A Lightweight LTL Runtime Verification Tool for Java

Eric Bodden
Chair for Computer Science |l
Programming Languages and Program Analysis
RWTH Aachen University
52062 Aachen, Germany

eric.bodden@rwth-aachen.de

ABSTRACT

Runtime verification is a special form of runtime testing,
employing formal methods and languages. In this work, we
utilize next-time free linear-time temporal logic (LTL\X)
as formal framework. The discipline serves the purpose
of asserting certain design-time assumptions about object-
oriented (OO) entities such as objects, methods, and so
forth. In this paper we propose a linear-time logic over join-
points [4], and introduce a lightweight runtime verification
tool based on this logic, J2SE 5 metadata [3] and an AspectJ-
based [2] runtime backend. Implementations have been pro-
posed so far for imperative and functional languages [5]. To
our knowledge our approach is the first to allow addressing
of entire sets of states, also over subclass boundaries, thus
exploiting the OO nature.

Categories and Subject Descriptors

F.3.1 [Theory of Computation]: LOGICS AND MEAN-
INGS OF PROGRAMS—Specifying and Verifying and Rea-
soning about Programs

General Terms

Reliability, Verification, Security, Documentation

Keywords

Runtime Verification, Linear-time temporal logic (LTL),
Metadata, AspectJ, Joinpoints, Concurrent Systems

1. LINEAR-TIME TEMPORAL LOGIC

Linear-time temporal logic (LTL) is a calculus that pro-
vides the foundation for temporal reasoning about certain
properties, based on formulas that use the usual logic con-
nectives =, A, V, —, ... and temporal operators.

In our model the notion of a state is modeled by so-called
joinpoints, a path is a specific execution path of a program.
Joinpoints are points in the execution flow of a program.

Copyright is held by the author/owner.
OOPSLA 04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

We allow specifications of sets of such joinpoints by defining
the universe of our logic as the set of all possible pointcuts.
Pointcuts are AspectJ-specific language constructs that al-
low the specification of a set of joinpoints. For formulas ¢
and v, the temporal operators are:

e X ¢ - Next: ¢ holds at the next state.
e G ¢ - Globally: ¢ holds on the remaining path.

e F ¢ - Finally: ¢ holds eventually (somewhere on the
subsequent path).

e ¢ U ¢ - Until: ¢ holds until at some state ¥ holds.

The next operator however is omitted in our logic LTL\X
since the notion of a next state would allow for too much
indeterminism to provide simple semantics.

2. J2SE 5 METADATA

In versions of Java up to 1.4, one would have needed to
introduce certain comment tags in order to allow for the
inclusion of LTL\X formulas. J2SE version 5 introduces
a straightforward, standardized mechanism for inclusion of
additional information, commonly being referred to as meta-
data. Metadata may be added to any declaration, such as for
class, interface, field, method, parameter, constructor, enu-
meration and local variables [3]. This is done by defining a
new annotation type and then using this annotation type in
the source code. For our purpose of specifying LTL\X for-
mulas, we create the parameterized annotation type LTL,
holding the actual formula as a simple String object:

public @interface LTL{ String formula; }

A remarkable fact about metadata annotations is that
they are automatically compiled into Java bytecode as code
attributes in a standardized way. This allows for deploy-
ment of such annotations in sealed bytecode packages and
for easy handling by tools, such as the one proposed here.

3. GOOD USABILITY

Our approach enables the user to specify formulas di-
rectly as annotations to the source code. For example, one
would like to verify that certain sensitive transaction meth-
ods should never be called unless the current user is authen-
ticated. In such a case one could introduce another annota-
tion type SensitiveMethod for the sole purpose of tagging
such sensitive methods, and then specify an LTL\X formula
as follows. The String holding the formula was broken into
two parts for improved readability.



OLTL("!execution(@SensitiveMethod * *.*(..)) " +
"U (call(User.logIn(..)) /\ F if(User.loggedIn))")

This fully captures the situation (logout neglected here for
simplicity) in an easily understandable way. In this example
the formula can be broken down into three pointcuts:

e lexecution(@SensitiveMethod * *.*(..)) matches
every joinpoint except the ones that represent the ex-
ecution of any method being annotated with the an-
notation type SensitiveMethod.

e call(User.logIn(..)) matches calls to the method
User.logIn(..).

e if (User.loggedIn) matches all joinpoints where the
proposition User.loggedIn holds.

In addition to that, we propose the syntactic constructs
thisMethod, thisField, thisClass... that match the item,
that was annotated with the formula.

One can easily see that this use of pointcuts (and implic-
itly propositions) leads to a simple format, however main-
tains powerful expressiveness of our logic: We allow to rea-
son about entire sets of states, which might be spread over
the whole lifecycle of the application, by just using one sin-
gle pointcut. The temporal operators give access to an easy
specification of dependencies between those states.

4. PROCESSING THE LTL\X FORMULAS

As we demonstrated above, the annotations to the source
code, enabling runtime verification, are minimal and J2SE 5
compliant. We require no language extension rather making
use of parameterized annotations. They are passed through
to the bytecode by any J2SE 5 compliant compiler.

In order to process those annotations, we propose a light-
weight preprocessing engine that extends and makes use of
the AspectJ compiler. This engine has the purpose of gen-
erating pieces of advice (pieces of code to be executed at
a given joinpoint) that implement the actual check of the
behavior specified by the formula. For instance the example
from above could be translated into three pieces of advice:

enum StateType =
{matchLhs0OfF, matchRhsO0fF, allMatched};
StateType state = matchLhsOfF;

after returning():
if (state == matchLhs0fF) && call(User.logIn(..))
{ state = matchRhsOfF; }

after returning():
if (state == matchRhs0fF) && if (User.loggedIn)
{ state = allMatched; }

before():
if(state != allMatched) &&
execution(@SensitiveMethod * *.x(..))
{ /* report violation of formula */ }

Our implementation strategy has several advantages over
earlier approaches. Firstly it allows reasoning about sets of
states through pointcuts. The usual approach is to annotate
each single state, that is to be monitored, separately. Apart

307

from that, pointcuts capture the OO nature by allowing di-
rect reasoning about subclasses as well. Also we require no
additional logic to process the formulas as such, since we
directly transform formulas to pieces of advice, making use
of the aspects in order to propagate state information from
one joinpoint to another. This makes the implementation
straightforward because during parsing of the formula, the
parsing of the pointcuts is delegated to the AspectJ com-
piler. The generation of the appropriate pieces of advice
also only requires minimal transformations of pointcuts. As
well, the use of AspectJ provides type checking of pointcuts
for free. Finally another advantage is that AspectJ allows for
unweaving woven code, allowing easy removal of any verifi-
cation code. Regarding efficiency we note that the proposed
implementation would not yield any additional complexity
compared to earlier approaches.

Our technique can be applied to all kinds and scales of
Java applications. However, it is a general opinion that best
use cases lie in the field of application middleware and con-
current systems. Those tend to show a higher need for ver-
ification of safety properties, handling of mutex problems
and similar. Temporal logic perfectly aids such reasoning.

5. PREREQUISITES

As noted above, the implementation of our proposal would
make use of the AspectJ compiler which would have to be
J2SE 5 compliant and metadata-aware in order to be able to
process the metadata tags. Unfortunately, this is not yet the
case, however is already on the current plan for version 1.3
[1]. As soon as this technology is available, implementation
of our preprocessing engine will be possible at once.

6. CONCLUSIONS

We have presented a lightweight tool that allows inclu-
sion and verification of next-time free linear-time temporal
logic formulas into Java applications. The formulas can be
easily specified in the source code by metadata annotations.
Thus, no enhancement of the Java language as such is re-
quired and the specified formulas can be deployed within
Java bytecode. In order to express assumptions about the
execution flow of a program, we allow AspectJ pointcuts to
be part of those formulas. Initial tests revealed only mi-
nor implementation issues, however as prerequisite, J2SE 5
compliance and metadata awareness of the AspectJ compiler
are required, which are expected for the next major release.
From the resulting Java application, the runtime verification
code can be easily removed for deployment by making use
of the unweave feature of the AspectJ compiler.

7. REFERENCES

[1] Adrian Colyer (IBM), AspectJ project lead. Personal
communication, June 2004.

[2] AspectJ website. http://www.eclipse.org/aspectj/.

[3] Java specification request for metadata annotations

(JSR175). http://jcp.org/en/jsr/detail?id=175.

R. Laddad. AspectJ in Action: Practical

Aspect-Oriented Programming. Manning Publications

Co., 2003.

V. Stolz and F. Huch. Runtime verification of

Concurrent Haskell programs. In Proceedings of the

Fourth Workshop on Runtime Verification, to appear in
ENTCS. Elsevier Science Publishers, 2004.

4]

5]



