
Metamodel Based Model Transformation Language
Aditya Agrawal

Institute for Software Integrated Systems (ISIS)
Vanderbilt University

Nashville, TN – 37235
aditya.agrawal@vanderbilt.edu

ABSTRACT
The Model Driven Architecture (MDA) can have a greater impact
by expanding its scope to Domain Specific MDA (DSMDA).
DSMDA is the use of MDA for a particular domain. This helps
developers to represent their systems using familiar domain
concepts. For each DSMDA, a transformer is needed to convert
Domain Specific Platform Independent Models (DSPIM –s) to
Domain Specific Platform Specific Models (DSPDM-s). Such
model transformers are time consuming and error prone to
develop and maintain. Hence, a high-level specification language
to formally specify the behavior of model transformers is required.
The language must also have an execution framework, which can
be used to execute the specifications in the language. This
research proposes to develop such a language and execution
framework that will help to considerably speed-up the
development time for model transformers.

Categories & Subject Descriptors: D.2.2 Design
Tools and Techniques, F.4.2 [Grammars and Other Rewriting
Systems] and D.2.6 [Programming Environments]: graphical
environments.

General Terms: Design, Algorithms, Languages.

Keywords: Model Driven Architecture, Model Integrated
Computing, Graph grammars and transformations.

1. THE PROBLEM STATEMENT
The MDA [4] effort by OMG has drawn focus to the aims of
Model Integrated Computing (MIC) [1]. MIC has benefits in
terms of high productivity when applied to specific domains
where users are familiar with the use of modeling. To leverage the
benefits of MIC in MDA, the MDA scope needs to be expanded
to Domain Specific MDA where the focus is on developing the
MDA process for specific domains. MIC however, has its own
problems such as high development cost, lack of standardization
and vendor support Error! Reference source not found..
To tackle these problems, we propose a solution that advocates
the development of a framework to support the development and
use of Domain Specific Modeling Environments (DSME). This
approach helps distribute the cost of the framework to a larger
community. It can lead to standardization that will allow vendors
to support various domain-specific modeling environments within
the framework. A particular DSMDA will consist of a Domain
Specific Modeling Environment. This environment is then used to
develop Domain Specific Platform Independent Models (DSPIM).
These models represent the behavior and structure of the system
with no implementation details. Such models then need to be

converted to a Domain Specific Platform Specific Models
(DSPSM). Theses models may use domain specific libraries and
frameworks or they could be domain independent. DSPSM is the
general term that covers all the scenarios.
Tools such as GME [2] and DOME [6] already provide a major
portion of the framework support. They allow developers to
specify the abstract syntax and static semantics of the modeling
environments/languages. However, developers spend significant
effort in writing code that implements the transformation from
Domain Specific Platform Independent Model (DSPIM) to
Domain Specific Platform Specific Model (DSPSM).
In order to speed up the development of DSMDAs a high-level
specification language is required for the specification of model
transformers. An execution framework can then be used to
execute specifications expressed in the language. Design of such a
language is non-trivial as a model transformer can work with
arbitrarily different domains and can perform fairly complex
computations.
From a mathematical viewpoint models in MIC are graphs. To be
more precise they are vertex and edge labelled multi-graphs. We
can then use the mathematical concepts of graph transformations
[7] to formally specify the intended behaviour of a model
interpreter.
There exists a variety of graph transformation techniques
described in [7, 8, 9, 10]. The prominent among these are node
replacement grammars, hyperedge replacement grammars,
algebraic approaches and programmed graph replacement
systems. These techniques have been developed mostly for the
specification and recognition of graph languages, and performing
transformations within the same “domain” (i.e. graph), while we
need a graph transformer that works on two different kinds of
graphs. Moreover, these transformation techniques rarely use a
widely accepted well-defined language for the specification of
structural constraints on the graphs. In summary, the following
features are required in the transformation language:
1. The language should provide the user with a way to specify the

different graph domains being used. This helps to ensure that
graphs/models of a particular domain do not violate the syntax
and static semantics of the domain.

2. There should be support for transformations that create
independent models/graphs conforming to different domains
than the input models/graphs. In the more general case there
can be N input model/domain pairs and M output
model/domain pairs.

3. The language should have efficient implementations of its
programming constructs. The generated implementation should
be only a constant factor slower that its equivalent hand written
code.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

386

4. All the previous points aim to increase productivity and
reduction in the time required for writing model interpreters.
This is the primary and most important goal.

2. GReAT
The transformation language we have developed to address the
needs discussed above is called Graph Rewriting and
Transformation language or GReAT for short. This language can
be divided into 3 distinct parts: (1) Pattern Specification language,
(2) Graph transformation language, and (3) Control flow
language.

2.1 Pattern Specification Language
The heart of a graph transformation language is the pattern
specification language and pattern matching. The pattern
specifications found in graph grammars and transformation
languages [7, 8, 9] are not sufficient for our purposes. A more
expressive easy to use pattern specification language is introduced
that allows specification of complex graph patterns.
The pattern specification language uses a notion of cardinality on
each pattern vertex and each edge. The exact semantic meaning of
such a construct in terms of pattern matching wasn’t immediately
obvious. Such patterns have then been associated with
unambiguous semantic meaning.

2.2 Rewriting and Transformation Language
In model-interpreters, structural integrity is a bigger concern
because model-to-model transformations usually transform
models from one domain to models that conform to another
domain. This makes the problem two-fold. The first problem is to
specify and maintain two different models conforming to two
different metamodels (in MIC metamodels are used to specify
structural integrity constraints). A greater problem to be addressed
is that of maintaining references between the two models. It is
important to maintain some sort of reference, link and other
intermediate values. These are required to correlate graph objects
across the two domains.
The solution to these problems is to use the source and destination
metamodels to explicitly specify the temporary vertices and edges.
This creates a unified metamodel along with the temporary
objects. The advantage of this approach is that we can then treat
the source model, destination model and temporary objects as a
single graph. Standard graph grammar and transformation
techniques can then be used to specify the transformation. The
rewriting language uses the pattern language described above.
Each pattern object’s type conforms to the unified metamodel and
only transformations that do not violate the metamodel are
allowed. At the end of the transformation, the temporary objects
are removed and the two models conform exactly to their
respective metamodels. The transformation language is inspired
by many previous efforts such as [7, 8, 9, 10].

2.3 Controlled Graph Rewriting and
Transformation
There exists a need for a high-level control flow language that can
control the application of the productions and allows the user to
manage the complexity of the transformation. This prompted us to
add a high-level control flow language to GReAT. The control
flow language supports the following features:

� Sequencing – rules can be sequenced to fire one after
another.

� Non-Determinism – rules can be specified to be executed “in
parallel”, where the order of firing of the parallel rules is non
deterministic.

� Hierarchy – Compound rules can contain other compound
rules or primitive rules.

� Recursion – A high level rule can call itself.
� Test/Case – A branching construct used to choose between

different control flow paths.

3. ACKNOWLEDGEMENTS
The DARPA/IXO MOBIES program, Air Force Research
Laboratory under agreement number F30602-00-1-0580 and NSF
ITR on "Foundations of Hybrid and Embedded Software Systems"
programs have supported, in part, the activities described in this
paper.

4. REFERENCES
[1] J. Sztipanovits, and G. Karsai, “Model-Integrated

Computing”, Computer, Apr. 1997, pp. 110-112
[2] A. Ledeczi, et al., “Composing Domain-Specific Design

Environments”, Computer, Nov. 2001, pp. 44-51.
[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified

Modeling Language Reference Manual”, Addison-Wesley,
1998.

[4] “The Model-Driven Architecture”,
http://www.omg.org/mda/, OMG, Needham, MA, 2002.

[5] Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G.,
“Generative Programming via Graph Transformations in the
Model-Driven Architecture”, Workshop on Generative
Techniques in the Context of Model Driven Architecture,
OOPSLA , Nov. 5, 2002, Seattle, WA.

[6] “Dome Guide”, Honeywell, Inc. Morris Township, N.J,
1999.

[7] Grzegorz Rozenberg, “Handbook of Graph Grammars and
Computing by Graph Transformation”, World Scientific
Publishing Co. Pte. Ltd., 1997.

[8] Blostein D., Schürr A., ”Computing with Graphs and Graph
Rewriting”, Technical Report AIB 97-8, Fachgruppe
Informatik, RWTH Aachen, Germany.

[9] H. Gottler, “Attributed graph grammars for graphics”, H.
Ehrig, M. Nagl, and G. Rosenberg, editors, Graph Grammars
and their Application lo Computer Science, LNCS 153,
pages 130-142, Springer-Verlag, 1982.

[10] H. Göttler, "Diagram Editors = Graphs + Attributes + Graph
Grammars," International Journal of Man-Machine Studies,
Vol 37, No 4, Oct. 1992, pp. 481-502.

[11] Agrawal A., Karsai G., Ledeczi A.: “An End-to-End
Domain-Driven Development Framework”, Domain Driven
Development Track, 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Anaheim,
California, October 26, 2003.

387

