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ABSTRACT
In this paper, we present an approach to provide Quality of Service
(QoS) for networked mobile gaming. In order to examine the QoS
requirements of mobile games, we ported a simple real-time game
called GAV (GPL Arcade Volleyball) to a PDA and performed se-
veral traffic measurements over both GPRS and UMTS networks.
We show that due to high end-to-end delay and delay jitter, real-
time games are not supported by GPRS. While UMTS improves
both delay and jitter, it still does not match the requirements of
real-time games. The key reason for this problem is that overprovi-
sioning, as it is used to allow real-time games in the Internet, is very
expensive in mobile networks. At the same time, QoS classes for
mobile networks are not tailored to real-time games. In order to re-
duce delay and jitter for this application class, while still accounting
for the very bursty nature of real-time game flows, we propose to
use a combination of statistical multiplexing and QoS guarantees.
The general idea is to aggregate multiple game flows and perform
reservation for that aggregate. As a theoretical background, we use
a queuing system based model. Through simulation of a sample
network with the traffic data generated by GAV, we validate our as-
sumptions and demonstrate the performance and characteristics of
our approach.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; G.3 [Probability and Statistics]: Queueing theory

General Terms
Algorithms, Measurement, Performance
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Mobile Gaming, QoS-Support, Resource Reservation, Admission
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1. INTRODUCTION
With the introduction of 3G wireless systems like UMTS, many

mobile real-time applications will become available. Besides audio
and video applications, market researchers expect high revenues
from online games played over wireless infrastructures. However,
real-time applications require very low end-to-end delays, so that
QoS aspects have to be taken into account. Considering the most
popular networked real-time games in the (wired) Internet, three
main game genres can be classified: First Person Shooter (FPS),
Real Time Strategy (RTS), and Massive Multiplayer Online Ro-
le Playing Games (MMORPG). Games of the same genre require
quite similar delay bounds, e.g. 150 ms for FPS games like Halflife
[8] and 300 ms for RTS games such as Age of Empire [24].

To understand the QoS requirements of mobile real-time games,
we ported a very simple real-time multiplayer networked game cal-
led GPL Arcade Volleyball (GAV) [23] to a PDA. We then used
this game to test the suitability of today’s GPRS networks. As we
expected, playing GAV was impossible due to high end-to-end de-
lay and delay variations. Even though GPRS specifies some QoS
aspects [1], network providers do not regularly implement them,
resulting in poor performance for networked games. In a second
set of experiments, we investigated playing GAV over an UMTS
network which has just been launched in Germany. The results in-
dicate a significant improvement over GPRS but also shows that
even UMTS is not able to handle real-time games. While UMTS
is currently planned to support two real-time QoS classes [2], none
of them covers the QoS requirements and the very bursty nature of
networked game traffic very well. Overprovisioning – in order to
avoid having to deal with QoS aspects – on the other hand is qui-
te expensive in mobile environments and currently not done on a
sufficient scale to make networked games playable.

Thus, we used GAV to characterize this traffic type in more de-
tail, performing measurements regarding bandwidth usage, server
response times, and user behavior. Like other real-time games, GAV
requires low bandwidth compared to audio and video applications
while the burstiness of data traffic sent by clients is very high. As
a maximum acceptable end-to-end delay we evaluated a value of
between 100 ms and 200 ms. Meeting this delay bound in a mo-
bile network without resorting to massive overprovisioning does
require some form of resource reservation. However, because of
the traffic burstiness, the low bandwidth usage, and the tight delay
requirements resource reservation on a per session basis, as speci-
fied for UMTS for real-time traffic, would cause a significant over-
head resulting in inefficient resource utilization and high reserva-
tion costs. We therefore propose to introduce a new QoS class for
UMTS which is specifically tailored to the needs of mobile games.



(a) GAV with two players (b) GAV with four players

Figure 1: GAV screenshots

For this purpose, we developed a model that aggregates multiple
game data flows. Considering the QoS requirements of real-time
games, our model is based on queuing systems and exploits stati-
stical multiplexing gains. The actual reservation or priorization is
performed for the aggregate of the game flows by traditional means
such as Differentiated Services (DiffServ) [3, 18], Resource Re-
SerVation Protocol (RSVP) [17], or Multiprotocol Label Switching
(MPLS) [19]. We validate the model by means of simulation on the
basis of real game traffic produced by GAV.

The remainder of this paper is structured as follows: In the next
section we briefly outline related work. We then describe the func-
tionality and architecture of GAV in Section 3. Section 4 presents
delay measurements over GPRS and UMTS. Section 5 contains the
results from detailed measurements of GAV data traffic and user
behavior. The model for aggregation and reservation is presented
in Section 6. Also, this section contains the simulation of our ap-
proach in a virtual network and demonstrates its performance and
characteristics on the basis of real data. We conclude this paper in
Section 7 and give an outlook to future work.

2. RELATED WORK
Mobile Gaming is a quite new field of research, as games with

real-time demand are currently not well supported by network pro-
viders. One of the key reasons is the absence of suitable QoS in
the underlying network in combination with a very high cost for
overprovisioning. Although the current specification of UMTS [2]
proposes QoS classes and support for real-time applications it still
remains to be seen when UMTS will be capable to meet the very
tight delay requirements of real-time games.

Fitzek et al. therefore propose an architecture consisting of a
combination of UTMS and Wireless LAN [6]. The architecture pro-
vides multiplayer real-time games among multiple wireless users
by using Wireless LAN for the actual game traffic. UMTS is only
used for authentication, billing, and game score distribution.

Another architecture for mobile games is presented in [20]. The
authors employ both Bluetooth and 433 MHz RF modules to sup-
port ad-hoc multiplayer games. Because of the short transmissi-
on range of Bluetooth (only 10 meters for Class 3 devices), the
433 MHz RF modules are used to enable ad-hoc gaming over lon-
ger distances. However, there is no explicit resource reservation and
due to large handover times, this architecture is not suited for real-
time games.

Deploying mobile games enables a wide area of novel game con-
cepts. For example, Cheok et al. present with Human Pacman a mo-
bile game as a combination of real and virtual world [5]. Pacmen

and Ghosts are human players, which can move in a wide outdoor
physical area. Virtual cookies and Bluetooth embedded physical
tangible objects offer a novel game experience. Game information
is distributed by a central server to all humans over Wireless LAN.
The movements and the actual position of a human, which is eit-
her a Pacman or a Ghost, are obtained via GPS (Global Positioning
System) and sent to the server. Each player uses a head mounted
display to see the physical real world combined with virtual objects
(e.g., cookies) and game information. A quite similar approach is
used in [14]. Mitchell et al. developed a mobile game called Real
Tournament, which is (like Human Pacman) an augmented reality
multiplayer real-time game.

Numerous approaches exist that target at providing network QoS
support and resource reservation. Typically QoS uses admission
control to admit or to reject a new traffic flow to meet the QoS
requirements of all active connections. Knightly and Shroff give
a basic overview of admission control in [11], and evaluate diffe-
rent algorithms. In a first step, admission control algorithms can be
divided in deterministic and statistical services. In contrast to deter-
ministic services that often consider the worst case, statistical ser-
vices attempt to achieve statistical gains resulting in more efficient
resource utilization. Therefore, many admission control algorithm
exploit the statistical multiplexing effects (economies of scale).

In a second step, admission control algorithms differ in whether
they use measurement-based or predefined parameters. A measure-
ment-based algorithm is presented in [15], which exploits statistical
multiplexing gains and uses “maximal rate envelops” of aggrega-
te traffic flows to estimate future traffic of applications to support
required QoS demands. An example for a predefined algorithm is
given in [16]. It is based on leaky buckets, smoothers at the networ-
ked edges, and bufferless statistical multiplexing within the net-
work. Reisslein et al. have shown that their algorithm can support
significantly more connections than deterministic services. Howe-
ver, a drawback of that algorithm is the insufficient consideration
of arrival processes, since only leaky bucket parameters specify-
ing peak rate, average rate, and burst length are used. Especially
for highly bursty traffic statistical information about arrival distri-
butions should be taken into account to improve the exploitation
of statistical gains. Furthermore, assuming bufferless data transfer
through the network results in worst case behavior and wastes re-
source utilization potential.

Admission control algorithms that handle more detailed informa-
tion are quite complex, resulting in high computational complexity.
The aim of our work is to find an algorithm well suited to the class
of mobile real-time games without resorting to an approach that is
computationally complex.
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Figure 2: GPRS measurement setup

3. GPL ARCADE VOLLEYBALL
As an example of mobile games, we use GPL (General Public

License) Arcade Volleyball (GAV), a multiplayer real-time volley-
ball game, which is available as open-source on Sourceforge [23].
To use GAV as a mobile game and perform several traffic mea-
surements, we ported it to a PDA, which reflects a more realistic
environment for mobile games than a notebook or a PC.

GAV is implemented in C++ and based on the Simple Direct-
Media Layer (SDL) [22], which provides among other things mul-
timedia and network support. Thus, porting GAV on a PDA with
PocketPC 2002/2003 could be done with Microsoft eMbedded Vi-
sual C++. All game information is managed by a server and dis-
tributed to clients in states periodically, depending on a frames per
second (FPS) rate. A game state contains the positions of all cli-
ents, the position of the ball, and the game score. Each client is as-
sociated with a single player and can generate three types of events
identifying the direction and movement of the player: left, right,
and jump. However, the events are not displayed until the client re-
ceives a new game state from the server. If a player moves by pres-
sing the appropriate key, the client will create an event and send it
to the server. The server receives the event and computes the next
game state with a local model. Finally, the new state is sent back
to all clients. The packet sizes of states and events are constant and
equal to 59 resp. 44 bytes, including the UDP header.

GAV supports up to four players in two teams, this includes both
human and artificial computer players. In case of computer players,
the control of these players is performed by the GAV server. Figu-
re 1 gives an impression of the game showing two screenshots with
two and four players of the ported PDA version.

4. GPRS AND UMTS MEASUREMENTS
In a first step, we use GAV to investigate the suitability of the

General Packet Radio Service (GPRS) for mobile real-time games.
Our main aim is to determine the game experience of a single GPRS
user and the extent to which GPRS currently supports real-time
data.

The GPRS measurements are based on a two player GAV game
session and the network setup visualized in Figure 2. We use a HP
iPAQ h5555 with a GPRS wireless jacket, running Pocket PC 2002
and the GAV client. The second client is located on the GAV server
and is controlled by an artificial computer player.

Since our network provider uses Network Address Translation
(NAT), we had to use TCP instead of UDP. This changed the da-
ta traffic of the original UDP-based GAV significantly. Of 1175
packets sent by a client, only 207 packets corresponds to game
events, which is an usage of around 17.6%. The rest is needed
for acknowledgements, whereas on the downlink most of the cli-
ent packets could be acknowledged by piggy-backing, so that just
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Figure 3: Server response time (RTT) over GPRS
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Figure 4: Server response time (RTT) over UMTS

1.7% explicit acknowledgements were required. This behavior is
caused by the sporadic sending of events by clients and the peri-
odic sending of game states by the server. Using TCP also increases
the delay due to the packet processing in particular within the iPAQ.
Measurements in a controlled WLAN environment have shown that
the TCP overhead caused an additional delay of about 15 ms, in-
cluding processing both by the sender and the receiver of a TCP
segment.

The server response time over GPRS measured as round-trip ti-
me (RTT) between one client and server is depicted in Figure 3. In
both GPRS and UMTS measurements, the server sends on average
20 game states per second. The mean response time is about 1 se-
cond, with a range of variation between around 650 and 1700 ms.
As can be seen, not only the response time, but also the jitter as
the difference between two successive response times is very high.
Further investigations have shown that most of the delay is caused
by the GPRS access network. On average, the GPRS access net-
work and backbone introduce a delay of about 950 ms, i.e., on the
path between client and GGSN.

Similar results are presented in [4], where the majority of measu-
rements were performed over Vodafone UK. The mean RTT was in
many cases above 1 sec, with different behavior for up- and down-
link. The uplink delay varied from 200 to 900 ms and the downlink
delay from 200 to 1500 ms. The 95-percentile delay on the uplink
was around 1 second and around 2.5 second on the downlink, re-
spectively.

GPRS measurements from Finland led to a mean RTT of about
700 ms varying from 500 to 1100 ms [7]. Compared to previous
measurements [12] this was an improvement of about 200 ms. Du-
ring a stationary connection the RTT was quite stable. However, if
an user changed his cell, the RTT varied heavily, and sometimes
the connection was cancelled.

Because of these high delays, playing GAV over GPRS is not
possible. Since measurements in other countries are quite similar
to our results, this is not restricted to our local network provider.
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Figure 5: Transfer rate of client and ser-
ver
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Figure 6: Probability distribution functi-
on (PDF) of client and server interarrival
time
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Figure 7: Cumulative distribution functi-
on (CDF) of client and server interarrival
time

Although the GPRS specification contains 4 delay classes [1], QoS
is currently not provided by network providers, so that all data is
sent with best-effort. Even if GPRS QoS were implemented, the
delay classes specified for GPRS support only non real-time appli-
cations and even the best class would not be sufficient to meet our
requirements.

In a second set of experiments, we investigated the use of UMTS
for networked mobile games. The UTMS service used for our mea-
surements was just recently launched in Germany and is current-
ly available for data communication only. It is a pure best-effort
service and does not provide any QoS guarantees. The setup of
the experiments was the same as for GPRS. The results of the de-
lay measurements over UMTS are depicted in Figure 4. The mean
RTT is around 285 ms and varies between 236 and 386. As 90-
percentile delay we get a value of around 230 ms. Although the
delay over UMTS is much better than the one over GPRS, the tight
delay requirements of all real-time games cannot yet be met even
by UMTS.

Using an artificial delay, we evaluated the maximum acceptable
delay for GAV, which was between 100 ms and 200 ms. This is
similar to Schaefer et al. [21], who specify a maximum delay of
139 ms for mobile real-time games. Neither GPRS nor UMTS are
currently able to meet these delay bounds.

5. TRAFFIC MEASUREMENTS OF GAV
To further analyze the traffic characteristics of GAV in more de-

tail, we performed measurements between client and server in an
IEEE 802.11b Wireless LAN in ad-hoc mode with 11 Mbps. We
used two PDAs and a 650 MHz Sony Vaio notebook, running Mi-
crosoft Windows XP. Both PDAs were Toshiba Pocket PCs e740
with a 400 MHz XScale processor and PocketPC 2002 operating
system. The GAV client was started on each PDA and the GAV ser-
ver on the notebook. All data packets were captured with Ethereal

on the network interface of the notebook. During a Tournament, we
created trace files for a total of 25 game sessions consisting of two
clients playing against each other. As a result, we got 50 data flows
for each up- and downlink, which were further analyzed.

5.1 Measurements of a Single Game Session
The measurements in this section are an example of one game

session but represent typical characteristics of client and server traf-
fic. As one can see in Figure 5, the transfer rate of a client is very
bursty while it is relatively smooth for the server. The mean trans-
fer rate is around 60 bytes/sec (client) and around 1.17 kbytes/sec
(server) with a variation coefficient of about 0.95 resp. 0.01. Com-
pared to other real-time applications like video, these rates are very
low. However, the transfer rate is extremely bursty for the client: it
varies from 0 to 264 bytes/sec. Note that the packet sizes of events
and states are constant, so the transfer rate measured as packets/sec
would have the same shape as depicted in Figure 5, with a mean of
around 1.4 packets/sec resp. 20 packets/sec.

Figure 6 shows the probability distribution function and Figure 7
the cumulative distribution function of the packet interarrival times
(distance between two packets in time) of client and server with a
mean of around 0.7 sec (client) and 50 ms (server). The variation
coefficient is about 1.7 resp. 0.04. The interarrival times of the cli-
ent vary from 90 ms to 15 sec. This is caused by active and inactive
phases of clients: events were mostly sent in active phases when
the ball is on the player’s side. Otherwise, the client is inactive and
is waiting for the other player to return the ball. Regarding Figu-
re 5(a), the ratio between active and inactive phases is around 1:2.
The interarrival times of the server are almost constant and vary
from only 48 ms to at most 60 ms but are very often close to the
mean. Reasons might be the timer management and in some cases
the server load.
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Figure 9: Variation coefficient of aggregated client and server data flows

The server response time (RTT) is depicted in Figure 8. The
mean response time is around 74 ms and varies from 40 ms to
103 ms because of periodical sending of states by the server. Ho-
wever, the network latency was under 10 ms, so the most part of
the delay is caused by the server itself.

5.2 Aggregating Data Flows
As we have seen, GAV requires only a low bandwidth, but cli-

ent data traffic is very bursty, so that constant-bit-rate resource re-
servation for a single game session might be inefficient and quite
expensive. Reducing reservation costs and smoothing single bursts
could be possible, if we consider data traffic of more than one ga-
me session together and aggregate multiple data flows of different
players. The smoother the aggregated data flow is, the better will
be the resource usage. To measure how smooth a data flow is, we
use the coefficient of variation, which is the ratio between standard
deviation and the average value.

Figure 9 shows the variation coefficient with respect to the num-
ber of aggregated data flows. The variation coefficient decreases
with 10 aggregated flows by around 67% for the client and by
around 45% for the server data flows. If all 50 flows are aggregated
the decrease is around 85% resp. 65%. Although each server data
flow is already very smooth, the improvement is still considerable.
Regarding the resource reservation, this shows that the aggrega-
tion of only a few data flows would already lead to a much more
efficient bandwidth usage. This is important, since for a mobile net-
work most likely only a few game sessions can be aggregated per
cell.

6. RESOURCE RESERVATION
Since the communication required for networked games such as

GAV is very bursty, we propose to make reservations for aggrega-
tes of multiple game sessions. Given such an aggregate we need
to know how much bandwidth should be reserved, taking multiple-
xing gains into account. We assume that the actual allocation of
bandwidth for the aggregate is then performed by existing means
such as RSVP [17].

In order to determine the amount of bandwidth required for an
aggregate, we derive an algorithm for admission control from a
simple queuing model. Taking into account the multiplexing gains,
this algorithm decides by how much an additional flow would in-
crease the bandwidth required for the aggregate and whether it may
be accepted or not. We show that the model is appropriate for traffic
from networked games by means of simulation with real game data
produced by GAV.

6.1 Queuing Model
In order to calculate the required bandwidth, we employ M/G/1

queuing systems [9, 10], which assume a Poisson distributed arri-
val process, general distributed service times, one service unit, an
infinite waiting room, and FIFO as the queuing discipline.

Considering a specific router i, we use for each link j a queuing
system. The appropriate notation is then as follows:

QSij - Queuing system of router i and link j
Ωij - Set of all data flows k arriving at QSij

λk - Mean arrival rate of data flow k
λij - Mean arrival rate at QSij

µij - Mean service rate of QSij

µ̃ij - Mean bandwidth on link j of router i
ρij - Mean system utilization of QSij (ρij = λij/µij ).
Nij - Mean number of packets in QSij

Wij - Mean waiting time of QSij

Nmax
ij - Maximum mean buffer size of QSij

W max
ij - Maximum waiting time of QSij

Bmax
ij - Maximum mean bandwidth on link j of router i

τi - Mean processing time of router i
Size - Mean packet size

Our aim is to compute the optimal mean bandwidth µ̃ij of the
queuing system QSij under following constraints:

(i) 0 < λij < µij ∀i, j ≥ 0,
(ii) E(Wij) ≤W max

ij ∀i, j ≥ 0,
(iii) E(Nij) ≤ Nmax

ij ∀i, j ≥ 0,
(iv) 1/µij > τi ∀i, j ≥ 0,
(v) µ̃ij ≤ Bmax

ij ∀i, j ≥ 0.

The first constraint is also called Condition for Stability and must
be met to make all formulas valid. The second and third cons-
traint bound the mean waiting time (delay) and the mean number
of packets in the system. Although we assume an infinite waiting
room, we would like to control the mean buffer size of the queu-
ing system, even if dropping of packets is not modelled. The fourth
constraint makes sure that the mean service time, consisting of rou-
ting and transfer time, is at least as large as the mean router proces-
sing time (e.g., time for header inspection). Finally, the last cons-
traint enforces a maximum on the mean bandwidth.

Let Bij be the service time of QSij , then µij = 1/E(Bij). Ac-
cording to the Pollaczek-Khintchine formula [9], the mean number
of packets E(Nij) in a M/G/1 queuing system can be computed for
ρij < 1 as

E(Nij) =
ρ2

ij

2(1− ρij)
(VC2(Bij) + 1) + ρij ,



Admission Control Algorithm (data flow k̂):

(1) Compute path ωk̂ of flow k̂ as a set of tuples (i, j),
with router i and link j.

(2) Compute optimal transfer rate for all involved links:
b← true
For each tuple (i, j) ∈ ωk̂ do

Compute aggregated arrival rate λij :
λij ←∑

k∈Ωij
λk + λk̂

Compute optimal service rate µ∗
ij :

ξ ← min{W max
ij , Nmax

ij /λij}
µ∗

ij ← 1+ξλij+
√

1+(ξλij)2+2ξλijVC2(Bij)

2ξ

Compute optimal bandwidth µ̃∗
ij , if 1/µ∗

ij > τi:

µ̃∗
ij ←

(
1

µ∗
ij
− τi

)−1

· Size

If µ̃∗
ij > Bmax

ij or 1/µ∗
ij ≤ τi

then b← false

(3) If the available bandwidth is sufficient, accept the
new connection:

If b = true

then accept data flow k̂:
For each tuple (i, j) ∈ ωk̂ do

Ωij ← Ωij ∪ {k̂}
else reject flow k̂ .

Figure 10: Admission control algorithm

with the variation coefficient VC(Bij) of the service time Bij .
According to Little’s Law [13], constraint (ii) is equivalent to

E(Wij) ≤ Nmax
ij /λij . Hence, we combine constraint (ii) and (iii)

to E(Wij) ≤ min{W max
ij , Nmax

ij /λij}.
For ξ = min{W max

ij , Nmax
ij /λij} we get then

E(Wij) =
E(Nij)

λij

=
1

λij

[
ρ2

ij

2(1− ρij)
(VC2(Bij) + 1) + ρij

]

=
λij/µij(VC2(Bij) + 1) + 2(1− λij/µij)

2(µij − λij)
≤ ξ

⇔ 0 ≤ 2ξµ2
ij − (2ξλij + 2)µij − λij(VC2(Bij)− 1).

Because of constraint (i), only one solution is valid. So this leads to

µij ≥ 1 + ξλij +
√

1 + (ξλij)2 + 2ξλijVC2(Bij)

2ξ
.

Since E(Wij) is concave for ρij < 1, we get under optimization of
the system utilization: µ∗

ij = min{µij}. In addition, due to µ∗
ij >

(1+ ξλij +
√

(ξλij)2)/(2ξ) > (2ξλij)/(2ξ) = λij constraint (i)
is fulfilled.

The optimal bandwidth is then

µ̃∗
ij =

(
1

µ∗
ij

− τi

)−1

· Size.

The physical transport time on a link is obtained by the service
time minus the routing time. The reciprocal of this value is then
the physical transport time measured in packets. Multiplied with
the mean packet size this leads to the optimal bandwidth, which is
required to meet constraints (i) to (iv) under the given assumptions.
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Figure 11: Example simulation network

6.2 Admission Control Algorithm
Based on this result we can now give the algorithm for the ad-

mission control shown in Figure 10. Consider a single data flow
k̂ and a network of routers and links. Each tuple (i, j) represents
the queuing system of router i and link j. First, we compute the
path ωk̂ of data flow k̂ through the network. In a second step, we
consider each involved queuing system on the path and compute
the required bandwidth. Since we assume Poisson distributed ar-
rivals, the aggregation of existing data flows with the new flow
k̂ is also a Poisson process. Therefore, the mean arrival rate is
λij =

∑
k∈Ωij

λk + λk̂. Only if the computed bandwidth for each
link on the path is smaller than or equal to the maximum availa-
ble bandwidth and is also greater than zero, the new game session
is accepted. In this case, data flow k̂ is added to the set of already
accepted flows Ωij .

6.3 Different Service Times
Up to this point, we did not take different packet sizes into ac-

count. Therefore, we compute the service time depending on the
mean packet size and its coefficient of variation.

Let E(Br) be the mean router processing time and E(Bt) the
mean transfer time. With µ = 1/E(B), this leads to E(B) =
E(Br) + E(Bt). For a constant transfer rate µ̃ and with Bt =
Size/µ̃, we get E(Bt) = E(Size)/µ̃ and V (Bt) = V (Size)/µ̃2.

Let Br and Bt be stochastically independent, then we can com-
pute the variance of the service time as follows:

V (B) = V (Br) + V (Bt) = V (Br) +
V (Size)

µ̃2

= V (Br) +
V (Size)

E2(Size)
(E(B)− E(Br))2

= V (Br) + VC2(Size)(E(B)− E(Br))2.

This leads directly to the coefficient of variation:

VC2(B) =
V (B)

E2(B)

= V (Br)µ2+

VC2(Size)(1− 2E(Br)µ + E2(Br)µ2)

= (V (Br) + VC2(Size)E2(Br))µ2−
2VC2(Size)E(Br)µ + VC2(Size).

With

a = 2ξ − λij(V (Br) + VC2(Size)E2(Br)),

b = λij(2VC2(Size)E(Br)− 2ξ)− 2, and
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Figure 12: Simulation results

c = λij(1 + VC2(Size)),

the optimal service rate is then µ∗
ij =

−b+
√

b2−4ac

2a
.

6.4 Simulation
In this section, we investigate the performance and characteri-

stics of the presented admission control algorithm on the basis of
real GAV data flows by means of simulation. We use the simpli-
fied, virtual network shown in Figure 11 with five nodes and four
aggregated data flows, which we have captured as described in Sec-
tion 5. The number of flows which are aggregated is depicted on
each arrowhead referring to the appropriate direction. For the num-
ber of flows on each link we use the notation < uplink > / <
downlink >.

Each node represents a router i with (1 ≤ i ≤ 5). Each tuple
(i, j) with (1 ≤ i, j ≤ 5) then identifies a queuing system in rou-
ter i and link to router j. For all data flows which leave the virtual
network we use the queuing systems (i, 0). The optimal bandwidth
on each link shall be computed according to the admission control
algorithm shown in Figure 10. For the model the following assump-
tions were made:

1. Arrivals on uplinks are Poisson distributed, and arrivals on
downlink are deterministic.

2. Packets are routed according FIFO. The router processing
time is neglected.

3. The available bandwidth and buffer size are infinite.

4. The mean delay shall be at most 25 ms for each link.

The mean packet rate of a client over all game sessions was
around 1.1 packets/sec and around 20 packets/sec for a server. So
we get for n data flows λup = 1.1n and λdown = 20n.

Because of deterministic arrivals of server packets and deter-
ministic service times, the downlink bandwidth would actually be
µ∗

down = λdown. Due to smoothing small variations on the down-
link, we consider the corresponding coefficient of variation and use
µ∗

down = 1.01λdown instead.
We consider up- and downlink separately because of different ar-

rival processes. Hence, the optimal bandwidth on each link is then
µ∗ = µ∗

up + µ∗
down, with µ∗

up computed as described in the pre-
vious section.

The results of the simulation are depicted in Figure 12. Figu-
re 12(a) shows the mean delay on each link, which is always smal-
ler than our delay bound of 25 ms. However, the first time a data
flow enters the network the mean delay is close to 25 ms. After that,
the delay decreases on each link along the routing path. This is cau-
sed by the used queuing system type because each system assumes
Poisson distributed arrivals. Due to deterministic service times, the
appropriate departure process is in general not Poisson distributed
and a little smoother than before.

Figure 12(b) shows the maximum delay and Figure 12(c) the
mean number of packets in the system. In spite of a mean delay of
at most 25 ms, even a maximum delay above 120 ms is possible
(see queuing system (1, 3)). Finally, Figure 12(d) depicts the mean
system utilization. The downlink shows a constant utilization of
99% due to µ∗

down = 1.01λdown . The uplink system utilization is
much smaller, but this is necessary in order to meet the maximum
mean delay.

The low mean delay shows that the assumption about Poisson
distributed arrivals on uplink fits well. However, to meet the ma-
ximum mean delay, the serving rates have to be sometimes much
bigger than the arriving rate. The ratio between both values is ex-
pressed in the system utilization. The more flows are aggregated
and the higher the maximum mean delay can be, the better is the
system utilization.



The effect of statistical multiplexing compared to a constant-bit-
rate reservation is as follows: For example, we consider queuing
system (1, 3) and assume a 95-percentile constant-bit-rate reserva-
tion for each single game session, which is around 8 packets/sec
averaged over all captured sessions. So we get for all sessions a
constant-bit-rate reservation of 320 packets/sec. However, the opti-
mal bandwidth computed for queuing system (1, 3) is only around
73 packets/sec, which is a bandwidth decrease of around 77%.

7. CONCLUSIONS AND OUTLOOK
In this paper, we have presented a lightweight QoS approach to

support networked mobile gaming. Based on a simple real-time
multiplayer game called GAV we analyzed the network traffic of
wireless action games in detail. As we have shown, the required
bandwidth is low, compared to other real-time applications (e.g.,
audio and video). The client traffic is very bursty and the server
traffic quite smooth. This is caused by sporadic events sent by cli-
ents opposed to a periodic transmission of the game states by the
server.

In a first measurement over GPRS, we encountered a high mean
RTT of around 1 sec, which varied heavily and made playing vir-
tually impossible. Measurements over UMTS had shown a delay of
around 285 ms, which is still problematic for most real-time games.
Since those applications need a very small end-to-end delay, QoS
support in the network is essential as long as a substantial overpro-
visioning cannot be provided. However, because of the burstiness
of data traffic and the resulting costs, reserving resources, e.g., for
the maximum transfer rate, is not advisable. Therefore, aggregating
multiple data flows to smooth bursts is reasonable and achieves sta-
tistical multiplexing gains. As we have seen, the coefficient of va-
riation could be decreased by about 85% on the uplink and 65% on
the downlink, if 50 data flows were aggregated. A common reser-
vation for aggregated flows is therefore very reasonable.

Based on a M/G/1 queuing system, we developed an algorithm to
compute the optimal bandwidth, which is required to meet a speci-
fic delay bound. Through simulation, we demonstrated the perfor-
mance and the characteristics of the algorithm based on real data in
a simplified, virtual network.

In future work, we plan to extend the admission control algo-
rithm to account for games with distinct traffic patterns and allow
for per-flow priorities. Furthermore, we would like to provide an
efficient way to perform incremental modifications to the reserved
rate for the aggregate.
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