Parallel Support Vector Machines:
The Cascade SVM

Hans Peter Graf, Eric Cosatto,
Leon Bottou, Igor Durdanovic, Vladimir Vapnik

NEC Laboratories
4 Independence Way, Princeton, NJ 08540
{hpg, cosatto, leonb, igord, viad} @nec-labs.com

Abstract

We describe an algorithm for support vector machi(®@vM) that

can be parallelized efficiently and scales to Marge problems with
hundreds of thousands of training vectors. Instefadnalyzing the
whole training set in one optimization step, thdadare split into

subsets and optimized separately with multiple SVNMise partial

results are combined and filtered again in a ‘Cdstaf SVMs, until

the global optimum is reached. The Cascade SVNbeaspread over
multiple processors with minimal communication dwead and
requires far less memory, since the kernel matrdcesnuch smaller
than for a regular SVM. Convergence to the globptinum is

guaranteed with multiple passes through the Casdadealready a
single pass provides good generalization. A sipglss is 5x — 10x
faster than a regular SVM for problems of 100,0@&&ters when
implemented on a single processor. Parallel implgatéons on a
cluster of 16 processors were tested with over lliani vectors

(2-class problems), converging in a day or two,levhiregular SVM

never converged in over a week.

1 Introduction

Support Vector Machines [1] are powerful classifica and regression tools, but
their compute and storage requirements increaddlyawith the number of training
vectors, putting many problems of practical intéi@st of their reach. The core of an
SVM is a quadratic programming problem (QP), sefiagasupport vectors from the
rest of the training data. General-purpose QP ssliend to scale with the cube of the
number of training vectors (O). Specialized algorithms, typically based on
gradient descent methods, achieve impressive gaimdficiency, but still become
impractically slow for problem sizes on the ordé€d60,000 training vectors (2-class
problems).

One approach for accelerating the QP is basedlumiding’ [2][3][4], where subsets
of the training data are optimized iteratively, ilnhe global optimum is reached.
‘Sequential Minimal Optimization’ (SMO) [5], whicheduces the chunk size to 2
vectors, is the most popular of these algorithmsmiBating non-support vectors



early during the optimization process is anotheatsgy that provides substantial
savings in computation. Efficient SVM implementatsoincorporate steps known as
‘shrinking’ for identifying non-support vectors éaif4][6][7]. In combination with
caching of the kernel data, such techniques retdlveeeomputation requirements by
orders of magnitude. Another approach, named ‘diggsoptimizes subsets closer to
completion before adding new data [8], saving cdesable amounts of storage.

Improving compute-speed through parallelizationdifficult due to dependencies
between the computation steps. Parallelization® Hmen proposed by splitting the
problem into smaller subsets and training a networlassign samples to different
subsets [9]. Variations of the standard SVM aldurit such as the Proximal SVM
have been developed that are better suited forllphzation [10], but how widely
they are applicable, in particular to high-dimemsibproblems, remains to be seen. A
parallelization scheme was proposed where the kenadrix is approximated by a
block-diagonal [11]. A technique calledariable projection method [12] looks
promising for improving the parallelization of te@timization loop.

In order to break through the limits of today’s S\iMplementations we developed a
distributed architecture, where smaller optimizaticare solved independently and
can be spread over multiple processors, yet therebke is guaranteed to converge to
the globally optimal solution.

2 The Cascade SVM

As mentioned above, eliminating non-support vecteasly from the optimization

proved to be an effective strategy for accelerat8\gMs. Using this concept we
developed a filtering process that can be parakeliefficiently. After evaluating

multiple techniques, such as projections onto sabsp (in feature space) or
clustering techniques, we opted to use SVMs aar§ltThis makes it straightforward
to drive partial solutions towards the global opiim while alternative techniques
may optimize criteria that are not directly relev&or finding the global solution.
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Figure 1. Schematic of a binary Cascade architecture. Tha die split into
subsets and each one is evaluated individuallysémport vectors in the first
layer. The results are combined two-by-two and mxdtas training sets for the
next layer. The resulting support vectors are teébve global convergence by
feeding the result of the last layer into the fitayer, together with the
non-support vectors. TD: Training data, SVi: Sugpeectors produced by
optimization i.

We initialize the problem with a number of indepentd smaller optimizations and
combine the partial results in later stages ineadrichical fashion, as shown in Figure
1. Splitting the data and combining the results bardone in many different ways.



Figure 1 merely represents one possible architectubinary Cascade that proved to
be efficient in many tests. It is guaranteed toaautbe the optimization function in
every layer, requires only modest communicationrfrone layer to the next, and
converges to a good solution quickly.

In the architecture of Figure 1 sets of supportteecfrom two SVMs are combined
and the optimization proceeds by finding the suppectors in each of the combined
subsets. This continues until only one set of viectleft. Often a single pass through
this Cascade produces satisfactory accuracy, btheifglobal optimum has to be
reached, the result of the last layer is fed batd the first layer. Each of the SVMs in
the first layer receives all the support vectordhaf last layer as inputs and tests its
fraction of the input vectors, if any of them hate be incorporated into the
optimization. If this is not the case for all SVM§the input layer, the Cascade has
converged to the global optimum, otherwise it pemtewith another pass through the
network.

In this architecture a single SVM never has to deigh the whole training set. If the
filters in the first few layers are efficient in ®acting the support vectors then the
largest optimization, the one of the last layers bmhandle only a few more vectors
than the number of actual support vectors. Theeefor problems where the support
vectors are a small subset of the training vectarkich is usually the case - each of
the sub-problems is much smaller than the wholdlera (compare section 4).

2.1 Notation (2-class, maximum margin)

We discuss here the 2-class classification probkesiyed in dual formulation. The
Cascade does not depend on details of the optimizatlgorithm and alternative
formulations or regression algorithms map equalbilvento this architecture. The
2-class problem is the most difficult one to paxhile because there is no natural split
into sub-problems. Multi-class problems can alwdys separated into 2-class
problems.

Let us consider a set dftraining examplesx; yi); where x O R® represents a
d-dimensional pattern angl =+1 the class labeK(x;,x) is the matrix of kernel values

between patterns and; the Lagrange coefficients to be determined by the
optimization. The SVM solution for this problem cists in maximizing the
following quadratic optimization function (dual foulation):

| | |
maxW(a) = -1/20) > aa;y,y,;K(x, X)) +>. a; (1)
i | i
Subjectto: 0<a, <C, Oi  and Zaiyi =0
The gradienG =[0W(a) of W with respeclt ta is then:
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2.2 Formal proof of convergence

The main issue is whether a Cascade architectutaetually converge to the global
optimum. The following theorems show that this le tcase for a wide range of
conditions. LetS denote a subset of the training §etW(S) is the optimal objective

function overS (equation 1), and leBv(S) ] Sbe the subset of S for which the

optimal a are non-zero (support vectors of S). It is obvithe:



0SO Q, W(S)=W(S/(S))<W(Q) 3)

Let us consider a family F of sets of training exdas for which we can independently
compute the SVM solution. The s&t OF that achieves the greatest W(S) will be
called the best set in family F. We will write W(&$ a shorthand for W(S*), that is:

W(F)= maxw(s)sW(Q) (4)

We are interested in defining a sequence of famifesuch that W(J converges to
the optimum. Two results are relevant for provimgneergence.

Theorem 1: Let us consider two families F and G of subsetfoflf a setTOG
contains the support vectors of the bestSetlF , thenW (G) =W (F).

Proof: Since Sv(S;)OT , we have W(S;)=W(S«(S; ))<W(T). Therefore,
W(F)= W(SF )<SW(T)<SW(G) (|

Theorem 2: Let us consider two families F and G of subsetQ oAssume that every
set TG contains the support vectors of the bestS*gDF .

If W(G)=W(F) = W(S;)=W U T).
Proof: Theorem 1 implies thA(G) =W (F). Consider a vectom* solution of the
SVM problem restricted to the support vectcﬁqs;). For all TOG, we have
W(T)=W(Sv(S;)) because S«(S;) is a subset of T. We also have
W(T)<W(G)=W(F)=W(S; ) =W(S/(S;)). Therefore W(T)=W(S«(S;)) . This
implies thata* is also a solution of the SVM on set T. Thereforesatisfies all the

KKT conditions corresponding to all seTS1G . This implies that* also satisfies the
KKT conditions for the union of all sets in G. O

Definition 1. A Cascade is a sequendg)(of families of subsets d® satisfying:
i) For all t > 1, a sefl LJF, contains the support vectors of the best sé.in
ii) For all t, there is a k > t such that:
* All sets TOF, contain the support vectors of the best séfin
e The union of all sets i is equal taQ.

Theorem 3: A Cascade(F;) converges to the SVM solution o in finite
time, namely: ", 06>t W(F,)=W(Q)
Proof: Assumption i) of Definition 1 plus theoreniniply that the sequence Wy is

monotonically increasing. Since this sequence isnided by WQ), it converges to
some valuey” <w(Q). The sequence W() takes its values in the finite set of the

W(S) for all soq. Therefore there is & > 0 such thatgt>|, w(F,)=w" . This

observation, assertion ii) of definition 1, plugtitem 2 imply that there is a K such
that\/\(Fk):\N(Q). Since WE,) is monotonically increasing/v(pk):w(g) for all t > k.

As stated in theorem 3, a layered Cascade architetd guaranteed to converge to the
global optimum if we keep the best set of suppexdters produced in one layer, and
use it in at least one of the subsets in the nayérn. This is the case in the binary
Cascade shown in Figure 1. However, not all layeegt assertioii) of Definition 1.
The union of sets in a layer is not equal to thelhraining set, except in the first
layer. By introducing the feedback loop that entéesresult of the last layer into the



first one, combined with all non-support vectorg fwlfill all assertions of Definition
1. We can test for global convergence in layer Hl @o a fast filtering in the
subsequent layers.

2.3 Interpretation of the SVM filtering process

An intuitive picture of the filtering process isquided in Figure 2. If a subs&[1Q

is chosen randomly from the training set, it wilbst likely not contain all support
vectors ofQ and its support vectors may not be support veaibtBe whole problem.
However, if there is not a serious bias in a subsgpport vectors of S are likely to
contain some support vectors of the whole probl8tated differently, it is plausible
that ‘interior’ points in a subset are going to ‘igerior’ points in the whole set.
Therefore, a non-support vector of a subset hasod ghance of being a non-support
vector of the whole set and we can eliminate infriurther analysis.
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Figure 2: A toy problem illustrating the filtering proces§.wo disjoint subsets
are selected from the training data and each afhtilseoptimized individually (left,
center; the data selected for the optimizationgleesolid elements). The support
vectors in each of the subsets are marked withdsarihey are combined for the
final optimization (right), resulting in a clasgifition boundary (solid curve) close
to the one for the whole problem (dashed curve).

3 Distributed Optimization

|

Test KKT Test KKT
Extend

i i i; (5)

Figure 3: A Cascade with two input sets;DD,. W;, G and Q are objective
function, gradient, and kernel matrix, respectivelflySVM, (in vector notation);;e
is a vector with all 1. Gradients of SMMand SVM are merged (Extend) as
indicated in (6) and are entered into SYyNsupport vectors of SVpare used to
test Dy, D, for violations of the KKT conditions. Violators asmmbined with the
support vectors for the next iteration.

Section 2 shows that a distributed architecture tlie Cascade indeed converges to the
global solution, but no indication is provided hefficient this approach is. For a good
performance we try to advance the optimization ashras possible in each stage. This
depends on how the data are split initially, howtiphresults are merged and how well an
optimization can start from the partial resultsyided by the previous stage. We focus on
gradient-ascent algorithms here, and discuss hdwandle merging efficiently.



3.1 Merging subsets

For this discussion we look at a Cascade with ayets (Figure 3). When merging the
two results of SVM and SVM, we can initialize the optimization of S\yvto
different starting points. In the general case iferged set starts with the following
optimization function and gradient:

W __1{67{ {Ql leﬂﬁl}{élﬁﬁl} G _{ﬁly {Ql QuHél} (6)
3T Al 5 . — . < . =
2 aZ QZl QZ az eZ aZ az Q21 QZ eZ
We consider two possible initializations:
Case 1, =4, of SYM,;@,=0; @
Case 2:q, =d, of SYM,; @, = d, of SUM,.
Since each of the subsets fulfills the KKT condipeach of these cases represents a
feasible starting point withzai y, =0.

Intuitively one would probably assume that case the preferred one since we start
from a point that is optimal in the two spaces defi by the vectors Land B. If Qy,

is 0 Q. is then also 0 since the kernel matrix is symmegtrihe two spaces are
orthogonal (in feature space) and the sum of the gwelutions is the solution of the
whole problem. Therefore, case 2 is indeed the bresitce for initialization, because
it represents the final solution. If, on the othand, the two subsets are identical, then
an initialization with case 1 is optimal, sinceghiepresents now the solution of the
whole problem. In general, we are probably somewlbatween these two cases and
therefore it is not obvious, which case is best.

While the theorems of section 2 guarantee the cayeree to the global optimum,
they do not provide any indication how fast thisrgpto happen. Empirically we find
that the Cascade converges quickly to the globaitem, as is indicated in the
examples below. All the problems we tested convémg2to 5 passes.

4 Experimental results

We implemented the Cascade architecture for a sipgbcessor as well as for a
cluster of processors and tested it extensively wéveral problems; the largest are:
MNIST!, FOREST, NORE? (all are converted to 2-class problems). One efrtfain
advantages of the Cascade architecture is thagjitires far less memory than a single
SVM, because the size of the kernel matrix scalgh the square of the active set.
This effect is illustrated in Figure 4. It has te bmphasized that both cases, single
SVM and Cascade, use shrinking, but shrinking aldoes not solve the problem of
exorbitant sizes of the kernel matrix.

A good indication of the Cascade’s inherent efficig is obtained by counting the
number of kernel evaluations required for one passshown in Table 1, a 9-layer
Cascade requires only about 30% as many kernelbatiahs as a single SVM for

L MNIST: handwritten digits, d=784 (28x28 pixelsyaining: 60,000; testing: 10,000;
classes: odd digits - even digits; http://yanrulecom/exdb/mnist.

2 FOREST:d=54; class 2 versus rest; training: 560,000; ngst58,100
ftp://ftp.ics.uci.edu/pub/machine-learning-datalstsevtype/covtype.info.

3 NORB: images, d=9,216 ; trainipgl8,600; testing=48,600; monocular; merged class 0
and 1 versus the rest. http://www.cs.nyu.edu/~¥ldata/norb-v1.0



100,000 training vectors. How many kernel evaluagiactually have to be computed
depends on the caching strategy and the memory size

Active set size

6,000

N\
/ \ ‘/one SVM

T ——
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2,000 / J /—/

Number of Iterations
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Figure 4: The size of the active set as a function of thelner of iterations for a
problem with 30,000 training vectors. The upperveurepresents a single SVM,
while the lower one shows the active set size fdrlayer Cascade.

As indicated in Table 1, this parameter, and witthe compute times, are reduced
even more. Therefore, even a simulation on a sipgdeessor can produce a speed-up
of 5x to 10x or more, depending on the availablemoey size. For practical purposes
often a single pass through the Cascade produdisient accuracy (compare Figure
5). This offers a particularly simple way for salgi problems of a size that would
otherwise be out of reach for SVMs.

Number of Layers 1 2 3 4 5 6 7 8 9
K-eval request x10 | 106 | 89| 77] 68| 61] 55 48 47 39
K-eval x10 33 | 12 4.5 3.9]27]24] 1.9 1.6 1.4

Table 1: Number of Kernel evaluations (requests and actith a cache size of
800MB) for different numbers of layers in the Cadedsingle pass). The number
of Kernel evaluations is reduced as the numberadc@de layers increases. Then,
larger amounts of the problems fit in the cachejumng the actual Kernel
computations even more. Problem: FOREST, 100K vscto

Iteration | Training Max #training | # Support
. . W Acc.
time vect. per machine | Vectors
0 21.6h 72,658 54,647 16742  99.08%
1 22.2h 67,876 61,084 17456D  99.14%
2 0.8h 61,217 61,102 174564  99.13%

Table 2: Training times for a large data set with 1,016,%86tors (MNIST was
expanded by warping the handwritten digits). A Gatcwith 5 layers is executed
on a Linux cluster with 16 machines (AMD 1800, dpabcessors, 2GB RAM per
machine). The solution converges in 3 iterationsovén are also the maximum
number of training vectors on one machine and tin@ber of support vectors in
the last stage. W: optimization function; Acc: amy on test set. Kernel: RBF,
gamma=1; C=50.

Table 2 shows how a problem with over one milli@ttors is solved in about a day
(single pass) with a generalization performanceivjent to the fully converged
solution. While the full training set contains ovEM vectors, one processor never
handles more than 73k vectors in the optimizatiod 430k for the convergence test.
The Cascade provides several advantages over B ssWM because it can reduce
compute- as well as storage-requirements. The firaitation is that the last layer
consists of one single optimization and its size &dower limit given by the number
of support vectors. This is why the acceleratiotusgtes at a relatively small number



of layers. Yet this is not a hard limit since agdaoptimization can be distributed over
multiple processors as well, and we are workingfifitient implementations of such
algorithms.

Generalization accuracy
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Figure 5: Speed-up for a parallel implementation of the @dss with 1 to 5

layers (1 to 16 SVMs, each running on a separateqssor), relative to a single
SVM: single pass (left), fully converged (middIINIST, NORB: 3 iterations,
FOREST: 5 iterations). On the right is the geneaibn performance of a 5-layer
Cascade, measured after each iteration. For MMISTNORB, the accuracy after
one pass is the same as after full convergencée(ations). For FOREST, the
accuracy improves from 90.6% after a single pas$lt&% after convergence (5
iterations). Training set sizes: MNIST: 60k, NOREBkK, FOREST: 186k.
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