factor reflecting the similarity decaying with
the temporal interval increasing, and r denotes the maxi-
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Figure 1: (a): A video sequence with three flash-
lights occurring. (b): The visualization of the cor-
responding similarity matrix, in which the red rect-
angle indicates the range of active matrix. (c): The
curve obtained by the comparison between the suc-
cessive frames. (d): The curve obtained according
to Equation 4.

mum range in which the frames are considered to influence
each other. Therefore, the calculation is restricted in a r×r
sub-matrix, which we call active matrix. Consequently, the
Equation 2 can be simplified as:

score(i) = Mcut({i− r

2
, · · · , i}, {i+1, · · · , i+

r

2
}). (4)

2.2 The Algorithm
In summary, the video temporal segmentation algorithm

consists of the following steps:

Step 1. Given a video sequence, treat each frame as a
node and link each other by an edge, to construct
a weighted graph G(V, E).

Step 2. Compute wij according to Equation 3, obtaining
a similarity matrix W.

Step 3. Calculate scores of the N−1 feasible cuts accord-
ing to Equation 4.

Step 4. Select feasible cuts whose scores are the lo-
cal minima of the corresponding neighborhoods
within a radius of r

2
.

Step 5. Declare the cuts whose scores are below a pre-
defined threshold as CUTs.

2.3 Analysis of the Algorithm
One prominent advantage of the approach is the robust-

ness. Instead of pair-wise comparison by traditional nov-
elty detection, the graph partition method performs bound-
ary detection by considering the feature variation in a local
neighborhood. As shown in Figure 1, there are three flash-
lights occurring during the video sequence. In the method
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Figure 2: The three matrices are Wδ
i , Mδ, Vr

i re-
spectively, where r = 10 and δ = 7. The operation
“¯” means the Hadamard multiplication. The white
blocks in Mδ represent entries 1. The first two ma-
trices are square ones of width 70, while the last one
is square matrix of width 10.

based on pair-wise comparison, the three corresponding sharp
valleys are usually considered as boundaries of shots. Con-
sequently, many false alarms are caused. While in the pro-
posed approach, the strong connectivity among the frames
before and after the flashlight frame makes it unlikely to
separate the sequence to two parts. The method is robust
to various abrupt illumination change, and thus no specific
flashlight detector is needed. The experiment in Section 5
will further confirm this analysis.

3. TEMPORAL MULTI-RESOLUTION
ANALYSIS

By observing the patterns on the similarity matrix, we
can find that there is a clear “chessboard” pattern for CUT
boundary, while for GT boundary, it may yield a blurry
pattern on the similarity matrix. Conversely, noticing that,
at a lower resolution, whatever the length of the GT is,
there will always be a “chessboard” pattern clear enough.
To detect CUTs and GTs simultaneously, we re-define the
score of the i-th feasible cut as follows:

score(i, δ)=Mcut({i− r

2
×δ, · · · , i−δ, i}, {i+δ, · · · , i+

r

2
×δ}).
(5)

where δ is the sampling rate of the frames, δ ∈ {1, 2, · · · }.
Equation 5 means that when calculating the score of the
i-th feasible cut, instead of involving all the frames in a
neighborhood of {i−r

2
, · · · , i+r

2
}, the algorithm only samples

every δ frames in a larger range of {i− r
2
×δ, · · · , i+ r

2
×δ}.

With the δ varying, multiple temporal resolution graphs can
be constructed.

To facilitate the computation, we define a square selective
matrix Mδ of width r×δ, in which entry 0 indicating the
the corresponding frame is not sampled, 1 representing the
frame sampled. Let Wδ

i be the square sub-matrix of W,
centering at i and with the width r×δ. To calculate score(i)
at the resolution δ, the algorithm just performs Hadamard
multiplication of Wδ

i and Mδ, and thus results in a new
matrix Vδ

i , in which the entries corresponding to the non-
sampled frames equal 0. Furthermore, ignoring the 0 entries,
Vδ

i can be restricted an equivalent but smaller square matrix
Vr

i of width r. The above process is depicted in Figure 2.

4. SUPPORT VECTOR MACHINE ACTIVE
LEARNING

On the curve of scores, each boundary corresponds to a
sufficiently small local minimum. However, not every lo-
cal minimum is a shot boundary. Only by evaluating the
magnitudes of the local minima can not successfully distin-
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guish boundaries and non-boundaries. In this paper, we pro-
pose to employ SVM with active learning strategy to classify
boundaries and non-boundaries according to the shapes of
local minima.

4.1 Feature Construction
Formally, let Sδ

i denote score(i, δ), defined by Equation
5. Then the feature, which characterizes the shape of the
valley centering at i on the δ resolution curve, is define as:

fδ
i = [Sδ

i− r
2×δ, S

δ
i−( r

2−1)×δ, · · · , Sδ
i , · · · , Sδ

i+( r
2−1)×δ, S

δ
i+ r

2×δ]

(6)
Obviously, for each δ, the fδ is a (r+1) dimension feature.
To make full use of the information across different resolu-
tions, i.e. δ ∈ {1, 3, 5, 7, 9}, we concatenate those features
to construct a new feature vector as:

Fi = [f1
i , f3

i , f5
i , f7

i , f9
i ] (7)

Given r=10, Fi is a 55 dimension feature including the the
i-th feasible cut’s shape information at different resolutions.

4.2 Active Learning Strategy
Manually labeling the local minima as boundaries or non-

boundaries to obtain a training set is a tedious job. Similar
to the idea of [3], one heuristic active learning criterion is
employed. We assume that the examples difficult for thresh-
olding method to clearly classify lie near the dividing hy-
perplane of the SVM. We firstly collect all the valleys which
are under a specified threshold θ from all the available local
minima. These valleys collected, including real boundaries
and various false alarms, constitute the training set. Then
the real boundaries are labeled as positive examples, and
the false alarms are labeled as negative examples. Here the
threshold θ is set low enough to guarantee almost all of the
boundaries are collected. Meanwhile, with the threshold θ,
we can remove a lot of local minima which will not influence
the position of the SVM’s hyperplane.

5. EXPERIMENTS
In this section, we evaluate the proposed framework on the

platform of TRECVID benchmark [1]. Several comparison
experiments have been designed to justify the ideas of this
paper.

5.1 Experimental Setup
All the 2003 and 2004 TRECVID test collections for the

task of shot boundary detection (SBD) are adopted. So far
we have not considered incorporating the fade out/in (FOI)
detection in the framework. Therefore, we re-edit the video
collections by transforming FOIs into CUTs. We call the
video collection without FOIs as “DATA NO FOI”. On
the other hand, in order to focus on the comparison of the
characteristics of different algorithms, we apply the algo-
rithms to fulfil CUT detection instead of boundary detec-
tion in several experiments. Thus, we create another video
collection without GTs by re-editing the GTs into CUTs.
This collection is called as “DATA NO GT”. The algo-
rithms evaluated on the this data set are all single resolu-
tion implementations, i.e. δ = 1. Similar to other informa-
tion retrieval task, the performance is evaluated by recall
and precision criteria. To rank performance of different
algorithms, F1 measure, a harmonic average of recall and
precision is adopted.
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Figure 3: Performance comparison with other re-
lated algorithms.

5.2 Performance Comparison

5.2.1 Graph Partition Model
To show the effectiveness of the graph partition model, we

implement five other related approaches and evaluate them
on the “DATA NO GT”. They are:

Thresholding Directly compare the difference of succes-
sive frames.

Min-max cut The algorithm proposed in Section 2.2.
Scale space Kernel correlation depicted in [2].
Diagonal CS Kernel correlation depicted in [2].
Cross S Kernel correlation depicted in [2].
Full S Kernel correlation depicted in [2].

As the Figure 3 shows, all the five approaches via multi-pair
comparison outperform the pair-wise comparison method
“Thresholding”. Both the “Diagonal CS” and the “Cross
S” kernels emphasize the dissimilarity between the differ-
ent shots, and they performs almost the same. The “Full
S” somehow outperforms the proposed “Min-max cut”
method and both of them perform best. This is not surpris-
ing, since they both consider the similarity between different
shots and within the the same shot. In fact, the “Full S” is
equivalent to an alternative definition of min-max cut:

Mcut(A, B) = assoca(A)+assoca(B)−2×cut(A, B) (8)

Note that our experimental result is inconsistent with that
of Cooper [2], in which the author claims that the “Full S”
performs worst. However, we believe that our results are
more reliable. Firstly, we evaulate them on a more delicate
data set of “DATA NO GT”. Secondly, we design a more
straightforward experimental setup, in which a simple his-
togram feature and thresholding method are adopted, while
Cooper has employed multi-scale features and KNN to clas-
sify CUTs and non-CUTs.

5.2.2 Temporal Multi-resolution Analysis
To examine the effectiveness of temporal multi-resolution

analysis, we implemented four different methods and evalated
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Figure 4: Evaluation of temporal multi-resolution
analysis.

them on “DATA NO FOI”:

delta=1 δ=1 for the algorithm of Section 2.2.
delta=5 δ=5 for the algorithm of Section 2.2.
delta=7 δ=7 for the algorithm of Section 2.2.
delta=1 & 5 Multi-resolution analysis, combining

the δ = 1 and δ = 5 for the algorithm
of Section 2.2.

As shown in Figure 4, delta=5 outperforms delta=1.
That is because at high resolution, most of the long GTs
are missed. However, delta=7, which is the lowest res-
olution, performs worse than the other two higher resolu-
tion methods. Then why the lowest resolution performs
worst? We have examined the detection result of delta=7
and find that, although the lower resolution helps to detect
long GTs, it also suffers the enlargement of disturbances of
motion. Since we have not incorporate the post processing
with motion filtering, the delta=7 performs worst. Finally,
the delta=1 & 5, with the multi-resolution analysis, per-
forms best. We can expect that, if we import the analysis
of motion activity, the performance of the proposed method
will be further improved.

5.2.3 SVM with Active Learning Strategy
The experiments are performed on “DATA NO GT”

and a single resolution feature of δ ∈ {1} is adopted. Two
of the 2003 test collections are chosen for training and all
the twelve videos of 2004 test collections are used for test-
ing. RBF(radial basis function) is adopted as the kernel
function. C = 400 and σ = 1.0 are selected after a cross
validation process. For the “Graph+Threshold” method,
the best result among various threshold settings is chosen to
be compared.

Graph+Threshold Algorithm of Section 2.2.
Graph+SVM SVM Trained with randomly se-

lected samples.
Graph+ASVM SVM Trained with active learning

strategy.
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Figure 5: Support vector machine with active learn-
ing strategy.

As shown in Figure 5, both the SVM methods have out-
performed the thresholding method. The performance of
“Graph+ASVM” is comparable to that of “Graph+SVM”,
while the size of the training set for active learning is just
about 1

6
of that of “Graph+SVM”, 1090 for the former

and 6948 for the latter.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we extend our previous work and design a

unified shot boundary detection framework based on graph
partition model. Extensive experiments on the benchmark
of TRECVID have been performed to justify the proposed
ideas. Nevertheless, several problems remains for further
research. For example, we have not incorporated the de-
tection of FOIs into the framework. With multi-resolution
analysis, we have to design methods to effectively reduce
the disturbances of motion. How to effectively make use of
information across different resolutions is also an important
problem to solve. Despite the remaining problems above,
we believe that the proposed framework may be a promising
method for nearly perfect temporal segmentation of videos.
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