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ABSTRACTThis paper presents an enhan
ed random mobility modelfor simulation{based studies of wireless networks. Our ap-proa
h makes the movement tra
e of individual mobile sta-tions more realisti
 than 
ommon approa
hes for randommovement.After giving a survey of mobility models found in the lit-erature, we give a detailed mathemati
al formulation of ourmodel and outline its advantages. The movement 
on
ept isbased on random pro
esses for speed and dire
tion 
ontrol inwhi
h the new values are 
orrelated to previous ones. Upona speed 
hange event, a new target speed is 
hosen, and ana

eleration is set to a
hieve this target speed. The prin
i-ples for a dire
tion 
hange are similar. Moreover, we pro-pose two extensions for modeling typi
al movement patternsof vehi
les. Finally, we 
onsider strategies for the nodes'border behavior (i.e., what happens when nodes move outof the simulation area) and point out a pitfall that o

urswhen using a bounded simulation area.
KeywordsWireless and mobile 
ommuni
ation networks, modeling andsimulation, mobility modeling, user movement, random di-re
tion model, random waypoint model, border e�e
ts.
1. INTRODUCTION AND MOTIVATIONThe movement pattern of users plays an important rolein performan
e analysis of mobile and wireless networks.In 
ellular networks, for example, a user's mobility behav-ior dire
tly a�e
ts the signaling traÆ
 needed for handoverand lo
ation management (lo
ation updates and paging) [9℄.�This work is funded by the German Resear
h Founda-tion DFG within the program "Adaptability in heterogenous
ommuni
ation networks with wireless a

ess (AKOM)."
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The extra signaling messages over the air interfa
e 
onsumeradio resour
es and in
rease the asso
iated database queryload. In addition, mobility has major e�e
t on the 
hannelholding time in 
ir
uit{swit
hed servi
es (see e.g. [19, 14,35, 11℄). The latter has in turn huge in
uen
e on the 
allblo
king and dropping probability (see e.g. [30, 23℄).The modeling of a user's movement is thus an essentialbuilding blo
k in analyti
al and simulation{based studies ofthese systems. Mobility models are needed in the design ofstrategies for lo
ation updating and paging, radio resour
emanagement (e.g., dynami
 
hannel allo
ation s
hemes),and te
hni
al network planing and design (e.g., 
ell and lo-
ation area layout, network dimensioning). The 
hoi
e ofthe mobility model has a signi�
ant e�e
t on the obtainedresults. If the model is unrealisti
, invalid 
on
lusions maybe drawn.With the in
reasing number of subs
ribers and the de-
reasing 
ell size in future 
ellular systems, the mobilitypattern of users will even more in
uen
e the performan
e ofthe network. Smaller 
ells result in an in
reased mobility{related signaling load and more database queries. Modelsthat proved to be a good 
hoi
e in simulation of ma
ro{
ellular environments show some drawba
ks when being ap-plied in mi
ro{ and pi
o{
ellular environments [23, 39℄.Mobility modeling also plays an important role in anal-ysis of algorithms and proto
ols in wireless lo
al area net-works (WLANs) and self{organizing wireless ad ho
 net-works. Whereas in 
ellular networks there exists a numberof approa
hes that model the ma
ros
opi
 movement behav-ior of users (e.g., random walk from 
ell to 
ell, des
riptionof the 
ell residen
e time), in these 
ases we need a \mi
ro-s
opi
" model.This paper presents su
h a model. It 
an be used in sim-ulations of mobile and wireless networks in whi
h the indi-vidual movement behavior of users should be re
e
ted. Weemploy a 
ombination of prin
iples for dire
tion and speed
ontrol that make the movement of users (e.g., pedestri-ans and 
ars) more smooth and realisti
 than in previouslyknown random models. Nevertheless, the model des
riptionand implementation are still very simple. We denote thismodel by Smooth Random Mobility Model.The remainder of this paper is organized as follows: InSe
tion 2 we make an approa
h to 
lassify mobility modelsused by resear
hers in the wireless networking and mobile
omputing 
ommunity. We des
ribe some 
ommonly usedmodels and their appli
ation and derive a \
on
ept map"for mobility models. In the following, we present our en-
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Figure 1: Con
ept map of mobility models used in simulation and analysis of wireless 
ommuni
ation systemshan
ed model and outline its advantages. Se
tion 3 gives amathemati
al formulation of the movement prin
iples. Wedes
ribe in detail how to model the speed and dire
tionbehavior of mobile stations. Furthermore, we propose twoextensions, whi
h model typi
al movement patterns of ve-hi
les. Se
tion 4 des
ribes di�erent approa
hes for borderbehavior, i.e., what to do if nodes move out of the systemplane. In parti
ular, we 
onsider the impa
t of the borderbehavior on the spatial user distribution in a limited simu-lation plane. Here, we point out a pitfall: Using the wrongborder behavior 
an lead to in
orre
t simulation results. Fi-nally, Se
tion 5 sums up the main features of our model and
on
ludes this paper.
2. MOBILITY MODELSThere exists a variety of mobility models that �nd appli-
ation in di�erent kinds of simulations and analyti
al studiesof wireless systems. Fig. 1 shows a 
on
ept map illustratingsome 
riteria whi
h 
an be used for 
ategorization.Analyti
al mobility models are in general based on rathersimple assumptions regarding the movement behavior ofusers, but they allow to 
al
ulate mathemati
al expressionswith respe
t to system performan
e. Several authors derivethe distribution of a user's 
ell residen
e time [19, 45, 44,33℄. For example, Zonoozi and Dassanayake [44℄ show thatthe 
ell residen
e time with their model 
an be des
ribed bya generalized gamma distribution. Combining these \mo-

bility metri
s" with traÆ
 models allows to estimate impor-tant system performan
e parameters, su
h as 
hannel hold-ing time and handover and lo
ation update events [19, 14,34, 44℄.Let us brie
y des
ribe the mobility assumptions used bythese authors. Hong and Rappaport [19℄ assume that mo-bile users are uniformly distributed over a 
ell. Ea
h user
hooses a dire
tion ' (taken from a uniform distribution[0 : : : 2�[) and a speed v (uniformly distributed on the in-terval [0 : : : vmax℄). On
e these values are 
hosen, they re-main 
onstant until the user 
rosses the boundary of the 
ell.Gu�erin [14℄ uses a more general model, in whi
h dire
tion
hanges are also possible within a 
ell. The model in [44℄allows dire
tion 
hanges only to a 
ertain extent (��'max).Lin, Fang, and Chlamta
 [31, 12℄ assume a generally dis-tributed lo
ation area residen
e time as given. From this,they derive the probability distribution of the number oflo
ation area 
rossings for a given distribution of the inter-servi
e time (i.e., the time between the beginning of twoserved (unblo
ked) 
alls).Another analyti
al model is the Brownian mobility model.It models the movement of users based on Brownian motion,su
h that we 
an 
al
ulate the probability distribution of thephysi
al lo
ation of a user at a given time t, provided thatwe know his or her lo
ation at a previous time t0 < t. Leiand Rose use su
h a model in one dimension [29℄ and in twodimensions [28℄.Models used for simulation{based studies des
ribe themovement of users in a more detailed manner. On the other



hand, in general, they do not allow to derive analyti
al ex-pressions.For example, the European Tele
ommuni
ations Stan-dards Institute (ETSI) de�ned a set of test s
enarios forsystem simulation of UMTS (Universal Mobile Tele
ommu-ni
ation System). The do
ument [10℄ des
ribes mobilitymodels for three environments: an indoor oÆ
e, an outdoorpedestrian, and a vehi
ular environment. The model forthe outdoor pedestrian environment uses a Manhattan{likestreet stru
ture (re
tangular grid). Pedestrians walk alongstreets in a straight line and 
an 
hange their dire
tion at in-terse
tions with a given probability. Also speed 
hanges arepossible after given intervals. The model for the vehi
ularenvironment is a random mobility model without a streetstru
ture. Cars move with 
onstant speed (v = 120 km/h)and 
an 
hange their dire
tion every 20 m (with a proba-bility of 20%). Only dire
tion 
hanges of up to �45Æ arepossible.Jugl and Bo
he [4℄ extend ETSI's model to get more re-alisti
 results. They analyze mobility{related parameters oftheir model, su
h as the 
ell residen
e time and the 
ellboundary 
rossing rate, in 
omparison to ETSI's model.Furthermore, in [23℄, Jugl investigates the in
uen
e of theusers' mobility behavior on the 
hara
teristi
s of handovertraÆ
, blo
king probability, signaling traÆ
, and the 
apa
-ity in CDMA systems.Let us now 
onsider the di�erent levels of detail in mo-bility modeling. Resear
hers in vehi
ular traÆ
 theory dis-tinguish between three levels of des
ription: mi
ros
opi
,mesos
opi
 (kineti
), and ma
ros
opi
. A mi
ros
opi
 modeldes
ribes the movement of a single vehi
le by its spa
e andspeed 
oordinates at a given time t. Su
h approa
hes in
ludevery detailed \
ar following" models [13℄. At the mesos
opi
level, the homogenized movement behavior of several vehi-
les is re
e
ted. For example, a distribution fun
tion is de-rived that des
ribes the number of vehi
les with a 
ertainlo
ation (x; y) or speed v at time t. When modeling on ama
ros
opi
 s
ale, one is interested e.g. in the density, meanspeed and speed varian
e, and traÆ
 
ow of vehi
les.An example for a ma
ros
opi
 movement model used inanalysis of wireless systems is the 
uid 
ow model [43℄. Thisfamily of analyti
al models des
ribes the mobility in termsof \the mean number of users 
rossing the boundary of agiven area."A se
ond approa
h used for modeling the ma
ros
opi
movement behavior is the family of gravity models [27℄.They are also derived from transportation theory. Su
hmodels give an aggregated des
ription of the movement ofseveral users (as the 
uid model); they range from 
ity s
aleto international s
ale. The authors in [32℄ des
ribe su
h amodel. They use the 
on
ept of trips, area and time zones,population groups, and so on. The paper [41℄ also falls intothis 
ategory. It models the daily movement of users usingan a
tivity{based travel demand model.Another frequently used approa
h in 
ellular networks isthe family of random walk models, also denoted as Marko-vian mobility models. They des
ribe the movement of in-dividual users from 
ell to 
ell. Not the exa
t lo
ation ofa user is of interest but just the 
ell in whi
h he/she re-sides. The model is basi
ally de�ned by a state{transitiondiagram in whi
h a 
ell is represented by a state and themovements by transition probabilities between the states.A user either stays within his/her 
ell or moves to one of

its neighboring 
ells with a 
ertain probability. A typi
alrandom walk model in one dimension is des
ribed in [3℄.Two dimensional random walk models are used e.g. in [1,6, 40℄. Re
ent enhan
ements in
lude a random walk modelpresented by Akyildiz and Lin et al. [2℄. From these modelswe 
an also derive analyti
al measures for the 
rossing ratesof 
ell and lo
ation area boundaries and alike [42℄.In the remainder of this paper we fo
us on mi
ro{mobilitymodels. There exists a variety of generalizations of themodel by Gu�erin [14℄ that are used in simulation{based stud-ies of wireless systems. Basi
ally this 
lass 
an be des
ribedas follows: Users 
an move freely anywhere in the systemarea. The values for the user's dire
tion ' are taken froma uniform distribution on the interval [0 : : : 2�[, i.e. usersdo not have any preferred dire
tion. The speed values vfollow, for example, a uniform distribution or a normal dis-tribution [16℄. After a randomly 
hosen time, taken from anexponential distribution, the user 
hooses a new dire
tion.The same pro
edure is performed for speed 
hanges. Thesto
hasti
 pro
esses for dire
tion and speed 
hange are ingeneral not 
orrelated to ea
h other [16℄. A node is therefore
ompletely des
ribed by its 
urrent spa
e ve
tor (x(t); y(t)),its 
urrent speed v(t), and its 
urrent dire
tion '(t); where0 � x � xmax and 0 � y � ymax, 0 � v(t) � vmax, and0 � ' < 2�. We denote this model as random dire
tionmodel.In [15, 36℄, Haas and Perlman use a simpli�ed version ofthe random dire
tion model. All users have always 
onstantspeed v0 and move with an initial dire
tion '0 
hosen froma uniform distribution. Only when a user rea
hes the borderof the simulation plane it 
hanges its dire
tion. In fa
t, it\boun
es" ba
k with �'0 or (� � '0), respe
tively. Thismodel has also been used by other authors, e.g., in [17℄. In[20℄, Hong and Gerla present an interesting group mobilitymodel that is based on the random dire
tion model.Another random mobility model is the so{
alled randomwaypoint model. It is used by several authors in the ad ho
networking 
ommunity (e.g., in [5, 37, 38, 7, 8, 21, 18℄). Itmodels the movement of a user as follows: A user randomly
hooses a destination point in the system area, moves with
onstant speed v (
hosen between ℄vmin; vmax℄, uniformlydistributed) on a straight line to this point, and then pausesfor a 
ertain time before it again 
hooses a new destination.This model is very similar to a generalized random dire
tionmodel. The di�eren
e is that not the dire
tion ' is 
hosenbut the destination point. A node is des
ribed by its 
ur-rent spa
e ve
tor (x(t); y(t)), its 
urrent speed v(t), and its
urrent destination point (xd(t); yd(t)).Let us now 
onsider the degree of randomness of di�er-ent approa
hes. Basi
ally we 
an distinguish between three
ases: (1) models that allow users to move anywhere in thesystem plane following a pseudo{random pro
ess for speedand dire
tion; (2) models that bound the movement of usersby streets, buildings, and so on, but use a pseudo{randompro
ess for speed and dire
tion 
hoi
e at 
rossings; and (3)models that bound the movement of users to a prede�nedpath.We already gave many examples for �rst 
ase, e.g.,the random waypoint and the random dire
tion model.ETSI's inhouse and pedestrian outdoor models with a sim-ple Manhattan{like street stru
ture is an example for these
ond type. Su
h models are also des
ribed in detail in[32℄.



A deterministi
 approa
h for simulations would be to al-low users to move only on a prede�ned mobility path (type3). Su
h a path 
an des
ribe typi
al movement patterns ofpedestrians and vehi
les. We 
an distinguish two 
ases. Inthe �rst 
ase, the dire
tion and speed are both given, and norandom pro
ess is in
orporated at all. In the se
ond 
ase,the dire
tion tra
e is given but the speed is 
hosen randomly.Note that su
h tra
es 
an exist in di�erent levels of detail(
ells, areas, et
.). Lam, Cox, and Widom [27℄ des
ribe afamily of ma
ros
opi
 mobility models based on tra
es. Nev-ertheless, sin
e tra
ing the a
tual mobility behavior of usersis a very 
ompli
ated task and usually su
h information ishard to obtain from network providers, resear
hers often userandom models.Last but not least, wireless resear
hers also invented mod-els for three{dimensional movement. The authors of [24, 25,26℄ model user movements in buildings, in
luding verti
almovements in stair
ases and elevators.
3. AN ENHANCED RANDOM MOBILITY

MODELIn the last se
tion we have seen a variety of existing ap-proa
hes that are used to model the mobility of users inwireless networks. This se
tion presents our enhan
ed mo-bility model, whi
h we denote as Smooth Random Mobilitymodel. With respe
t to Fig. 1, it 
an be 
lassi�ed as follows:It is a random mobility model for movement in two dimen-sions on a mi
ros
opi
 s
ale. A new destination is 
hosen bydire
tion '. The speed and dire
tion 
hange are both proba-bilisti
. The movement of nodes is not bounded by physi
alstru
tures (su
h as streets, buildings, et
.) but nodes areallowed to move anywhere in the simulation plane. Further-more, there is no 
orrelation between di�erent nodes, i.e.,e�e
ts like \node following" or \group movement" are notmodeled.We use two sto
hasti
 pro
esses: one pro
ess determinesat what time a mobile station 
hanges its speed, and theother pro
ess determines when the dire
tion will be 
hanged.Basi
ally speaking, we enhan
e the random dire
tionmodel with some new features, whi
h make the simulatedmovement of nodes (
ars and pedestrians) more realisti
.It has already been 
riti
ized by Hong and Gerla in [20℄that many resear
hers use a mobility model where the new
hoi
e for speed v and dire
tion ' is not 
orrelated to pre-vious values (su
h as in the random waypoint model). Thismay 
ause unrealisti
 movement behavior with sudden speed
hanges ( ��tv(t) ! 1) and sharp turnings (large ��t'(t)while v is high). Our model in
ludes both auto
orrelationfeatures. The speed is 
hanged in
rementally by the 
ur-rent a

eleration of the mobile user, and also the dire
tion
hange is smooth: On
e a station is intended to turn, thedire
tion is (in general) 
hanged in several time steps untilthe new target dire
tion is a
hieved. This 
reates a smooth
urve rather than a sharp turning. Se
tions 3.1 and 3.2 givea mathemati
al formulation of these prin
iples.Last but not least, we model two typi
al movement pat-terns of vehi
les when they are turning (Se
tion 3.3).Our model 
an be used in both dis
rete{time and
ontinuous{time simulations. In both 
ases, we denote thesimulation time by t (in s), where t � 0. In a dis
rete{timesimulation, we quantize the simulation time into equidistant

time steps. The time between two time steps is denoted as�t, and usually set to be 1 s. The term t=�t then representsthe time step number.In the following des
ription, we use the general term\node" to denote any kind of network{enabled devi
e. This
an be e.g. a pedestrian with his or her mobile terminal or auser or devi
e inside a vehi
le. Furthermore, we use the term\node 
lass" to denote a parti
ular type of node (in a par-ti
ular s
enario) with its resulting 
hara
teristi
 movementparameters (e.g., pedestrian, 
ar in downtown, and bi
y
le).
3.1 Speed controlOur 
on
ept for modeling the speed behavior of nodesis based on the use of target speeds (the speed a node in-tends to a
hieve) and linear a

eleration. A node goes with
onstant speed v until a new target speed is de
ided by arandom pro
ess. The node then a

elerates (or de
elerates)until this desired speed is a
hieved (or again a new targetspeed is 
hosen in the meantime).The speed behavior of a node at time t 
an therefore bedes
ribed by three parameters:� its 
urrent speed v(t) in m/s,� its 
urrent a

eleration a(t) in m/s2, and� its 
urrent target speed v�(t).In addition, we de�ne three stati
 speed parameters that
hara
terize a 
ertain node 
lass: Ea
h node 
lass has� a maximum speed vmax,� a set of preferred speeds fvpref0; vpref1; : : :g, and� maximum values for a

eleration/de
eleration.The maximum speed vmax re
e
ts the maximum possiblespeed of a node 
lass or the maximum allowed speed in thegiven s
enario, e.g. vmax = 50 km/h for 
ars in downtown.We must have 0 � v(t) � vmax at any time t. The setof preferred velo
ities fvpref0; vpref1; : : :g models the fa
tthat the speed distribution of vehi
les and pedestrians overtime is not uniformly distributed on [0; vmax℄, but both user
lasses tend to move with 
ertain \travel speeds" most ofthe time. For example, a 
ar in downtown intends to movewith the maximum allowed speed vmax and also frequentlystops at 
rossings and traÆ
 lights or due to jams (v =0). The maximum values for a

eleration and de
elerationre
e
t the physi
al speed{up and slow{down 
apabilities ofa node 
lass. For example, a sports 
ar 
an 
hange its speedmu
h faster than a tru
k.In a simulation, we pro
eed as follows: At the begin-ning, all nodes are 
reated with an initial speed v(t = 0),whi
h is 
hosen from a 
ertain speed distribution p(v). Weuse a distribution in whi
h the preferred speed values havea high probability, and a uniform distribution is assumedon the entire interval [0; vmax℄. For example, if we havethree preferred velo
ities vpref0 = 0, vpref1 = 35vmax, andvpref2 = vmax, we use a distributionp(v) = 8>>>><>>>>: p(v = 0) Æ(v) v = 0p(v = 3vmax5 ) Æ(v � 3vmax5 ) v = 3vmax5p(v = vmax) Æ(v � vmax) v = vmax1�p(vpref )vmax 0 < v < vmax0 else (1)with p (vpref ) = p(vpref0) + p(vpref1) + p(vpref2) < 1.In the following, we des
ribe the speed 
hange over time.As mentioned above, a node goes with 
onstant speed v un-



til a speed 
hange event o

urs. Upon this event, a newtarget speed v� is 
hosen from (1). We model the frequen
yof speed 
hange events a

ording to a Poisson pro
ess: In adis
rete{time simulation with normalized time t=�t, a speed
hange event o

urs with a 
ertain probability pv� ea
h timestep, where pv� � 1. Using 
ontinuous time t, we 
an 
hoosethe time between two speed 
hange events from an exponen-tial distribution [22℄ with � = pv�=�t:p(t) = pv��t � e�pv� t=�t: (2)The value for pv� determines the time between two speed
hange events. The mean time between two events is �v� =�tpv� = 1pv� s : For example, we set pv� = 0:04 to obtain�v� = 25 s.Let t� denote the time at whi
h a speed 
hange evento

urs and a new target speed v� = v�(t�) is 
hosen. Now,an a

eleration a(t�) 6= 0 must be set. It is taken fromp(a) = � 1amax for 0 < a � amax0 else (3)if v�(t�) > v(t�), or fromp(a) = � 1amin for amin � a < 00 else (4)if v�(t�) < v(t�). Clearly, a is set to 0 if v�(t�) = v(t�). Theterm amax is the maximum possible a

eleration, and aminis the maximum possible de
eleration of this node 
lass. For
ars we may use amax = 2:5 m/s2 and amin = �4 m/s2 (seeTable 1). These values 
ould depend on vmax of the node
lass, in a way that nodes with high vmax 
an speed up andslow down in a shorter time than slow nodes.Car downtownvmax 13.9 m/svpref 0, 13.9 m/sa �4 : : : 2.5 m/s2�v� 25 spvpref p(v = 0) = 0:3p(v = vmax) = 0:3Table 1: Example parameters for speed 
ontrolIn the following time steps, the speed 
ontinuously in-
reases or de
reases. Ea
h step, a new speed v(t) is 
al
u-lated a

ording tov(t) = v(t��t) + a(t)�t (5)until v(t) a
hieves v�(t). The time it takes a nodeto a
hieve the new target dire
tion is �tspeed=slow =v�(t�)�v(t�)a(t�) if no new speed 
hange event o

urs betweent = �t�; t� +�tspeed=slow�. After this pro
edure, we seta = 0 and the node moves again with 
onstant speedv(t) = v�(t�) until the next speed 
hange event o

urs.Fig. 2 shows a simulation tra
e of a node's speed behavior.It was generated with the parameters listed in Table 1. The�gure illustrates that the 
urrent speed value v(t) is 
orre-lated to the previous speed value v(t��t), whi
h makesthe speed 
hange smooth.
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Figure 2: Speed behavior v(t) of 
ar in downtown
3.2 Direction controlThe prin
iple for dire
tion 
ontrol is similar to the speed
ontrol prin
iple. Ea
h node has an initial dire
tion '(t = 0)whi
h is 
hosen from a uniform distributionp (') = 12� ; 0 � ' < 2�: (6)A sto
hasti
 pro
ess de
ides when to 
hange dire
tion.A node moves in a straight line until a dire
tion 
hangeevent o

urs. This happens with a probability p'� � 1ea
h time step. With 
ontinuous time, the time between twodire
tion 
hanges follows an exponential distribution with amean time between two dire
tion 
hanges of �'� = �tp'� =1p'� s:On
e a node is intended to 
hange its dire
tion, a new tar-get dire
tion '� is 
hosen from (6). The dire
tion di�eren
ebetween the new target dire
tion 
hosen at time t�, '�(t�),and the old dire
tion '(t�) is j�'(t�)j = j'�(t�)� '(t�)j.We set�'(t�) = 8>>>>><>>>>>: '�(t�)� '(t�) + 2�for � 2� < '�(t�)� '(t�) � ��'�(t�)� '(t�)for � � < '�(t�)� '(t�) � �'�(t�)� '(t�)� 2�for � < '�(t�)� '(t�) � 2�and get the 
orre
t sign for the dire
tion 
hange (left or rightturn). Note that �'(t�) is uniformly distributed between�� and �. Next, �'(t�) is divided into several in
rementaldire
tion 
hanges �'(t). In ea
h time step during a 
urve,a node should turn an angle of �'(t). To do so, we set a\
urve time" �t
, whi
h 
an be taken, e.g., from a uniformdistribution on the interval [2 s; 10 s℄. We set the in
rementaldire
tion 
hange to �'(t)�t = �'(t�)�t
 :During the 
urve, we have'(t) = '(t��t) + �'(t) (7)until '(t) rea
hes the new target dire
tion '�(t�) or until a
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tion behavior '(t) of a 
ar in down-townnew dire
tion 
hange event o

urs in the meanwhile. Afterthe 
urve, �'(t) is again set to zero.Note that the value for �t
 and the node's speed duringthe 
urve v(t), t� < t < t�+�t
, determine the 
urve radius.If a node goes with 
onstant speed v(t�) through the 
urve(i.e., v(t) = v(t�) for t� < t < t� + �t
), the 
urve has aradius of r
 = v(t�)�t
j�'(t�)j . With our prin
iple, nodes with lowspeed go 
urves with a smaller radius, and nodes with higherspeed have a larger r
.To summarize, we 
an say that the dire
tion behavior ofa node at time t is des
ribed by three values:� its 
urrent dire
tion '(t),� its 
urrent dire
tion 
hange �'(t)=�t in s�1, and� its 
urrent target dire
tion '�(t).Fig. 3 shows a simulation tra
e of a node's dire
tion be-havior, generated with the parameters in Table 2. Fig. 4shows the top view on the simulation plane with the x{y{movement tra
e of three nodes. It is an exer
ise for thereader to �nd our whi
h 
urve represents the movement de-s
ribed by the speed behavior of Fig. 2 and the dire
tionbehavior of Fig. 3. Car downtown�'new 50 s�t
 1 : : : 10 s2Table 2: Example parameters for dire
tion 
ontrol
3.3 Correlation between direction change and

speed changeThe random pro
esses for speed 
hange and dire
tion
hange, as des
ribed above, are running 
ompletely indepen-dent from ea
h other. This fa
t makes the implementationsimple but is in general not true in reality. In this se
tion,we propose two additional (optional) prin
iples that modeltypi
al movement patterns of 
ars and bi
y
les in downtown.Both movement patterns 
orrelate the dire
tion 
hange withthe speed 
hange.
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3.3.1 “Stop–turn–and–go” behaviorUsing the 
on
ept of preferred speeds, we 
an easily model\stop{and{go" behavior. We set vpref0 = 0 and assign arather high probability pvpref0 to this value. A speed 
hangeevent will therefore frequently result in a target speed v� = 0(stop event).In reality, a stop of a 
ar or bi
y
le is often followed by adire
tion 
hange (e.g., at 
rossings with traÆ
 lights). Wein
lude this behavior in our mobility model: Whenever anode 
omes to a stop (v(t) = 0), we 
hoose a target dire
tion'�. Here, we do not use a uniformly distributed dire
tion
hange as in Se
tion 3.2, but 
hoose �' fromp(�') = 8<: p'�2 for �' = ��21� p'� for �' = 00 else :The term p'� is the probability that the node will turn.Its value must be higher than that in the usual dire
tion
ontrol with v 6= 0 (Se
tion 3.2). Moreover, the 
urve radiusr
 should be smaller, sin
e 
urves at 
rossings are usuallysharper. When the node 
hooses a new target speed v� 6= 0it will move around this 
urve.
3.3.2 Slowdown of turning nodesWe also propose to model the slowdown of vehi
les beforethey are turning. This is reasonable for modeling 
ars andbi
y
les be
ause of physi
al laws (vehi
les 
an drive onlyup to a 
ertain maximum speed around a 
urve with givenradius) and be
ause of human driving behavior. It is notour intension here to model a 
orre
t quantitative behavior,but we would like to enhan
e our model with the prin
iplethat nodes typi
ally slow down when a 
urve is ahead.In a simulation, we pro
eed as follows (see Fig. 5): Attime t� a node de
ides that it will 
hange its dire
tion. Anew target dire
tion '� and a 
urve time �t
 are 
hosen asdes
ribed in Se
tion 3.2.From the 
urve radius r
 we derive a maximum value forthe 
urve speed v
;max, whi
h should be a fra
tion of the the-oreti
ally maximum possible speed, given by v
 = p�sgr
 ;where g = 9:81 m/s2 and �s is the 
oeÆ
ient of stati
 fri
-tion (e.g. �s = 0:4 : : : 0:7 for 
ars). If v(t�) > v
;max, wefor
e the a

eleration of the node to a negative value, i.e.,a(t�) is taken from (4). The dire
tion 
hange is res
heduled



to t�� = t� + �tslow, with �tslow = v(t�)�v
;maxa(t�) . If noother dire
tion 
hange or speed 
hange event o

urs in theslow down period ℄t�; t��℄ it is guaranteed that the node willhave a speed v(t��) = v
;max when it enters the 
urve. Weset a(t��) = 0 su
h that the node will drive with 
onstantspeed v(t) = v
 and 
onstant dire
tion 
hange �'(t) aroundthe 
urve if no other dire
tion 
hange or speed 
hange evento

urs.
decision: change direction
choose new direction
set acceleration a < 0

set new direction
set acceleration a = 0

speed
v = const

slowdown
phase

r
c

time t *

curve ends

Figure 5: Modeling the slowdown of vehi
les beforeturning
4. USER DISTRIBUTION AND

BORDER BEHAVIORIn simulations with a random dire
tion model, nodes areallowed to leave the simulation area (see Fig. 4). Whenevera node is subje
t to leave, we need a \border rule" thatde�nes what to do with this node. Su
h a rule is also re-quired for our model. The following basi
 prin
iples 
an befound in the literature: The node subje
t to leave 
an be(a) boun
ed ba
k to the system area a

ording to a 
ertainrule, (b) \deleted" and a new node is initialized a

ording tothe node initialization distribution, or (
) wrapped aroundto the other side of the simulation plane.All methods guarantee that the number of nodes in thesystem area remains 
onstant, whi
h is often required insimulations. In the �rst 
ase, a new angle (and possibly anew speed) must be 
hosen, e.g. as explained in Se
tion 2(Haas and Perlman). In the se
ond 
ase, we delete the leav-ing node and pla
e a new node on a randomly 
hosen pointin the system area. In the last 
ase, a leaving node entersthe system area on the opposite side, while keeping its 
ur-rent speed and dire
tion parameters. This approa
h modelsthe system area as a torus. In the 
ases (a) and (
) we mayoptionally assign a di�erent identi�er, address, et
. to thenode. This might be of interest if the algorithm subje
tto evaluation is based on the these values (e.g., in leaderele
tion algorithms).These models seem to be quite easy to use. However, wemust be 
areful about the e�e
t of the border behavior onthe resulting spatial node distribution. Let us give an ex-ample: At the beginning of a simulation, we pla
e a givennumber of nodes on the system area using a uniform distri-bution in both dimensions (Most studies that use a randommobility model do so.). We use border behavior (b), i.e., we\delete" ea
h node that leaves the system area and gener-ate a new node. Where should we pla
e the new node onthe system area? What is the resulting user distribution in

the steady state of the simulation? Using again a uniformdistribution for random pla
ement of leaving nodes, resultsin a higher node density in the middle of the area and alower density at the area edges. Fig. 6 shows a histogramobtained through simulation on a 1000 � 1000 m2 area us-ing a basi
 random dire
tion model. We divided the entirearea into 20�20 subareas and 
ounted the number of nodesin this subarea every time step. The sum of all subareasis 100%. In the middle of the area more than 0.4% of thenodes reside, whereas there are less than 0.1 at the borders.
occurence
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Figure 6: Histogram: Spatial node distributionA similar e�e
t o

urs is we use the random waypointmodel (Se
tion 2) on a limited two{dimensional area. Thisis done in many evaluations of ad ho
 networking proto
ols(see e.g. [38, 7, 18℄). The des
ribed e�e
t also o

urs herebe
ause the random waypoint model does not use an angle' for dire
tion 
ontrol but 
hooses a destination point inthe system area. Nodes in the middle of the area have auniformly distributed angle, but nodes at the border aremore likely to move ba
k to the middle. The resulting spatialnode distribution is not uniformly distributed but looks likein Fig. 6.When evaluating algorithms or proto
ols is su
h a s
e-nario, this e�e
t may lead to invalid results and wrong 
on-
lusions. For example, if we analyze dynami
 
hannel allo-
ation algorithms in a 
ellular environment, we will (in themean) always need more 
hannels in the middle of the simu-lation plane, sin
e here the user density is the highest. Fur-thermore, the inhomogeneous user distribution makes thegeneration of \hot spots" at the beginning of the simula-tion useless. We 
an over
ome these problems by using atorus{like system area (wrap{around border behavior).
5. CONCLUSIONSBased on a 
lassi�
ation of mobility models used in wire-less network resear
h, we presented an enhan
ed randommobility model, whi
h belongs to the 
lass of random dire
-tion models.We use two sto
hasti
 prin
iples for dire
tion and speed
ontrol in whi
h the new values for speed and dire
tion are
orrelated to previous values. This feature makes the move-ment of nodes more smooth than simple approa
hes to ran-dom movement, and this is the reason why we denote our



model as Smooth RandomMobility model. While the move-ment behavior of nodes be
omes more realisti
, the imple-mentation and 
omputation e�ort is still low.Our 
on
ept for speed 
ontrol is based on so{
alled targetspeeds. A speed 
hange event o

urs a

ording to a Poissonpro
ess. Upon this event, a new target speed is 
hosen froma general speed distribution. By de�ning a set of preferredspeeds, we are able to model typi
al speed patterns su
h aslong stop or long travel periods as well as \stop and go be-havior." The time between two dire
tion 
hanges is modeledin a similar way.Furthermore, we proposed two extensions that model typ-i
al mobility patterns of vehi
les in whi
h speed and dire
-tion 
hange are not independent from ea
h other. Whereasin the �rst extension a speed 
hange event (a stop event)triggers a dire
tion 
hange event, in the se
ond extension, adire
tion 
hange event triggers a speed 
hange (slowdown)event.We see a parti
ular appli
ation area of our model in simu-lations of ad ho
 networks and mi
ro{
ellular environments,in whi
h the movement of individual mobile stations is of in-terest and is not bounded by the s
enario. In wireless ad ho
resear
h, the enhan
ed model 
an be applied to investigatethe performan
e of routing proto
ols, power management,
lustering algorithms, and alike.Our prin
iples 
an easily be employed in existing sim-ulation tools, and they 
an also be applied to other ad-van
ed mobility models, e.g., to the group mobility modelpresented in [20℄. In fa
t, our model represents a 
ompro-mise between simple models, su
h a basi
 random waypointmodel, and very realisti
 mobility models, su
h as modelsfrom transportation resear
h or movement tra
es. The lat-ter are usually very 
ompli
ated to implement and/or needa huge database (in parti
ular for long simulations).Last but not least, we dis
ussed the impa
t of the borderbehavior on the spa
ial node distribution and pointed outa pitfall: Applying a random dire
tion model or a randomwaypoint model on a limited simulation plane 
an 
reatea non{uniform node distribution. This might lead to un-wanted e�e
ts in studies of networking algorithms (e.g. inevaluation of radio resour
e allo
ation algorithms).
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