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ABSTRACT

With concurrent and garbage collected languages like JadaC#
becoming popular, the need for a suitable non-intrusiviggient,
and concurrent multiprocessor garbage collector has becamte.

Harel Paz 8 Erez Petrank T

1. INTRODUCTION

Modern SMP servers with large heaps provide new challenges
for the design of suitable garbage collectors. Garbagesciulis
designed for client machines may lead to inefficient runringges

We propose a novel mark and sweep on-the-fly algorithm based on servers and non-incremental collectors may lead to @paable

on the sliding views mechanism of Levanoni and Petrank. We
have implemented our collector on the Jikes Java Virtual iNtee
running on a Netfinity multiprocessor and compared it to the-c
current algorithm and to the stop-the-world collector diggpwith

pauses. Aron-the-fly garbage collectatoes not stop the program
threads to perform the collection. Instead, the collect@cates
on a separate thread (or process) concurrently with theranog
threads (the mutators). On-the-fly collectors are usefulnfial-

Jikes JVM. The maximum pause time that we measured with our tithreaded applications running on multiprocessor sesvemhere

benchmarks over all runs was 2ms. In all runs, the pause tivaes
smaller than those of the stop-the-world collector by twoers of

it is important to fully utilize all processors and provideee re-
sponse time, especially for systems in which stopping theats

magnitude and they were also always shorter than the patises oiS a costly operation.

the Jikes concurrent collector. Throughput measuremeitbeo
new garbage collector show that it outperforms the Jike<ween
rent collector by up to 60%. As expected, the stop-the-wddds
better than the on-the-fly collectors with results showibgua 10%
difference.

On top of being an effective mark and sweep on-the-fly cadlect
standing on its own, our collector may also be used as a bazdup
lector (collecting cyclic data structures) for the LevanBetrank
reference counting collector. These two algorithms péisfefit
sharing the same allocator, a similar data structure, arichidgas
JVM interface.

Keywords: Runtime systems, Memory management, Garbage col-
lection, Concurrent garbage collection, On-the-fly gagbagllec-
tion.

In this paper, we present the design and implementation efia. n
efficient and non-intrusive garbage collector suitableJava and
C# running on modern SMP’s and using large heaps. Our algorit
is a non-moving mark and sweep collector based on a “relaxed”
snapshot of the heap (the sliding views). It is suitable fodern
SMP’s running concurrent programs. It is fully concurremi{he-
fly) allowing short pause times. Namely, each thread is stdpp
for a short while to cooperate with the collector, but thestius
never need to be stopped at the same time. In particulakeunli
the mostly concurrent collector, our collector will alwagsminate
without stopping the threads. Finally, our collector mayused
with conservative JVM's.

Our sliding views mark and sweep collector may also be used as
a backup tracing algorithm for the sliding views referenoert-
ing collector of Levanoni and Petrank [22]. Any referenceims
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garbage. It is advantageous for the reference countingatol
to have a tracing collector that may use a similar allocatat a
similar JVM interface. The algorithm presented in this paise
inter-operable with the reference counting sliding viegaaithm
of Levanoni-Petrank meaning that they share the same #iigca
and their data structure may be united so that it is possibtiet
cide on a cycle by cycle basis which algorithm should be ieebk
A preliminary version of our mark and sweep algorithm waslienp
mented for that purpose and was used to produce the resttis of
reference counting collector reported in [22]. Howevee thac-
ing sliding view algorithm has not been reported previousig its
properties have not yet been investigated. In this papepresent
a mature version of this collector accompanied by an impleee
tion and measurements.

In the sequel, we assume that the reader is familiar with nrmgmo
management standard terminology and algorithms. For a dere
tailed introduction to garbage collection and memory managnt
the reader is referred to [19].



1.1 The main algorithmic ideas

The basicmark and sweeplgorithm operates by stopping all
program threadsmarking any object which is directly reachable
(either from a local or a global reference) and then receigiv
marking any object which is pointed to by a marked object.ri[he
any object, which is not marked &wept i.e., reclaimed. Finally,
program threads are resumed.

To simplify the presentation of our new collector, we staittve
simple concurrent mark and sweep that uses a snapshot. @eamtcu
mark and sweep collectors perform some, or all, of the abtefss
concurrently with the program threads (the mutato&)apshot at
the beginning30, 14] mark and sweep collectors exploit the fact
that a garbage object remains garbage until the collectyrches
it, i.e., being garbage is a stable property. Thus, snapshtite
beginning operates by:

1. stopping the mutators,
2. taking a snapshot (replica) of the heap and roots,
3. resuming the mutators,

4. tracing the replica,

5

. sweeping all objects in the original heap whose replitate

a must with a multiprocessor since we need to determine oge sp
cific time at which no thread is in the middle of an update opena

or in the middle of creating a new object and at which all thsea
“know” that a snapshot time has been set. Such wide mutater sy
chronization increases the pause time, as all mutatordbreaust
come to a halt together. In order to eliminate this synctration,

we let the collector determine the snapshot time for eactatout
asynchronously at its own pace. This reduces the pausedithe t
level reported in this paper but requires some care to assurect-
ness. In particular, we get a fuzzy snapshot, called a fligiew”

of the heap. This view is not an accurate snapshot, but weszit u
for collection with an additional aiding mechanism callethdop-
ing”. During the (short) time that the sliding view is deteénmd,
the write barrier records all pointer assignments. Whenkingr
the roots is over, snooping is stopped and all pointer statended

by the snooping mechanism are traced as if they were rootis. Th
may lead to a small amount of floating garbage but it is reguioe
correctness. Details appear in Section 2.2.

In our implementation, we employ the state-of-the-art ragi-
ing tricks such as color toggle [21, 16, 5, 18, 12], allowirgjraple
coloring of allocated objects, and saving some of the sweaf,w
we use a block oriented allocator [6, 13], bitmaps, etc. Waalo
elaborate on these engineering issues here.

counterparts are unmarked. These reclaimed objects must1.2 Comparison to the Levanoni-Petrank col-

have been unreachable at the time the snapshot was taken and

hence they remain unreachable until the collector evelytual
frees them.

The problem with this approach is that making a snapshot ef th
heap is not realistic. It requires too much space and timeveder,

a useful property of today’s benchmarks is that even if thrapley

a large heap, only a small part of it is modified at a time.

Loosely speaking, our algorithm works as follows. Assumns fir
that the heap does not change at all (which is not correctfrand
verse the heap concurrently with the program activity. Heeve
the heapis modified by the program threads and we cannot ig-
nore it. Our solution is to record objects states before Hreyfirst
modified by a mutator. Later, we trace according to the resdrd
state. A mechanism that remembers the object state befeririit
modified by a mutator has been developed in [22] for monitprin
changes in reference counts. We employ that mechanism for ou
algorithm.

However, we get substantial savings from adapting this mech
nism to a mark and sweep collector. The first saving is obthinye
the fact that recording is necessary only when the collestac-
tive. The second saving is due to the fact that we need todemor
objectA only if the objectA is modified after the collector started
and beforéA is traced. This happens seldom. In particular, new ob-
jects are created marked (via the color toggle mechanismys,T
updates to new objects, which are most frequent, do not requi
recording the values of the new object. Finally, and sirhjlts the
reference counting saving, we need to record objects ordg:aime
first time they get modified after the collection starts. Aktse sav-
ings make the write barrier very efficient. Usually, it oniyploys
a fast path running only a couple of if statements. The lorth p&
actually recording the object’s state is taken infrequefgkee the
measured statistics in Section 6 below). The modified write b
rier that we propose maintains the good properties of thgiraal
write-barrier from [22]. In particular, it allows concumethreads
to collect the information with no extra synchronizationoid de-
tails appear in Section 2.1.

Finally, the algorithm described so far needs to stop altadts
at the same time in order to determine the snapshot time. i$his

lector

This work is based on thgliding viewsconcept from [22]. The
collector presented here is a different collector by naginee it
is a mark and sweep collector. For today’s benchmarks, te tr
ing collector runs faster. Our contribution here is in praggy the
tracing collector, implementing it on the Jikes JVM and nueae
its performance against two collectors supplied with Jikbe on-
the-fly reference counting collector and the stop-the-d/ttdcing
collector.

The algorithmic contribution in this paper is in the compiasi
of several algorithmic ideas into one optimized collecitfe start
with the snapshot mark and sweep collector employing ickeas f
[14, 31]. We then modify this collector to make it suitable $tock
hardware: instead of using the operating system copy-ote-feaa-
ture, we let the mutators record modified objects via a wiéteibr.
But now, we may borrow the mechanism of [22] for keeping track
of modified objects and obtain a fast and non-intrusivelyecbbr.
Once we make this connection, we note that optimization neay b
used on the combined modified collector. The write barriesimu
record a modified object only if the collector is tracing (rat than
always as in [22]). Furthermore, recording is only requirethe
object being modified has not yet been traced. These twdaestr
tions allow frequent use of a fast path for the write barried anly
infrequent actual recording of an object state.

1.3 Memory consistency

We start by describing our collector for a sequentially éens
tent memory. In Section 4 below, we provide modificationg tha
allow the algorithm to run on platforms, which are not sedizdhy
consistent. From our experience with the Netfinity (runnthg
Pentium Il Xeon processor), the modifications were not nexgl
for all the benchmarks that we used.

1.4 Implementation and results

The sliding views mark and sweep collector is implemented in
Jikes [1], a JVM system written entirely in Java (with somarpr
itives for manipulating raw memory). The system was run on a
4-way IBM Netfinity server. We used the SPECjbb2000 bench-



mark and the SPECjvm98 benchmark suites. These benchmarksose a (good) alternative to the state-of-the-art on-thaexéirk and

are described in detail in SPEC’s Web site[29].
It turns out that our algorithm is non-intrusive. The maximu

pause time measured for all the run benchmarks was 2 ms, which

is two orders of magnitude shorter than the pauses of thetbtop
world collector, but is even shorter than the concurrergésitollec-
tor. This pause time is the time it takes to scan the roots ofgles
thread. The rest of our handshakes are much faster. In the Jik
concurrent collector, the pause time is larger since (intemdto
scanning the roots in each collection) it sometimes runsesaio-
cator maintenance while threads wait. This is not requirgdur
collector.

As for efficiency, our on-the-fly collector is slower than ttep-
the-world collector by around 5-10%, which is “normal” foore-
current collectors. Comparing with the concurrent cobbecup-
plied with the Jikes JVM (see [2]), we obtained a throughpuox i
provement of up to 60% (for the SPECjbb2000 benchmark).

1.5 Related work

sweep collector.

1.6 Organization

We start with an overview of the collector algorithm in Seati
2 below. We provide the algorithmic details and pseudo-dade
Section 3. In Section 4 we explain how to adapt the algoritbm t
platforms that do not provide sequentially consistent mgmd/e
say a few words on the implementation for Java in Section Srand
Section 6 we present performance results. We conclude itidBec
7.

2. COLLECTOR OVERVIEW

In this Section we describe our new collector. For clarityre-
sentation, we start with an intermediate concurrent allgoricalled
the snapshot algorithrin Section 2.2, we extend this intermediate
algorithm making it on-the-fly.

2.1 Starting with a snapshot algorithm

The mark and sweep garbage collector was first presented by We start with an intermediate algorithm calldde snapshot al-

McCarthy [23]. Much research and engineering effort hasipeg
into this algorithm since. Algorithms that perform garbamdiec-
tion using a snapshot of the heap appear in [14, 31]. On-the-fl
collectors are a special case of concurrent collectors.cQoent
collectors run on dedicated threads concurrently with ttegam
threads, but allow short synchronization points in whidhtakads
are suspended for some synchronization required by theatol
Many concurrent collectors have been proposed, see for geam
[25, 6, 26, 24].

The study of on-the-fly garbage collectors was initiated taefe
and Dijkstra, et al. [27, 28, 9] and continued in a series pEpa[9,
15, 3, 4, 20, 21] culminating in the Doligez-Leroy-Gonth{BXLG)
collector [11, 10]. A modern implementation of the DLG caHe
tor for Java appears in [12, 13]. On-the-fly collectors weisstly
based on the mark and sweep algorithm, yet, an on-the-flyicgpy
collector has appeared in [17] and on-the-fly reference togn
collectors were proposed in [2, 22].

Although our collector comes from an advanced synergy of [31
14] with [22], the outcome collector should be also compared
the collector of Doligez-Leroy-Gonthier [11, 10], whichtfge most
advanced on-the-fly mark and sweep collector. The DLG clltec
also uses fine-grained synchronization, and it was usedrodup-
tion JVM of IBM (see [12, 13]). Unfortunately, we are not awaf
an implementation of that algorithm that is available foademic
research (and in particular, it is not implemented on thesliat-
form). Therefore, it is not possible to show a direct comgami of
throughput and latency. We expect the pause times to beasimil
as in both algorithms the longest pause emanates from nggitiin
roots. In terms of efficiency, although the tracing algarithare
somewhat different, we do not see any theoretical compafeso
tors that may be stated without actually running the cotlectWith
respect to the write barrier more may be said. Ignoring thatsh
interval in which the roots are marked and both collectors ais
extended write barrier, the DLG collector marks gray thetaget
of any modified pointer. This means that the write barriecésr
the mutator to touch a different object, whereas our writgiba
touches only the modified object, copying the non-null peisiat
the first time the object is modifiewhd only before it is traced
Thus, our write barrier may take the short path more freqyemtd
it may impose a better cache behavior. However, the actsalen
must be done by a comparison of our collector with a seriouks an
well-thought implementation of the DLG collector (which nst
available for us). In any case, we believe that it is impdrtampro-

gorithm This is a concurrent collector that requires a synchreniza
tion point in which all mutators are halted together to deiee a
shapshot time in which no mutator is in the middle of an update
operation or in the middle of creating a new object. Most @& th
ideas presented with this simpler collector apply to outtoe-fly
collector. Note that the length of the pause for this al¢onitis
short, but it requires synchronizing all application tideawhich
might mean longer pauses, especially for operating systieatslo

not support an efficient suspension of all application ttisea

The idea, as presented in Section 1.1, is to perform the mgrki
phase after taking a snapshot of the heap. Once the heagénfro
in a snapshot, the marking phase may proceed on the snapaiot v
while the mutators go on modifying the real heap. At the enthef
trace, unmarked objects may be safely reclaimed since dgadte
can not be touched or modified by the mutators.

Since taking a real snapshot is too costly, our algorithresake
following approach. In the beginning of the collection allitators
are stopped and implicitly agree on a snapshot time. At theesa
stop, their roots are being marked and all threads resumem Fr
that moment on, the mutators use the following write barfoer
each pointer modification. If the collector is still tracirand if the
modified object has not been traced yet, and if the modified ob-
ject is not dirty, then the object becomes dirty and the \&hfdats
pointers are saved (copied) to a local buffer. The writeibadoes
the logging (and dirtying) only for non-dirty objects. Thatual
logging of the object state is only required infrequentiyhem the
collector has started, but has not yet traced the modifiedchbj
and when the object is modified for the first time. In that céise,
saved values are the values of non-null pointers as existedgl
the snapshot time. Mostly, the write barrier runs the shath@nd
finishes quickly. As an object is only saved once during aectibn
cycle, the number of objects that need to be saved is the nuohbe
objects that get modified during the collection. We ignore do
moment the possibility that mutators modify the same object
currently. We will show later that the write barrier works halso
in this case without requiring explicit synchronization.

Given the operations described above, the collector maetra
the objects as if it has a heap snapshot. Non-dirty objects ma
be read from the heap, because they were not modified. Thee stat
of dirty objects at the time of the snapshot may be obtaineuh fr
the local buffers. To finish the collection cycle, the mutatare
notified that the write barrier is not required anymore, andep is
run to reclaim unmarked objects. Finally, all the dirty meda the



ProceduréJpdate(o: Object, s: Slot, new Object)

begin

1. if TraceOnando.color=white then

2. localold := read(0)

3. /I waso written to since the snapshot time ?
4., if = Dirty(o) then

5. /I ... no; keep a record of the old values.
6. Buffer[CurrPos]:= (o,0ld)

7. CurrPos:= CurrPos + length(o)

8. Dirty(0) := true

9. write(s, new)

end

Figure 1: Mutator Code: Update Operation

objects that appear in the buffers are cleared so that thegnie
ready for the next collection.

modified since the snapshot or it appears in the records taktre
mutators.

2.2 Using sliding views
In the snapshot algorithm we have managed to execute a major

part of the collection while the mutators run concurrentlighwhe
collector. The main disadvantage of this algorithm is thiitg
of the mutators in the beginning of the collection. Duringsthalt
all threads are stopped while the local roots are markeds it
hinders both efficiency, since only one processor exechegork
and the rest are idle, and scalability, since more threatlcatse
more delays. While efficiency can be enhanced by paralhgittie
local marking phase, scalability calls for eliminating qaete halts
from the algorithm. This is indeed the case with our slidingws
algorithm, which avoids grinding halts completely.

We now return to the race issue raised above. What happens A handshake [11, 10] is a synchronization mechanism in which

if two mutators modify the same object concurrently? Are the
recorded values correct? Our write barrier is taken fronLaenoni-
Petrank reference counting collector and is especialljgdes to
handle such races without employing costly synchronipabipera-
tions. A simplified version of the write barrier pseudo-cagpears

in Figure 1. (We study this simplified version since it clagiall
the relevant points. The actual write barrier is more effite@nd it
appears in Section 3 below.)

Two mutators that invoke the update barrier concurrentinéal-
ify the same location do not foil the collection. We remarkttin
normal benchmarks (and programs) mutators do not race avier w
ing to the same location without synchronization. Suchsaaesly
appear in programs (they do appear in programs that try téeimp
ment a lock, or programs that trust the various threads ttewinie
same value, etc.). Such races usually appear when the pragra
tains a bug. Either way (and even if the program contains 3 bug
we would like our collector to handle the situation propealyd
not fail during program execution. Our first analysis of thiste
barrier is based on sequential consistency. However, simpldi-
fications may settle this issue and make the collector rurectly
on weakly consistent platforms at a negligible throughpnaity.
This issue is discussed in Section 4 below.

Looking at the write barrier pseudo-code we split the arialys
into two cases. First, suppose one of the updating threddstee
dirty flag of an object before any other thread reads the dliaty.

In this case, only one thread records this object and therdsco
properly reflect the pointer values at the snapshot time. dther
case is that more than one thread finds the dirty bit clear. We w
show that in this (rare) case, more than one mutator may leg th
value of an object, but it is guaranteed that all logs willeeflthe
same (correct) value corresponding to the object’s statieglthe
shapshot time.

Looking at the code, each thread starts by recording theadicev
of the object, and only then it checks the dirty bit. On theeoth
hand, the actual update obccurs after the dirty bit is set. Thus, if
a thread detects a clear dirty bit, then itis guaranteedessequen-
tial consistency is assumed, that the value it records isdhes of
o before any of the threads has modified it. So while severabits
may record the objed in their buffers, all of them must record the
same (correct) information. To summarize, in case a racarsgc
it is possible that several threads record the obgeict their local
buffers. However, all of them record the same correct vafue o
at the snapshot time. When using the information for theiriggc

each thread stops at a time to perform some transaction téth t
collector. Our algorithm uses four handshakes. Thus, rorgatre
only suspended one at a time, and only for a short interval, th
duration of which depends on the size of the mutator’s lotzks

In the snapshot algorithm we had a fixed point of time at which
we perform the trace. It was the time when all mutators were
stopped. Namely, the snapshot algorithm is guaranteedde the
same objects as if it had done the trace while keeping thetorata
suspended. By dispensing with the complete halting of tweze
no longer have this fixed point of time. Rather, we have a &rzzi
picture of the system, formalized by the notion oflaling view
which is essentially a non-atomic picture of the heap. Wensho
how sliding views can be used instead of atomic snapshots-in o
der to devise a collection algorithm. This approach has belesn
from the reference counting collector of Levanoni and Ré({22]
and is similar to the way snapshots are taken in a distribset&tchg.
Each mutator at a time will provide its view of (the modificats
in) the heap, and special care will be taken by the system t@ma
sure that while the information is gathered, concurrent ificet
tions of the heap do not foil the collection.

Instead of stopping all mutators together for initiatingadlec-
tion and marking their local roots, we stop one mutator atreeti
The problem with such a relaxation is that the various thsesidrt
using the write barrier at different times. Furthermore, sleanning
of the stacks is not done simultaneously and thus, a refeneray
be missed because it is moved from one location to anothé@rgiur
the time we mark the threads’ local roots.

Therefore we take a rather extreme, yet required, measwge. B
fore we start marking the roots, we raise a snoop flag for each
mutator. The local snoop flag is cleared when the local robts o
the mutator are marked. Thus, throughout the time we mark loc
roots, the threads usesaoopingmechanism via their write barrier.
During this interval of time, all pointer updates are morgth For
each pointer updatp = O we add the objecD to a local snoop-
ing buffer. All objects recorded in this manner will later tvaced
during the mark phase as if they were roots.

The snooping mechanism may lead to some floating garbage as
we conservatively do not collect objects which have beearded
by the snooping mechanism (have been snooped), althoudh suc
objects may become garbage before the cycle ends. Howéver, i
a snooped object becomes unreachable, it is guaranteedctd-be
lected in the next cycle.

each of these records may be used. We conclude that even when

races occur, the content of any heap pointer during the bioaps
time can be obtained. The value of this pointer has eithebaeh



ProcedureéJpdate(o: Object, offset int , new Object)
begin

1. if TraceOn and.coloFwhite then

2. if 0.LogPointeeNULL then // object not dirty
3. TempPos= CurrPos

4. foreach fieldptr of o which is not NULL
5. Buffer[++TempPos]:= ptr

6. /l'is it still not dirty?

7. if 0.LogPointerNULL then

8. // add pointer to object

9. Buffer[++TempPos]:= address 0b
10. /lcommitting values in buffer

11. CurrPos:= TempPos

12. /I set dirty

13. o0.LogPointer=

14. address oBuffer[CurrPos]
15. write( o, offset,new)

16. if Snoopandnew!= NULL then

17. Snooped= SnoopedJ { new}

end

Figure 2: Mutator code: Update Operation

3. THEGARBAGE COLLECTOR DETAILS
3.1 The log-pointer

One important choice that we made in our implementation af-
fects the algorithmic details concerning the dirty bit. Eadbject
must have a dirty bit signifying whether a pointer in the @bjeas
been modified since the sliding view started. Instead ofgusin
single dirty bit per object we chose to dedicate a full wordtfee
task. Indeed, this consumes space, but it allows keepimgnia-
tion about the dirty object. In particular, we use this wardkéeep a
pointer to the location in the thread's local buffer where tibject’s
pointers have been logged. A zero value (a null pointer)ifiegn
that the object is not dirty (and not logged). We call this evtite
LogPoi nter.

Paying the extra price of allotting a whole word for the flaglan
transforming it into a pointer that identifies the logged temts of
an object, rather than using a boolean bit-sized flag, enarieef-
ficient tracing mechanism. Our tracing procedure does netine
to “search” all local buffers to find out the recorded infotina
about the object’s state as recorded in the local bufferstefd, it
follows the pointer in the object header. Thus, the tracirare-
dure can always proceeds immediately after accessing feetsb
LogPoi nt er field, either as dictated by the current objects’ con-
tents or according to the previous state of the object, awded in
the log entry (pointed by theogPoi nt er field). Which of the
two routes is taken is determined by the value.ofyPoi nt er .

3.2 Mutator cooperation

The mutators need to execute garbage-collection relatgel ao
three occasions: when updating an object, when allocatimgna
object and during handshakes. This is accomplished byJghe
date (Figure 2) procedure, thiew (Figure 3) procedure and the
handshake mechanism, respectively. Upelate andNew opera-
tions never interleave with a handshake. Namely, coomeratith
a handshake waits until a currently executfgtate or New oper-
ation finish.

In what follows we sometimes use the standard notation of de-
noting a marked objedilackand an unmarked objeuathite

3.2.1 Write barrier

Procedure Update (Figure 2) is activated at pointer assignment
and its main task is to record the object whose pointer is fresti

ProcedureNew(size Integer, 0:Object)

begin

1. Obtain an objecb of sizesizefrom the allocator.
2. o.color:= AllocColor

3. returno

end

Figure 3: Mutator code: Allocation Operation

We stress that the write barrier (thpdate protocol) is only used
with heap pointer modification. Modifications of local parg in
the registers or stack are not monitored. The logging shbeld
done for a limited period: from the time local roots are makrkié
the tracing is done. The variablaceOnis local to the mutator
but is controlled by the collector. It tells the mutator wihnet the
logging should be done. Thus, the first check is whether exeru
the write barrier is at all required. Next, we check whethes t
object is colored black. If it is the case, then the objectitisee
new (i.e., this object was created during the current ctieg, or
has already been traced during the current collection. th bases,
there is no need to log its old values (since this object wbe't
traced). Going through the pseudo-code, we see that eaebtsbj
LogPointeris optimistically probed twice (lines 2 and 7) so that if
the object is dirty (which is often the case), then the wraeier is
extremely fast. If the object was not logged (i.e., ttagPointer

of an object is NULL) then after the first probe, the objecthiga
are recorded into the loc&8uffer (lines 3-5). The second probe at
line 7 ensures that the object has not yet been logged (bhanot
thread). IfLogPointeris still NULL (in the second probe), then
the recorded values are committed (line 9) and the buffertpois
modified (line 11). In order to be able to distinguish latetween
objects and logged values, in line 9 we actually log the dlsjec
address with the least significant bit set on (while valued@gged
with least significant bit turned off). Then, the objedtisgPointer
field is set to point to these values (lines 13-14). After iogdhas
occurred, the actual pointer modification happens. Finallile
marking the roots of the mutators, the snoop flag is on. At that
time, the new target of the pointer assignment is recordethén
local snooped buffer. This happens in lines 16-17. The bl
Buffer, CurrPos SnoopandSnoopedare local to the thread.

Handling large objectsin our prototype we did not treat large
objects in a special manner. However, buffering objectsibégan-

tial size, that contain a large amount of pointers, may exdbe

2ms pause time reported. To make sure this does not happen, on
may associate dirty bits with areas smaller than objectsizer ex-
ample, the heap may be partitioned into cards of fixed sizeeani

of them may be associated with a dirty bit (or a log pointerh- A
other possibility is to modify the write barrier and collectreat-
ment of only large objects, so that they, only, are split icaeds.

3.2.2 Creating a new object

Procedure New(Figure 3) is used when allocating an object. After
the object is allocated, it is given a color, according toahecation
color. The allocation color is set by the collector during tharious
collection steps.

3.2.3 The handshake mechanism

Our handshake mechanism is the same as the one employed by
the Doligez-Leroy-Gonthier collector [11, 10]. The mutettoreads
are never stopped together for cooperating with the catedn-
stead, threads are suspended one at a time for the handdfeke.
stopping of the thread is not allowed while it is executing trite



Procedurelracing-Collection-Cycle Procedureset-Roots
begin begin
1. Initiate-Collection-Cycle // 15t and 219 handshake ; b'ﬁ_‘;k; 1‘b|ﬁ_‘ik
) rd white := 1-white
z ﬁgii&oézp I 37 handshake 3. //third handshake
' th 4. for each thread do
4. Sweep /I 4" handshake 5 suspend thread
5. Prepare-Next-Collection 6 AllocColor := black
end 7 Snoop:= false
8 Roots:= RootsU State// copy thread local state.
Figure 4: Collector code: Tracing alg. 9. resume thread
10. for each thread do
— - 11. I/ copy and clear snooped objects set
Procedurdnitiate-Collection-Cycle 12. Roots:= RootsU Snooped
begin ) 13. Snooped= @
1 I first handshake end
2. for each thread do
3. suspend thread .
4. Snoop= true Figure 6: Collector code: Get-Roots
5. resumer
6. /I second handshake
7. for each thread do E‘;c;?ﬁdureTrace-Heap
g' ?l::f:gg_t_htrfu? 1. for each objecb € Rootsdo
16 resumeT._ 2. pusho to MarkStack
ena 3. while MarkStackis not empty
4. obj = popMarkStack
5. Trace(obj)
Figure 5: Collector code: Initiate-Collection-Cycle end

Figure 7: Collector code: Trace-Heap

barrier or while it is creating a new object. While a threadus-

pended, the collector executes the relevant actions fohémal-

shake and then the thread is resumed. The collector reggats t procedure Initiate-Collection-Cycle (Figure 5) runs the first two

process until all threads have cooperated. At that timehtived- handshakes. During the first handshake $meopflag is raised,

shake is completed. signaling to the mutators that they should start snoopihgtates
- into heap slots. During the second handshakeTtheeOnflag is

3.3 Phases of the collection raised, sFi)gnaIing to thg mutators that they should stagir@%ld

The collector algorithm runs in phases as follows. pointer values of objects modified for the first time. For et

ness, it is important to separate the two handshakes. When an
mutator starts logging values in its local buffer, all motatshould

be already snooping. The modifications are done via handshak
to make sure that on a multiprocessor each mutator seeslits va

Second handshakeduring this handshake each mutator is Properly. _ _ _
stopped and th&r aceOn local flag, which activates the log- Procedure Get-Roots(Figure 6) carries out the third handshake
ging mechanism, is set. during which theSnoopflag is turned off and the thread local roots

are accumulated into tHeoots(global) buffer. Next, theSnooped
Third handshake: during this handshake each mutator is buffer of each thread (containing snooped objects), ismctated
stopped and the local roots of each mutator are marked. Also, into Roots and then cleared (for the next collection). In this pro-
the Snooplocal flag is cleared. cedure a color toggle is executed switching the values afkbla

. ) . and white. The color toggle mechanism avoids races between t

Tracing: after the third handshake is done, the collector sweep and theNew procedures, and it avoids some redundant
tra_ces the heap from the marked objects and from all snooped ygrk of the Sweep procedure (see [21, 16, 5, 18, 12]). Note that
objects. it is correct to mark new objects black during the collectisimce
they are alive and have no children at the time of creatiore Alh
locColor variable of each thread is then set so that new objects are
created black.
Procedure Trace-Heap(Figure 7) implements marking the roots
Sweep:the collector sweeps the heap and reclaims allocated and tracing the heap. (The threads are not stopped for tge 3t
unmarked objects. Procedure Trace(Figure 8) traces a single object. It gets an object

in the input. This object is traced only if its color ighite If
Clear dirty marks: The collector clears the dirty marks of it is white, the collector tries to determine the object @mt(in

First handshake: during this handshake each mutator is
stopped and th8noop local flag, which activates the snoop-
ing mechanism, is set.

Fourth handshake: during this handshake each mutator is
stopped and the local flafr aceOn is cleared, so that the
mutators stop recording updates in the buffers.

all objects previously recorded in the buffers. particular, its children) as reflected in the sliding viewtloé cycle.

If the object has changed since the sliding view was takee @),

3.4 Collector code then its sliding view value is obtained from the relevaufffer by
Collector’s code for cyclé is presented ifProcedure Tracing- checking the location pointed HyogPointer(line 10). Otherwise,

Collection-Cycle (Figure 4). Let us briefly describe each of the the object has not changed since the sliding view was takethid
collector’s procedures. case, we make a copy of the object and trace the copy so thisigra



Procedurelrace(o: Object)
begin
1 if 0.color=whitethen
2 if 0.LogPointer= NULL then // if not dirty
3 temp:= o // getting a replica
4. /1 is still not dirty?
5. if 0.LogPointer= NULL then
6 for each slot of tempdo
7 v:=read(s)
8 pushv ontoMarkStack
9. else // object is dirty
10. BufferPtr:= getOldObjectf.LogPointe)
11. for each slos of BufferPtrdo
12. v :=read(s)
13. pushv onto MarkStack
14. o.color:= black
end
Figure 8: Collector code: Trace
Proceduresweep
begin

1 /I fourth handshake

2 for each thread do

3 suspend thread

4. TraceOn:= false

5. resumer

6 Let sweptpoint to the first object in the heap
7 while sweptdoes not point pass the heap do
8 if swept.color= whitethen

9 swept.color.= blue

returnsweptto the allocator
11. advancesweptto the next object
end

Figure 9: Collector code: Sweep

will not be affected by further concurrent execution of thegram.
Note, that the object is markdalack only after determining the
object’s sliding view content (recall that tpdate procedure does
not logblackobjects).

Procedure SweeFigure 9) starts with the fourth handshake, which
turns off theTraceOnflag. As of this time, pointer values will
not be recorded anymore. This is fine since tracing has cdathle
Next, allwhite objects are returned to the allocator and mhahle,

to signify that they have been reclaimed. Note that by theand
the sweep all objects are black or blue. The color toggle make

of this fact. One may think of black as white and continue te us
the same color for allocation. During the next mark, the naan
of black is switched with white and the next collection Start
Procedure Prepare-Next-Collection(Figure 10) clears all dirty
marks (i.e., alb.LogPointes) that were set by mutators during this
collection cycle. Clearing runs concurrently with program. The

ProcedurePrepare-Next-Collection
begin

1. Roots:= ¢

2. for each thread do

3. /I clear all LogPointers
4. foreach objecb in Buffer
5. 0.LogPointer= NULL
6. /I clear objects buffer

7. Buffer:= @

end

Figure 10: Collector code: Prepare-Next-Collection

global Rootshuffer and the locaBuffer of each thread are also
cleaned.

4. MEMORY WEAK CONSISTENCY

Modern SMP’s do not always guarantee sequential consistenc
Thus, it is important to check which modifications are regdiby
our collector to make it work on a weakly consistent platforim
this section we provide the required modifications and disc¢heir
cost. Due to lack of space we only present the main ideas and do
not get into further savings possible for our collector.

Before going through the required modifications, we woulte i
to stress that suspending a thread implies a synchronizbéoier.
Thus, a handshake serves implicitly as a synchronizatiorieba
among all threads, guaranteeing, for example, that thimgett the
snoop flag is visible to all processors before the seconddteahe.
Dependency 1:in the write barrier, the reads and writes of the
log-pointer (serving as the dirty flag) and the pointer slot must be
executed in the order stated in the algorithm, so that skwarta-
tors do not race and write inconsistent data into the loc#kebsi
To solve this dependency, we note that the write barrientsegith
a check whether the collector is on and whether the objectts n
dirty. We need to add a synchronization barrier after sgtthe
LogPointerand before modifying the pointer. This is done only if
both checks are validated, i.e., the collector is on and Hjecbis
not dirty.

Cost: The measures in 6 show that the write barrier rarely needs
to actually log an object. Thus, the vast majority of the paimp-
dates require no cost for handling the first dependency witakly
consistent platform.

Dependency 2:Another interaction that relies on the order of op-
erations is the interaction between the mutators runniegattite-
barrier and the tracing collector. There are two problente he

The first problem occurs when the collector discovers that th
object is dirty and it then reads the buffer entry associatét
the object. However, if sequential consistency is not guaex,
the buffers may not yet contain the updated values (evengthou
the LogPointerhas already been set). The second problem occurs
when the collector copies the object contents and then riesds
LogPointerto find it null. The collector assumes that it has an un-
modified copy of the object, as it was when the sliding view was
taken. However, when sequential consistency is not gueednit
is possible that the collector read the contents of the olajier it
was modified, but because of memory access reordering ttegset
of theL LogPointerflag has not yet become visible to the collector.

The idea for solving the first problem is to run the tracing in
phases. First trace all objects that have not been modifig¢eep
a list of all those objects that have been modified and stédne
be traced. After this phase is done, the collector runs astaic
with the mutators to obtain their local buffers and provitierh
with new buffers. Now, a new phase begins in which we may trace
through objects whose contents are recorded in the obtainféets
and through all objects that have not yet been modified. We run
such phases again and again until the tracing is done. Gigecki
the conditions that trigger the run of a new phase, one magkche
that one or two phases normally suffice for a typical benchkmar
In particular, an object cannot be traced after the first Bhake if
it is not modified before the handshake, itrist traced before the
handshake, and is modified just after the first handshake (before
itis traced). Such an event is rare in practice.

To solve the second problem, we use a “buffering” solutioe- R
call that because of the first dependency the mutators arengin
a synchronization barrier after setting thegPointerand before
modifying the pointer. Depending on some parametethe col-



lector starts by making copies af objects that appear to be not ferent collector). To get additional multithreaded benekks, we

dirty. Next, it performs a synchronization barrier. Thelme tog- have also modified the227_mtrt benchmark from the SPECjvm98
Pointer of each of them copied objects is probed. If it is still null,  suite to run on a varying number of threads. We measured its ru
then the copy of the object may be traced. Otherwise, thecblge with 2, 4, 6, 8 and 10 threads. Finally, to understand beliebe-
dirty and its content should be obtained from local bufféiise pa- havior of our collector under tight and relaxed conditions,tested

rametem determines the frequency of running the synchronization it on varying heap sizes. For the SPECjvm98 suite, we stavitd
barrier, and in this sense the largarthe better. However, a large  a 24MB heap size and extended the sizes by 8MB increments unti
mimplies a large buffer for copying objects, and also a sonswh afinal large size of 96MB. For SPECjbb2000 we used largerdeap

increased probability that the copied object has been neatifur- starting from 256MB heap size and extending by 64MB increisien
ing the (longer) time interval between the time it was copied until a final large size of 704MB.

the time itsLogPointerwas checked. The compared collectors We tested our concurrent collector against
Cost: Running a couple of additional handshakes for each collec- 2 collectors: the Jikes concurrent collector and the Jilaslfel

tion cycle is of negligible cost compared to the overall rimgrtime load-balancing non-copying mark-and-sweep collectorthBwl-

of the collection cycle (and to the running time of the progya lectors are distributed with the Jikes Research Java Vikaahine
Running a synchronization barrier once for evargollector oper- package.

ations is negligible fomlarge enough. The concurrent collector is a modern on-the-fly pure refeeen

We remark that we have not implemented these madifications, counting collector developed at IBM and reported in Bacoalet
but we have not witnessed any problem caused by reordering in [2]. It has similar characteristics to our collector, nayéthe muta-

structions on the Intel platform. tors are only very loosely synchronized with the collecadiowing
very low pause times. This collector is denoted heredafterJikes
5 AN IMPLEMENTATION FOR JAVA concurrent collectar We chose this collector, as it is the only on-

) ) o the-fly collector that is available for comparison.

We have implemented our algorithm in Jikes [1], a Java virtua  The stop-the-world collector associates a collector thfeaeach
machine (upon Linux Red-Hat 7.2). The entire system, inalyd  rocessor. This is a modern stop-the-world mark-and-svpeeg-
the collector itself is written in Java (extended with uresafim- lel collector initiated when an allocation fails. We referthis col-
itives available only to the Java Virtual Machine implenzitn lector later aghe Jikes STW (stop-the-world) collectWe chose

to access raw memory). Jikes usede-points rather than inter- s collector as a representative efficient stop-the-svodllector.
rupting threads with asynchronous signals, each threaddgeally

checks a bit in a condition register that indicates that theime
system wishes to gain control. This design significantlypdifies

implementing the handshakes of the garbage collection.ddi a 6.1 Pause times

tion, rather than implementing Java threads as operatistesy The maximum pause times for the runs of the SPECjvm98 bench-
threads, Jikes multiplexes Java threadsvistual-processorsim- marks and the SPECjbb2000 benchmark are reported in table 1.
plemented as operating-system threads. Jikes estabbisieesir- The SPECjvm98 benchmarks were run with a 64MB heap size and
tual processor for each physica| processor. the SPECJbeOOO (Wlth 1,2,3 Warehouses) were run with a Z56M
heap size. In these measurements, the number of prograadthre
5.1 Memory allocator is smaller than the number of CPU's. Note that if the number of
Our implementation employs the non-copying allocator kédj threads exceeds the number of processors, then large panese t
which is based on the allocator of Boehm, Demers, and Shenker@PPear because threads lose the CPU to other mutators althe ¢
[6]. This allocator is well suited for collectors that do mbve ob-  |ector. The length of such pauses depends on the operatstgnsy
jects. Small objects are allocated from per-processoresggged schgdulgr anq is not relevant to the collector. Hence wertemdy
free-lists build from 16KB pages divided into fixed-size de. settings in which the collector runs on a separate sparespsor.
Large objects are allocated out of 4KB blocks with first-fiast Our maximum pause time measured for all the run benchmarks
was 2.04 ms. Our pause times are smaller than those of the Jike

egy. This allocator keeps the fragmentation low and alldffisient
reclamation of objects. concurrent collector for all tested benchmarks. One maydgon

why these pause times are shorter than the ones reportetefor t
Jikes concurrent collector. Usually, the longest pause fion an

6. MEASUREMENTS on-the-fly collector is the time required for scanning thetsoof a
Platform and benchmarks. We have taken measurements on a 4- single thread, which is the same for both collectors. Wealiered
way IBM Netfinity 8500R server with a 550MHz Intel Pentium Ill  that the longest pauses in the Jikes concurrent collectoidae

Xeon processor and 2GB of physical memory. The benchmarks weto freeing blocks for the allocator that is sometimes exedun
used were the SPECjvm98 benchmark suite and the SPECjbb200addition to scanning the roots. For our collector the openabf
benchmark. These benchmarks are described in detail in SPEC scanning the roots is the longest pause. Other pauses ardem o
Web site[29]. We feel that the multithreaded SPECjbb200&be of magnitude shorter than the root-scanning handshakes, T
mark is more interesting, as the SPECjvm98 are more apptepri  collector obtains shorter pauses than the Jikes concurodiector.

for clients and our algorithm is targeted at servers. We fasbthat As expected the maximum pause times measured for our collec-
there is a dire need in academic research for more multideegta  tor were much smaller than those of the Jikes STW collector. |
benchmarks. In this work, as well as in other recent work {eee fact, the measurements show that the maximum pause timhe of t
example [2, 13]) SPECjbb2000 is the only representative ufim Jikes STW collector are larger by a factor of at least 200!

threaded applications. Note that pause measurement for 122 mpegaudio bench-
Testing procedure. We used the benchmark suite using the test mark is not included for the STW collector, since it has low al
harness, performing standard automated runs of all thehpeaiks location activity and no collection is executed during ita {using

in the suite. Our standard automated run runs each bencHimark  the STW collector).
times for each of the JVM's involved (each implementing & dif



Benchmarks Maximum pause time
(milliseconds)
Sliding Jikes Jikes
Views | concurrent| STW
jess 1.3 2.77 261
db 0.66 1.84 193
javac 2.04 281 645
mpegaudio 0.54 0.8 -
jack 0.91 1.66 226
mtrt 0.91 1.80 376
jbb-1 0.6 1.79 324
jbb-2 0.73 2.6 422
jbb-3 0.93 3.15 517

Table 1: Maximum pause time in milliseconds

6.2 Server performance

6.2.1 Comparison against the Jikes concurrent col-
lector
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Figure 11: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 1-4 warehouses compared to the Jikes concurrent cat-
tor.

Our major benchmark is the SPECjbb2000 benchmark. SPEQlib2

requires multi-phased run with increasing number of wansks.
Each phase lasts for two minutes with a ramp-up period of &alf

minute before each phase. The benchmark provides a medsure o _

the throughput and we report the throughput ratio improveme
Note that a larger number is better, and we report the ratiwden
our collector and the compared collector. Thus, the higheratio,
the better our collector behaves, and any ratio larger thamplies
that our collector outperforms the compared collector.

The design point for the Jikes concurrent collector was fog o
collector CPU to be able to handle 3 mutator CPU'’s, so that for
four-processor chip multiprocessors one CPU would be deelic
to collection. Thus, when comparing to the Jikes concurceft
lector in this subsection, we also let the collector run oeesate
spare processor and the results show mainly the abilityettn-
current collector to run concurrently without interferimgth mu-
tators work.

The measurements are reported for a varying number of ware-
houses and varying heap sizes in Figures 11 and 12. We can se

that with small number of warehouses, both collectors aui-si
larly with our collector doing a little better. When the nuentof
warehouses is three and up, all 3 mutators’ CPUs are in uske, an
the efficiency of the collector becomes more important. We ca
see that in this case, our collector outperforms the Jikasuoent
collector and obtains a performance improvement of up t0.60%

The SPECjvm98 benchmarks (and so also the modifigd mtrt
benchmark) provide a measure of the elapsed running timiehwh
we report. Here, the smaller the better. In Figure 13 we tejher
running time ratio of our collector and the compared cotbecFor
clarity of presentation, we report the inverse ratio, sa thigher ra-
tios still show better performance of our collector, andamtarger
than 1 imply our collector outperforming the compared cxtibe.

As before, when running the SPECjvm98 benchmarks on a mul-
tiprocessor, we allow a designated processor to run thectolt
thread. Results are reported in Figure 13. Here again theotot
runs concurrently with the program thread and good conoayrés
the main factor in the comparison. Mostly, the collectorsfiqgmen
similarly with our collector usually slightly winning. Thpicture
changes for213 javac and 202 jess with which our collector does
much better. Indeed the compared collector is known to perfo
badly on these benchmarks (see [2]).

Note that the cases in which the Jikes concurrent collectos w
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Figure 12: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 5-8 warehouses compared to the Jikes concurrent cat-

%or.
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Figure 13: SPECjvm98 on a multiprocessor: run-time ratio
compared to the Jikes concurrent collector.



with SPECjvm98 as well as with the modifie#27_mtrt measure-
ments presented below, is when the heap is tight. The reason f
worse results on small heaps is that during those runs, wehget

in memory (on both collectors), and so mutators are somstime
halted waiting for a collection cycle to terminate (and dygdpee
space). These measurements demonstrate the superiorigy- of
erence counting (employed by the Jikes concurrent collpéto
such settings. When frequent collections are performesltrec-
ing collector still has to trace the whole heap and sweephereas
the reference counting collector only needs to run over #best
modifications (in order to update the reference counts) exelthe
unreachable space. Note however, that this phenomenasamaiyr

in highly stressful conditions. Normally, mutators aretadlonly

in order to perform handshakes.

We do not include results for the01 compress benchmark since
its allocation activity is not significant.

Next, we report the measurements for the modifie@7_mt-rt
benchmark. We modified it to work with a varying number of
threads (4, 6, 8, 10 threads) and the resulting throughpasures
are reported in Figure 14. Note that a run with two threads ap-
pear with the SPECjvm98 measurements (reported as mtrtigin F
ure 13). Once more we allow a designated processor to run the
collector thread, however since all 3 mutator CPU'’s are m tise
collector’s efficiency plays the major factor in these measents.
Here, again, we can see that with small heaps the compared col
lector wins. As before, this happens because of the sujtgriafr
reference counting in a setting where frequent collectiarsre-
quired.
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Figure 14: modified _227_mtrt results on a multiprocessor com-
pared to the Jikes concurrent collector.

6.2.2 Comparison against Jikes STW collector

We have compared our collector performance over the SPEOib
benchmark and SPECjvm98 benchmarks also against the Jikés S
collector. However, when comparing against the Jikes STWéco
tor with four and up mutators (on our 4-way machine), ourexctibr
did not run on a spare processor but rather shared a proogithor
the program threads. Note, nevertheless, that we gave tlee-co
tor (in this case) the highest priority, so that when a coitecis
triggered the collector would always get enough CPU.

Figure 16 shows that when running 4-8 warehouses over small
heap, the Jikes STW collector outperforms our collectoris T
the expected cost of running concurrently with program abse
and using a write barrier. However, on large enough heafssize
the compared collector is only slightly (3%-10%) betterrttwaur
collector. The reason for the bad results over small heagsdiz
that on those sizes our collector sometimes get short in memo
and so mutators are sometimes halted waiting for a collectyale
to terminate (and supply free space). In those cases theictifye
of a parallel collector (over a concurrent collector) is mgsed: the
parallel collector always exploits all 4 CPUs, while our thre-fly
collector uses only one until free space is supplied.
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Figure 15: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 1-3 warehouses compared to the Jikes STW collector.
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Figure 16: SPECjbb2000 on a multiprocessor: throughput ra-
tio for 4-8 warehouses compared to the Jikes STW collector.

The measurements of the SPECjvm98 benchmark are reported in
Figure 17. Here, our collector thread runs on a designatedesr
sor (i.e., the number of virtual processors is one more thamtim-
ber of threads used by the benchmarks). The Jikes STW aailect
runs on the same number of CPU’s (gaining efficiency from run-
ning the collector in parallel on them all). It can be seert thsu-

The measurements of the SPECjbb2000 benchmark are reportedilly the collectors perform similarly. When running13 javac and

for a varying number of warehouses and varying heap sizegyin F
ures 15 and 16. We can see that with a small (1-3) number of
warehouses (when our collector runs on a dedicated progesso
both collectors have similar throughput, except for 3 waretes

for small heap sizes, where the Jikes STW collector is dligit-

ter.

_227_mtrt with smaller heap sizes, our collector performs wdist,
the same reasons described above: utilizing only one of tRd<C
(three in case of227.mtrt) when mutators are stucked due to lack
of free space.
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Figure 17: SPECjvm98 on a multiprocessor: run-time ratio
compared to the Jikes STW collector.

Benchmarks| percent| percent| percent| fraction
trace not not of
ison traced | dirty logging

compress 2.9 86.4 4.5 1/894

jess 5.9 3.3 3.8 1/13210

db 1.92 0.56 4.24 | 1/219354

javac 17.1 11.0 33.3 1/160

mpegaudio 0.04 86.0 4.6 1/64099

jack 4.2 10.6 1.4 1/16572

mtrt2 13.2 3.4 5.4 1/4116

jbb-1 2 7 8.6 1/8336

jbb-2 6.1 17.8 8.8 1/1033

jbb-3 23.3 17 8.5 1/299

Table 2: write-barrier: fraction of write-barrier executi ons
that take the long path (on average)

6.3 Collector characteristics

6.3.1 Write-barrier measurements

The write-barrier (Figure 2) minimizes the number of objecf
ging by using 3 filters. Table 2 shows the effect of each of¢hos
filters. Only write-barrier executions that pass those 8rféltvould
actually log non-null pointers of the modified object. Theame
surements were taken while the collector ran on a separate sp
processor. The SPECjvm98 benchmarks were run with a 64MB
heap size and SPECjbb2000 (with 1,2,3 warehouses) was thn wi
a 256MB heap size.

Recall that logging should be done only from the time locatso
are marked till the tracing is done. The second column shbes t
percentage of write-barrier executions that occur durhig time.
Those executions would pass the first filter (TraceOn flag wis o
One can see that usually, as the number of mutators increhses
percentage of write-barrier executions that occur durlrig time
increases, since memory is consumed faster making thectmile
run on a larger fraction of the overall time.

As objects that were already traced during the collectiaukh
not be logged, the third column shows the percentage of write
barrier executions in which the object (to be modified) was no
yet traced, thus, this percentage of write barrier exeastipass
the second filter (given that it passed the first filter). Ndima
large fraction of pointer updated are initializations ofuhe allo-
cated objects. As can be seen, for most benchmarks a vagityajo
of the objects (on which the write-barrier is executed) waready

Benchmarks| Heap | update| mark | snoop | overall
size | buffers | stack | buffers | overhead

jess 64 0.26 | 0.05| 0.12 0.43
db 64 0.28 | 0.15| 0.07 0.5

javac 64 0.73 | 0.22 | 0.11 1.06
jack 64 0.13 | 0.55| 0.07 0.75
mtrt 64 0.15 | 0.55| 0.14 0.84
jbb-1 256 | 0.07 | 0.02| 0.02 0.11
jbb-2 256 | 0.17 | 0.02| 0.05 0.24
jbb-3 256 | 0.34 | 0.02 | 0.12 0.48
job-4-8 256 | 0.36 | 0.02 | 0.13 0.51

Table 3: Space overhead as a percentage of heap size

traced. This can be explained by the fact that new objectsrare
ated black.

Since any object is logged at most once per collection, thetlio
column shows the percentage of write-barrier executionstiith
the object was actually logged, given that it was not tracstcand
the collector is currently tracing. This is the fraction dfjects
that pass the third filter (out of those which passed the finst a
second filter). The low percentage indicates that objeetsismally
modified many times. The write barrier makes sure that onky on
of those modifications take the long path of the write barrier

The fifth column shows the fraction of write barriers that tha
long path out of the number of all write barriers executediryr
the run. The measurements show that each one of the 3 filters is
essential for making the long path write-barriers exeagimare.

6.3.2 Write-barrier buffers’ size

The space overhead consumed by the thread local buffers de-
pends on the behavior of the application. In this section regige
some measurements providing some insight on this overtmad f
the benchmarks we ran. In table 3 we present the space codsume
by these size-varying structures for each of the benchmarke
numbers reported are the maximum sizes required througheut
execution. The second column presents the maximum ovedfead
the write-barrier buffers, the third column presents theximaim
overhead of thenarkStackused for the traversal of the heap and
the forth columns presents the maximum overhead ofsti@op
buffer. The last column summaries the total buffers’ ovathe

The size of the buffers depends on application behaviorciSpe
cally, the write-barrier buffers’ size depends on the timasumed
by the tracing phase (since the write-barrier is active alnigng the
tracing phase), and on the number of processors used to rtax mu
tors during the tracing phase (if more processors are usednto
mutators, then more objects are logged). For multithredmdedth-
marks we report the overall space used for all buffers by alfam
tors. The measurements show that the space overhead igibkgli
compared to the heap size. Note that with SPECjbb2000, when
the number of warehouses (mutators) go up, the volume oficti
goes up and so does the space overhead of the buffers. Sinsewe
a 4-way machine, only 3 mutators may run concurrently wita th
tracing operation, thus, above 3 warehouses, this oventezagins
steady.

6.3.3 Profiling measurements

Our collector comprises of 4 phases: getting roots, tracangep-
ing and preparing for the next collection. Table 4 shows tae p
centage of time that the collector spends at each one of fizses.
As can be seen, at least 97% of the collector work is spentamn tr
ing and sweeping, while the other 2 phases are minor. The-dist



Benchmarks| percent| percent| percent| percent
get prepare
roots trace | sweep| next

jess 0.97 39.7 57.39 1.91

db 0.53 40.48 | 56.73 1.94

javac 0.77 57.71 | 39.13 2.36

mpegaudio 2.19 84.38 | 12.76 0.66

jack 0.9 34.85 | 63.02 1.22

mtrt2 0.7 54.28 | 43.89 1.1

jbb-1 0.29 25.03 | 74.13 0.55

jbb-2 0.26 28.45 | 70.21 1.08

jbb-3 0.37 | 4955 | 47.62 | 2.45

Table 4: Percent time spent on each collection phase

bution between the tracing and the sweeping phases diffecsg
the different benchmarks. It depends on the size of the lijeats’
graph and the amount of objects’ freeing.
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Figure 19: SPECjvm98 results on a uniprocessor compared to
the Jikes STW collector.

tor (both supplied with the Jikes JVM package). Comparigons

The measurements were taken while the collector ran on a sep-the Jikes stop-the-world collector show that the pauses baen

arate spare processor. The SPECjvm98 benchmarks were #in wi reduced by a factor of at least 200. The longest pause mehsure
a 64MB heap size and the SPECjbb2000 benchmark (with 1,2,3 petween all runs of our collector was 2ms. When comparing the

warehouses) was run with a 256MB heap size.

6.4 Client performance

Although our collector is targeted at servers running on SMP
platforms, as a sanity check, we also measured its perfarenan
against the Jikes concurrent collector and the Jikes STWatot
on a uniprocessor. The behavior of the collector on a ungssar
may demonstrate its efficiency. We measured our collectoa on
uniprocessor with the SPECjvm98 benchmark suite and thdtses
appear in Figures 18 and 19. It turns out that our algorithivets
ter than the Jikes concurrent collector in almost all temts] that
its throughput does not fall below 80% of the Jikes STW callec
tor's on most of the tests. These measurements do not sersie mu
more than a sanity check since the compared collectors soamat
targeted at running on a client machine.
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Figure 18: SPECjvm98 results on a uniprocessor compared to
the Jikes concurrent collector.

7. CONCLUSIONS

throughput with the stop-the-world collector, we see ancgrdted
reduction of throughput of around 10%. Comparing to theslike
concurrent collector, we see that the pauses became shodéhe
throughput has improved in almost all cases.
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