
1

Abstract. We study the direct cost of virtual function
calls in C++ programs, assuming the standard
implementation using virtual function tables. We
measure this overhead experimentally for a number of
large benchmark programs, using a combination of
executable inspection and processor simulation. Our
results show that the C++ programs measured spend a
median of 5.2% of their time and 3.7% of their
instructions in dispatch code. For “all virtuals”
versions of the programs, the median overhead rises to
13.7% (13% of the instructions). The “thunk” variant
of the virtual function table implementation reduces
the overhead by a median of 21% relative to the
standard implementation. On future processors, these
overheads are likely to increase moderately.

1. Introduction

Dynamic dispatch, i.e., the run-time selection of a
target procedure given a message name and the
receiver type, is a central feature of object-oriented
languages. Compared to a subroutine call in a
procedural language, a message dispatch incurs two
kinds of overhead: adirect cost and anindirect cost.

The direct costof dynamic dispatch consists of the
time spent computing the target function as a function
of the run-time receiver class and the message name
(selector). The ideal dispatch technique would find the
target in zero cycles, as if the message send was a
direct procedure call. Thus, we define thedirect cost of
dynamic dispatch for a particular program P as the
number of cycles spent on the execution of P, minus

the number of cycles spent on the execution of an
equivalent program Pideal in which all dispatches are
replaced by direct procedure calls that magically
invoke the correct target function. In practice, Pideal

may be impossible to construct, since some sends will
have varying targets at run time. However, a dispatch
technique may reach ideal performance (zero
overhead) on some programs on a superscalar
processor, as we will discuss in section 2.6.

The indirect coststems from optimizations that cannot
be performed because the target of a call is unknown
at compile time. Many standard optimizations such as
interprocedural analysis require a static call graph to
work well, and many intraprocedural optimizations are
ineffective for the small function bodies present in
object-oriented programs. Thus the presence of
dynamic dispatch hinders optimization, and
consequently, the resulting program will run more
slowly. Although indirect costs can be an important
part of the total overhead [HU94] this study will
mostly ignore them and instead focus on the direct
costs.

The aim of this study is to measure the direct cost of
virtual function table lookup for a number of realistic
C++ programs running on superscalar processors, and
to identify the processor characteristics that most
affect this cost. Unfortunately, it is hard to measure
this cost directly since we cannot usually run program
Pideal (the program without any dispatch code).
Although it is fairly easy to count the number of
instructions executed on behalf of dynamic dispatch,
this measure does not accurately reflect the cost in
processor cycles. On modern pipelined processors
with multiple instruction issue the cost of an

The Direct Cost of Virtual Function Calls in C++

Karel Driesen and Urs Hölzle
Department of Computer Science

University of California
Santa Barbara, CA 93106
{karel,urs}@cs.ucsb.edu

http://www.cs.ucsb.edu/{~karel,~urs}

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear. Copied by by permission of the
Association of Computing Machinery.

OOPSLA 96 - 10/96, San Jose, CA USA  1995 ACM

2

instruction may vary greatly. For example, on a 4-way
superscalar processor with a branch penalty of 6, an
instruction can take anywhere between 0.25 and 7
cycles†.

Therefore we measure the direct cost of virtual
function table lookup bysimulating the execution of P
and Pideal. Using an executable editor and a superscalar
processor simulator, we compute the execution times
of both programs, thus arriving at the direct cost of
dispatch. In addition to allowing dispatch cost to be
measured at all, simulation also facilitates exploring a
broad range of possible processor implementations,
thus making it possible to anticipate performance
trends on future processors.

Our measurements show that on a processor
resembling current superscalar designs, the C++
programs measured spend a median of 5.2% and a
maximum of 29% of their time executing dispatch
code. For version of the programs where every
function was converted to a virtual function, the
median overhead rose to 13.7% and the maximum to
47%.

The rest of this paper is organized as follows: section 2
provides some background on virtual function table
lookup and the aspects of superscalar processors that
are relevant in this context. Section 3 discusses our
experimental approach and the benchmark programs,
and section 4 presents the experiments, and section 5
discusses their results.

2. Background

This study concentrates on the dispatch performance of
C++ programs on modern (superscalar) hardware.
While we assume that the reader is familiar with the
general characteristics of C++, we will briefly review
its most common dispatch implementations, virtual
function tables and the “thunk” variant, and the salient
hardware characteristics of modern processors.
Readers familiar with these topics may wish to skip to
section 2.5.

† In the absence of cache misses.

2.1 Virtual function tables

C++ implements dynamic dispatch using virtual
function tables (VFTs). VFTs were first used by Simula
[DM73] and today are the preferred C++ dispatch
mechanism [ES90]. The basic idea of VFTs is to
determine the function address by indexing into a table
of function pointers (the VFT). Each class has its own
VFT, and each instance contains a pointer to the
appropriate VFT. Function names (selectors) are
represented by numbers. In the single-inheritance case,
selectors are numbered consecutively, starting with the
highest selector number used in the superclass. In other
words, if a class C understandsm different messages,
the class’ message selectors are numbered 0..m-1. Each
class receives its own dispatch table (of sizem), and all
subclasses will use the same selector numbers for
methods inherited from the superclass. The dispatch
process consists of loading the receiver’s dispatch
table, loading the function address by indexing into the
table with the selector number, and jumping to that
function.

With multiple inheritance, keeping the selector code
correct is more difficult. For the inheritance structure
on the left side of Figure 1, functions c and e will both
receive a selector number of 1 since they are the second
function defined in their respective class. D multiply
inherits from both B and C, creating a conflict for the
binding of selector number 1. In C++ [ES90], the
conflict is resolved by using multiple virtual tables per
class. An object of class D has two dispatch tables, D
and Dc (see Figure 1).‡ Message sends will use
dispatch table D if the receiver object is viewed as a B
or a D and table Dc if the receiver is viewed as a C. The
dispatch code will also adjust the receiver address
before calling a method defined in C [ES90].

Figure 2 shows the five-instruction code sequence that
a C++ compiler typically generates for a virtual
function call. The first instruction loads the receiver
object’s VFT pointer into a register, and the subsequent
two instructions index into the VFT to load the target
address and the receiver pointer adjustment (delta) for
‡ We ignore virtual base classes in this discussion. Our benchmark
suite contains only a few instances of them, not enough to allow
meaningful measurements. Virtual base classes introduce an extra
overhead of a memory reference and a subtraction [ES90].

3

multiple inheritance. The fourth instruction adjusts the
receiver address to allow accurate instance variable
access in multiple inherited classes. Finally, the fifth
instruction invokes the target function with an indirect
function call.

2.1.1 Thunks

Instructions 2 and 4 in Figure 2 are only necessary
when the class of the receiver has been constructed
using multiple inheritance. Otherwise, the offset value
loaded into the registerdelta_reg in instruction 2 is
zero, and the add in instruction 4 has no effect. It would
be convenient if we could avoid executing these
useless operations, knowing that the receiver’s class
employs only single inheritance. Unfortunately, at
compile time, the exact class of the receiver is
unknown. However, the receiver’s virtual function
table, which stores the offset values, “knows” the exact
class. The trick is to perform the receiver address
adjustment only after the virtual function table entry is
loaded. In the GNU GCC thunk implementation, the
virtual function table entry contains the address of a
parameterless procedure (a thunk), that adjusts the
receiver address and then calls the correct target
function (see Figure 3). In the single inheritance case,
the virtual function table entry points directly to the

A
a
0

B
a c
3 1

f
2

C
a e
0 4

D
a c
5 1

f g
2 6

E
a e
0 4

b d
7 8

Dc
a e
5 4

A a

B acf C e

E bdD ag

Figure 1. Virtual function tables (VFTs)
Capital characters denote classes,
lowercase characters message selectors, and
numbers method addresses

Figure 2. Instruction sequence for VFT dispatch

1: load [object_reg + #VFToffset], table_reg
2: load [table_reg + #deltaOffset], delta_reg
3: load [table_reg + #selectorOffset], method_reg
4: add object_reg, delta_reg, object_reg
5: call method_reg

target function. Instead of always loading the offset
value and adding it to thethis pointer, the operation
only happens when the offset is known to be non-zero.
Since multiple inheritance occurs much less frequently
than single inheritance, this strategy will save two
instructions for most virtual function calls†. Therefore,
barring instruction scheduling effects, thunks should be
at least as efficient as standard virtual function tables.

2.2 Superscalar processors

How expensive is the virtual function call instruction
sequence? A few years ago, the answer would have
been simple: most instructions execute in one cycle
(ignoring cache misses for the moment), and so the
standard sequence would take 5 cycles. However, on
current hardware the situation is quite different because
processors try to exploit instruction-level parallelism
with superscalar execution. Figure 4 shows a
simplified view of a superscalar CPU. Instructions are
fetched from the cache and placed in an instruction
buffer. During every cycle, the issue unit selects one or
more instructions and dispatches them to the
appropriate functional unit (e.g., the integer unit).

The processor may contain multiple functional units of
the same type. For example, the processor in Figure 4
has three integer units and thus can execute up to three
† In the GNU GCC implementation for SPARC excutables, one of
the offset instructions is usually replaced by a register move. The
latter is necessary to pass thethis pointer in register %o0 to the
callee.

add #offset to object_reg
jump #method

target

Figure 3. Thunk virtual function tables, in the multiple
inheritance case (above), and the single
inheritance case (below)

target

thunk
vf-table

vf-table

4

integer instructions concurrently. The number of
instructions that can be dispatched in one cycle is
called the issue width. If the processor in Figure 4 had
an issue width of four (often called “four-way
superscalar”), it could issue, for example, two integer
instructions, one load, and a floating-point instruction
in the same cycle.

Of course, there is a catch: two instructions can only
execute concurrently if they are independent. There are
two kinds of dependencies: data dependencies and
control dependencies.Data dependencies arise when
the operands of an instruction are the results of
previous instructions; in this case, the instruction
cannot begin to execute before all of its inputs become
available. For example, instructions 2 and 3 of the VFT
dispatch sequence can execute concurrently since they
are independent, but neither of them can execute
concurrently with instruction 1 since they both use the
VFT pointer loaded in instruction 1.

The second form of dependencies,control
dependencies, result from the fact that some
instructions influence the flow of control. For example,
the instructions following a conditional branch are not
known until the branch executes and determines the
next instruction to execute (i.e., whether the branch is
taken or not). Therefore, even if an instruction after the
branch has no data dependencies, it cannot be executed
concurrently with (or before) the branch itself.

Both forms of dependencies may carry an execution
time penalty because of pipelining. Whereas the result
of arithmetic instructions usually is available in the
next cycle (for a latency of one cycle), the result of a
load issued in cyclei is not available until cyclei+2 or

load/store unit

instruction buffer

issue unit

branch unitinteger unit FPU

Figure 4. Simplified organization of a superscalar CPU

i+3 (for a load latency L of 2 or 3 cycles) on most
current processors even in the case of a first-level cache
hit. Thus, instructions depending on the loaded value
cannot begin execution until L cycles after the load.
Similarly, processors impose abranch penalty of B
cycles after conditional or indirect branches: when a
branch executes in cyclei (so that the branch target
address becomes known), it takes B cycles to refill the
processor pipeline until the first instruction after the
branch reaches the execute stage of the pipeline and
produces a result.

To summarize, on ideal hardware (with infinite caches
and an infinite issue width), the data and control
dependencies between instructions impose a lower
limit on execution time. If N instructions were all
independent, they could execute in a single cycle, but if
each of them depended on the previous one they would
take at least N cycles to execute. Thus,the number of
instructions is an inaccurate predictor of execution
time on superscalar processors. Even though actual
processors do not have infinite resources, this effect
still is significant as we shall see later in this paper.

Figure 5 shows the dependencies between the
instructions of the VFT dispatch sequence. At most
two instructions can execute in parallel, and the
minimum cost of the entire sequence is 2L for the chain
of data dependencies between instructions 1, 3, and 5,
and B for the branch penalty for instruction 5, i.e., the

1: load [object_reg + #VFToffset], table_reg
2: load [table_reg + #deltaOffset], delta_reg
3: load [table_reg + #selectorOffset], method_reg
4: add object_reg, delta_reg, object_reg
5: call method_reg

1

23

45

0

L

2L

2L+B+16

Figure 5. VFT execution schedules with cycle counts
and assembly code.
Dependencies are indicated with arrows.

5

delay until the first instruction after it can execute.
Thus, the sequence’s execution time on a processor
with load latency L and branch penalty B is 2L + B + 1
cycles.

In a previous study [DHV95] we approximated the
dispatch cost of several techniques by analyzing the
call sequence carefully and describing their cost as a
function of load latency and branch penalty, taking into
account superscalar instruction issue. However, this
approximation (e.g., 2L + B + 1 for VFT dispatch) is
only an upper bound on the true cost, and the actual
cost might be lower. The next few sections explain
why.

2.3 Branch prediction

Since branches are very frequent (typically, every fifth
or sixth instruction is a branch [HP95]) and branch
penalties can be quite high (ranging up to 15 cycles on
the Intel Pentium Pro processor [Mic95]), superscalar
processors try to reduce the average cost of a branch
with branch prediction. Branch prediction hardware
guesses the outcome of a branch based on previous
executions and immediately starts fetching instructions
from the predicted path. If the prediction is correct, the
next instruction can execute immediately, reducing the
branch latency to one cycle; if predicted incorrectly, the
processor incurs the full branch penalty B. Predictions
are based on previous outcomes of branches. Typically,
the branch’s address is used as an index into a
prediction table. For conditional branches, the result is
a single bit indicating whether the branch is predicted
taken or not taken, and typical prediction hit ratios
exceed 90% [HP95].

For indirect branches, the prediction mechanism must
provide a full target address, not just a taken/not taken
bit. A branch target buffer (BTB) accomplishes this by
storing the predicted address in a cache indexed by the
branch address (very similar to a data cache). When the
processor fetches an indirect branch, it accesses the
BTB using the branch instruction’s address. If the
branch is found, the BTB returns its last target address
and the CPU starts fetching instructions from that
address before the branch is even executed. If the
prediction is wrong, or if the branch wasn’t found, the

processor stalls for B cycles and updates the BTB by
storing the branch and its new target address.

BTBs affect the cost of the VFT dispatch sequence: if
the virtual call was executed previously, is still cached
in the BTB, and invokes the same function as in the
previous execution, the branch penalty is avoided,
reducing the sequence’s cost to 2L + 1.

2.4 Advanced superscalar execution

Unfortunately, the truth is even more complicated. To
improve performance, modern processors employ two
additional techniques that can decrease the
performance impact of dependencies.

First, instructions may be executedout of order: an
instruction I that is waiting for its inputs to become
available does not stall all instructions after it. Instead,
those instructions may executebefore I if their inputs
are available. Additional hardware ensures that the
program semantics are preserved; for example, if
instructions I1 and I2 write the same register, I1 will not
overwrite the result of I2 even if I2 executes first. Out-
of-order execution increases throughput by allowing
other instructions to proceed while some instructions
are stalled.

Second,speculative execution takes this idea one step
further by allowing out-of-order execution across
conditional or indirect branches. That is, the processor
may speculatively execute instructions before it is
known whether they actually should be executed. If
speculation fails because a branch is mispredicted, the
effects of the speculatively executed instructions have
to be undone, again requiring extra hardware. Because
branches are so frequent, speculating across them can
significantly improve performance if branches can be
predicted accurately.

Of course, the processor cannot look arbitrarily far
ahead in the instruction stream to find instructions that
are ready to execute. For one, the probability of
fetching from the correct execution path decreases
exponentially with each predicted branch. Also, the
issue units must select the next group of instructions to
be issued from the buffer within one cycle, thus
limiting the size of that buffer. The most aggressive

6

designs available today select their instructions from a
buffer of about 30-40 instructions [Mic94][Mic95], so
that instructions have to be reasonably “near” the
current execution point in order to be issued out-of-
order.

2.5 Co-scheduling of application code

With speculative, out-of-order execution the cost of the
VFT dispatch sequence is not only highly variable
(depending on the success of branch prediction), but it
cannot be computed in isolation from its surrounding
code. For example, if many other instructions precede
the dispatch sequence, they could execute during the
cycles where the processor would otherwise lay idle
waiting for the loads to complete. Or vice versa, the
dispatch instructions could fit into empty issue slots of
the rest of the basic block. This co-scheduling of the
application and dispatch code may reduce the overall
cost significantly, possibly to the point where
completely removing the dispatch code would not
speed up the program at all (since all dispatch
instructions fit into otherwise empty issue slots). Thus,
at least in theory, a dispatch implementation may reach
zero overhead (i.e., adds no cycles to the execution
time) even though it does introduce extra instructions.

2.6 Summary

While all of the processor features discussed above
improve performance on average, they also increase
the variability of an instruction’s cost since it depends
not only on the instruction itself (or the instruction and
its inputs), but also on the surrounding code. Most
processors sold today (e.g., the Intel Pentium and
Pentium Pro processors, as well as virtually all RISC
processors introduced since 1995) incorporate several
or all of these features. As a result, it is hard to predict
how expensive the average C++ virtual function call is
on a current-generation PC or workstation. The
experiments described in the rest of this paper aim to
answer exactly this question.

3. Method

This section describes how we simulated the execution
of the C++ programs, what processor features we
assumed, and what benchmarks we used.

3.1 Simulation scheme

Figure 6 shows an overview of our experimental
approach: first, the C++ program compiled by an
optimizing compiler (we used GNU gcc 2.6.3 and 2.7.2
with options -O2 -msupersparc). Then, an application
that uses the EEL executable editing library [LS95]
detects the dispatch instructions and produces a file
with their addresses. Using this file as well as a
processor description, the superscalar processor
simulator then runs the benchmark.

 benchmark
C++

source

Figure 6. Overview of experimental setup

GCC
Compiler

EEL vf-
call marker

list of vf-call
instructions
in benchmark

benchmark
executable

 processor
description

superscalar
processor
simulator

 simulated
execution
time data

7

The simulator can execute most SPARC programs
using theshade tracing tool [CK93]. Shade always
executes all instructions of the program so that
programs produce the same results as if they were
executed on the native machine. Each instruction
executed can be passed to a superscalar processor
simulator that keeps track of the time that would be
consumed by this instruction on the simulated
processor. Optionally, the simulation of dispatch
instructions can be suppressed (i.e., they are executed
but not passed to the timing simulator), thus simulating
the execution of Pideal , the program using the perfect,
zero-cost dynamic dispatch scheme.

Although we currently use only benchmarks for which
we have the source, this is not strictly necessary.
Provided that the vf-call marker program detects all
virtual calls correctly, any executable can be measured.
The source language does not even have to be C++, as
long as the language under consideration uses VFT
dispatch for its messages. Compared to a tool that
detects dispatches at the source code level, a tool based
on binary inspection may be harder to construct, but it
offers a significant advantage even beyond its source,
compiler, and language independence. In particular, it
is non-intrusive, i.e., does not alter the instruction
sequence, and is thus more accurate.

The vf-call marker program detects the virtual function
call code sequence discussed in section 2. This code
sequence consists of the five instructions in Figure 2
and any intervening register moves. They may appear
in different orderings (but with the correct
dependencies), possibly spread out over different basic
blocks. Since the code sequence is highly
characteristic, the marker program is very accurate,
detecting virtual calls exactly for most programs.† For
three benchmarks the marker is slightly imprecise,
erring by 0.4% or less. Only inixx, 2.3% of the calls
went undetected so that our measurements slightly
underestimate the direct dispatch cost for this
benchmark.

† We cross-checked this by using VPROF, a source-level virtual
function profiler for GCC [Aig95].

3.2 Benchmarks

We tested a suite of two small and six large C++
applications totalling over 90,000 lines of code
(Table 1). In general, we tried to obtain large, realistic
applications rather than small, artificial benchmarks.
Two of the benchmarks (deltablue and richards) are
much smaller than the others; they are included for
comparison with earlier studies (e.g., [HU94, G+95]).
Richards is the only synthetic benchmark in our suite
(i.e., the program was never used to solve any real
problem). We did not yet test any programs for which
only the executables were available.

For every program exceptporky‡ we also tested an
“all-virtual” version (indicated by “-av” suffix) which
was compiled from a source in which all member
functions except operators and destructors were
declared virtual. We chose to include these program
versions in order to simulate programming styles that
extensively use abstract base classes defining virtual
functions only (C++’s way of defining interfaces). For
example, the Taligent CommonPoint frameworks
‡ Porky cannot be compiled as “all virtual” without a large effort of
manual function renaming.

name description lines

deltablue incremental dataflow constraint solver 1,000

eqn type-setting program for mathe-
matical equations

8,300

idl SunSoft’s IDL compiler (version 1.3)
using the demonstration back end
which exercises the front end but
produces no translated output.

13,900

ixx IDL parser generating C++ stubs,
distributed as part of the Fresco library
(which is part of X11R6). Although it
performs a function similar to IDL, the
program was developed
independently and is structured
differently.

11,600

lcom optimizing compiler for a hardware
description language developed at the
University of Guelph

14,100

porky back-end optimizer that is part of the
Stanford SUIF compiler system

22,900

richards simple operating system simulator 500

troff GNU groff version 1.09, a batch-style
text formatting program

19,200

Table 1: Benchmark programs

8

provide all functionality through virtual functions, and
thus programs using CommonPoint (or similar
frameworks) are likely to exhibit much higher virtual
function call frequencies. Lacking real, large, freely
available examples of this programming style, we
created the “all virtual” programs to provide some
indication of the virtual function call overhead of such
programs. These versions can also be used to
approximate the behavior of programs written in
languages where (almost) every function is virtual,
e.g., Java or Modula-3.

For each benchmark, Table 2 shows the number of
executed instructions, the number of virtual function
calls, and the average number of instructions between
calls. All numbers are dynamic, i.e., reflect run-time
execution counts unless otherwise mentioned. All
programs were simulated in their entire length as
shown in Table 2. Simulation consumed a total of
about one CPU-year of SPARCstation-20 time.

3.3 Processors

Table 3 shows an overview of recently introduced
processors. Since we could not possibly simulate all of

program version instructions
virtual
calls

instruc-
tions per
virtual

call

deltablue
original 40,427,339 615,100 65

all-virtual 79,082,867 5,145,581 15

eqn
original 97,852,301 100,207 976

all-virtual 108,213,587 1,267,344 85

idl
original 91,707,462 1,755,156 52

all-virtual 99,531,814 3,925,959 25

ixx
original 30,018,790 101,025 297

all-virtual 34,000,249 606,463 56

lcom
original 169,749,862 1,098,596 154

all-virtual 175,260,461 2,311,705 75

richards
original 8,119,196 65,790 123

all-virtual 15,506,753 1,146,217 13

troff
original 91,877,525 809,312 113

all-virtual 114,607,159 3,323,572 34
porky original 748,914,861 3,806,797 196

Table 2: Basic characteristics of benchmark pro-
grams (dynamic counts)

these processors and their subtle differences, we chose
to model a hypothetical SPARC-based processor that
we dubbed P96 because it is meant to resemble the
average processor introduced today.

For our experiments, we ran all benchmarks on P96 to
obtain the base results for the dispatch overhead. To
examine the effects of the most important processor
features, we then varied each parameter while keeping
all others constant. Finally, we also measured a few
individual configurations that resemble existing
processors (Table 3). P96-noBTB resembles the
UltraSPARC in that it lacks a BTB, i.e., does not
predict indirect branches. P96-Pro resembles the
Pentium Pro in its branch configuration, having a very
high branch penalty and relatively modest branch
prediction. Finally, P2000 is an idealized processor
with essentially infinite hardware resources; we use it
to illustrate the impact of the branch penalty on a
processor that has virtually no other limitations on
instruction issue.

It should be noted that none of these processors is
intended to exactly model an existing processor; for
example, the Intel Pentium Pro’s instruction set and
microarchitecture is very different from P96-Pro, and
so the latter should not be used to predict the Pentium
Pro’s performance on C++ programs. Instead, we use
these processors to mark plausible points in the design
space, and their distance and relationship to illustrate
particular effects or trends.

a BTB = branch target buffer size; BHT = branch history table size (branch
histories are used to predict the direction of conditional branches)

b 16Kx2 means the cache is 16K bytes , and 2-way associative

Processor
Ultra
SPARC

MIPS
R10K

DEC
Alpha
21164

Power
PC 604

Intel
Pentium
Pro

Shipping date 95 95 95 95 95
Size of BTB 0 0 0 64 512
Size of BHTa 2048 512 2048 512 0
Branch Penalty 4 4 5 1-3 11-15
Issue Width 4 5 4 4 3
Load Latency 2 2 2 3
Primary I-cacheb 16Kx2 32Kx2 8Kx1 32Kx4 8K
Primary D-cache 16Kx1 32Kx2 8Kx1 32Kx4 8K
Out-of-order ? Y Y Y Y Y
Speculative? Y Y Y Y Y

Table 3: Characteristics of recently introduced
processors

9

4. Experimental Results

This section first examine the cost of dynamic dispatch
on the baseline architecture, P96, and then examines
the impact of individual architectural parameters
(branch penalty/prediction, load latency, and issue
width).

4.1 Direct cost on P96

4.1.1 Instructions and cycles

First, we will examine the cost of dynamic dispatch on
the baseline architecture, P96. Recall that we define the
cost as the additional cycles spent relative to a
“perfect” dispatch implementation that implements
each dispatch with a direct call. Figure 7 and Figure 8
show the results. On the standard benchmarks, the cost

Processor P96
P96-

noBTB
P96-
Pro

P2000/
bp1

P2000/
bp10

Size of BTB 256 0 512 1024 1024
Size of BHT 1024 1024 0 1024 1024
Branch Penalty 4 4 15 1 10
Issue Width 4 4 4 32 32
Load Latency 2
Primary I-cache 32K, 2-way associative
Primary D-cache 32K, 2-way associative
Out-of-order ? Y
Speculative? Y

Table 4: Characteristics of simulated processors

Figure 7. Direct cost of standard VFT dispatch
(unmodified benchmarks)

eq
n

tr
of

f

ix
x

lc
om id

l

ri
ch

ar
ds

de
lta

bl
ue

po
rk

y

0%

2%

4%

6%

8%

10%

12%

14%

R
el

at
iv

e
ov

er
he

ad

instructions

cycles

29%

varies from 1.4 % foreqn to 29% fordeltablue, with a
median overhead of 5.2 %. For the all-virtual versions,
the overhead increases to between 4.7 % and 47% with
a median overhead of 13%. The standard benchmarks
spend a median 3.7% of their instructions on dispatch,
and the all-virtual versions a median of 13.7%. For the
standard benchmarks the cycle cost is larger than the
cost in the number of instructions executed; on
average, it is a median 1.7 times larger. This difference
confirms that the VFT dispatch sequence does not
schedule well on a superscalar processor, compared to
non-dispatch code. However, this effect varies
substantially between benchmarks. The largest
difference is found ineqn (2.8 times) and deltablue (3.8
times). Since the dispatch sequence is always the same,
this indicates that the instructions surrounding a call
can significantly affect the cost of virtual function
lookup, or that virtual calls are more predictable in
some programs than in others. We will explore these
questions shortly.

4.1.2 Thunks

Figure 9 compares the cycle cost of standard and thunk
implementations for the unmodified benchmarks†.
Thunks have a smaller cycle overhead than regular
† Since GCC cannot compileidl, idl-av, andlcom-av with thunks,
these benchmarks are missing from Figure 9 and Figure 10.

eq
n-

av

tr
of

f-
av

ix
x-

av

lc
om

-a
v

id
l-

av

ri
ch

ar
ds

-a
v

de
lta

bl
ue

-a
v

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

R
el

at
iv

e
ov

er
he

ad

instructions

cycles

Figure 8. Direct cost of standard VFT dispatch
(all-virtual benchmarks)

10

tables for all benchmarks, using a median of 79% of
the cycles of the regular implementation. Figure 10
shows the cycle cost for the all-virtual benchmarks.
Here, thunks have 72% of the regular overhead. The
exact amount of the gain varies greatly between
benchmarks. For example, the thunk overhead forixx
and deltablue is only 15% and 47% of the regular
overhead, while fortroff, thunks use almost as many
cycles as standard tables (98%).

How can thunks, in some cases, improve dispatch
performance by more than a factor of two? One reason
for the difference is the unnecessary receiver address
adjustment that is avoided with thunks (instructions 2
and 4 in Figure 5). In the thunk implementation,
instructions that depend on the receiver’s address do
not have to wait for the virtual function call to
complete, if the target is predicted accurately. In
contrast, in the standard implementation instructions 2
and 4 create a dependency chain from instruction 1 to
any instruction that needs the receiver’s address. In

Figure 9. Cycle cost of VFT dispatch,
standard and thunk variants
(unmodified benchmarks)

eq
n

tr
of

f

ix
x

lc
om

ri
ch

ar
ds

de
lta

bl
ue

po
rk

y

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%
R

el
at

iv
e

ov
er

he
ad

standard

thunk
29%

deltablue, the added dependencies stretch the inner
loop from 9 cycles (thunks) to 12 cycles (standard),
where a direct called implementation would use 8
cycles (all times exclude cache misses). Thus the
overhead of thunks is only 25% of the overhead of
standard tables for a large part of the execution, so that
the removal of only two instructions out of five can
avoid more than half the virtual function call overhead
in particular cases. This effect is particularly
pronounced in all-virtual benchmarks that contain
many calls to accessor functions (i.e., functions that
just return an instance variable).

Another part of the difference is due to memory
hierarchy effects: with perfect caching†, thunk
overhead forixx anddeltablue rises to 48% and 54%.

† By perfect caching we mean that there are no cache miss, not even
for cold starts.

Figure 10. Cycle cost of VFT dispatch,
standard and thunk variants (all-
virtual benchmarks)

eq
n-

av

tr
of

f-
av

ix
x-

av

ri
ch

ar
ds

-a
v

de
lta

bl
ue

-a
v

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

R
el

at
iv

e
ov

er
he

ad

standard

thunk

11

4.1.3 Generalization to other processors

How specific are these measurements to our
(hypothetical) P96 processor? Figure 11 compares the
relative dispatch overhead of standard tables on P96
with that of the other processors listed in Table 3.
Clearly, the processor configuration affects
performance: longer branch penalties combined with
less ambitious branch prediction (P96-Pro) and the
absence of a BTB (P96-noBTB) both impact dispatch
performance negatively so that all programs spend a
larger percentage of their time in dispatch code. Even
P2000 with its 32-instruction issue CPU shows relative
overheads that are a median 28% higher than in P96.
Thus, we expect future processors to exhibit higher
dispatch overheads for most C++ programs.

To explain these differences in more detail, the next
few sections present the effects of several processor
characteristics on the direct cost of dynamic dispatch.
In particular, we will investigate the impact of the
branch penalty, the size of the branch target buffer
(BTB), and the issue width. In each experiment, we
vary the feature under investigation while keeping all
other characteristics constant. To illustrate the trends,

Figure 11. Dispatch overhead in P96 vs. P96-noBTB
and P96-Pro

0
0 0 0 0 0

0

0

0
0 0

0

0

0

0

1

1

1
1

1

1

1
1

1

1

1

1

1

1
1

2

2

2 2

2
2

2

2

2

2
2

2

2

2
2

3
3 3 3

3
3

3

3

3

3 3

3

3

3
3

4
4 4 4

4
4

4

4

4
4 4

4

4

4 4

eq
n

ix
x

lc
om

po
rk

y

tr
of

f

ri
ch

ar
ds id

l

de
lta

bl
ue

eq
n-

av

ix
x-

av

lc
om

-a
v

tr
of

f-
av

id
l-

av

ri
ch

ar
ds

-a
v

de
lta

bl
ue

-a
v

0%

10%

20%

30%

40%

50%

60%

70%

80%

fr
ac

tio
n

of
 e

xe
cu

tio
n

tim
e

sp
en

t i
n

di
sp

at
ch

0 P96

1 P96-pro

2 P96-noBTB

3 P2000/bp1

4 P2000/bp10

we show cost in two ways, each of them relative to
P96. The first graph in each section compares absolute
cost, i.e., the number of dispatch cycles relative to P96.
The second graph compares relative cost, i.e., the
percentage of total execution time (again relative to
P96) spent in dispatch. The two measurements arenot
absolutely correlated: if the absolute overhead
increases, the relative cost may decrease if the rest of
the application is slowed down even more than the
dispatch code. Similarly, the absolute cost may
decrease while the relative cost increases because the
absolute cost of the rest of the application decreases
even more strongly.

4.2 Influence of branch penalty

Since one of the five instructions in the dispatch
sequence is an indirect branch, the branch
misprediction penalty directly affects the cost of virtual
function dispatch. Since each dispatch contains a single
indirect branch, we would expect the absolute
overhead to increase proportionally to the number of
mispredicted branches. And since the number of
mispredictions is independent of the branch penalty,
the cost should increase linearly with the branch
penalty.

Figure 12 confirms this expectation (see Table 5 for the
one-letter abbreviations used in Figure 12 - 17). For
small branch penalties, the actual penalty can be
smaller than expected if the branch penalty is filled
with instructions preceding the branch which have not
yet completed (e.g. because they are waiting for their

name
un

m
od

ifi
ed

al
l-v

irt
ua

l
deltablue D d

eqn E e

idl I i

ixx X x

lcom L l

porky P n/a

richards R r

troff T t

Table 5: Benchmark abbreviations

12

inputs to become available). This effect appears to be
small.

The slope of the overhead lines increases with the BTB
miss ratio, i.e., the fraction of mispredicted calls.
Richardsand troff have large BTB miss ratios (54%
and 30%), which account for their steep cost curves.
Most of the other benchmarks have a misprediction
rate of 10% or less, which dampens the effect of branch
penalty on cycle cost.

Figure 13 shows that thefraction of execution time
spent in dispatch can actually decrease with increasing
branch penalty. For example,ixx has many indirect
calls that are not part of virtual function calls, and these
branches are very unpredictable (with a BTB miss ratio
of 86%). Consequently, the relative overhead of virtual
calls inixx decreases with larger branch penalties since
the cost of the rest of the program increases much
faster.

However, for most benchmarks the relative overhead
differs less than 20% between the extreme branch
penalty values (0 and 10), indicating that the VFT
branches are about as predictable as the other branches

D D D D D D D D D D D D Dd d d d d d d d d d d d d

E
E

E
E

E
E

E
E

E
E

E
E

E

e e e e e e e e e e e e e

X X X X X X X X X X X X X

x x x x x x x x x x x x x
L L L L L L L L L L L L L

l l l l l l l l l l l l l
I I I I I I I I I I I I Ii i i i i i i i i i i i i

P
P

P
P

P
P

P
P

P
P

P
P

P

R

R

R

R

R

R

R

R

R

R

R

R

R

r r r
r

r
r

r
r

r
r

r
r

r

T
T

T
T

T
T

T
T

T
T

T
T

T

t t t t t t t t t t t t t

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1
ov

er
he

ad
 r

el
at

iv
e

to
 P

96

branch penalty

Figure 12. Overhead in cycles (relative to P96) for
varying branch penalties

in the applications. Thus, the relative dispatch costs
given earlier in Figure 7 and Figure 8 are quite
insensitive to branch penalty variations.

4.3 Influence of branch prediction

As discussed in section 2.3, branch target buffers
(BTBs) predict indirect (or conditional) branches by
storing the target address of the branch’s previous
execution. How effective is this branch prediction? Our
baseline processor, P96, has separate prediction
mechanisms for conditional and indirect branches since
the former can better be predicted with history-
sensitive 2-bit predictors [HP95]. Thus, varying the
size of the BTB will affect only indirect branches, thus
directly illustrating the BTB’s effect on dispatch
overhead.

In general, smaller BTBs have lower prediction ratios
because they cannot store as many individual branches.
Recall that the processor uses the branch instruction’s
address to access the BTB (just like a load instruction
uses the data address to access the data cache). If the
branch isn’t cached in the BTB, it cannot be predicted.

D D D D D D D D D D D D D

d d d d d d d d d d d d d

E
E

E
E

E
E

E
E

E
E

E

E
E

e
e e e e e e e e e e e e

X X
X

X X
X X X X X

X X X

x
x

x
x

x
x

x
x

x
x

x
x x

L L L L L L L L L L L L L

l l l l l l l l l l l l l

I
I

I
I

I
I

I
I

I
I

I
I

I

i i i i i i i i i i i i i
P

P
P

P
P

P
P

P
P

P
P

P
P

R

R

R

R

R

R

R

R

R

R

R
R

R

r r r r r r r r r r r r r

T

T

T

T

T

T

T

T

T

T

T

T

T

t
t t

t t t t t t t t t t

0 1 2 3 4 5 6 7 8 9 10 11 12
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ov
er

he
ad

 r
el

at
iv

e
to

 P
96

branch penalty

Figure 13. Overhead in % of total execution time
(relative to P96) for varying branch
penalties

13

Naturally, the smaller the BTB, the fewer branches it
can hold, and thus the larger the fraction of branches
that can’t be predicted because they aren’t currently
cached in the BTB. Figure 14 confirms this
expectation: in general, smaller BTBs increase
dispatch overhead.† Apparently, a BTB size of 128
entries is large enough to effectively cache all
important branches, as the dispatch overhead does not
decrease significantly beyond that BTB size.

Figure 15 shows the dispatch overhead as a fraction of
execution time. In general, the relative overhead varies
in tandem with the absolute overhead, i.e., smaller
BTBs increase dispatch overhead. For processors with
BTBs with 128 or more entries, P96 should accurately
predict the BTB’s impact on dispatch performance.

Finally, Figure 16 shows the prediction ratio as a
function of the BTB size. The ratio starts at zero
(without a BTB, indirect branches cannot be predicted)
and asymptotically reaches a final value around a BTB
† For very small BTB sizes, the overhead canincrease with a larger
BTB. This is not a bug in our data. In very small BTBs, there are
many conflict misses—branches are evicting each other from the
BTB because the BTB cannot cache the working set of branches.
With very small BTBs, this thrashing is so bad that removing the
virtual calls does not improve hit ratios inPideal . However, at some
point the BTB may be just large enough to hold most indirect
branches inPideal but still not large enough to also hold the virtual
function calls. In this case, the difference in BTB effectiveness
betweenPideal and P suddenly becomes large, thus leading to a
higher dispatch overhead.

D
D

D D D D D D D D D

d d d d

d d d d d d d

E
E

E E
E

E E E E E E

e

e e e

e e e e e e e

X X X
X

X

X
X X X X X

x x

x
x

x

x

x

x

x
x x

L

L

L

L

L L L L L L L

l

l
l

l

l
l

l
l l l l

I I I

I I I I I I I I

i i i i
i

i i i i i i

P P

P

P
P

P P P P P P

R

R R R R R R R R R R

r r r r r

r

r

r
r r r

T

T
T T

T
T T T T T T

t
t t t

t
t

t

t
t t t

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

0

1

2

3

4

5

6

ov
er

he
ad

 r
el

at
iv

e
to

 P
96

Branch Target Buffer size

Figure 14. Overhead in cycles (relative to P96)
for varying Branch Target Buffer sizes

size of 128. Generally, smaller benchmarks need fewer
BTB entries to reach asymptotic behavior since they
have fewer active call sites.

D
D

D D D D D D D D D

d d d d

d d d d d d d

E
E

E E
E

E E E E E E

e

e e e

e e e e e e e

X X X
X

X

X
X

X X X X

x x
x

x
x

x

x

x

x
x x

L

L

L

L

L L L L L L L

l

l
l l

l
l

l
l l l l

I I I

I I I I I I I I

i i i i
i

i i i i i i

P P

P

P
P

P
P P P P P

R

R R R R R R R R R R

r r r r r r
r

r r r r

T

T
T T

T
T T T T T T

t t t t
t

t

t

t
t t t

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ov
er

he
ad

 r
el

at
iv

e
to

 P
96

Branch Target Buffer size

Figure 15. Overhead in % of total execution
time (relative to P96) for varying
Branch Target Buffer sizes

D
D

D D D D D D D D D

d d d d

d d
d

d

d d d

E

E

E

E
E

E E E E E E

e

e
e

e

e e e e e e e

X

X X

X

X

X

X
X X X X

x x

x

x

x

x

x

x

x
x x

L L L

L

L L L L L L L

l l l

l

l
l

l

l l l l

I I I

I I I I
I I I I

i i i i

i

i i i i i i

P

P

P

P

P

P
P P P P P

R

R R R R R R R R R R

r r

r r

r

r

r

r

r
r r

T

T

T
T

T

T T T T T T

t

t t t

t

t

t

t

t
t t

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

0

10

20

30

40

50

60

70

80

90

100

H
it

ra
te

BTB size

Figure 16. Indirect branch prediction ratio as a
function of BTB size

14

The asymptotic prediction ratio corresponds to the hit
ratio of an inline cache† [DS84]. For some
benchmarks, prediction works very well, with 90% or
more of the calls predicted correctly. But several
benchmarks (especiallyrichards, ixx, eqn, and troff)
show much lower prediction ratios even with very
large BTBs because their calls change targets too
frequently. For example, the single virtual call in
richards frequently switches between four different
receiver classes, each of which redefines the virtual
function. No matter how large the BTB, such calls
cannot be predicted well. The median prediction ratio
for the standard benchmarks is only 65% vs. 91% for
the all-virtual versions; the latter are more predictable
because many calls only have a single target and thus
are predicted 100% correctly after the first call.

4.4 Influence of load latency

Load latency influences dispatch cost since the VFT
dispatch sequence contains two dependent load
instructions. Thus, higher load latencies should lead to
higher dispatch overhead. Our measurements confirm
this assumption: compared to the baseline load latency
of two, increasing the load latency to three increases
absolute dispatch cost by a median of 51%; the relative
cost increases by 31%. Similarly, with a load latency of
one the absolute overhead decreases by 44% and the
relative overhead by 37%. (Processors are unlikely to
have load latencies larger than three, so we did not
simulate these.)

Clearly, load latency affects the efficiency of dispatch
code more than that of “normal” code sequences.
Furthermore, it appears that there are not enough
surrounding application instructions to effectively hide
the latency of the loads in the dispatch sequence, even
for small load latencies.

4.5 Influence of issue width

The final factor, issue width (i.e., the number of
instructions that can be issued to the functional units in
one cycle) can also influence dispatch performance.
Figure 17 shows that issue width has a strong impact
† Since an inline cache stores a target separately for each call site,
its hit rate mirrors that of a branch target buffer of infinite size with
no history prediction bits.

for small values. On a scalar processor (issuing at most
one instruction per cycle), programs spend a much
smaller fraction of their time in dispatch. Of course,
absolute performance would be worse than on P96
since execution would consume many more cycles (for
example,lcom is three times slower on the one-issue
processor than on the four-issue processor). With larger
issue widths the relative overhead increases more
slowly, reaching an asymptotic value of 26% (median)
more than on P96. Thus, on wider-issue processors, the
relative cost of dynamic dispatch will increase slightly
because the application code benefits more from the
additional issue opportunities than the dispatch code.‡

4.6 Cost per dispatch

In [DHV95] we predicted the cost of a single VFT
dispatch to be 2L + B + 1, i.e., two load delays plus a
branch penalty; for P96, this adds up to 9 cycles. How
accurate is this prediction? Figure 18 shows the cost in
cycles per dispatch for all benchmarks. Clearly, the
cost estimate of 9 cycles is too high, but that is not
‡ For a few benchmarks (e.g.,richards) the relative overhead
decreases with high issue widths. We assume that these benchmarks
benefit from higher issue rates because they allow critical dispatch
instructions to start earlier, thus hiding part of their latency.

Figure 17. Overhead in % of total execution time
(relative to P96) for varying
instruction issue widths

D

D

D
D D D D

d

d

d
d d d d

E

E

E

E
E E E

e

e

e

e
e e e

X

X

X

X
X

X X

x

x

x

x

x

x x

L

L

L

L
L

L
L

l

l

l

l
l

l
l

I

I

I

I I I I

i

i

i

i i i i

P

P

P

P P P P

R

R

R

R
R R

R

r

r

r

r r
r r

T

T

T

T
T T T

t

t

t

t

t

t t

1 2 4 6 8 12 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ov
er

he
ad

 r
el

at
iv

e
to

 P
96

Instruction Issue Width

15

surprising because the above model ignores the effects
of branch prediction and co-scheduling of non-dispatch
instructions. In essence, a BTB reduces the effective
branch penalty since the full penalty B is only incurred
upon a misprediction. The cost model could be
improved by using the effective branch penalty Beff =
B * btb_misprediction_ratio. For the standard
benchmarks, with a median misprediction ratio of 35%,
this model predicts a cost of 6.4 cycles, which still
overestimates the real cost (median 3.9 cycles).
Considering all benchmarks, the median misprediction
ratio of 11% results in an estimated cost of 5.4 cycles
per dispatch, which overestimates the actual median of
2.8 cycles / dispatch by a factor of two.

Dispatch cost varies widely: a single dispatch costs 2.1
cycles inlcombut 10.2 cycles indeltablue, a difference
of a factor of 4.8. This variation illustrates the
combined effects of the factors discussed previously,
such as the BTB hit ratio and the co-scheduling of
application code. The dispatch cost of the all-virtual
programs varies much less since the average cost is
dominated by very predictable monomorphic calls (i.e.,
call sites invoking the same function every time).

Figure 18. Cycles per dispatch

♦

♦
♦

♦ ♦

♦

♦

♦

♦

♦
♦ ♦

♦ ♦

♦

eq
n

lc
om tr
of

f
ix

x
ri

ch
ar

ds id
l

de
lta

bl
ue

po
rk

y
eq

n-
av

lc
om

-a
v

tr
of

f-
av

ix
x-

av
ri

ch
ar

ds
-a

v
id

l-
av

de
lta

bl
ue

-a
v

0

1

2

3

4

5

6

7

8

9

10

11

C
yc

le
s

pe
r

vi
rt

ua
l f

un
ct

io
n

ca
ll

5. Discussion and Future Work

What does this detailed dispatch performance analysis
tell us? Will dispatch performance improve with future
hardware? Should programmers write their
applications differently to improve performance?

First, the median dispatch overheads we observed
(5.2% for the standard benchmarks and 13.7% for the
all-virtual versions) can be used as a bound on the
dispatch performance improvements one can hope to
obtain, for C++ programs, from better software or
hardware. Thus, no matter how good a dispatch
mechanism is, we cannot hope for much more than a
performance improvement of around 5-10%. Any
further improvement must come from other
optimizations such as customization or inlining
[CUL89, HU94]. Given that better optimizing
compilers are possible [AH96], it hardly seems
appropriate for programmers to compromise the
structure of their programs to avoid dispatch.

Many object-oriented systems use or could use VFT-
like dispatch mechanisms (e.g., implementations of
Java, Modula-3, Oberon-2, and Simula), and thus this
study bears some significance for those languages as
well. While the characteristics of typical programs may
differ from the C++ programs measured here, the
general trends should be similar. Together, the standard
and all-virtual programs represent a wide spectrum of
program behaviors and call frequencies, and thus we
expect many programs written in other languages to
fall somewhere within that spectrum.

Furthermore, the dependency structure (and thus
performance on superscalar processors) of many other
dispatch mechanisms (e.g., selector coloring or row
displacement) is similar to VFT, as we have shown in
[DHV95]. Therefore, the measurements presented here
should apply to these dispatch mechanisms as well.

Although simulations provide accurate numbers, they
are inordinately expensive and complicated. As
discussed in section 4.6, the analytical model for VFT
dispatch cost developed in [DHV95] already predicts
dispatch cost fairly well using only two parameters. In
future work, we intend to use the detailed results
presented here as a starting point to construct a better

16

model that would allow implementors or programmers
to estimate the dispatch cost in their application using a
simple formula containing few processor- or
application-specific parameters.

Our results show that there may be room for better
dispatch algorithms: a 5% or 10% improvement in
performance for most programs is still significant. We
hope that our measurements encourage others to search
for better dispatch mechanisms. Previous work
suggests that inline caching [DS84] should perform
very well on superscalar processors [DHV95], at least
for call sites with low degrees of polymorphism. In
essence, inline caching is the software equivalent of an
infinite branch target buffer (BTB) since it caches the
last dispatch target by modifying the call. In addition, it
contains only a single data dependency and thus
schedules very well [DHV95]. A hybrid, adaptive
dispatch implementation that employs inline caching
where appropriate might considerably reduce dispatch
cost in many programs and thus appears to be an
attractive area for future work.

Finally, will dispatch overhead increase in the future?
We believe so, even though the effect is likely to be
moderate. As Figure 17 showed, the relative overhead
will increase as processors issue more instructions per
cycle. At an issue width of 16, the median overhead
increases by about 26%. Future processors might also
have longer load latencies, further increasing dispatch
cost. General compiler optimizations may also
influence dispatch performance. Much current research
focuses on compilation techniques to increase
instruction-level parallelism. If compilers successfully
reduce execution time on wide-issue processors, the
effective dispatch overhead could further increase for
programs with unpredictable VFT calls. In summary,
over the next few years, we expect the relative dispatch
cost to rise, though the exact extent is hard to predict.

6. Related Work

Rose [Ros88] analyzes dispatch performance for a
number of table-based techniques, assuming a RISC
architecture and a scalar processor. The study considers
some architecture-related performance aspects such as
the limited range of immediates in instructions. Milton

and Schmidt [MS94] compare the performance of
VTBL-like techniques for Sather. Neither of these
studies take superscalar processors into account.

The efficiency of message lookups has long been a
concern to implementors of dynamically-typed, pure
languages like Smalltalk where dispatches are more
frequent since these languages model even basic types
like integers or arrays as objects. Dispatch consumed a
significant fraction of execution time in early Smalltalk
implementations (often 30% or more, even in
interpreted systems). Hash tables reduced this
overhead to around 5% [CPL83]; however, 5% of a
relatively slow interpreter still is a lot of time. The
introduction of inline caching [DS84, UP87]
dramatically diminished this overhead by reducing the
common case to a comparison and a direct call. A
variant, polymorphic inline caches (PICs), extends the
technique to cache multiple targets per call site
[HCU91]. For SELF-93 which uses inline caching and
PICs, Hölzle and Ungar [HU95] report an average
dispatch overhead of 10-15% on a scalar
SPARCstation-2 processor, almost half of which
(6.4%) is for inlined tag tests implementing generic
integer arithmetic. (This figure also includes other
inlined type tests, not just dispatched calls.) Given the
large differences in languages, implementation
techniques, and experimental setup, used, it is difficult
to compare these results with those presented here.

Calder et al. [CG94] discuss branch misprediction
penalties for indirect function calls in C++. Based on
measurements of seven C++ programs, they conclude
that branch target buffers are effective for many C++
programs. For their suite of programs (which differs
from ours), they measured an average BTB hit ratio of
91%, assuming an infinite BTB. In comparison, the hit
ratios we observed were much lower, with a median hit
ratio of only 65% for the standard benchmarks. Grove
et al. [G+95] also report more polymorphic C++
programs than Calder, which leads us to believe that
Calder’s suite of C++ programs may have been
uncharacteristically predictable.

Srinivasan and Sweeney [SS95] measure the number of
dispatch instructions in C++ applications, but do not

17

calculate the relative dispatch overhead or consider
superscalar issue.

Much previous work has sought to improve
performance by eliminating dispatches with various
forms of inlining based on static analysis or profile
information. Hölzle and Ungar [HU94] estimate that
the resulting speedup in SELF is five times higher than
the direct cost of the eliminated dispatches. Given the
dispatch overheads reported here, this ratio suggests
significant optimization opportunities for C++
programs. Preliminary results from an optimizing C++
compiler confirm this assumption [AH96].

7. Conclusions

We have analyzed the direct dispatch overhead of the
standard virtual function table (VFT) dispatch on a
suite of C++ applications with a combination of
executable inspection and processor simulation.
Simulation allows us to precisely define dispatch
overhead as the overhead over an ideal dispatch
implementation using direct calls only. On average,
dispatch overhead is significant: on a processor
resembling current superscalar designs, programs
spend a median overhead of 5.2% and a maximum of
29% executing dispatch code. However, many of these
benchmarks use virtual function calls quite sparingly
and thus might underrepresent the actual “average”
C++ program. For versions of the programs where
every function was converted to a virtual function to
simulate programming styles that extensively use
abstract base classes defining virtual functions only
(C++’s way of defining interfaces), the median
overhead rose to 13.7% and the maximum to 47%. On
future processors, this dispatch overhead is likely to
increase moderately.

On average, thunks remove a fourth of the overhead
associated with the standard implementation of virtual
function calls. For some programs the difference is
much higher since thunks remove a data dependency
chain that inhibits instruction level parallelism.

To our knowledge, this study is the first one to quantify
the direct overhead of dispatch in C++ programs, and
the first to quantify superscalar effects experimentally.

In addition to measuring bottom-line overhead
numbers, we have also investigated the influence of
specific processor features. Although these features
typically influence the absolute dispatch cost
considerably (i.e., the number of cycles spent in
dispatch code), the relative cost (the percentage of total
execution time spent in dispatch code) remains fairly
constant for most parameters except for extreme
values. Thus, the overheads measured here should
predict the actual overhead on many current processors
reasonably well.

Since many object-oriented languages use virtual
function tables for dispatch, and since several other
dispatch techniques have identical execution
characteristics on superscalar processors, we believe
that our study applies to these languages as well,
especially if their application characteristics fall within
the range of programs studied here.

Acknowledgments

This work is supported in part by NSF grant CCR 96-
24458, MICRO grant 95-077, IBM Corporation, and
Sun Microsystems. We would like to thank David
Bacon, Harini Srinivasan, Ole Agesen, and Gerald
Aigner for their comments on earlier versions of this
paper. Special thanks go to Kathryn O’Brien for her
support. Many thanks also go to the users of the CS
department’s 64-processor Meiko CS-2 (acquired
under NSF grant CDA 92-16202) who accommodated
our (at times extensive) simulation workload.

8. References

[Aig95] Gerald Aigner.VPROF: A Virtual Function Call Profiler
for C++ . Unpublished manuscript, 1995.

[AH96] Gerald Aigner and Urs Hölzle. Eliminating Virtual Func-
tion Calls in C++ Programs.ECOOP ‘96 Conference
Proceedings, Linz, Austria, July 1996.

[CG94] Brad Calder and Dirk Grunwald. Reducing Indirect
Function Call Overhead in C++ Programs. In21st
Annual ACM Symposium on Principles of Programming
Languages, p. 397-408, January 1994.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An Effi-
cient Implementation of SELF, a Dynamically-Typed
Object-Oriented Language Based on Prototypes. In
OOPSLA ‘89 Conference Proceedings, p. 49-70, New
Orleans, LA, October 1989. Published as SIGPLAN
Notices 24(10), October 1989.

18

[CK93] Robert F. Cmelik and David Keppel.Shade: A Fast
Instruction-Set Simulator for Execution Profiling. Sun
Microsystems Laboratories, Technical Report SMLI TR-
93-12, 1993. Also published as Technical Report CSE-
TR 93-06-06, University of Washington, 1993.

[CPL83] T. Conroy and E. Pelegri-Llopart. An Assessment of
Method-Lookup Caches for Smalltalk-80 Implementa-
tions. In [Kra83].

[DM73] O.-J. Dahl and B. Myrhaug.Simula Implementation
Guide. Publication S 47, NCC, March 1973.

[DS84] L. Peter Deutsch and Alan Schiffman. Efficient Imple-
mentation of the Smalltalk-80 System.Proceedings of
the 11th Symposium on the Principles of Programming
Languages, Salt Lake City, UT, 1984.

[DHV95] Karel Driesen, Urs Hölzle, and Jan Vitek. Message
Dispatch on Modern Computer Architectures.ECOOP
‘95 Conference Proceedings, Århus, Denmark, August
1995.

[ES90] Margaret A. Ellis and Bjarne Stroustrup.The Annotated
C++ Reference Manual. Addison-Wesley, Reading,
MA, 1990.

[G+95] David Grove, Jeffrey Dean, Charles D. Garrett, and
Craig Chambers. Profile-Guided Receiver Class Predic-
tion. In OOPSLA’95, Object-Oriented Programming
Systems, Languages and Applications, p. 108-123,
Austin, TX, October 1995.

[HP95] Hennessy and Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1995.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Opti-
mizing Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches. InECOOP’91 Confer-
ence Proceedings, Geneva, 1991. Published asSpringer
Verlag Lecture Notes in Computer Science 512, Springer
Verlag, Berlin, 1991.

[HU94] Urs Hölzle and David Ungar. Optimizing Dynamically-
dispatched Calls With Run-Time Type Feedback. In
PLDI ‘94 Conference Proceedings, pp. 326-335,
Orlando, FL, June 1994. Published asSIGPLAN Notices
29(6), June 1994.

[HU95] Urs Hölzle and David Ungar. Do Object-Oriented
Languages Need Special Hardware Support?ECOOP
‘95 Conference Proceedings, Århus, Denmark, August
1995.

[Kra83] Glenn Krasner.Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, Reading, MA, 1983.

[Kro85] Stein Krogdahl. Multiple Inheritance in Simula-like
Languages.BIT 25, pp. 318-326, 1985.

[LS95] James Larus and Eric Schnarr. EEL: Machine-Indepen-
dent Executable Editing. InPLDI ‘95 Conference
Proceedings, pp. 291-300, La Jolla, CA, June 1995.
Published asSIGPLAN Notices 30(6), June 1995.

[Mic94] Microprocessor Report. HP PA8000 Combines
Complexity and Speed. Volume 8, Number 15,
November 14, 1994.

[Mic95] Microprocessor Report.Intel’s P6 Uses Decoupled
Superscalar Design. Volume 9, Number 2, February 16,
1995.

[MS94] S. Milton and Heinz W. Schmidt.Dynamic Dispatch in
Object-Oriented Languages. Technical Report TR-CS-
94-02, The Australian National University, Canberra,
January 1994.

[Ros88] John Rose. Fast Dispatch Mechanisms for Stock Hard-
ware. OOPSLA'88 Conference Proceedings, p. 27-35,
San Diego, CA, November 1988. Published asSIGPLAN
Notices 23(11), November 1988.

[SS95] Harini Srinivasan and Peter Sweeney.Evaluating Virtual
Dispatch Mechanisms for C++. IBM Technical Report
RC 20330, Thomas J. Watson Research Laboratory,
December 1995.

[UP87] David Ungar and David Patterson. What Price Small-
talk? InIEEE Computer 20(1), January 1987.

