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ABSTRACTThis paper presents an enhaned random mobility modelfor simulation{based studies of wireless networks. Our ap-proah makes the movement trae of individual mobile sta-tions more realisti than ommon approahes for randommovement.After giving a survey of mobility models found in the lit-erature, we give a detailed mathematial formulation of ourmodel and outline its advantages. The movement onept isbased on random proesses for speed and diretion ontrol inwhih the new values are orrelated to previous ones. Upona speed hange event, a new target speed is hosen, and anaeleration is set to ahieve this target speed. The prini-ples for a diretion hange are similar. Moreover, we pro-pose two extensions for modeling typial movement patternsof vehiles. Finally, we onsider strategies for the nodes'border behavior (i.e., what happens when nodes move outof the simulation area) and point out a pitfall that ourswhen using a bounded simulation area.
KeywordsWireless and mobile ommuniation networks, modeling andsimulation, mobility modeling, user movement, random di-retion model, random waypoint model, border e�ets.
1. INTRODUCTION AND MOTIVATIONThe movement pattern of users plays an important rolein performane analysis of mobile and wireless networks.In ellular networks, for example, a user's mobility behav-ior diretly a�ets the signaling traÆ needed for handoverand loation management (loation updates and paging) [9℄.�This work is funded by the German Researh Founda-tion DFG within the program "Adaptability in heterogenousommuniation networks with wireless aess (AKOM)."
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The extra signaling messages over the air interfae onsumeradio resoures and inrease the assoiated database queryload. In addition, mobility has major e�et on the hannelholding time in iruit{swithed servies (see e.g. [19, 14,35, 11℄). The latter has in turn huge inuene on the allbloking and dropping probability (see e.g. [30, 23℄).The modeling of a user's movement is thus an essentialbuilding blok in analytial and simulation{based studies ofthese systems. Mobility models are needed in the design ofstrategies for loation updating and paging, radio resouremanagement (e.g., dynami hannel alloation shemes),and tehnial network planing and design (e.g., ell and lo-ation area layout, network dimensioning). The hoie ofthe mobility model has a signi�ant e�et on the obtainedresults. If the model is unrealisti, invalid onlusions maybe drawn.With the inreasing number of subsribers and the de-reasing ell size in future ellular systems, the mobilitypattern of users will even more inuene the performane ofthe network. Smaller ells result in an inreased mobility{related signaling load and more database queries. Modelsthat proved to be a good hoie in simulation of maro{ellular environments show some drawbaks when being ap-plied in miro{ and pio{ellular environments [23, 39℄.Mobility modeling also plays an important role in anal-ysis of algorithms and protools in wireless loal area net-works (WLANs) and self{organizing wireless ad ho net-works. Whereas in ellular networks there exists a numberof approahes that model the marosopi movement behav-ior of users (e.g., random walk from ell to ell, desriptionof the ell residene time), in these ases we need a \miro-sopi" model.This paper presents suh a model. It an be used in sim-ulations of mobile and wireless networks in whih the indi-vidual movement behavior of users should be reeted. Weemploy a ombination of priniples for diretion and speedontrol that make the movement of users (e.g., pedestri-ans and ars) more smooth and realisti than in previouslyknown random models. Nevertheless, the model desriptionand implementation are still very simple. We denote thismodel by Smooth Random Mobility Model.The remainder of this paper is organized as follows: InSetion 2 we make an approah to lassify mobility modelsused by researhers in the wireless networking and mobileomputing ommunity. We desribe some ommonly usedmodels and their appliation and derive a \onept map"for mobility models. In the following, we present our en-
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Figure 1: Conept map of mobility models used in simulation and analysis of wireless ommuniation systemshaned model and outline its advantages. Setion 3 gives amathematial formulation of the movement priniples. Wedesribe in detail how to model the speed and diretionbehavior of mobile stations. Furthermore, we propose twoextensions, whih model typial movement patterns of ve-hiles. Setion 4 desribes di�erent approahes for borderbehavior, i.e., what to do if nodes move out of the systemplane. In partiular, we onsider the impat of the borderbehavior on the spatial user distribution in a limited simu-lation plane. Here, we point out a pitfall: Using the wrongborder behavior an lead to inorret simulation results. Fi-nally, Setion 5 sums up the main features of our model andonludes this paper.
2. MOBILITY MODELSThere exists a variety of mobility models that �nd appli-ation in di�erent kinds of simulations and analytial studiesof wireless systems. Fig. 1 shows a onept map illustratingsome riteria whih an be used for ategorization.Analytial mobility models are in general based on rathersimple assumptions regarding the movement behavior ofusers, but they allow to alulate mathematial expressionswith respet to system performane. Several authors derivethe distribution of a user's ell residene time [19, 45, 44,33℄. For example, Zonoozi and Dassanayake [44℄ show thatthe ell residene time with their model an be desribed bya generalized gamma distribution. Combining these \mo-

bility metris" with traÆ models allows to estimate impor-tant system performane parameters, suh as hannel hold-ing time and handover and loation update events [19, 14,34, 44℄.Let us briey desribe the mobility assumptions used bythese authors. Hong and Rappaport [19℄ assume that mo-bile users are uniformly distributed over a ell. Eah userhooses a diretion ' (taken from a uniform distribution[0 : : : 2�[) and a speed v (uniformly distributed on the in-terval [0 : : : vmax℄). One these values are hosen, they re-main onstant until the user rosses the boundary of the ell.Gu�erin [14℄ uses a more general model, in whih diretionhanges are also possible within a ell. The model in [44℄allows diretion hanges only to a ertain extent (��'max).Lin, Fang, and Chlamta [31, 12℄ assume a generally dis-tributed loation area residene time as given. From this,they derive the probability distribution of the number ofloation area rossings for a given distribution of the inter-servie time (i.e., the time between the beginning of twoserved (unbloked) alls).Another analytial model is the Brownian mobility model.It models the movement of users based on Brownian motion,suh that we an alulate the probability distribution of thephysial loation of a user at a given time t, provided thatwe know his or her loation at a previous time t0 < t. Leiand Rose use suh a model in one dimension [29℄ and in twodimensions [28℄.Models used for simulation{based studies desribe themovement of users in a more detailed manner. On the other



hand, in general, they do not allow to derive analytial ex-pressions.For example, the European Teleommuniations Stan-dards Institute (ETSI) de�ned a set of test senarios forsystem simulation of UMTS (Universal Mobile Teleommu-niation System). The doument [10℄ desribes mobilitymodels for three environments: an indoor oÆe, an outdoorpedestrian, and a vehiular environment. The model forthe outdoor pedestrian environment uses a Manhattan{likestreet struture (retangular grid). Pedestrians walk alongstreets in a straight line and an hange their diretion at in-tersetions with a given probability. Also speed hanges arepossible after given intervals. The model for the vehiularenvironment is a random mobility model without a streetstruture. Cars move with onstant speed (v = 120 km/h)and an hange their diretion every 20 m (with a proba-bility of 20%). Only diretion hanges of up to �45Æ arepossible.Jugl and Bohe [4℄ extend ETSI's model to get more re-alisti results. They analyze mobility{related parameters oftheir model, suh as the ell residene time and the ellboundary rossing rate, in omparison to ETSI's model.Furthermore, in [23℄, Jugl investigates the inuene of theusers' mobility behavior on the harateristis of handovertraÆ, bloking probability, signaling traÆ, and the apa-ity in CDMA systems.Let us now onsider the di�erent levels of detail in mo-bility modeling. Researhers in vehiular traÆ theory dis-tinguish between three levels of desription: mirosopi,mesosopi (kineti), and marosopi. A mirosopi modeldesribes the movement of a single vehile by its spae andspeed oordinates at a given time t. Suh approahes inludevery detailed \ar following" models [13℄. At the mesosopilevel, the homogenized movement behavior of several vehi-les is reeted. For example, a distribution funtion is de-rived that desribes the number of vehiles with a ertainloation (x; y) or speed v at time t. When modeling on amarosopi sale, one is interested e.g. in the density, meanspeed and speed variane, and traÆ ow of vehiles.An example for a marosopi movement model used inanalysis of wireless systems is the uid ow model [43℄. Thisfamily of analytial models desribes the mobility in termsof \the mean number of users rossing the boundary of agiven area."A seond approah used for modeling the marosopimovement behavior is the family of gravity models [27℄.They are also derived from transportation theory. Suhmodels give an aggregated desription of the movement ofseveral users (as the uid model); they range from ity saleto international sale. The authors in [32℄ desribe suh amodel. They use the onept of trips, area and time zones,population groups, and so on. The paper [41℄ also falls intothis ategory. It models the daily movement of users usingan ativity{based travel demand model.Another frequently used approah in ellular networks isthe family of random walk models, also denoted as Marko-vian mobility models. They desribe the movement of in-dividual users from ell to ell. Not the exat loation ofa user is of interest but just the ell in whih he/she re-sides. The model is basially de�ned by a state{transitiondiagram in whih a ell is represented by a state and themovements by transition probabilities between the states.A user either stays within his/her ell or moves to one of

its neighboring ells with a ertain probability. A typialrandom walk model in one dimension is desribed in [3℄.Two dimensional random walk models are used e.g. in [1,6, 40℄. Reent enhanements inlude a random walk modelpresented by Akyildiz and Lin et al. [2℄. From these modelswe an also derive analytial measures for the rossing ratesof ell and loation area boundaries and alike [42℄.In the remainder of this paper we fous on miro{mobilitymodels. There exists a variety of generalizations of themodel by Gu�erin [14℄ that are used in simulation{based stud-ies of wireless systems. Basially this lass an be desribedas follows: Users an move freely anywhere in the systemarea. The values for the user's diretion ' are taken froma uniform distribution on the interval [0 : : : 2�[, i.e. usersdo not have any preferred diretion. The speed values vfollow, for example, a uniform distribution or a normal dis-tribution [16℄. After a randomly hosen time, taken from anexponential distribution, the user hooses a new diretion.The same proedure is performed for speed hanges. Thestohasti proesses for diretion and speed hange are ingeneral not orrelated to eah other [16℄. A node is thereforeompletely desribed by its urrent spae vetor (x(t); y(t)),its urrent speed v(t), and its urrent diretion '(t); where0 � x � xmax and 0 � y � ymax, 0 � v(t) � vmax, and0 � ' < 2�. We denote this model as random diretionmodel.In [15, 36℄, Haas and Perlman use a simpli�ed version ofthe random diretion model. All users have always onstantspeed v0 and move with an initial diretion '0 hosen froma uniform distribution. Only when a user reahes the borderof the simulation plane it hanges its diretion. In fat, it\bounes" bak with �'0 or (� � '0), respetively. Thismodel has also been used by other authors, e.g., in [17℄. In[20℄, Hong and Gerla present an interesting group mobilitymodel that is based on the random diretion model.Another random mobility model is the so{alled randomwaypoint model. It is used by several authors in the ad honetworking ommunity (e.g., in [5, 37, 38, 7, 8, 21, 18℄). Itmodels the movement of a user as follows: A user randomlyhooses a destination point in the system area, moves withonstant speed v (hosen between ℄vmin; vmax℄, uniformlydistributed) on a straight line to this point, and then pausesfor a ertain time before it again hooses a new destination.This model is very similar to a generalized random diretionmodel. The di�erene is that not the diretion ' is hosenbut the destination point. A node is desribed by its ur-rent spae vetor (x(t); y(t)), its urrent speed v(t), and itsurrent destination point (xd(t); yd(t)).Let us now onsider the degree of randomness of di�er-ent approahes. Basially we an distinguish between threeases: (1) models that allow users to move anywhere in thesystem plane following a pseudo{random proess for speedand diretion; (2) models that bound the movement of usersby streets, buildings, and so on, but use a pseudo{randomproess for speed and diretion hoie at rossings; and (3)models that bound the movement of users to a prede�nedpath.We already gave many examples for �rst ase, e.g.,the random waypoint and the random diretion model.ETSI's inhouse and pedestrian outdoor models with a sim-ple Manhattan{like street struture is an example for theseond type. Suh models are also desribed in detail in[32℄.



A deterministi approah for simulations would be to al-low users to move only on a prede�ned mobility path (type3). Suh a path an desribe typial movement patterns ofpedestrians and vehiles. We an distinguish two ases. Inthe �rst ase, the diretion and speed are both given, and norandom proess is inorporated at all. In the seond ase,the diretion trae is given but the speed is hosen randomly.Note that suh traes an exist in di�erent levels of detail(ells, areas, et.). Lam, Cox, and Widom [27℄ desribe afamily of marosopi mobility models based on traes. Nev-ertheless, sine traing the atual mobility behavior of usersis a very ompliated task and usually suh information ishard to obtain from network providers, researhers often userandom models.Last but not least, wireless researhers also invented mod-els for three{dimensional movement. The authors of [24, 25,26℄ model user movements in buildings, inluding vertialmovements in stairases and elevators.
3. AN ENHANCED RANDOM MOBILITY

MODELIn the last setion we have seen a variety of existing ap-proahes that are used to model the mobility of users inwireless networks. This setion presents our enhaned mo-bility model, whih we denote as Smooth Random Mobilitymodel. With respet to Fig. 1, it an be lassi�ed as follows:It is a random mobility model for movement in two dimen-sions on a mirosopi sale. A new destination is hosen bydiretion '. The speed and diretion hange are both proba-bilisti. The movement of nodes is not bounded by physialstrutures (suh as streets, buildings, et.) but nodes areallowed to move anywhere in the simulation plane. Further-more, there is no orrelation between di�erent nodes, i.e.,e�ets like \node following" or \group movement" are notmodeled.We use two stohasti proesses: one proess determinesat what time a mobile station hanges its speed, and theother proess determines when the diretion will be hanged.Basially speaking, we enhane the random diretionmodel with some new features, whih make the simulatedmovement of nodes (ars and pedestrians) more realisti.It has already been ritiized by Hong and Gerla in [20℄that many researhers use a mobility model where the newhoie for speed v and diretion ' is not orrelated to pre-vious values (suh as in the random waypoint model). Thismay ause unrealisti movement behavior with sudden speedhanges ( ��tv(t) ! 1) and sharp turnings (large ��t'(t)while v is high). Our model inludes both autoorrelationfeatures. The speed is hanged inrementally by the ur-rent aeleration of the mobile user, and also the diretionhange is smooth: One a station is intended to turn, thediretion is (in general) hanged in several time steps untilthe new target diretion is ahieved. This reates a smoothurve rather than a sharp turning. Setions 3.1 and 3.2 givea mathematial formulation of these priniples.Last but not least, we model two typial movement pat-terns of vehiles when they are turning (Setion 3.3).Our model an be used in both disrete{time andontinuous{time simulations. In both ases, we denote thesimulation time by t (in s), where t � 0. In a disrete{timesimulation, we quantize the simulation time into equidistant

time steps. The time between two time steps is denoted as�t, and usually set to be 1 s. The term t=�t then representsthe time step number.In the following desription, we use the general term\node" to denote any kind of network{enabled devie. Thisan be e.g. a pedestrian with his or her mobile terminal or auser or devie inside a vehile. Furthermore, we use the term\node lass" to denote a partiular type of node (in a par-tiular senario) with its resulting harateristi movementparameters (e.g., pedestrian, ar in downtown, and biyle).
3.1 Speed controlOur onept for modeling the speed behavior of nodesis based on the use of target speeds (the speed a node in-tends to ahieve) and linear aeleration. A node goes withonstant speed v until a new target speed is deided by arandom proess. The node then aelerates (or deelerates)until this desired speed is ahieved (or again a new targetspeed is hosen in the meantime).The speed behavior of a node at time t an therefore bedesribed by three parameters:� its urrent speed v(t) in m/s,� its urrent aeleration a(t) in m/s2, and� its urrent target speed v�(t).In addition, we de�ne three stati speed parameters thatharaterize a ertain node lass: Eah node lass has� a maximum speed vmax,� a set of preferred speeds fvpref0; vpref1; : : :g, and� maximum values for aeleration/deeleration.The maximum speed vmax reets the maximum possiblespeed of a node lass or the maximum allowed speed in thegiven senario, e.g. vmax = 50 km/h for ars in downtown.We must have 0 � v(t) � vmax at any time t. The setof preferred veloities fvpref0; vpref1; : : :g models the fatthat the speed distribution of vehiles and pedestrians overtime is not uniformly distributed on [0; vmax℄, but both userlasses tend to move with ertain \travel speeds" most ofthe time. For example, a ar in downtown intends to movewith the maximum allowed speed vmax and also frequentlystops at rossings and traÆ lights or due to jams (v =0). The maximum values for aeleration and deelerationreet the physial speed{up and slow{down apabilities ofa node lass. For example, a sports ar an hange its speedmuh faster than a truk.In a simulation, we proeed as follows: At the begin-ning, all nodes are reated with an initial speed v(t = 0),whih is hosen from a ertain speed distribution p(v). Weuse a distribution in whih the preferred speed values havea high probability, and a uniform distribution is assumedon the entire interval [0; vmax℄. For example, if we havethree preferred veloities vpref0 = 0, vpref1 = 35vmax, andvpref2 = vmax, we use a distributionp(v) = 8>>>><>>>>: p(v = 0) Æ(v) v = 0p(v = 3vmax5 ) Æ(v � 3vmax5 ) v = 3vmax5p(v = vmax) Æ(v � vmax) v = vmax1�p(vpref )vmax 0 < v < vmax0 else (1)with p (vpref ) = p(vpref0) + p(vpref1) + p(vpref2) < 1.In the following, we desribe the speed hange over time.As mentioned above, a node goes with onstant speed v un-



til a speed hange event ours. Upon this event, a newtarget speed v� is hosen from (1). We model the frequenyof speed hange events aording to a Poisson proess: In adisrete{time simulation with normalized time t=�t, a speedhange event ours with a ertain probability pv� eah timestep, where pv� � 1. Using ontinuous time t, we an hoosethe time between two speed hange events from an exponen-tial distribution [22℄ with � = pv�=�t:p(t) = pv��t � e�pv� t=�t: (2)The value for pv� determines the time between two speedhange events. The mean time between two events is �v� =�tpv� = 1pv� s : For example, we set pv� = 0:04 to obtain�v� = 25 s.Let t� denote the time at whih a speed hange eventours and a new target speed v� = v�(t�) is hosen. Now,an aeleration a(t�) 6= 0 must be set. It is taken fromp(a) = � 1amax for 0 < a � amax0 else (3)if v�(t�) > v(t�), or fromp(a) = � 1amin for amin � a < 00 else (4)if v�(t�) < v(t�). Clearly, a is set to 0 if v�(t�) = v(t�). Theterm amax is the maximum possible aeleration, and aminis the maximum possible deeleration of this node lass. Forars we may use amax = 2:5 m/s2 and amin = �4 m/s2 (seeTable 1). These values ould depend on vmax of the nodelass, in a way that nodes with high vmax an speed up andslow down in a shorter time than slow nodes.Car downtownvmax 13.9 m/svpref 0, 13.9 m/sa �4 : : : 2.5 m/s2�v� 25 spvpref p(v = 0) = 0:3p(v = vmax) = 0:3Table 1: Example parameters for speed ontrolIn the following time steps, the speed ontinuously in-reases or dereases. Eah step, a new speed v(t) is alu-lated aording tov(t) = v(t��t) + a(t)�t (5)until v(t) ahieves v�(t). The time it takes a nodeto ahieve the new target diretion is �tspeed=slow =v�(t�)�v(t�)a(t�) if no new speed hange event ours betweent = �t�; t� +�tspeed=slow�. After this proedure, we seta = 0 and the node moves again with onstant speedv(t) = v�(t�) until the next speed hange event ours.Fig. 2 shows a simulation trae of a node's speed behavior.It was generated with the parameters listed in Table 1. The�gure illustrates that the urrent speed value v(t) is orre-lated to the previous speed value v(t��t), whih makesthe speed hange smooth.
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Figure 2: Speed behavior v(t) of ar in downtown
3.2 Direction controlThe priniple for diretion ontrol is similar to the speedontrol priniple. Eah node has an initial diretion '(t = 0)whih is hosen from a uniform distributionp (') = 12� ; 0 � ' < 2�: (6)A stohasti proess deides when to hange diretion.A node moves in a straight line until a diretion hangeevent ours. This happens with a probability p'� � 1eah time step. With ontinuous time, the time between twodiretion hanges follows an exponential distribution with amean time between two diretion hanges of �'� = �tp'� =1p'� s:One a node is intended to hange its diretion, a new tar-get diretion '� is hosen from (6). The diretion di�erenebetween the new target diretion hosen at time t�, '�(t�),and the old diretion '(t�) is j�'(t�)j = j'�(t�)� '(t�)j.We set�'(t�) = 8>>>>><>>>>>: '�(t�)� '(t�) + 2�for � 2� < '�(t�)� '(t�) � ��'�(t�)� '(t�)for � � < '�(t�)� '(t�) � �'�(t�)� '(t�)� 2�for � < '�(t�)� '(t�) � 2�and get the orret sign for the diretion hange (left or rightturn). Note that �'(t�) is uniformly distributed between�� and �. Next, �'(t�) is divided into several inrementaldiretion hanges �'(t). In eah time step during a urve,a node should turn an angle of �'(t). To do so, we set a\urve time" �t, whih an be taken, e.g., from a uniformdistribution on the interval [2 s; 10 s℄. We set the inrementaldiretion hange to �'(t)�t = �'(t�)�t :During the urve, we have'(t) = '(t��t) + �'(t) (7)until '(t) reahes the new target diretion '�(t�) or until a
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3.3 Correlation between direction change and

speed changeThe random proesses for speed hange and diretionhange, as desribed above, are running ompletely indepen-dent from eah other. This fat makes the implementationsimple but is in general not true in reality. In this setion,we propose two additional (optional) priniples that modeltypial movement patterns of ars and biyles in downtown.Both movement patterns orrelate the diretion hange withthe speed hange.
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3.3.1 “Stop–turn–and–go” behaviorUsing the onept of preferred speeds, we an easily model\stop{and{go" behavior. We set vpref0 = 0 and assign arather high probability pvpref0 to this value. A speed hangeevent will therefore frequently result in a target speed v� = 0(stop event).In reality, a stop of a ar or biyle is often followed by adiretion hange (e.g., at rossings with traÆ lights). Weinlude this behavior in our mobility model: Whenever anode omes to a stop (v(t) = 0), we hoose a target diretion'�. Here, we do not use a uniformly distributed diretionhange as in Setion 3.2, but hoose �' fromp(�') = 8<: p'�2 for �' = ��21� p'� for �' = 00 else :The term p'� is the probability that the node will turn.Its value must be higher than that in the usual diretionontrol with v 6= 0 (Setion 3.2). Moreover, the urve radiusr should be smaller, sine urves at rossings are usuallysharper. When the node hooses a new target speed v� 6= 0it will move around this urve.
3.3.2 Slowdown of turning nodesWe also propose to model the slowdown of vehiles beforethey are turning. This is reasonable for modeling ars andbiyles beause of physial laws (vehiles an drive onlyup to a ertain maximum speed around a urve with givenradius) and beause of human driving behavior. It is notour intension here to model a orret quantitative behavior,but we would like to enhane our model with the priniplethat nodes typially slow down when a urve is ahead.In a simulation, we proeed as follows (see Fig. 5): Attime t� a node deides that it will hange its diretion. Anew target diretion '� and a urve time �t are hosen asdesribed in Setion 3.2.From the urve radius r we derive a maximum value forthe urve speed v;max, whih should be a fration of the the-oretially maximum possible speed, given by v = p�sgr ;where g = 9:81 m/s2 and �s is the oeÆient of stati fri-tion (e.g. �s = 0:4 : : : 0:7 for ars). If v(t�) > v;max, wefore the aeleration of the node to a negative value, i.e.,a(t�) is taken from (4). The diretion hange is resheduled



to t�� = t� + �tslow, with �tslow = v(t�)�v;maxa(t�) . If noother diretion hange or speed hange event ours in theslow down period ℄t�; t��℄ it is guaranteed that the node willhave a speed v(t��) = v;max when it enters the urve. Weset a(t��) = 0 suh that the node will drive with onstantspeed v(t) = v and onstant diretion hange �'(t) aroundthe urve if no other diretion hange or speed hange eventours.
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Figure 5: Modeling the slowdown of vehiles beforeturning
4. USER DISTRIBUTION AND

BORDER BEHAVIORIn simulations with a random diretion model, nodes areallowed to leave the simulation area (see Fig. 4). Whenevera node is subjet to leave, we need a \border rule" thatde�nes what to do with this node. Suh a rule is also re-quired for our model. The following basi priniples an befound in the literature: The node subjet to leave an be(a) bouned bak to the system area aording to a ertainrule, (b) \deleted" and a new node is initialized aording tothe node initialization distribution, or () wrapped aroundto the other side of the simulation plane.All methods guarantee that the number of nodes in thesystem area remains onstant, whih is often required insimulations. In the �rst ase, a new angle (and possibly anew speed) must be hosen, e.g. as explained in Setion 2(Haas and Perlman). In the seond ase, we delete the leav-ing node and plae a new node on a randomly hosen pointin the system area. In the last ase, a leaving node entersthe system area on the opposite side, while keeping its ur-rent speed and diretion parameters. This approah modelsthe system area as a torus. In the ases (a) and () we mayoptionally assign a di�erent identi�er, address, et. to thenode. This might be of interest if the algorithm subjetto evaluation is based on the these values (e.g., in leadereletion algorithms).These models seem to be quite easy to use. However, wemust be areful about the e�et of the border behavior onthe resulting spatial node distribution. Let us give an ex-ample: At the beginning of a simulation, we plae a givennumber of nodes on the system area using a uniform distri-bution in both dimensions (Most studies that use a randommobility model do so.). We use border behavior (b), i.e., we\delete" eah node that leaves the system area and gener-ate a new node. Where should we plae the new node onthe system area? What is the resulting user distribution in

the steady state of the simulation? Using again a uniformdistribution for random plaement of leaving nodes, resultsin a higher node density in the middle of the area and alower density at the area edges. Fig. 6 shows a histogramobtained through simulation on a 1000 � 1000 m2 area us-ing a basi random diretion model. We divided the entirearea into 20�20 subareas and ounted the number of nodesin this subarea every time step. The sum of all subareasis 100%. In the middle of the area more than 0.4% of thenodes reside, whereas there are less than 0.1 at the borders.
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Figure 6: Histogram: Spatial node distributionA similar e�et ours is we use the random waypointmodel (Setion 2) on a limited two{dimensional area. Thisis done in many evaluations of ad ho networking protools(see e.g. [38, 7, 18℄). The desribed e�et also ours herebeause the random waypoint model does not use an angle' for diretion ontrol but hooses a destination point inthe system area. Nodes in the middle of the area have auniformly distributed angle, but nodes at the border aremore likely to move bak to the middle. The resulting spatialnode distribution is not uniformly distributed but looks likein Fig. 6.When evaluating algorithms or protools is suh a se-nario, this e�et may lead to invalid results and wrong on-lusions. For example, if we analyze dynami hannel allo-ation algorithms in a ellular environment, we will (in themean) always need more hannels in the middle of the simu-lation plane, sine here the user density is the highest. Fur-thermore, the inhomogeneous user distribution makes thegeneration of \hot spots" at the beginning of the simula-tion useless. We an overome these problems by using atorus{like system area (wrap{around border behavior).
5. CONCLUSIONSBased on a lassi�ation of mobility models used in wire-less network researh, we presented an enhaned randommobility model, whih belongs to the lass of random dire-tion models.We use two stohasti priniples for diretion and speedontrol in whih the new values for speed and diretion areorrelated to previous values. This feature makes the move-ment of nodes more smooth than simple approahes to ran-dom movement, and this is the reason why we denote our



model as Smooth RandomMobility model. While the move-ment behavior of nodes beomes more realisti, the imple-mentation and omputation e�ort is still low.Our onept for speed ontrol is based on so{alled targetspeeds. A speed hange event ours aording to a Poissonproess. Upon this event, a new target speed is hosen froma general speed distribution. By de�ning a set of preferredspeeds, we are able to model typial speed patterns suh aslong stop or long travel periods as well as \stop and go be-havior." The time between two diretion hanges is modeledin a similar way.Furthermore, we proposed two extensions that model typ-ial mobility patterns of vehiles in whih speed and dire-tion hange are not independent from eah other. Whereasin the �rst extension a speed hange event (a stop event)triggers a diretion hange event, in the seond extension, adiretion hange event triggers a speed hange (slowdown)event.We see a partiular appliation area of our model in simu-lations of ad ho networks and miro{ellular environments,in whih the movement of individual mobile stations is of in-terest and is not bounded by the senario. In wireless ad horesearh, the enhaned model an be applied to investigatethe performane of routing protools, power management,lustering algorithms, and alike.Our priniples an easily be employed in existing sim-ulation tools, and they an also be applied to other ad-vaned mobility models, e.g., to the group mobility modelpresented in [20℄. In fat, our model represents a ompro-mise between simple models, suh a basi random waypointmodel, and very realisti mobility models, suh as modelsfrom transportation researh or movement traes. The lat-ter are usually very ompliated to implement and/or needa huge database (in partiular for long simulations).Last but not least, we disussed the impat of the borderbehavior on the spaial node distribution and pointed outa pitfall: Applying a random diretion model or a randomwaypoint model on a limited simulation plane an reatea non{uniform node distribution. This might lead to un-wanted e�ets in studies of networking algorithms (e.g. inevaluation of radio resoure alloation algorithms).
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