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ABSTRACT

This paper presents an enhanced random mobility model
for simulation—based studies of wireless networks. Our ap-
proach makes the movement trace of individual mobile sta-
tions more realistic than common approaches for random
movement.

After giving a survey of mobility models found in the lit-
erature, we give a detailed mathematical formulation of our
model and outline its advantages. The movement concept is
based on random processes for speed and direction control in
which the new values are correlated to previous ones. Upon
a speed change event, a new target speed is chosen, and an
acceleration is set to achieve this target speed. The princi-
ples for a direction change are similar. Moreover, we pro-
pose two extensions for modeling typical movement patterns
of vehicles. Finally, we consider strategies for the nodes’
border behavior (i.e., what happens when nodes move out
of the simulation area) and point out a pitfall that occurs
when using a bounded simulation area.

Keywords

Wireless and mobile communication networks, modeling and
simulation, mobility modeling, user movement, random di-
rection model, random waypoint model, border effects.

1. INTRODUCTION AND MOTIVATION

The movement pattern of users plays an important role
in performance analysis of mobile and wireless networks.
In cellular networks, for example, a user’s mobility behav-
ior directly affects the signaling traffic needed for handover
and location management (location updates and paging) [9].
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The extra signaling messages over the air interface consume
radio resources and increase the associated database query
load. In addition, mobility has major effect on the channel
holding time in circuit-switched services (see e.g. [19, 14,
35, 11]). The latter has in turn huge influence on the call
blocking and dropping probability (see e.g. [30, 23]).

The modeling of a user’s movement is thus an essential
building block in analytical and simulation-based studies of
these systems. Mobility models are needed in the design of
strategies for location updating and paging, radio resource
management (e.g., dynamic channel allocation schemes),
and technical network planing and design (e.g., cell and lo-
cation area layout, network dimensioning). The choice of
the mobility model has a significant effect on the obtained
results. If the model is unrealistic, invalid conclusions may
be drawn.

With the increasing number of subscribers and the de-
creasing cell size in future cellular systems, the mobility
pattern of users will even more influence the performance of
the network. Smaller cells result in an increased mobility—
related signaling load and more database queries. Models
that proved to be a good choice in simulation of macro—
cellular environments show some drawbacks when being ap-
plied in micro— and pico—cellular environments [23, 39].

Mobility modeling also plays an important role in anal-
ysis of algorithms and protocols in wireless local area net-
works (WLANSs) and self-organizing wireless ad hoc net-
works. Whereas in cellular networks there exists a number
of approaches that model the macroscopic movement behav-
ior of users (e.g., random walk from cell to cell, description
of the cell residence time), in these cases we need a “micro-
scopic” model.

This paper presents such a model. It can be used in sim-
ulations of mobile and wireless networks in which the indi-
vidual movement behavior of users should be reflected. We
employ a combination of principles for direction and speed
control that make the movement of users (e.g., pedestri-
ans and cars) more smooth and realistic than in previously
known random models. Nevertheless, the model description
and implementation are still very simple. We denote this
model by Smooth Random Mobility Model.

The remainder of this paper is organized as follows: In
Section 2 we make an approach to classify mobility models
used by researchers in the wireless networking and mobile
computing community. We describe some commonly used
models and their application and derive a “concept map”
for mobility models. In the following, we present our en-
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Figure 1: Concept map of mobility models used in simulation and analysis of wireless communication systems

hanced model and outline its advantages. Section 3 gives a
mathematical formulation of the movement principles. We
describe in detail how to model the speed and direction
behavior of mobile stations. Furthermore, we propose two
extensions, which model typical movement patterns of ve-
hicles. Section 4 describes different approaches for border
behavior, i.e., what to do if nodes move out of the system
plane. In particular, we consider the impact of the border
behavior on the spatial user distribution in a limited simu-
lation plane. Here, we point out a pitfall: Using the wrong
border behavior can lead to incorrect simulation results. Fi-
nally, Section 5 sums up the main features of our model and
concludes this paper.

2. MOBILITY MODELS

There exists a variety of mobility models that find appli-
cation in different kinds of simulations and analytical studies
of wireless systems. Fig. 1 shows a concept map illustrating
some criteria which can be used for categorization.

Analytical mobility models are in general based on rather
simple assumptions regarding the movement behavior of
users, but they allow to calculate mathematical expressions
with respect to system performance. Several authors derive
the distribution of a user’s cell residence time [19, 45, 44,
33]. For example, Zonoozi and Dassanayake [44] show that
the cell residence time with their model can be described by
a generalized gamma distribution. Combining these “mo-

bility metrics” with traffic models allows to estimate impor-
tant system performance parameters, such as channel hold-
ing time and handover and location update events [19, 14,
34, 44].

Let us briefly describe the mobility assumptions used by
these authors. Hong and Rappaport [19] assume that mo-
bile users are uniformly distributed over a cell. Each user
chooses a direction ¢ (taken from a uniform distribution
[0...27]) and a speed v (uniformly distributed on the in-
terval [0...Uma=z]). Once these values are chosen, they re-
main constant until the user crosses the boundary of the cell.
Guérin [14] uses a more general model, in which direction
changes are also possible within a cell. The model in [44]
allows direction changes only to a certain extent (£Apmaz).

Lin, Fang, and Chlamtac [31, 12] assume a generally dis-
tributed location area residence time as given. From this,
they derive the probability distribution of the number of
location area crossings for a given distribution of the inter-
service time (i.e., the time between the beginning of two
served (unblocked) calls).

Another analytical model is the Brownian mobility model.
It models the movement of users based on Brownian motion,
such that we can calculate the probability distribution of the
physical location of a user at a given time ¢, provided that
we know his or her location at a previous time to < ¢t. Lei
and Rose use such a model in one dimension [29] and in two
dimensions [28].

Models used for simulation—-based studies describe the
movement of users in a more detailed manner. On the other



hand, in general, they do not allow to derive analytical ex-
pressions.

For example, the European Telecommunications Stan-
dards Institute (ETSI) defined a set of test scenarios for
system simulation of UMTS (Universal Mobile Telecommu-
nication System). The document [10] describes mobility
models for three environments: an indoor office, an outdoor
pedestrian, and a vehicular environment. The model for
the outdoor pedestrian environment uses a Manhattan-like
street structure (rectangular grid). Pedestrians walk along
streets in a straight line and can change their direction at in-
tersections with a given probability. Also speed changes are
possible after given intervals. The model for the vehicular
environment is a random mobility model without a street
structure. Cars move with constant speed (v = 120 km/h)
and can change their direction every 20 m (with a proba-
bility of 20%). Only direction changes of up to +45° are
possible.

Jugl and Boche [4] extend ETSI’s model to get more re-
alistic results. They analyze mobility-related parameters of
their model, such as the cell residence time and the cell
boundary crossing rate, in comparison to ETSI’s model.
Furthermore, in [23], Jugl investigates the influence of the
users’ mobility behavior on the characteristics of handover
traffic, blocking probability, signaling traffic, and the capac-
ity in CDMA systems.

Let us now consider the different levels of detail in mo-
bility modeling. Researchers in vehicular traffic theory dis-
tinguish between three levels of description: microscopic,
mesoscopic (kinetic), and macroscopic. A microscopic model
describes the movement of a single vehicle by its space and
speed coordinates at a given time ¢. Such approaches include
very detailed “car following” models [13]. At the mesoscopic
level, the homogenized movement behavior of several vehi-
cles is reflected. For example, a distribution function is de-
rived that describes the number of vehicles with a certain
location (z,y) or speed v at time ¢. When modeling on a
macroscopic scale, one is interested e.g. in the density, mean
speed and speed variance, and traffic flow of vehicles.

An example for a macroscopic movement model used in
analysis of wireless systems is the fluid flow model [43]. This
family of analytical models describes the mobility in terms
of “the mean number of users crossing the boundary of a
given area.”

A second approach used for modeling the macroscopic
movement behavior is the family of gravity models [27].
They are also derived from transportation theory. Such
models give an aggregated description of the movement of
several users (as the fluid model); they range from city scale
to international scale. The authors in [32] describe such a
model. They use the concept of trips, area and time zones,
population groups, and so on. The paper [41] also falls into
this category. It models the daily movement of users using
an activity—based travel demand model.

Another frequently used approach in cellular networks is
the family of random walk models, also denoted as Marko-
vian mobility models. They describe the movement of in-
dividual users from cell to cell. Not the exact location of
a user is of interest but just the cell in which he/she re-
sides. The model is basically defined by a state—transition
diagram in which a cell is represented by a state and the
movements by transition probabilities between the states.
A user either stays within his/her cell or moves to one of

its neighboring cells with a certain probability. A typical
random walk model in one dimension is described in [3].
Two dimensional random walk models are used e.g. in [1,
6, 40]. Recent enhancements include a random walk model
presented by Akyildiz and Lin et al. [2]. From these models
we can also derive analytical measures for the crossing rates
of cell and location area boundaries and alike [42].

In the remainder of this paper we focus on micro—mobility
models. There exists a variety of generalizations of the
model by Guérin [14] that are used in simulation-based stud-
ies of wireless systems. Basically this class can be described
as follows: Users can move freely anywhere in the system
area. The values for the user’s direction ¢ are taken from
a uniform distribution on the interval [0...2n[, i.e. users
do not have any preferred direction. The speed values v
follow, for example, a uniform distribution or a normal dis-
tribution [16]. After a randomly chosen time, taken from an
exponential distribution, the user chooses a new direction.
The same procedure is performed for speed changes. The
stochastic processes for direction and speed change are in
general not correlated to each other [16]. A node is therefore
completely described by its current space vector (z(t), y(t)),
its current speed v(t), and its current direction ¢(t); where
0 <z < Thmae and 0 < Yy < Ymazx, 0 < U(t) < Umaz, and
0 < ¢ < 2m. We denote this model as random direction
model.

In [15, 36], Haas and Perlman use a simplified version of
the random direction model. All users have always constant
speed vo and move with an initial direction o chosen from
a uniform distribution. Only when a user reaches the border
of the simulation plane it changes its direction. In fact, it
“bounces” back with —¢g or (m — ¢g), respectively. This
model has also been used by other authors, e.g., in [17]. In
[20], Hong and Gerla present an interesting group mobility
model that is based on the random direction model.

Another random mobility model is the so—called random
waypoint model. It is used by several authors in the ad hoc
networking community (e.g., in [5, 37, 38, 7, 8, 21, 18]). It
models the movement of a user as follows: A user randomly
chooses a destination point in the system area, moves with
constant speed v (chosen between |vmin,Umaz], uniformly
distributed) on a straight line to this point, and then pauses
for a certain time before it again chooses a new destination.
This model is very similar to a generalized random direction
model. The difference is that not the direction ¢ is chosen
but the destination point. A node is described by its cur-
rent space vector (z(t),y(t)), its current speed v(t), and its
current destination point (z4(t), ya(t)).

Let us now consider the degree of randomness of differ-
ent approaches. Basically we can distinguish between three
cases: (1) models that allow users to move anywhere in the
system plane following a pseudo-random process for speed
and direction; (2) models that bound the movement of users
by streets, buildings, and so on, but use a pseudo-random
process for speed and direction choice at crossings; and (3)
models that bound the movement of users to a predefined
path.

We already gave many examples for first case, e.g.,
the random waypoint and the random direction model.
ETSI’s inhouse and pedestrian outdoor models with a sim-
ple Manhattan-like street structure is an example for the
second type. Such models are also described in detail in
[32].



A deterministic approach for simulations would be to al-
low users to move only on a predefined mobility path (type
3). Such a path can describe typical movement patterns of
pedestrians and vehicles. We can distinguish two cases. In
the first case, the direction and speed are both given, and no
random process is incorporated at all. In the second case,
the direction trace is given but the speed is chosen randomly.
Note that such traces can exist in different levels of detail
(cells, areas, etc.). Lam, Cox, and Widom [27] describe a
family of macroscopic mobility models based on traces. Nev-
ertheless, since tracing the actual mobility behavior of users
is a very complicated task and usually such information is
hard to obtain from network providers, researchers often use
random models.

Last but not least, wireless researchers also invented mod-
els for three-dimensional movement. The authors of [24, 25,
26] model user movements in buildings, including vertical
movements in staircases and elevators.

3. AN ENHANCED RANDOM MOBILITY
MODEL

In the last section we have seen a variety of existing ap-
proaches that are used to model the mobility of users in
wireless networks. This section presents our enhanced mo-
bility model, which we denote as Smooth Random Mobility
model. With respect to Fig. 1, it can be classified as follows:
It is a random mobility model for movement in two dimen-
sions on a microscopic scale. A new destination is chosen by
direction . The speed and direction change are both proba-
bilistic. The movement of nodes is not bounded by physical
structures (such as streets, buildings, etc.) but nodes are
allowed to move anywhere in the simulation plane. Further-
more, there is no correlation between different nodes, i.e.,
effects like “node following” or “group movement” are not
modeled.

We use two stochastic processes: one process determines
at what time a mobile station changes its speed, and the
other process determines when the direction will be changed.

Basically speaking, we enhance the random direction
model with some new features, which make the simulated
movement of nodes (cars and pedestrians) more realistic.

It has already been criticized by Hong and Gerla in [20]
that many researchers use a mobility model where the new
choice for speed v and direction ¢ is not correlated to pre-
vious values (such as in the random waypoint model). This
may cause unrealistic movement behavior with sudden speed
changes (Zv(t) — oco) and sharp turnings (large 2 p(t)
while v is high). Our model includes both autocorrelation
features. The speed is changed incrementally by the cur-
rent acceleration of the mobile user, and also the direction
change is smooth: Once a station is intended to turn, the
direction is (in general) changed in several time steps until
the new target direction is achieved. This creates a smooth
curve rather than a sharp turning. Sections 3.1 and 3.2 give
a mathematical formulation of these principles.

Last but not least, we model two typical movement pat-
terns of vehicles when they are turning (Section 3.3).

Our model can be used in both discrete-time and
continuous—time simulations. In both cases, we denote the
simulation time by ¢ (in s), where ¢ > 0. In a discrete—time
simulation, we quantize the simulation time into equidistant

time steps. The time between two time steps is denoted as
At, and usually set to be 1s. The term ¢/At then represents
the time step number.

In the following description, we use the general term
“node” to denote any kind of network—enabled device. This
can be e.g. a pedestrian with his or her mobile terminal or a
user or device inside a vehicle. Furthermore, we use the term
“node class” to denote a particular type of node (in a par-
ticular scenario) with its resulting characteristic movement
parameters (e.g., pedestrian, car in downtown, and bicycle).

3.1 Speed control

Our concept for modeling the speed behavior of nodes
is based on the use of target speeds (the speed a node in-
tends to achieve) and linear acceleration. A node goes with
constant speed v until a new target speed is decided by a
random process. The node then accelerates (or decelerates)
until this desired speed is achieved (or again a new target
speed is chosen in the meantime).

The speed behavior of a node at time ¢ can therefore be
described by three parameters:

e its current speed v(t) in m/s,
e its current acceleration a(t) in m/s?, and
e its current target speed v*(t).

In addition, we define three static speed parameters that
characterize a certain node class: Each node class has

e a maximum speed Vmqz,

e a set of preferred speeds {vprefo, Uprefi, ...}, and

e maximum values for acceleration/deceleration.

The maximum speed vmq, reflects the maximum possible
speed of a node class or the maximum allowed speed in the
given scenario, e.g. Umazr = 50 km/h for cars in downtown.
We must have 0 < v(t) < Umaz at any time t. The set
of preferred velocities {vprefo, Upref1,- ..} models the fact
that the speed distribution of vehicles and pedestrians over
time is not uniformly distributed on [0, vmaz], but both user
classes tend to move with certain “travel speeds” most of
the time. For example, a car in downtown intends to move
with the maximum allowed speed vmq, and also frequently
stops at crossings and traffic lights or due to jams (v =
0). The maximum values for acceleration and deceleration
reflect the physical speed—up and slow—down capabilities of
a node class. For example, a sports car can change its speed
much faster than a truck.

In a simulation, we proceed as follows: At the begin-
ning, all nodes are created with an initial speed v(t = 0),
which is chosen from a certain speed distribution p(v). We
use a distribution in which the preferred speed values have
a high probability, and a uniform distribution is assumed
on the entire interval [0, vmaz]. For example, if we have
three preferred velocities vprefo = 0, Upref1 = %vmam, and
Upref2 = Umaz, We use a distribution

p(v=0)4d(v) v=0
p(v — 3'”1151(1;': ) 5(1} _ 3U7gam) v = 37-’7751(12
p(’()) = p(U = Umaa:) 6(1) - Umaz) UV = Umazx (1)
S 0< V< Vmas
else

with p (vpres) = P(Vprefo) + P(Vpres1) + p(vpres2) < 1.
In the following, we describe the speed change over time.
As mentioned above, a node goes with constant speed v un-



til a speed change event occurs. Upon this event, a new
target speed v* is chosen from (1). We model the frequency
of speed change events according to a Poisson process: In a
discrete—time simulation with normalized time ¢/At, a speed
change event occurs with a certain probability p,+ each time
step, where p,» < 1. Using continuous time ¢, we can choose
the time between two speed change events from an exponen-
tial distribution [22] with A = p,« /At:

Po*  —ps
p(t) = A€ Pus /At (2)

The value for p,« determines the time between two speed
change events. The mean time between two events is py» =

pAi = pl* s. For example, we set p,» = 0.04 to obtain
B = 25s.

Let t* denote the time at which a speed change event
occurs and a new target speed v* = v*(¢t*) is chosen. Now,
an acceleration a(t*) # 0 must be set. It is taken from

3)

L for 0 < a < amaz
p(a) =

amam
0 else

if v*(t*) > v(t"), or from

Amin

0 else

pla) = (4)

{ 1 for amin < a <0
if v*(t*) < v(t*). Clearly, a is set to 0 if v*(¢*) = v(t*). The
term amq, i1 the maximum possible acceleration, and amin
is the maximum possible deceleration of this node class. For
cars we may use maz = 2.5 m/s> and amin = —4 m/s’ (see
Table 1). These values could depend on vmaes. of the node
class, in a way that nodes with high vy,4, can speed up and
slow down in a shorter time than slow nodes.

| | Car downtown |

VUmazx 139 m/s
Upref 0,139 m/s
a —4...2.5 m/s?
Lo 25 s
Pupey | P0=0)=03
p(v = Umaz) = 0.3

Table 1: Example parameters for speed control

In the following time steps, the speed continuously in-
creases or decreases. Each step, a new speed v(t) is calcu-
lated according to

v(t) = v(t — At) + a(t)At (5)

until v(¢) achieves v*(¢). The time it takes a node
to achieve the new target direction is Atgpecdssion =

% if no new speed change event occurs between

= [t",t" 4 Atspecassiow]- After this procedure, we set

= 0 and the node moves again with constant speed
(t) = v*(t*) until the next speed change event occurs.

Fig. 2 shows a simulation trace of a node’s speed behavior.
It was generated with the parameters listed in Table 1. The
figure illustrates that the current speed value v(t) is corre-
lated to the previous speed value v(t — At), which makes
the speed change smooth.
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Figure 2: Speed behavior v(t) of car in downtown

3.2 Direction control

The principle for direction control is similar to the speed
control principle. Each node has an initial direction ¢(t = 0)
which is chosen from a uniform distribution
0<yp<2m. (6)

p(w)Zﬁ;

A stochastic process decides when to change direction.
A node moves in a straight line until a direction change
event occurs. This happens with a probability p,« < 1
each time step. With continuous time, the time between two
direction changes follows an exponential distribution with a
mean time between two direction changes of p -+ = Ptt* =
.

Once a node is intended to change its direction, a new tar-
get direction o™ is chosen from (6). The direction difference
between the new target direction chosen at time t*, ¢*(¢"),
and the old direction ¢(t*) is [Ap(t™)| = " (") — ¢(t7)].
We set

S.

Q" (t") — @(t") + 2m

for —2r < " (t") —p(t*) < —7
Q" (") — o(t7)

for —m < (t")—pt") <7
Q" (t") — p(t") — 2m

form < *(t*) — p(t*) < 27

Ap(t™) =

and get the correct sign for the direction change (left or right
turn). Note that Ag(t*) is uniformly distributed between
—m and 7. Next, Ap(t") is divided into several incremental
direction changes Ap(t). In each time step during a curve,
a node should turn an angle of Ap(t). To do so, we set a
“curve time” At., which can be taken, e.g., from a uniform
distribution on the interval [2 s, 10 s]. We set the incremental
direction change to

At At
During the curve, we have
p(t) = p(t — At) + Ap(t) (7)

until ¢(t) reaches the new target direction p*(¢*) or until a
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Figure 3: Direction behavior ¢(t) of a car in down-
town

new direction change event occurs in the meanwhile. After
the curve, Ayp(t) is again set to zero.

Note that the value for At, and the node’s speed during
the curve v(t), t* <t < t*+At., determine the curve radius.
If a node goes with constant speed v(¢*) through the curve
(i.e., v(t) = v(t*) for t* <t < t* + At.), the curve has a
radius of r. = "’X;gﬁt;‘
speed go curves with a smaller radius, and nodes with higher
speed have a larger r..

To summarize, we can say that the direction behavior of
a node at time ¢ is described by three values:

With our principle, nodes with low

e its current direction p(t),
e its current direction change Ap(t)/At in s~
e its current target direction ¢*(t).

! and

Fig. 3 shows a simulation trace of a node’s direction be-
havior, generated with the parameters in Table 2. Fig. 4
shows the top view on the simulation plane with the x—y—
movement trace of three nodes. It is an exercise for the
reader to find our which curve represents the movement de-
scribed by the speed behavior of Fig. 2 and the direction
behavior of Fig. 3.

| | Car downtown |

Heonew 50 s
At 1...10 s?

Table 2: Example parameters for direction control

3.3 Correlation between direction change and
speed change

The random processes for speed change and direction
change, as described above, are running completely indepen-
dent from each other. This fact makes the implementation
simple but is in general not true in reality. In this section,
we propose two additional (optional) principles that model
typical movement patterns of cars and bicycles in downtown.
Both movement patterns correlate the direction change with
the speed change.
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Figure 4: Three mobility traces

3.3.1 *“Stop-turn—and-go” behavior

Using the concept of preferred speeds, we can easily model
“stop—and-go” behavior. We set vp,ef0 = 0 and assign a
rather high probability py,,.., to this value. A speed change
event will therefore frequently result in a target speed v* = 0
(stop event).

In reality, a stop of a car or bicycle is often followed by a
direction change (e.g., at crossings with traffic lights). We
include this behavior in our mobility model: Whenever a
node comes to a stop (v(t) = 0), we choose a target direction
¢”". Here, we do not use a uniformly distributed direction
change as in Section 3.2, but choose Ay from

&;—* for Ap =+£7%
p(Ap) =4 1—pg forAp=0
0 else

The term p,+ is the probability that the node will turn.
Its value must be higher than that in the usual direction
control with v # 0 (Section 3.2). Moreover, the curve radius
r. should be smaller, since curves at crossings are usually
sharper. When the node chooses a new target speed v* # 0
it will move around this curve.

3.3.2 Slowdown of turning nodes

We also propose to model the slowdown of vehicles before
they are turning. This is reasonable for modeling cars and
bicycles because of physical laws (vehicles can drive only
up to a certain maximum speed around a curve with given
radius) and because of human driving behavior. It is not
our intension here to model a correct quantitative behavior,
but we would like to enhance our model with the principle
that nodes typically slow down when a curve is ahead.

In a simulation, we proceed as follows (see Fig. 5): At
time ¢* a node decides that it will change its direction. A
new target direction ¢* and a curve time A¢. are chosen as
described in Section 3.2.

From the curve radius 7. we derive a maximum value for
the curve speed ve,maz, which should be a fraction of the the-
oretically maximum possible speed, given by ve = \/ftsg7c,
where g = 9.81 rn/s2 and ps is the coefficient of static fric-
tion (e.g. us = 0.4...0.7 for cars). If v(t*) > Ve, maz, We
force the acceleration of the node to a negative value, i.e.,
a(t") is taken from (4). The direction change is rescheduled



t0 £ = "+ Atyoy, With Aty = HZtamer f no
other direction change or speed change event occurs in the
slow down period Jt*,¢**] it is guaranteed that the node will
have a speed v(t™) = ve,maz When it enters the curve. We
set a(t™*) = 0 such that the node will drive with constant
speed v(t) = v. and constant direction change Ap(t) around
the curve if no other direction change or speed change event
occurs.

curve ends

set new direction
set acceleration a = 0

decision: change direction
choose new direction
set acceleration a < 0

slowdown
™ phase

timet*

Figure 5: Modeling the slowdown of vehicles before
turning

4. USER DISTRIBUTION AND
BORDER BEHAVIOR

In simulations with a random direction model, nodes are
allowed to leave the simulation area (see Fig. 4). Whenever
a node is subject to leave, we need a “border rule” that
defines what to do with this node. Such a rule is also re-
quired for our model. The following basic principles can be
found in the literature: The node subject to leave can be
(a) bounced back to the system area according to a certain
rule, (b) “deleted” and a new node is initialized according to
the node initialization distribution, or (c) wrapped around
to the other side of the simulation plane.

All methods guarantee that the number of nodes in the
system area remains constant, which is often required in
simulations. In the first case, a new angle (and possibly a
new speed) must be chosen, e.g. as explained in Section 2
(Haas and Perlman). In the second case, we delete the leav-
ing node and place a new node on a randomly chosen point
in the system area. In the last case, a leaving node enters
the system area on the opposite side, while keeping its cur-
rent speed and direction parameters. This approach models
the system area as a torus. In the cases (a) and (¢) we may
optionally assign a different identifier, address, etc. to the
node. This might be of interest if the algorithm subject
to evaluation is based on the these values (e.g., in leader
election algorithms).

These models seem to be quite easy to use. However, we
must be careful about the effect of the border behavior on
the resulting spatial node distribution. Let us give an ex-
ample: At the beginning of a simulation, we place a given
number of nodes on the system area using a uniform distri-
bution in both dimensions (Most studies that use a random
mobility model do so.). We use border behavior (b), i.e., we
“delete” each node that leaves the system area and gener-
ate a new node. Where should we place the new node on
the system area? What is the resulting user distribution in

the steady state of the simulation? Using again a uniform
distribution for random placement of leaving nodes, results
in a higher node density in the middle of the area and a
lower density at the area edges. Fig. 6 shows a histogram
obtained through simulation on a 1000 x 1000 m? area us-
ing a basic random direction model. We divided the entire
area into 20 x 20 subareas and counted the number of nodes
in this subarea every time step. The sum of all subareas
is 100%. In the middle of the area more than 0.4% of the
nodes reside, whereas there are less than 0.1 at the borders.

occurence 0001 — -

0.005
0.004
0.003
0.002
0.001
0.000

Figure 6: Histogram: Spatial node distribution

A similar effect occurs is we use the random waypoint
model (Section 2) on a limited two-dimensional area. This
is done in many evaluations of ad hoc networking protocols
(see e.g. [38, 7, 18]). The described effect also occurs here
because the random waypoint model does not use an angle
@ for direction control but chooses a destination point in
the system area. Nodes in the middle of the area have a
uniformly distributed angle, but nodes at the border are
more likely to move back to the middle. The resulting spatial
node distribution is not uniformly distributed but looks like
in Fig. 6.

When evaluating algorithms or protocols is such a sce-
nario, this effect may lead to invalid results and wrong con-
clusions. For example, if we analyze dynamic channel allo-
cation algorithms in a cellular environment, we will (in the
mean) always need more channels in the middle of the simu-
lation plane, since here the user density is the highest. Fur-
thermore, the inhomogeneous user distribution makes the
generation of “hot spots” at the beginning of the simula-
tion useless. We can overcome these problems by using a
torus-like system area (wrap—around border behavior).

5. CONCLUSIONS

Based on a classification of mobility models used in wire-
less network research, we presented an enhanced random
mobility model, which belongs to the class of random direc-
tion models.

We use two stochastic principles for direction and speed
control in which the new values for speed and direction are
correlated to previous values. This feature makes the move-
ment of nodes more smooth than simple approaches to ran-
dom movement, and this is the reason why we denote our



model as Smooth Random Mobility model. While the move-
ment behavior of nodes becomes more realistic, the imple-
mentation and computation effort is still low.

Our concept for speed control is based on so—called target
speeds. A speed change event occurs according to a Poisson
process. Upon this event, a new target speed is chosen from
a general speed distribution. By defining a set of preferred
speeds, we are able to model typical speed patterns such as
long stop or long travel periods as well as “stop and go be-
havior.” The time between two direction changes is modeled
in a similar way.

Furthermore, we proposed two extensions that model typ-
ical mobility patterns of vehicles in which speed and direc-
tion change are not independent from each other. Whereas
in the first extension a speed change event (a stop event)
triggers a direction change event, in the second extension, a
direction change event triggers a speed change (slowdown)
event.

We see a particular application area of our model in simu-
lations of ad hoc networks and micro—cellular environments,
in which the movement of individual mobile stations is of in-
terest and is not bounded by the scenario. In wireless ad hoc
research, the enhanced model can be applied to investigate
the performance of routing protocols, power management,
clustering algorithms, and alike.

Our principles can easily be employed in existing sim-
ulation tools, and they can also be applied to other ad-
vanced mobility models, e.g., to the group mobility model
presented in [20]. In fact, our model represents a compro-
mise between simple models, such a basic random waypoint
model, and very realistic mobility models, such as models
from transportation research or movement traces. The lat-
ter are usually very complicated to implement and/or need
a huge database (in particular for long simulations).

Last but not least, we discussed the impact of the border
behavior on the spacial node distribution and pointed out
a pitfall: Applying a random direction model or a random
waypoint model on a limited simulation plane can create
a non—uniform node distribution. This might lead to un-
wanted effects in studies of networking algorithms (e.g. in
evaluation of radio resource allocation algorithms).
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