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ABSTRACT
With concurrent and garbage collected languages like Java and C#
becoming popular, the need for a suitable non-intrusive, efficient,
and concurrent multiprocessor garbage collector has become acute.
We propose a novel mark and sweep on-the-fly algorithm based
on the sliding views mechanism of Levanoni and Petrank. We
have implemented our collector on the Jikes Java Virtual Machine
running on a Netfinity multiprocessor and compared it to the con-
current algorithm and to the stop-the-world collector supplied with
Jikes JVM. The maximum pause time that we measured with our
benchmarks over all runs was 2ms. In all runs, the pause timeswere
smaller than those of the stop-the-world collector by two orders of
magnitude and they were also always shorter than the pauses of
the Jikes concurrent collector. Throughput measurements of the
new garbage collector show that it outperforms the Jikes concur-
rent collector by up to 60%. As expected, the stop-the-worlddoes
better than the on-the-fly collectors with results showing about 10%
difference.

On top of being an effective mark and sweep on-the-fly collector
standing on its own, our collector may also be used as a backupcol-
lector (collecting cyclic data structures) for the Levanoni-Petrank
reference counting collector. These two algorithms perfectly fit
sharing the same allocator, a similar data structure, and a similar
JVM interface.
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1. INTRODUCTION
Modern SMP servers with large heaps provide new challenges

for the design of suitable garbage collectors. Garbage collectors
designed for client machines may lead to inefficient runningtimes
on servers and non-incremental collectors may lead to unacceptable
pauses. Anon-the-fly garbage collectordoes not stop the program
threads to perform the collection. Instead, the collector executes
on a separate thread (or process) concurrently with the program
threads (the mutators). On-the-fly collectors are useful for mul-
tithreaded applications running on multiprocessor servers, where
it is important to fully utilize all processors and provide even re-
sponse time, especially for systems in which stopping the threads
is a costly operation.

In this paper, we present the design and implementation of a new
efficient and non-intrusive garbage collector suitable forJava and
C# running on modern SMP’s and using large heaps. Our algorithm
is a non-moving mark and sweep collector based on a “relaxed”
snapshot of the heap (the sliding views). It is suitable for modern
SMP’s running concurrent programs. It is fully concurrent (on-the-
fly) allowing short pause times. Namely, each thread is stopped
for a short while to cooperate with the collector, but the threads
never need to be stopped at the same time. In particular, unlike
the mostly concurrent collector, our collector will alwaysterminate
without stopping the threads. Finally, our collector may beused
with conservative JVM’s.

Our sliding views mark and sweep collector may also be used as
a backup tracing algorithm for the sliding views reference count-
ing collector of Levanoni and Petrank [22]. Any reference count-
ing collector may need to use a tracing collector to reclaim cyclic
garbage. It is advantageous for the reference counting collector
to have a tracing collector that may use a similar allocator and a
similar JVM interface. The algorithm presented in this paper is
inter-operable with the reference counting sliding view algorithm
of Levanoni-Petrank meaning that they share the same allocator,
and their data structure may be united so that it is possible to de-
cide on a cycle by cycle basis which algorithm should be invoked.
A preliminary version of our mark and sweep algorithm was imple-
mented for that purpose and was used to produce the results ofthe
reference counting collector reported in [22]. However, the trac-
ing sliding view algorithm has not been reported previouslyand its
properties have not yet been investigated. In this paper, wepresent
a mature version of this collector accompanied by an implementa-
tion and measurements.

In the sequel, we assume that the reader is familiar with memory
management standard terminology and algorithms. For a morede-
tailed introduction to garbage collection and memory management
the reader is referred to [19].



1.1 The main algorithmic ideas
The basicmark and sweepalgorithm operates by stopping all

program threads,marking any object which is directly reachable
(either from a local or a global reference) and then recursively
marking any object which is pointed to by a marked object. Then,
any object, which is not marked isswept, i.e., reclaimed. Finally,
program threads are resumed.

To simplify the presentation of our new collector, we start with a
simple concurrent mark and sweep that uses a snapshot. Concurrent
mark and sweep collectors perform some, or all, of the above steps
concurrently with the program threads (the mutators).Snapshot at
the beginning[30, 14] mark and sweep collectors exploit the fact
that a garbage object remains garbage until the collector recycles
it, i.e., being garbage is a stable property. Thus, snapshotat the
beginning operates by:

1. stopping the mutators,

2. taking a snapshot (replica) of the heap and roots,

3. resuming the mutators,

4. tracing the replica,

5. sweeping all objects in the original heap whose replicated
counterparts are unmarked. These reclaimed objects must
have been unreachable at the time the snapshot was taken and
hence they remain unreachable until the collector eventually
frees them.

The problem with this approach is that making a snapshot of the
heap is not realistic. It requires too much space and time. However,
a useful property of today’s benchmarks is that even if they employ
a large heap, only a small part of it is modified at a time.

Loosely speaking, our algorithm works as follows. Assume first,
that the heap does not change at all (which is not correct) andtra-
verse the heap concurrently with the program activity. However,
the heapis modified by the program threads and we cannot ig-
nore it. Our solution is to record objects states before theyare first
modified by a mutator. Later, we trace according to the recorded
state. A mechanism that remembers the object state before itis first
modified by a mutator has been developed in [22] for monitoring
changes in reference counts. We employ that mechanism for our
algorithm.

However, we get substantial savings from adapting this mecha-
nism to a mark and sweep collector. The first saving is obtained by
the fact that recording is necessary only when the collectoris ac-
tive. The second saving is due to the fact that we need to record an
objectA only if the objectA is modified after the collector started
and beforeA is traced. This happens seldom. In particular, new ob-
jects are created marked (via the color toggle mechanism). Thus,
updates to new objects, which are most frequent, do not require
recording the values of the new object. Finally, and similarly to the
reference counting saving, we need to record objects only once: the
first time they get modified after the collection starts. All these sav-
ings make the write barrier very efficient. Usually, it only employs
a fast path running only a couple of if statements. The long path of
actually recording the object’s state is taken infrequently (see the
measured statistics in Section 6 below). The modified write bar-
rier that we propose maintains the good properties of the original
write-barrier from [22]. In particular, it allows concurrent threads
to collect the information with no extra synchronization. More de-
tails appear in Section 2.1.

Finally, the algorithm described so far needs to stop all threads
at the same time in order to determine the snapshot time. Thisis

a must with a multiprocessor since we need to determine one spe-
cific time at which no thread is in the middle of an update operation
or in the middle of creating a new object and at which all threads
“know” that a snapshot time has been set. Such wide mutator syn-
chronization increases the pause time, as all mutator threads must
come to a halt together. In order to eliminate this synchronization,
we let the collector determine the snapshot time for each mutator
asynchronously at its own pace. This reduces the pause time to the
level reported in this paper but requires some care to assurecorrect-
ness. In particular, we get a fuzzy snapshot, called a “sliding view”
of the heap. This view is not an accurate snapshot, but we can use it
for collection with an additional aiding mechanism called “snoop-
ing”. During the (short) time that the sliding view is determined,
the write barrier records all pointer assignments. When marking
the roots is over, snooping is stopped and all pointer slots recorded
by the snooping mechanism are traced as if they were roots. This
may lead to a small amount of floating garbage but it is required for
correctness. Details appear in Section 2.2.

In our implementation, we employ the state-of-the-art engineer-
ing tricks such as color toggle [21, 16, 5, 18, 12], allowing asimple
coloring of allocated objects, and saving some of the sweep work,
we use a block oriented allocator [6, 13], bitmaps, etc. We donot
elaborate on these engineering issues here.

1.2 Comparison to the Levanoni-Petrank col-
lector

This work is based on thesliding viewsconcept from [22]. The
collector presented here is a different collector by naturesince it
is a mark and sweep collector. For today’s benchmarks, the trac-
ing collector runs faster. Our contribution here is in presenting the
tracing collector, implementing it on the Jikes JVM and measuring
its performance against two collectors supplied with Jikes: the on-
the-fly reference counting collector and the stop-the-world tracing
collector.

The algorithmic contribution in this paper is in the composition
of several algorithmic ideas into one optimized collector.We start
with the snapshot mark and sweep collector employing ideas from
[14, 31]. We then modify this collector to make it suitable for stock
hardware: instead of using the operating system copy-on-write fea-
ture, we let the mutators record modified objects via a write barrier.
But now, we may borrow the mechanism of [22] for keeping track
of modified objects and obtain a fast and non-intrusively collector.
Once we make this connection, we note that optimization may be
used on the combined modified collector. The write barrier must
record a modified object only if the collector is tracing (rather than
always as in [22]). Furthermore, recording is only requiredif the
object being modified has not yet been traced. These two restric-
tions allow frequent use of a fast path for the write barrier and only
infrequent actual recording of an object state.

1.3 Memory consistency
We start by describing our collector for a sequentially consis-

tent memory. In Section 4 below, we provide modifications that
allow the algorithm to run on platforms, which are not sequentially
consistent. From our experience with the Netfinity (runningthe
Pentium III Xeon processor), the modifications were not required
for all the benchmarks that we used.

1.4 Implementation and results
The sliding views mark and sweep collector is implemented in

Jikes [1], a JVM system written entirely in Java (with some prim-
itives for manipulating raw memory). The system was run on a
4-way IBM Netfinity server. We used the SPECjbb2000 bench-



mark and the SPECjvm98 benchmark suites. These benchmarks
are described in detail in SPEC’s Web site[29].

It turns out that our algorithm is non-intrusive. The maximum
pause time measured for all the run benchmarks was 2 ms, which
is two orders of magnitude shorter than the pauses of the stop-the-
world collector, but is even shorter than the concurrent Jikes collec-
tor. This pause time is the time it takes to scan the roots of a single
thread. The rest of our handshakes are much faster. In the Jikes
concurrent collector, the pause time is larger since (in addition to
scanning the roots in each collection) it sometimes runs some allo-
cator maintenance while threads wait. This is not required by our
collector.

As for efficiency, our on-the-fly collector is slower than thestop-
the-world collector by around 5-10%, which is “normal” for con-
current collectors. Comparing with the concurrent collector sup-
plied with the Jikes JVM (see [2]), we obtained a throughput im-
provement of up to 60% (for the SPECjbb2000 benchmark).

1.5 Related work
The mark and sweep garbage collector was first presented by

McCarthy [23]. Much research and engineering effort has been put
into this algorithm since. Algorithms that perform garbagecollec-
tion using a snapshot of the heap appear in [14, 31]. On-the-fly
collectors are a special case of concurrent collectors. Concurrent
collectors run on dedicated threads concurrently with the program
threads, but allow short synchronization points in which all threads
are suspended for some synchronization required by the collector.
Many concurrent collectors have been proposed, see for example
[25, 6, 26, 24].

The study of on-the-fly garbage collectors was initiated by Steele
and Dijkstra, et al. [27, 28, 9] and continued in a series of papers [9,
15, 3, 4, 20, 21] culminating in the Doligez-Leroy-Gonthier(DLG)
collector [11, 10]. A modern implementation of the DLG collec-
tor for Java appears in [12, 13]. On-the-fly collectors were mostly
based on the mark and sweep algorithm, yet, an on-the-fly copying
collector has appeared in [17] and on-the-fly reference counting
collectors were proposed in [2, 22].

Although our collector comes from an advanced synergy of [31,
14] with [22], the outcome collector should be also comparedto
the collector of Doligez-Leroy-Gonthier [11, 10], which isthe most
advanced on-the-fly mark and sweep collector. The DLG collector
also uses fine-grained synchronization, and it was used in a produc-
tion JVM of IBM (see [12, 13]). Unfortunately, we are not aware of
an implementation of that algorithm that is available for academic
research (and in particular, it is not implemented on the Jikes plat-
form). Therefore, it is not possible to show a direct comparison of
throughput and latency. We expect the pause times to be similar
as in both algorithms the longest pause emanates from marking the
roots. In terms of efficiency, although the tracing algorithms are
somewhat different, we do not see any theoretical comparison fac-
tors that may be stated without actually running the collectors. With
respect to the write barrier more may be said. Ignoring the short
interval in which the roots are marked and both collectors use an
extended write barrier, the DLG collector marks gray the ex-target
of any modified pointer. This means that the write barrier forces
the mutator to touch a different object, whereas our write barrier
touches only the modified object, copying the non-null pointersat
the first time the object is modifiedand only before it is traced.
Thus, our write barrier may take the short path more frequently and
it may impose a better cache behavior. However, the actual answer
must be done by a comparison of our collector with a serious and
well-thought implementation of the DLG collector (which isnot
available for us). In any case, we believe that it is important to pro-

pose a (good) alternative to the state-of-the-art on-the-fly mark and
sweep collector.

1.6 Organization
We start with an overview of the collector algorithm in Section

2 below. We provide the algorithmic details and pseudo-codein
Section 3. In Section 4 we explain how to adapt the algorithm to
platforms that do not provide sequentially consistent memory. We
say a few words on the implementation for Java in Section 5 andin
Section 6 we present performance results. We conclude in Section
7.

2. COLLECTOR OVERVIEW
In this Section we describe our new collector. For clarity ofpre-

sentation, we start with an intermediate concurrent algorithm called
the snapshot algorithm. In Section 2.2, we extend this intermediate
algorithm making it on-the-fly.

2.1 Starting with a snapshot algorithm
We start with an intermediate algorithm calledthe snapshot al-

gorithm. This is a concurrent collector that requires a synchroniza-
tion point in which all mutators are halted together to determine a
snapshot time in which no mutator is in the middle of an update
operation or in the middle of creating a new object. Most of the
ideas presented with this simpler collector apply to our on-the-fly
collector. Note that the length of the pause for this algorithm is
short, but it requires synchronizing all application threads, which
might mean longer pauses, especially for operating systemsthat do
not support an efficient suspension of all application threads.

The idea, as presented in Section 1.1, is to perform the marking
phase after taking a snapshot of the heap. Once the heap is frozen
in a snapshot, the marking phase may proceed on the snapshot view
while the mutators go on modifying the real heap. At the end ofthe
trace, unmarked objects may be safely reclaimed since dead objects
can not be touched or modified by the mutators.

Since taking a real snapshot is too costly, our algorithm takes the
following approach. In the beginning of the collection all mutators
are stopped and implicitly agree on a snapshot time. At the same
stop, their roots are being marked and all threads resume. From
that moment on, the mutators use the following write barrierfor
each pointer modification. If the collector is still tracing, and if the
modified object has not been traced yet, and if the modified ob-
ject is not dirty, then the object becomes dirty and the values of its
pointers are saved (copied) to a local buffer. The write barrier does
the logging (and dirtying) only for non-dirty objects. Thus, actual
logging of the object state is only required infrequently: when the
collector has started, but has not yet traced the modified object,
and when the object is modified for the first time. In that case,the
saved values are the values of non-null pointers as existed during
the snapshot time. Mostly, the write barrier runs the short path and
finishes quickly. As an object is only saved once during a collection
cycle, the number of objects that need to be saved is the number of
objects that get modified during the collection. We ignore for a
moment the possibility that mutators modify the same objectcon-
currently. We will show later that the write barrier works well also
in this case without requiring explicit synchronization.

Given the operations described above, the collector may trace
the objects as if it has a heap snapshot. Non-dirty objects may
be read from the heap, because they were not modified. The state
of dirty objects at the time of the snapshot may be obtained from
the local buffers. To finish the collection cycle, the mutators are
notified that the write barrier is not required anymore, and sweep is
run to reclaim unmarked objects. Finally, all the dirty marks on the



ProcedureUpdate(o: Object, s: Slot, new: Object)
begin
1. if TraceOnando.color=white then
2. localold := read(o)
3. // waso written to since the snapshot time ?
4. if : Dirty(o) then
5. // ... no; keep a record of the old values.
6. Buffer[CurrPos]:= ho;oldi
7. CurrPos:= CurrPos + length(o)
8. Dirty(o) := true
9. write(s, new)
end

Figure 1: Mutator Code: Update Operation

objects that appear in the buffers are cleared so that they become
ready for the next collection.

We now return to the race issue raised above. What happens
if two mutators modify the same object concurrently? Are the
recorded values correct? Our write barrier is taken from theLevanoni-
Petrank reference counting collector and is especially designed to
handle such races without employing costly synchronization opera-
tions. A simplified version of the write barrier pseudo-codeappears
in Figure 1. (We study this simplified version since it clarifies all
the relevant points. The actual write barrier is more efficient and it
appears in Section 3 below.)

Two mutators that invoke the update barrier concurrently tomod-
ify the same location do not foil the collection. We remark that in
normal benchmarks (and programs) mutators do not race over writ-
ing to the same location without synchronization. Such races rarely
appear in programs (they do appear in programs that try to imple-
ment a lock, or programs that trust the various threads to write the
same value, etc.). Such races usually appear when the program con-
tains a bug. Either way (and even if the program contains a bug)
we would like our collector to handle the situation properlyand
not fail during program execution. Our first analysis of thiswrite
barrier is based on sequential consistency. However, simple modi-
fications may settle this issue and make the collector run correctly
on weakly consistent platforms at a negligible throughput penalty.
This issue is discussed in Section 4 below.

Looking at the write barrier pseudo-code we split the analysis
into two cases. First, suppose one of the updating threads sets the
dirty flag of an object before any other thread reads the dirtyflag.
In this case, only one thread records this object and the records
properly reflect the pointer values at the snapshot time. Theother
case is that more than one thread finds the dirty bit clear. We will
show that in this (rare) case, more than one mutator may log the
value of an object, but it is guaranteed that all logs will reflect the
same (correct) value corresponding to the object’s state during the
snapshot time.

Looking at the code, each thread starts by recording the old value
of the object, and only then it checks the dirty bit. On the other
hand, the actual update ofo occurs after the dirty bit is set. Thus, if
a thread detects a clear dirty bit, then it is guaranteed, since sequen-
tial consistency is assumed, that the value it records is thevalue of
o before any of the threads has modified it. So while several threads
may record the objecto in their buffers, all of them must record the
same (correct) information. To summarize, in case a race occurs,
it is possible that several threads record the objecto in their local
buffers. However, all of them record the same correct value of o
at the snapshot time. When using the information for the tracing,
each of these records may be used. We conclude that even when
races occur, the content of any heap pointer during the snapshot
time can be obtained. The value of this pointer has either notbeen

modified since the snapshot or it appears in the records takenby the
mutators.

2.2 Using sliding views
In the snapshot algorithm we have managed to execute a major

part of the collection while the mutators run concurrently with the
collector. The main disadvantage of this algorithm is the halting
of the mutators in the beginning of the collection. During this halt
all threads are stopped while the local roots are marked. This halt
hinders both efficiency, since only one processor executes the work
and the rest are idle, and scalability, since more threads will cause
more delays. While efficiency can be enhanced by parallelizing the
local marking phase, scalability calls for eliminating complete halts
from the algorithm. This is indeed the case with our sliding views
algorithm, which avoids grinding halts completely.

A handshake [11, 10] is a synchronization mechanism in which
each thread stops at a time to perform some transaction with the
collector. Our algorithm uses four handshakes. Thus, mutators are
only suspended one at a time, and only for a short interval, the
duration of which depends on the size of the mutator’s local state.

In the snapshot algorithm we had a fixed point of time at which
we perform the trace. It was the time when all mutators were
stopped. Namely, the snapshot algorithm is guaranteed to trace the
same objects as if it had done the trace while keeping the mutators
suspended. By dispensing with the complete halting of threads we
no longer have this fixed point of time. Rather, we have a fuzzier
picture of the system, formalized by the notion of asliding view,
which is essentially a non-atomic picture of the heap. We show
how sliding views can be used instead of atomic snapshots in or-
der to devise a collection algorithm. This approach has beentaken
from the reference counting collector of Levanoni and Petrank [22]
and is similar to the way snapshots are taken in a distributedsetting.
Each mutator at a time will provide its view of (the modifications
in) the heap, and special care will be taken by the system to make
sure that while the information is gathered, concurrent modifica-
tions of the heap do not foil the collection.

Instead of stopping all mutators together for initiating a collec-
tion and marking their local roots, we stop one mutator at a time.
The problem with such a relaxation is that the various threads start
using the write barrier at different times. Furthermore, the scanning
of the stacks is not done simultaneously and thus, a reference may
be missed because it is moved from one location to another during
the time we mark the threads’ local roots.

Therefore we take a rather extreme, yet required, measure. Be-
fore we start marking the roots, we raise a snoop flag for each
mutator. The local snoop flag is cleared when the local roots of
the mutator are marked. Thus, throughout the time we mark local
roots, the threads use asnoopingmechanism via their write barrier.
During this interval of time, all pointer updates are monitored. For
each pointer updatep = O we add the objectO to a local snoop-
ing buffer. All objects recorded in this manner will later betraced
during the mark phase as if they were roots.

The snooping mechanism may lead to some floating garbage as
we conservatively do not collect objects which have been recorded
by the snooping mechanism (have been snooped), although such
objects may become garbage before the cycle ends. However, if
a snooped object becomes unreachable, it is guaranteed to becol-
lected in the next cycle.



ProcedureUpdate(o: Object, offset: int , new: Object)
begin
1. if TraceOn ando.color=white then
2. if o.LogPointer=NULL then // object not dirty
3. TempPos:= CurrPos
4. foreach fieldptr of o which is not NULL
5. Buffer[++TempPos]:= ptr
6. // is it still not dirty?
7. if o.LogPointer=NULL then
8. // add pointer to object
9. Buffer[++TempPos]:= address ofo
10. //committing values in buffer
11. CurrPos:= TempPos
12. // set dirty
13. o.LogPointer=
14. address ofBuffer[CurrPos]
15. write( o, offset,new)
16. if Snoopandnew!= NULL then
17. Snooped:= Snooped[ f newg
end

Figure 2: Mutator code: Update Operation

3. THE GARBAGE COLLECTOR DETAILS

3.1 The log-pointer
One important choice that we made in our implementation af-

fects the algorithmic details concerning the dirty bit. Each object
must have a dirty bit signifying whether a pointer in the object has
been modified since the sliding view started. Instead of using a
single dirty bit per object we chose to dedicate a full word for the
task. Indeed, this consumes space, but it allows keeping informa-
tion about the dirty object. In particular, we use this word to keep a
pointer to the location in the thread’s local buffer where the object’s
pointers have been logged. A zero value (a null pointer) signifies
that the object is not dirty (and not logged). We call this word the
LogPointer.

Paying the extra price of allotting a whole word for the flag and
transforming it into a pointer that identifies the logged contents of
an object, rather than using a boolean bit-sized flag, enables an ef-
ficient tracing mechanism. Our tracing procedure does not need
to “search” all local buffers to find out the recorded information
about the object’s state as recorded in the local buffers. Instead, it
follows the pointer in the object header. Thus, the tracing proce-
dure can always proceeds immediately after accessing the object’s
LogPointer field, either as dictated by the current objects’ con-
tents or according to the previous state of the object, as recorded in
the log entry (pointed by theLogPointer field). Which of the
two routes is taken is determined by the value ofLogPointer.

3.2 Mutator cooperation
The mutators need to execute garbage-collection related code on

three occasions: when updating an object, when allocating anew
object and during handshakes. This is accomplished by theUp-
date (Figure 2) procedure, theNew (Figure 3) procedure and the
handshake mechanism, respectively. TheUpdate andNew opera-
tions never interleave with a handshake. Namely, cooperation with
a handshake waits until a currently executedUpdate or New oper-
ation finish.

In what follows we sometimes use the standard notation of de-
noting a marked objectblackand an unmarked objectwhite.

3.2.1 Write barrier
Procedure Update (Figure 2) is activated at pointer assignment
and its main task is to record the object whose pointer is modified.

ProcedureNew(size: Integer, o:Object)
begin
1. Obtain an objecto of sizesizefrom the allocator.
2. o.color := AllocColor
3. returno
end

Figure 3: Mutator code: Allocation Operation

We stress that the write barrier (theUpdate protocol) is only used
with heap pointer modification. Modifications of local pointers in
the registers or stack are not monitored. The logging shouldbe
done for a limited period: from the time local roots are marked till
the tracing is done. The variableTraceOnis local to the mutator
but is controlled by the collector. It tells the mutator whether the
logging should be done. Thus, the first check is whether executing
the write barrier is at all required. Next, we check whether the
object is colored black. If it is the case, then the object is either
new (i.e., this object was created during the current collection), or
has already been traced during the current collection. In both cases,
there is no need to log its old values (since this object won’tbe
traced). Going through the pseudo-code, we see that each object’s
LogPointeris optimistically probed twice (lines 2 and 7) so that if
the object is dirty (which is often the case), then the write barrier is
extremely fast. If the object was not logged (i.e., theLogPointer
of an object is NULL) then after the first probe, the objects values
are recorded into the localBuffer (lines 3-5). The second probe at
line 7 ensures that the object has not yet been logged (by another
thread). IfLogPointer is still NULL (in the second probe), then
the recorded values are committed (line 9) and the buffer pointer is
modified (line 11). In order to be able to distinguish later between
objects and logged values, in line 9 we actually log the object’s
address with the least significant bit set on (while values are logged
with least significant bit turned off). Then, the object’sLogPointer
field is set to point to these values (lines 13-14). After logging has
occurred, the actual pointer modification happens. Finally, while
marking the roots of the mutators, the snoop flag is on. At that
time, the new target of the pointer assignment is recorded inthe
local snooped buffer. This happens in lines 16-17. The variables
Buffer, CurrPos, SnoopandSnoopedare local to the thread.

Handling large objects.In our prototype we did not treat large
objects in a special manner. However, buffering objects of substan-
tial size, that contain a large amount of pointers, may exceed the
2ms pause time reported. To make sure this does not happen, one
may associate dirty bits with areas smaller than object sizes. For ex-
ample, the heap may be partitioned into cards of fixed size andeach
of them may be associated with a dirty bit (or a log pointer). An-
other possibility is to modify the write barrier and collector treat-
ment of only large objects, so that they, only, are split intocards.

3.2.2 Creating a new object
Procedure New(Figure 3) is used when allocating an object. After
the object is allocated, it is given a color, according to theallocation
color. The allocation color is set by the collector during the various
collection steps.

3.2.3 The handshake mechanism
Our handshake mechanism is the same as the one employed by

the Doligez-Leroy-Gonthier collector [11, 10]. The mutator threads
are never stopped together for cooperating with the collector. In-
stead, threads are suspended one at a time for the handshake.The
stopping of the thread is not allowed while it is executing the write



ProcedureTracing-Collection-Cycle
begin
1. Initiate-Collection-Cycle // 1st and 2nd handshake
2. Get-Roots // 3rd handshake
3. Trace-Heap
4. Sweep // 4th handshake
5. Prepare-Next-Collection
end

Figure 4: Collector code: Tracing alg.

ProcedureInitiate-Collection-Cycle
begin
1. // first handshake
2. for each threadT do
3. suspend threadT
4. Snoop:= true
5. resumeT
6. // second handshake
7. for each threadT do
8. suspend threadT
9. TraceOn:= true
10. resumeT
end

Figure 5: Collector code: Initiate-Collection-Cycle

barrier or while it is creating a new object. While a thread issus-
pended, the collector executes the relevant actions for thehand-
shake and then the thread is resumed. The collector repeats this
process until all threads have cooperated. At that time, thehand-
shake is completed.

3.3 Phases of the collection
The collector algorithm runs in phases as follows.� First handshake: during this handshake each mutator is

stopped and theSnoop local flag, which activates the snoop-
ing mechanism, is set.� Second handshake:during this handshake each mutator is
stopped and theTraceOn local flag, which activates the log-
ging mechanism, is set.� Third handshake: during this handshake each mutator is
stopped and the local roots of each mutator are marked. Also,
theSnooplocal flag is cleared.� Tracing: after the third handshake is done, the collector
traces the heap from the marked objects and from all snooped
objects.� Fourth handshake: during this handshake each mutator is
stopped and the local flagTraceOn is cleared, so that the
mutators stop recording updates in the buffers.� Sweep:the collector sweeps the heap and reclaims allocated
unmarked objects.� Clear dirty marks: The collector clears the dirty marks of
all objects previously recorded in the buffers.

3.4 Collector code
Collector’s code for cyclek is presented inProcedure Tracing-

Collection-Cycle (Figure 4). Let us briefly describe each of the
collector’s procedures.

ProcedureGet-Roots
begin
1. black := 1-black
2. white := 1-white
3. // third handshake
4. for each threadT do
5. suspend threadT
6. AllocColor := black
7. Snoop:= false
8. Roots:= Roots[ State// copy thread local state.
9. resume threadT
10. for each threadT do
11. // copy and clear snooped objects set
12. Roots:= Roots[ Snooped
13. Snooped:= �
end

Figure 6: Collector code: Get-Roots

ProcedureTrace-Heap
begin
1. for each objecto2 Rootsdo
2. pusho to MarkStack
3. while MarkStackis not empty
4. obj = pop(MarkStack)
5. Trace(obj)
end

Figure 7: Collector code: Trace-Heap

Procedure Initiate-Collection-Cycle(Figure 5) runs the first two
handshakes. During the first handshake theSnoopflag is raised,
signaling to the mutators that they should start snooping all stores
into heap slots. During the second handshake theTraceOnflag is
raised, signaling to the mutators that they should start logging old
pointer values of objects modified for the first time. For correct-
ness, it is important to separate the two handshakes. When any
mutator starts logging values in its local buffer, all mutators should
be already snooping. The modifications are done via handshake
to make sure that on a multiprocessor each mutator sees its value
properly.
Procedure Get-Roots(Figure 6) carries out the third handshake
during which theSnoopflag is turned off and the thread local roots
are accumulated into theRoots(global) buffer. Next, theSnooped
buffer of each thread (containing snooped objects), is accumulated
into Roots, and then cleared (for the next collection). In this pro-
cedure a color toggle is executed switching the values of black
and white. The color toggle mechanism avoids races between the
Sweep and theNew procedures, and it avoids some redundant
work of theSweep procedure (see [21, 16, 5, 18, 12]). Note that
it is correct to mark new objects black during the collection, since
they are alive and have no children at the time of creation. The Al-
locColor variable of each thread is then set so that new objects are
created black.
Procedure Trace-Heap(Figure 7) implements marking the roots
and tracing the heap. (The threads are not stopped for this stage.)
Procedure Trace(Figure 8) traces a single object. It gets an object
in the input. This object is traced only if its color iswhite. If
it is white, the collector tries to determine the object content (in
particular, its children) as reflected in the sliding view ofthe cycle.
If the object has changed since the sliding view was taken (line 9),
then its sliding view value is obtained from the relevantBufferby
checking the location pointed byLogPointer(line 10). Otherwise,
the object has not changed since the sliding view was taken. In this
case, we make a copy of the object and trace the copy so that tracing



ProcedureTrace(o: Object)
begin
1. if o.color= white then
2. if o.LogPointer= NULL then // if not dirty
3. temp:= o // getting a replica
4. // is still not dirty?
5. if o.LogPointer= NULL then
6. for each slotsof tempdo
7. v := read(s)
8. pushv ontoMarkStack
9. else // object is dirty
10. BufferPtr:= getOldObject(o.LogPointer)
11. for each slots of BufferPtrdo
12. v := read(s)
13. pushv ontoMarkStack
14. o.color := black
end

Figure 8: Collector code:Trace

ProcedureSweep
begin
1. // fourth handshake
2. for each threadT do
3. suspend threadT
4. TraceOn:= false
5. resumeT
6. Let sweptpoint to the first object in the heap
7. while sweptdoes not point pass the heap do
8. if swept.color= white then
9. swept.color:= blue
10. returnsweptto the allocator
11. advancesweptto the next object
end

Figure 9: Collector code:Sweep

will not be affected by further concurrent execution of the program.
Note, that the object is markedblack only after determining the
object’s sliding view content (recall that theupdate procedure does
not logblackobjects).
Procedure Sweep(Figure 9) starts with the fourth handshake, which
turns off theTraceOnflag. As of this time, pointer values will
not be recorded anymore. This is fine since tracing has completed.
Next, allwhiteobjects are returned to the allocator and madeblue,
to signify that they have been reclaimed. Note that by the endof
the sweep all objects are black or blue. The color toggle makes use
of this fact. One may think of black as white and continue to use
the same color for allocation. During the next mark, the meaning
of black is switched with white and the next collection starts.
Procedure Prepare-Next-Collection(Figure 10) clears all dirty
marks (i.e., allo.LogPointers) that were set by mutators during this
collection cycle. Clearing runs concurrently with programrun. The

ProcedurePrepare-Next-Collection
begin
1. Roots:= �
2. for each threadT do
3. // clear all LogPointers
4. foreach objecto in Buffer
5. o.LogPointer:= NULL
6. // clear objects buffer
7. Buffer := �
end

Figure 10: Collector code:Prepare-Next-Collection

global Rootsbuffer and the localBuffer of each thread are also
cleaned.

4. MEMORY WEAK CONSISTENCY
Modern SMP’s do not always guarantee sequential consistency.

Thus, it is important to check which modifications are required by
our collector to make it work on a weakly consistent platform. In
this section we provide the required modifications and discuss their
cost. Due to lack of space we only present the main ideas and do
not get into further savings possible for our collector.

Before going through the required modifications, we would like
to stress that suspending a thread implies a synchronization barrier.
Thus, a handshake serves implicitly as a synchronization barrier
among all threads, guaranteeing, for example, that the setting of the
snoop flag is visible to all processors before the second handshake.
Dependency 1: in the write barrier, the reads and writes of the
log-pointer(serving as the dirty flag) and the pointer slot must be
executed in the order stated in the algorithm, so that several muta-
tors do not race and write inconsistent data into the local buffers.
To solve this dependency, we note that the write barrier begins with
a check whether the collector is on and whether the object is not
dirty. We need to add a synchronization barrier after setting the
LogPointerand before modifying the pointer. This is done only if
both checks are validated, i.e., the collector is on and the object is
not dirty.
Cost: The measures in 6 show that the write barrier rarely needs
to actually log an object. Thus, the vast majority of the pointer up-
dates require no cost for handling the first dependency with weakly
consistent platform.
Dependency 2:Another interaction that relies on the order of op-
erations is the interaction between the mutators running the write-
barrier and the tracing collector. There are two problems here.

The first problem occurs when the collector discovers that the
object is dirty and it then reads the buffer entry associatedwith
the object. However, if sequential consistency is not guaranteed,
the buffers may not yet contain the updated values (even though
theLogPointerhas already been set). The second problem occurs
when the collector copies the object contents and then readsthe
LogPointerto find it null. The collector assumes that it has an un-
modified copy of the object, as it was when the sliding view was
taken. However, when sequential consistency is not guaranteed, it
is possible that the collector read the contents of the object after it
was modified, but because of memory access reordering the setting
of theLogPointerflag has not yet become visible to the collector.

The idea for solving the first problem is to run the tracing in
phases. First trace all objects that have not been modified and keep
a list of all those objects that have been modified and still need to
be traced. After this phase is done, the collector runs a handshake
with the mutators to obtain their local buffers and provide them
with new buffers. Now, a new phase begins in which we may trace
through objects whose contents are recorded in the obtainedbuffers
and through all objects that have not yet been modified. We run
such phases again and again until the tracing is done. Checking
the conditions that trigger the run of a new phase, one may check
that one or two phases normally suffice for a typical benchmark.
In particular, an object cannot be traced after the first handshake if
it is not modified before the handshake, it isnot traced before the
handshake, and itis modified just after the first handshake (before
it is traced). Such an event is rare in practice.

To solve the second problem, we use a “buffering” solution. Re-
call that because of the first dependency the mutators are running
a synchronization barrier after setting theLogPointerand before
modifying the pointer. Depending on some parameterm, the col-



lector starts by making copies ofm objects that appear to be not
dirty. Next, it performs a synchronization barrier. Then, theLog-
Pointerof each of them copied objects is probed. If it is still null,
then the copy of the object may be traced. Otherwise, the object is
dirty and its content should be obtained from local buffers.The pa-
rametermdetermines the frequency of running the synchronization
barrier, and in this sense the largerm the better. However, a large
m implies a large buffer for copying objects, and also a somewhat
increased probability that the copied object has been modified dur-
ing the (longer) time interval between the time it was copiedand
the time itsLogPointerwas checked.
Cost: Running a couple of additional handshakes for each collec-
tion cycle is of negligible cost compared to the overall running time
of the collection cycle (and to the running time of the program).
Running a synchronization barrier once for everymcollector oper-
ations is negligible form large enough.

We remark that we have not implemented these modifications,
but we have not witnessed any problem caused by reordering in-
structions on the Intel platform.

5. AN IMPLEMENTATION FOR JAVA
We have implemented our algorithm in Jikes [1], a Java virtual

machine (upon Linux Red-Hat 7.2). The entire system, including
the collector itself is written in Java (extended with unsafe prim-
itives available only to the Java Virtual Machine implementation
to access raw memory). Jikes usessafe-points: rather than inter-
rupting threads with asynchronous signals, each thread periodically
checks a bit in a condition register that indicates that the runtime
system wishes to gain control. This design significantly simplifies
implementing the handshakes of the garbage collection. In addi-
tion, rather than implementing Java threads as operating system
threads, Jikes multiplexes Java threads onvirtual-processors, im-
plemented as operating-system threads. Jikes establishesone vir-
tual processor for each physical processor.

5.1 Memory allocator
Our implementation employs the non-copying allocator of Jikes,

which is based on the allocator of Boehm, Demers, and Shenker
[6]. This allocator is well suited for collectors that do notmove ob-
jects. Small objects are allocated from per-processor segregated
free-lists build from 16KB pages divided into fixed-size blocks.
Large objects are allocated out of 4KB blocks with first-fit strat-
egy. This allocator keeps the fragmentation low and allows efficient
reclamation of objects.

6. MEASUREMENTS
Platform and benchmarks. We have taken measurements on a 4-
way IBM Netfinity 8500R server with a 550MHz Intel Pentium III
Xeon processor and 2GB of physical memory. The benchmarks we
used were the SPECjvm98 benchmark suite and the SPECjbb2000
benchmark. These benchmarks are described in detail in SPEC’s
Web site[29]. We feel that the multithreaded SPECjbb2000 bench-
mark is more interesting, as the SPECjvm98 are more appropriate
for clients and our algorithm is targeted at servers. We alsofeel that
there is a dire need in academic research for more multithreaded
benchmarks. In this work, as well as in other recent work (seefor
example [2, 13]) SPECjbb2000 is the only representative of multi-
threaded applications.
Testing procedure. We used the benchmark suite using the test
harness, performing standard automated runs of all the benchmarks
in the suite. Our standard automated run runs each benchmarkfive
times for each of the JVM’s involved (each implementing a dif-

ferent collector). To get additional multithreaded benchmarks, we
have also modified the227 mtrt benchmark from the SPECjvm98
suite to run on a varying number of threads. We measured its run
with 2, 4, 6, 8 and 10 threads. Finally, to understand better the be-
havior of our collector under tight and relaxed conditions,we tested
it on varying heap sizes. For the SPECjvm98 suite, we startedwith
a 24MB heap size and extended the sizes by 8MB increments until
a final large size of 96MB. For SPECjbb2000 we used larger heaps,
starting from 256MB heap size and extending by 64MB increments
until a final large size of 704MB.
The compared collectors.We tested our concurrent collector against
2 collectors: the Jikes concurrent collector and the Jikes parallel
load-balancing non-copying mark-and-sweep collector. Both col-
lectors are distributed with the Jikes Research Java Virtual Machine
package.

The concurrent collector is a modern on-the-fly pure reference
counting collector developed at IBM and reported in Bacon etal.
[2]. It has similar characteristics to our collector, namely, the muta-
tors are only very loosely synchronized with the collector,allowing
very low pause times. This collector is denoted hereafterthe Jikes
concurrent collector. We chose this collector, as it is the only on-
the-fly collector that is available for comparison.

The stop-the-world collector associates a collector thread for each
processor. This is a modern stop-the-world mark-and-sweepparal-
lel collector initiated when an allocation fails. We refer to this col-
lector later asthe Jikes STW (stop-the-world) collector. We chose
this collector as a representative efficient stop-the-world collector.

6.1 Pause times
The maximum pause times for the runs of the SPECjvm98 bench-

marks and the SPECjbb2000 benchmark are reported in table 1.
The SPECjvm98 benchmarks were run with a 64MB heap size and
the SPECjbb2000 (with 1,2,3 warehouses) were run with a 256MB
heap size. In these measurements, the number of program threads
is smaller than the number of CPU’s. Note that if the number of
threads exceeds the number of processors, then large pause times
appear because threads lose the CPU to other mutators or the col-
lector. The length of such pauses depends on the operating system
scheduler and is not relevant to the collector. Hence we report only
settings in which the collector runs on a separate spare processor.

Our maximum pause time measured for all the run benchmarks
was 2.04 ms. Our pause times are smaller than those of the Jikes
concurrent collector for all tested benchmarks. One may wonder
why these pause times are shorter than the ones reported for the
Jikes concurrent collector. Usually, the longest pause time for an
on-the-fly collector is the time required for scanning the roots of a
single thread, which is the same for both collectors. We discovered
that the longest pauses in the Jikes concurrent collector are due
to freeing blocks for the allocator that is sometimes executed in
addition to scanning the roots. For our collector the operation of
scanning the roots is the longest pause. Other pauses are an order
of magnitude shorter than the root-scanning handshake. Thus, our
collector obtains shorter pauses than the Jikes concurrentcollector.

As expected the maximum pause times measured for our collec-
tor were much smaller than those of the Jikes STW collector. In
fact, the measurements show that the maximum pause times of the
Jikes STW collector are larger by a factor of at least 200!

Note that pause measurement for the222 mpegaudio bench-
mark is not included for the STW collector, since it has low al-
location activity and no collection is executed during its run (using
the STW collector).



Benchmarks Maximum pause time
(milliseconds)

Sliding Jikes Jikes
Views concurrent STW

jess 1.3 2.77 261
db 0.66 1.84 193
javac 2.04 2.81 645
mpegaudio 0.54 0.8 -
jack 0.91 1.66 226
mtrt 0.91 1.80 376
jbb-1 0.6 1.79 324
jbb-2 0.73 2.6 422
jbb-3 0.93 3.15 517

Table 1: Maximum pause time in milliseconds

6.2 Server performance

6.2.1 Comparison against the Jikes concurrent col-
lector

Our major benchmark is the SPECjbb2000 benchmark. SPECjbb2000
requires multi-phased run with increasing number of warehouses.
Each phase lasts for two minutes with a ramp-up period of halfa
minute before each phase. The benchmark provides a measure of
the throughput and we report the throughput ratio improvement.
Note that a larger number is better, and we report the ratio between
our collector and the compared collector. Thus, the higher the ratio,
the better our collector behaves, and any ratio larger than 1implies
that our collector outperforms the compared collector.

The design point for the Jikes concurrent collector was for one
collector CPU to be able to handle 3 mutator CPU’s, so that for
four-processor chip multiprocessors one CPU would be dedicated
to collection. Thus, when comparing to the Jikes concurrentcol-
lector in this subsection, we also let the collector run on a separate
spare processor and the results show mainly the ability of the con-
current collector to run concurrently without interferingwith mu-
tators work.

The measurements are reported for a varying number of ware-
houses and varying heap sizes in Figures 11 and 12. We can see
that with small number of warehouses, both collectors act simi-
larly with our collector doing a little better. When the number of
warehouses is three and up, all 3 mutators’ CPUs are in use, and
the efficiency of the collector becomes more important. We can
see that in this case, our collector outperforms the Jikes concurrent
collector and obtains a performance improvement of up to 60%.

The SPECjvm98 benchmarks (and so also the modified227 mtrt
benchmark) provide a measure of the elapsed running time, which
we report. Here, the smaller the better. In Figure 13 we report the
running time ratio of our collector and the compared collector. For
clarity of presentation, we report the inverse ratio, so that higher ra-
tios still show better performance of our collector, and ratios larger
than 1 imply our collector outperforming the compared collector.

As before, when running the SPECjvm98 benchmarks on a mul-
tiprocessor, we allow a designated processor to run the collector
thread. Results are reported in Figure 13. Here again the collector
runs concurrently with the program thread and good concurrency is
the main factor in the comparison. Mostly, the collectors perform
similarly with our collector usually slightly winning. Thepicture
changes for213 javac and202 jess with which our collector does
much better. Indeed the compared collector is known to perform
badly on these benchmarks (see [2]).

Note that the cases in which the Jikes concurrent collector wins
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Figure 11: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 1-4 warehouses compared to the Jikes concurrent collec-
tor.
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Figure 12: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 5-8 warehouses compared to the Jikes concurrent collec-
tor.
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Figure 13: SPECjvm98 on a multiprocessor: run-time ratio
compared to the Jikes concurrent collector.



with SPECjvm98 as well as with the modified227 mtrt measure-
ments presented below, is when the heap is tight. The reason for
worse results on small heaps is that during those runs, we getshort
in memory (on both collectors), and so mutators are sometimes
halted waiting for a collection cycle to terminate (and supply free
space). These measurements demonstrate the superiority ofref-
erence counting (employed by the Jikes concurrent collector) for
such settings. When frequent collections are performed, the trac-
ing collector still has to trace the whole heap and sweep it, whereas
the reference counting collector only needs to run over the latest
modifications (in order to update the reference counts) and free the
unreachable space. Note however, that this phenomena occurs only
in highly stressful conditions. Normally, mutators are halted only
in order to perform handshakes.

We do not include results for the201 compress benchmark since
its allocation activity is not significant.

Next, we report the measurements for the modified227 mt-rt
benchmark. We modified it to work with a varying number of
threads (4, 6, 8, 10 threads) and the resulting throughput measures
are reported in Figure 14. Note that a run with two threads ap-
pear with the SPECjvm98 measurements (reported as mtrt2 in Fig-
ure 13). Once more we allow a designated processor to run the
collector thread, however since all 3 mutator CPU’s are in use, the
collector’s efficiency plays the major factor in these measurements.
Here, again, we can see that with small heaps the compared col-
lector wins. As before, this happens because of the superiority of
reference counting in a setting where frequent collectionsare re-
quired.
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Figure 14: modified 227 mtrt results on a multiprocessor com-
pared to the Jikes concurrent collector.

6.2.2 Comparison against Jikes STW collector
We have compared our collector performance over the SPECjbb2000

benchmark and SPECjvm98 benchmarks also against the Jikes STW
collector. However, when comparing against the Jikes STW collec-
tor with four and up mutators (on our 4-way machine), our collector
did not run on a spare processor but rather shared a processorwith
the program threads. Note, nevertheless, that we gave the collec-
tor (in this case) the highest priority, so that when a collection is
triggered the collector would always get enough CPU.

The measurements of the SPECjbb2000 benchmark are reported
for a varying number of warehouses and varying heap sizes in Fig-
ures 15 and 16. We can see that with a small (1-3) number of
warehouses (when our collector runs on a dedicated processor),
both collectors have similar throughput, except for 3 warehouses
for small heap sizes, where the Jikes STW collector is slightly bet-
ter.

Figure 16 shows that when running 4-8 warehouses over small
heap, the Jikes STW collector outperforms our collector. This is
the expected cost of running concurrently with program threads
and using a write barrier. However, on large enough heap sizes,
the compared collector is only slightly (3%-10%) better than our
collector. The reason for the bad results over small heap sizes is
that on those sizes our collector sometimes get short in memory,
and so mutators are sometimes halted waiting for a collection cycle
to terminate (and supply free space). In those cases the superiority
of a parallel collector (over a concurrent collector) is expressed: the
parallel collector always exploits all 4 CPUs, while our on-the-fly
collector uses only one until free space is supplied.
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Figure 15: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 1-3 warehouses compared to the Jikes STW collector.
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Figure 16: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 4-8 warehouses compared to the Jikes STW collector.

The measurements of the SPECjvm98 benchmark are reported in
Figure 17. Here, our collector thread runs on a designated proces-
sor (i.e., the number of virtual processors is one more than the num-
ber of threads used by the benchmarks). The Jikes STW collector
runs on the same number of CPU’s (gaining efficiency from run-
ning the collector in parallel on them all). It can be seen that usu-
ally the collectors perform similarly. When running213 javac and
227 mtrt with smaller heap sizes, our collector performs worst,for

the same reasons described above: utilizing only one of two CPUs
(three in case of227 mtrt) when mutators are stucked due to lack
of free space.
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Figure 17: SPECjvm98 on a multiprocessor: run-time ratio
compared to the Jikes STW collector.

Benchmarks percent percent percent fraction
trace not not of
is on traced dirty logging

compress 2.9 86.4 4.5 1/894
jess 5.9 3.3 3.8 1/13210
db 1.92 0.56 4.24 1/219354
javac 17.1 11.0 33.3 1/160
mpegaudio 0.04 86.0 4.6 1/64099
jack 4.2 10.6 1.4 1/16572
mtrt2 13.2 3.4 5.4 1/4116
jbb-1 2 7 8.6 1/8336
jbb-2 6.1 17.8 8.8 1/1033
jbb-3 23.3 17 8.5 1/299

Table 2: write-barrier: fraction of write-barrier executi ons
that take the long path (on average)

6.3 Collector characteristics

6.3.1 Write-barrier measurements
The write-barrier (Figure 2) minimizes the number of objectlog-

ging by using 3 filters. Table 2 shows the effect of each of those
filters. Only write-barrier executions that pass those 3 filters would
actually log non-null pointers of the modified object. The mea-
surements were taken while the collector ran on a separate spare
processor. The SPECjvm98 benchmarks were run with a 64MB
heap size and SPECjbb2000 (with 1,2,3 warehouses) was run with
a 256MB heap size.

Recall that logging should be done only from the time local roots
are marked till the tracing is done. The second column shows the
percentage of write-barrier executions that occur during this time.
Those executions would pass the first filter (TraceOn flag was on).
One can see that usually, as the number of mutators increases, the
percentage of write-barrier executions that occur during this time
increases, since memory is consumed faster making the collector
run on a larger fraction of the overall time.

As objects that were already traced during the collection should
not be logged, the third column shows the percentage of write-
barrier executions in which the object (to be modified) was not
yet traced, thus, this percentage of write barrier executions pass
the second filter (given that it passed the first filter). Normally, a
large fraction of pointer updated are initializations of newly allo-
cated objects. As can be seen, for most benchmarks a vast majority
of the objects (on which the write-barrier is executed) werealready

Benchmarks Heap update mark snoop overall
size buffers stack buffers overhead

jess 64 0.26 0.05 0.12 0.43
db 64 0.28 0.15 0.07 0.5
javac 64 0.73 0.22 0.11 1.06
jack 64 0.13 0.55 0.07 0.75
mtrt 64 0.15 0.55 0.14 0.84
jbb-1 256 0.07 0.02 0.02 0.11
jbb-2 256 0.17 0.02 0.05 0.24
jbb-3 256 0.34 0.02 0.12 0.48
jbb-4-8 256 0.36 0.02 0.13 0.51

Table 3: Space overhead as a percentage of heap size

traced. This can be explained by the fact that new objects arecre-
ated black.

Since any object is logged at most once per collection, the fourth
column shows the percentage of write-barrier executions inwhich
the object was actually logged, given that it was not traced yet and
the collector is currently tracing. This is the fraction of objects
that pass the third filter (out of those which passed the first and
second filter). The low percentage indicates that objects are usually
modified many times. The write barrier makes sure that only one
of those modifications take the long path of the write barrier.

The fifth column shows the fraction of write barriers that runthe
long path out of the number of all write barriers executed during
the run. The measurements show that each one of the 3 filters is
essential for making the long path write-barriers executions rare.

6.3.2 Write-barrier buffers’ size
The space overhead consumed by the thread local buffers de-

pends on the behavior of the application. In this section we provide
some measurements providing some insight on this overhead for
the benchmarks we ran. In table 3 we present the space consumed
by these size-varying structures for each of the benchmarks. The
numbers reported are the maximum sizes required throughoutthe
execution. The second column presents the maximum overheadof
the write-barrier buffers, the third column presents the maximum
overhead of themarkStackused for the traversal of the heap and
the forth columns presents the maximum overhead of thesnoop
buffer. The last column summaries the total buffers’ overhead.

The size of the buffers depends on application behavior. Specifi-
cally, the write-barrier buffers’ size depends on the time consumed
by the tracing phase (since the write-barrier is active onlyduring the
tracing phase), and on the number of processors used to run muta-
tors during the tracing phase (if more processors are used torun
mutators, then more objects are logged). For multithreadedbench-
marks we report the overall space used for all buffers by all muta-
tors. The measurements show that the space overhead is negligible
compared to the heap size. Note that with SPECjbb2000, when
the number of warehouses (mutators) go up, the volume of activity
goes up and so does the space overhead of the buffers. Since weuse
a 4-way machine, only 3 mutators may run concurrently with the
tracing operation, thus, above 3 warehouses, this overheadremains
steady.

6.3.3 Profiling measurements
Our collector comprises of 4 phases: getting roots, tracing, sweep-

ing and preparing for the next collection. Table 4 shows the per-
centage of time that the collector spends at each one of thosephases.
As can be seen, at least 97% of the collector work is spent on trac-
ing and sweeping, while the other 2 phases are minor. The distri-



Benchmarks percent percent percent percent
get prepare

roots trace sweep next

jess 0.97 39.7 57.39 1.91
db 0.53 40.48 56.73 1.94
javac 0.77 57.71 39.13 2.36
mpegaudio 2.19 84.38 12.76 0.66
jack 0.9 34.85 63.02 1.22
mtrt2 0.7 54.28 43.89 1.1
jbb-1 0.29 25.03 74.13 0.55
jbb-2 0.26 28.45 70.21 1.08
jbb-3 0.37 49.55 47.62 2.45

Table 4: Percent time spent on each collection phase

bution between the tracing and the sweeping phases differs among
the different benchmarks. It depends on the size of the live objects’
graph and the amount of objects’ freeing.

The measurements were taken while the collector ran on a sep-
arate spare processor. The SPECjvm98 benchmarks were run with
a 64MB heap size and the SPECjbb2000 benchmark (with 1,2,3
warehouses) was run with a 256MB heap size.

6.4 Client performance
Although our collector is targeted at servers running on SMP

platforms, as a sanity check, we also measured its performance
against the Jikes concurrent collector and the Jikes STW collector
on a uniprocessor. The behavior of the collector on a uniprocessor
may demonstrate its efficiency. We measured our collector ona
uniprocessor with the SPECjvm98 benchmark suite and the results
appear in Figures 18 and 19. It turns out that our algorithm isbet-
ter than the Jikes concurrent collector in almost all tests,and that
its throughput does not fall below 80% of the Jikes STW collec-
tor’s on most of the tests. These measurements do not serve much
more than a sanity check since the compared collectors are also not
targeted at running on a client machine.
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Figure 18: SPECjvm98 results on a uniprocessor compared to
the Jikes concurrent collector.

7. CONCLUSIONS
We presented a novel on-the-fly mark and sweep garbage collec-

tor with low latency and high throughput. We have implemented
our collector on the Jikes Research JVM running on a 4-way IBM
Netfinity server and compared the behavior of our collector with
the Jikes stop-the-world collector and the Jikes concurrent collec-
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Figure 19: SPECjvm98 results on a uniprocessor compared to
the Jikes STW collector.

tor (both supplied with the Jikes JVM package). Comparisonsto
the Jikes stop-the-world collector show that the pauses have been
reduced by a factor of at least 200. The longest pause measured
between all runs of our collector was 2ms. When comparing the
throughput with the stop-the-world collector, we see an anticipated
reduction of throughput of around 10%. Comparing to the Jikes
concurrent collector, we see that the pauses became shorterand the
throughput has improved in almost all cases.
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