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Abstract. We study the direct cost of virtual function the number of cycles spent on the execution of an
calls in C++ programs, assuming the standardequivalent program R, in which all dispatches are
implementation using virtual function tables. We (epjaced by direct procedure calls that magically
measure this overhead experimentally for a number 01invoke the correct target function. In practice, P

large benchmark programs, using a combination Ofma be impossible to construct, since some sends will
executable inspection and processor simulation. Out y P '

results show that the C++ programs measured spend have varying targets at run time. However, a dispatch
median of 5.2% of their time and 3.7% of their technique may reach ideal performance (zero
instructions in dispatch code. For *“all virtuals” overhead) on some programs on a superscalar
versions of the programs, the median overhead rises tprocessor, as we will discuss in section 2.6.

13.7% (13% of the instructions). The “thunk” variant

of the virtual function table implementation reduces Theindirect coststems from optimizations that cannot
the overhead by a median of 21% relative to thepe performed because the target of a call is unknown
standard impler_nentatio_n. On future processors, thesiy; compile time. Many standard optimizations such as
overheads are likely to increase moderately. interprocedural analysis require a static call graph to
work well, and many intraprocedural optimizations are
ineffective for the small function bodies present in
object-oriented programs. Thus the presence of
dynamic dispatch hinders optimization, and
consequently, the resulting program will run more
slowly. Although indirect costs can be an important
part of the total overhead [HU94] this study will
mostly ignore them and instead focus on the direct
costs.

1. Introduction

Dynamic dispatch, i.e., the run-time selection of a
target procedure given a message name and th
receiver type, is a central feature of object-oriented
languages. Compared to a subroutine call in
procedural language, a message dispatch incurs twi
kinds of overhead: direct costand arindirect cost

The direct costof dynamic dispatch consists of the thg 4im of this study is to measure the direct cost of
time spent computing the target function as a function,;;rya| function table lookup for a number of realistic
of the run-time receiver class and the message namc..+ programs running on superscalar processors, and
(selector). The ideal dispatch technique would find the;, identify the processor characteristics that most
target in zero cycles, as if the message send was jffect this cost. Unfortunately, it is hard to measure
direct procedure call. Thus, we define drect costof  thjg cost directly since we cannot usually run program
dynamic dispatch for a particular program P as thep (the program without any dispatch code).
number of cycles spent on the execution of P, minuspjthough it is fairly easy to count the number of
instructions executed on behalf of dynamic dispatch,
Permission to copy without fee all or part of this material is granted this measure does not accurately reflect the cost in
provd at e Soies ¢ ok made o Jsuiuted of drect  processor cycles. On modern pipelined processors

publication and its date appear. Copied by by permission of the with multiple instruction issue the cost of an
Association of Computing Machinery.
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instruction may vary greatly. For example, on a 4-wa2.1 Virtual function tables
superscalar processor with a branch penalty of 6, ¢

instruction can take anywhere between 0.25 and C*+ implements dynamic dispatch using virtual
cycle§. function tables (VFTs). VFTs were first used by Simula

[DM73] and today are the preferred C++ dispatch
Therefore we measure the direct cost of virtuamechanism [ES90]. The basic idea of VFTs is to
function table lookup bgimulatingthe execution of P determine the function address by indexing into a table
and Ry, Using an executable editor and a superscaliof function pointers (the VFT). Each class has its own
processor simulator, we compute the execution timeVFT, and each instance contains a pointer to the
of both programs, thus arriving at the direct cost oappropriate VFT. Function names (selectors) are
dispatch. In addition to allowing dispatch cost to berepresented by numbers. In the single-inheritance case,
measured at all, simulation also facilitates exploring selectors are numbered consecutively, starting with the
broad range of possible processor implementationhighest selector number used in the superclass. In other
thus making it possible to anticipate performancewords, if a class C understanasdifferent messages,
trends on future processors. the class’ message selectors are numbereel0 Each
class receives its own dispatch table (of sizeand all
subclasses will use the same selector numbers for
methods inherited from the superclass. The dispatch

: . . . rocess consists of loading the receiver's dispatch
maximum of 29% of their time executing dlspatchp g P

. table, loading the function address by indexing into the
code. For version of the programs where even

. : _ table with the selector number, and jumping to that
function was converted to a virtual function, thefunction

median overhead rose to 13.7% and the maximum :

47%. With multiple inheritance, keeping the selector code
correct is more difficult. For the inheritance structure
on the left side of Figure 1, functions ¢ and e will both

provides some background on virtual function table . .
receive a selector number of 1 since they are the second
lookup and the aspects of superscalar processors ti . : . . . .
function defined in their respective class. D multiply

are rglevant in this context. Section 3 discusses Olinherits from both B and C, creating a conflict for the
experimental approach and the benchmark program

. . . binding of selector number 1. In C++ [ES90], the
and section 4 presents the experiments, and sectior o . . .
: . conflict is resolved by using multiple virtual tables per
discusses their results.

class. An object of class D has two dispatch tables, D
and Dc (see Figure f).Message sends will use
dispatch table D if the receiver object is viewed as a B
This study concentrates on the dispatch performance OF @ D and table Dc if the receiver is viewed as a C. The
C++ programs on modern (superscalar) hardwardispatch code will also adjust the receiver address
While we assume that the reader is familiar with thd€fore calling a method defined in C [ES90].

general characteristics of C++, we will briefly review
its most common dispatch implementations, virtua
function tables and the “thunk” variant, and the salien
hardware characteristics of modern processor:
Readers familiar with these topics may wish to skip t

Our measurements show that on a processt
resembling current superscalar designs, the C+
programs measured spend a median of 5.2% and

The rest of this paper is organized as follows: section

2. Background

Figure 2 shows the five-instruction code sequence that
a C++ compiler typically generates for a virtual
function call. The first instruction loads the receiver
object’s VFT pointer into a register, and the subsequent
two instructions index into the VFT to load the target

section 2.5. . . .
address and the receiver pointer adjustment (delta) for
*we ignore virtual base classes in this discussion. Our benchmark
suite contains only a few instances of them, not enough to allow
meaningful measurements. Virtual base classes introduce an extra
TIn the absence of cache misses. overhead of a memory reference and a subtraction [ES90].
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Figure 1. Virtual function tables (VFTs)
Capital characters denote classes, target
lowercase characters message selectors, and -

numbers method addresses

Figure 3. Thunk virtual function tables, in the multiple
inheritance case (above), and the single
inheritance case (below)

1: load [object_reg + #VFToffset], table_reg
2: load [table_reg + #deltaOffset], delta_reg
3: load [table_reg + #selectorOffset], method_reg

4:add object_reg, delta_reg, object_reg target function. Instead of always loading the offset
5: call method_reg value and adding it to thehis pointer, the operation
only happens when the offset is known to be non-zero.
Since multiple inheritance occurs much less frequently
than single inheritance, this strategy will save two
instructions for most virtual function caTlsTherefore,
barring instruction scheduling effects, thunks should be
at least as efficient as standard virtual function tables.

Figure 2. Instruction sequence for VFT dispatch

multiple inheritance. The fourth instruction adjusts the
receiver address to allow accurate instance variab
access in multiple inherited classes. Finally, the fiftt
instruction invokes the target function with an indirect

function call.
2.2 Superscalar processors

2.1.1 Thunks . . . . .
How expensive is the virtual function call instruction

Instructions 2 and 4 in Figure 2 are only necessarsequence? A few years ago, the answer would have
when the class of the receiver has been constructbeen simple: most instructions execute in one cycle

using multiple inheritance. Otherwise, the offset valugignoring cache misses for the moment), and so the
loaded into the registedelta_regin instruction 2 is standard sequence would take 5 cycles. However, on

zero, and the add in instruction 4 has no effect. It woulcurrent hardware the situation is quite different because

be convenient if we could avoid executing theseérocessors try to exploit instruction-level parallelism
useless operations, knowing that the receiver’'s clawith superscalar execution Figure 4 shows a
employs only single inheritance. Unfortunately, atsimplified view of a superscalar CPU. Instructions are
compile time, the exact class of the receiver ifetched from the cache and placed in an instruction
unknown. However, the receiver’s virtual functionbuffer. During every cycle, the issue unit selects one or
table, which stores the offset values, “knows” the exa¢more instructions and dispatches them to the
class. The trick is to perform the receiver addresappropriate functional unit (e.g., the integer unit).

adjustment only after the virtual function table entry i< ) ) ) ]
loaded. In the GNU GCC thunk implementation theThe processor may contain multiple functional units of

virtual function table entry contains the address of ithe same pre. For gxample, the processor in Figure 4
parameterless procedure (a thunk), that adjusts ﬂhas three integer units and thus can execute up to three

receiver address and then calls the correct targ'in the GNU GCC implementation for SPARC excutables, one of

. . : : : the offset instructions is usually replaced by a register move. The
function (see Figure 3). In the single inheritance CaSYatter is necessary to pass tins pointer in register %00 to the

the virtual function table entry points directly to thecallee.




i+3 (for aload latency Lof 2 or 3 cycles) on most

|_instruction buffer | current processors even in the case of a first-level cache
hit. Thus, instructions depending on the loaded value
cannot begin execution until L cycles after the load.

Similarly, processors impose l@anch penaltyof B
cycles after conditional or indirect branches: when a
branch executes in cycle(so that the branch target

integer unit U ‘Ioad/store unit m branch unit ‘ ‘ FPU H address becomes known), it takes B cycles to refill the
processor pipeline until the first instruction after the

branch reaches the execute stage of the pipeline and
produces a result.

Figure 4. Simplified organization of a superscalar CPU

integer instructions  concurrently. The number Oty g mmarize, on ideal hardware (with infinite caches
instructions that can be dispatched in one cycle iand an infinite issue width), the data and control

calle.d the iss_ue width. If the processor in Figure 4 hadependencies between instructions impose a lower
an ISsue "',V'd,th of four (often called “four-way jinit on execution time. If N instructions were all
superscalar”), it could issue, for example, two integejyjenendent, they could execute in a single cycle, but if
instructions, one load, and a floating-point instructior a5 h of them depended on the previous one they would
in the same cycle. take at least N cycles to execute. Thhs, number of

Of course, there is a catch: two instructions can OnIInStI’UCtIOHS is an inaccurate predictor of execution

execute concurrently if they are independent. There glime on superscalar proc.es'sc.)rEven though aptual
two kinds of dependencies: data dependencies qProcessors do not have infinite resources, this effect
control dependencie®ata dependenciearise when still is significant as we shall see later in this paper.

the operands of an instruction are the results (Figure 5 shows the dependencies between the
previous instructions; in this case, the instructiorjnsiryctions of the VET dispatch sequence. At most
cannot begin to execute before all of its inputs becomyyg instructions can execute in parallel, and the
ayallable. For example, instructions 2 and 3 of t.he VF minimum cost of the entire sequence is 2L for the chain
dispatch sequence can execute concurrently since thys 4514 dependencies between instructions 1, 3, and 5,

are independent, but neither of them can exeCuiang B for the branch penalty for instruction 5, i.e., the
concurrently with instruction 1 since they both use the

VFT pointer loaded in instruction 1. 0 0

The second form of dependenciesgontrol e L
dependencies result from the fact that some

instructions influence the flow of control. For example Q 2L

the instructions following a conditional branch are no (@>

known until the branch executes and determines tr 2L+B+1

next instruction to execute (i.e., whether the branch i
taken or not). Therefore, even if an instruction after th' 1. a4 [object reg + #VFToffset], table_reg
branch has no data dependencies, it cannot be execu  2: |oad [table_reg + #deltaOffset], delta_reg
concurrently with (or before) the branch itself. 3: load [table_reg + #selectorOffset], method_reg
4: add object_reg, delta_reg, object_reg
Both forms of dependencies may carry an executio 5: call method_reg
time penalty because of pipelining. Whereas the rest
of arithmetic instructions usually is available in the Figure 5. VFT execution schedules with cycle counts
next cycle (for a latency of one cycle), the result of ¢ and assembly code.
load issued in cycleis not available until cycle-2 or Dependencies are indicated with arrows.



delay until the first instruction after it can executeprocessor stalls for B cycles and updates the BTB by
Thus, the sequence’s execution time on a processstoring the branch and its new target address.
with load latency L and branch penalty Bis 2L + B + 1

cycles. BTBs affect the cost of the VFT dispatch sequence: if

the virtual call was executed previously, is still cached
In a previous study [DHV95] we approximated thein the BTB, and invokes the same function as in the
dispatch cost of several techniques by analyzing thprevious execution, the branch penalty is avoided,
call sequence carefully and describing their cost as reducing the sequence’s cost to 2L + 1.
function of load latency and branch penalty, taking intc
account superscalar instruction issue. However, th2.4 Advanced superscalar execution
approximation (e.g., 2L + B + 1 for VFT dispatch) is
only an upper bound on the true cost, and the actu
cost might be lower. The next few sections explair
why.

Unfortunately, the truth is even more complicated. To
improve performance, modern processors employ two
additional techniques that can decrease the
performance impact of dependencies.

2.3 Branch prediction First, instructions may be executedt of order an
instruction| that is waiting for its inputs to become
available does not stall all instructions after it. Instead,
those instructions may executefore lif their inputs

are available. Additional hardware ensures that the
program semantics are preserved; for example, if
instructions | and | write the same registes, Wwill not
overwrite the result of,leven if |, executes first. Out-
of-order execution increases throughput by allowing
other instructions to proceed while some instructions
are stalled.

Since branches are very frequent (typically, every fiftt
or sixth instruction is a branch [HP95]) and branct
penalties can be quite high (ranging up to 15 cycles ¢
the Intel Pentium Pro processor [Mic95]), superscala
processors try to reduce the average cost of a bran
with branch prediction. Branch prediction hardware
guesses the outcome of a branch based on previc
executions and immediately starts fetching instruction
from the predicted path. If the prediction is correct, the
next instruction can execute immediately, reducing th
branch latency to one cycle; if predicted incorrectly, theSecond speculative executiotakes this idea one step
processor incurs the full branch penalty B. Predictionfyrther by allowing out-of-order execution across
are based on previous outcomes of branches. Typicalconditional or indirect branches. That is, the processor
the branch’'s address is used as an index into may speculatively execute instructions before it is
prediction table. For conditional branches, the result iknown whether they actually should be executed. If
a single bit indicating whether the branch is predictesspeculation fails because a branch is mispredicted, the
taken or not taken, and typical prediction hit ratioseffects of the speculatively executed instructions have
exceed 90% [HP95]. to be undone, again requiring extra hardware. Because
branches are so frequent, speculating across them can
significantly improve performance if branches can be
predicted accurately.

For indirect branches, the prediction mechanism mu
provide a full target address, not just a taken/not take
bit. A branch target buffe(BTB) accomplishes this by

storing the predicted address in a cache indexed by tOf course, the processor cannot look arbitrarily far
branch address (very similar to a data cache). When tlahead in the instruction stream to find instructions that
processor fetches an indirect branch, it accesses tare ready to execute. For one, the probability of
BTB using the branch instruction’s address. If thefetching from the correct execution path decreases
branch is found, the BTB returns its last target addresexponentially with each predicted branch. Also, the
and the CPU starts fetching instructions from thaissue units must select the next group of instructions to
address before the branch is even executed. If ttbe issued from the buffer within one cycle, thus

prediction is wrong, or if the branch wasn’t found, thelimiting the size of that buffer. The most aggressive



designs available today select their instructions from 3. Method
buffer of about 30-40 instructions [Mic94][Mic95], so
that instructions have to be reasonably “near’ th(his section describes how we simulated the execution

current execution point in order to be issued out-ofof the C++ programs, what processor features we
order. assumed, and what benchmarks we used.

2.5 Co-scheduling of application code 3.1 Simulation scheme

With speculative, out-of-order execution the cost of thd-igure 6 shows an overview of our experimental

VFT dispatch sequence is not only highly variabledPproach: first, the C++ program compiled by an

(depending on the success of branch prediction), but ©Ptimizing compiler (we used GNU gcc 2.6.3 and 2.7.2

cannot be computed in isolation from its surroundincWith options -O2 -msupersparc). Then, an application
code. For example, if many other instructions precedthat uses the EEL executable editing library [LS95]

the dispatch sequence, they could execute during tidetects the dispatch instructions and produces a file
cycles where the processor would otherwise lay igiwith their addresses. Using this file as well as a
waiting for the loads to complete. Or vice versa, thdProcessor description, the superscalar processor
dispatch instructions could fit into empty issue slots oSimulator then runs the benchmark.

the rest of the basic block. This co-scheduling of th
application and dispatch code may reduce the overz
cost significantly, possibly to the point where
completely removing the dispatch code would no
speed up the program at all (since all dispatcl
instructions fit into otherwise empty issue slots). Thus
at least in theory, a dispatch implementation may reac
zero overhead (i.e., adds no cycles to the executic
time) even though it does introduce extra instructions.

benchmark
C++
source

2.6 Summary

While all of the processor features discussed abo
improve performance on average, they also increas
the variability of an instruction’s cost since it depends
not only on the instruction itself (or the instruction and
its inputs), but also on the surrounding code. Mos
processors sold today (e.g., the Intel Pentium an
Pentium Pro processors, as well as virtually all RIS(
processors introduced since 1995) incorporate sevet
or all of these features. As a result, it is hard to predic
how expensive the average C++ virtual function call it
on a current-generation PC or workstation. The simulated
experiments described in the rest of this paper aim 1 execution
answer exactly this question. time data

processor
description

superscalar
processor
simulator

call marker

list of vf-call
instructions
in benchmar

Figure 6. Overview of experimental setup



The simulator can execute most SPARC program3.2 Benchmarks

using theshadetracing tool [CK93]. Shade always _ _

executes all instructions of the program so tha'Ve tested a suite of two small and six large C++
programs produce the same results as if they weapplications totalling over 90,000 lines of code
executed on the native machine. Each instructio(Table 1). In general, we tried to obtain large, realistic
executed can be passed to a superscalar Iorocesapplications rather than small, artificial benchmarks.
simulator that keeps track of the time that would beWO Of the benchmarksdéitablue andrichards) are
consumed by this instruction on the simulatecuch smaller than the others; they are included for
processor. Optionally, the simulation of dispatchtomparison with earlier studies (e.g., [HU94, G+95]).
instructions can be suppressed (i.e., they are executR'ChardS'S the only synthetic benchmark in our suite
but not passed to the timing simulator), thus simulatin(i-€-, the program was never used to solve any real
the execution of R, , the program using the perfect, problem). We did not yet test any programs for which

zero-cost dynamic dispatch scheme. only the executables were available.

name description lines

Although we currently use only benchmarks for whick
we have the source, this is not strictly necessar deltablue| incremental dataflow constraint solver 1,000
Provided that the vf-call marker program detects al €dn gg‘?&:?gi”ga?g%%ram for mathe- 8,300
virtual calls correctly, any executable can be measure o SunISoft’sqILIJDLI compiler (version 1.3) 13,900
The source language does not evep havg to be C++, using the demonstration back end '

long as the language under consideration uses VF which exercises the front end but
dispatch for its messages. Compared to a tool th produces no translated output.

detects dispatches at the source code level, a tool bag Ixx IDL parser generating C++ stubs, | 11,600

; ; ; distributed as part of the Fresco library
on binary inspection may be harder to construct, but (which is part of X11R6). Although it

offers a significant advantage even beyond its sourc performs a function similar to IDL, the
compiler, and language independence. In particular, program was developed
is non-intrusive, i.e., does not alter the instructior :jr}?fepen::lently and is structured
sequence, and is thus more accurate. : ?re_n_t y- i
Icom optimizing compiler for a hardware | 14,100
The vf-call marker program detects the virtual functior description language developed at the
University of Guelph

call code sequence discussed in section 2. This coi
sequence consists of the five instructions in Figure
and any intervening register moves. They may appe:

porky back-end optimizer that is part of the22,900
Stanford SUIF compiler system

‘ : _ : richards | simple operating system simulator 500
In dlfferer.]t orderl.ngs (but  with the_ correct | ot GNU groff version 1.09, a batch-style19,200
dependencies), possibly spread out over different bas text formatting program

blocks. Since the code sequence is highh
characteristic, the marker program is very accurate

detecting virtual calls exactly for most prograB'Fsor For every program e)((;enpj;orkyt we also tested an
three benchmarks the marker is slightly imprecise“a|l-virtual” version (indicated by “-av” suffix) which
erring by 0.4% or less. Only imx, 2.3% of the calls was compiled from a source in which all member
went undetected so that our measurements slightfunctions except operators and destructors were
underestimate the direct dispatch cost for thideclared virtual. We chose to include these program
benchmark. versions in order to simulate programming styles that
extensively use abstract base classes defining virtual
functions only (C++'s way of defining interfaces). For
example, the Taligent CommonPoint frameworks

Table 1: Benchmark programs

TWe cross-checked this by using VPROF, a source-level virtuet Porky cannot be compiled as “all virtual” without a large effort of
function profiler for GCC [Aig95]. manual function renaming.



. . . virtual tligsntsru;er Processor Ultra _IMIPS ,Iiliﬁa Power g];iltium
program| version| instructions calls virtual SPARCR10K 21164 PC 604 Pro
call Shipping date 95 95 95 95 95
deltablue ori.ginal 40,427,339 615,100 65 2:22 g; :L?a 2038 5§>2 : (?48 56112 5%)2
aII—v_lrt_uaI 79,082,867 5,145,581 ?LS Branch Penalty 1 7 E 13 118
eqn |_Ofiginal| 97,852,301 100,207 976 issue Width 7 5 I a 3
all-virtual| 108,213,587 1,267,344 85 |Load Latency 2 2 2 3
idl original| 91,707,462 1,755,136 P2 Emgg B??;ZEP 1%)}31 3?;)}22 8'2& 3?;);214 SEK
all-virtual| 99,531,814 3,925,959 25 Out-of-order ? r % N % v v
- original| 30,018,790 101,025 297  [Speculative? v % Y % %
all-virtual| 34,000,249 606,463 56 Table 3: Characteristics of recently introduced
lcom original 169,749,862 1,098,596 164 processors
all-virtual | 175,260,461 2,311,705 75 a BTB = branch target buffer size; BHT = branch history table size (branch
‘chargs,OfGNAIl 8119106 65790 123, islaiesare usedio et e et afonclions braches)
all-virtual| 15,506,753 1,146,217 13 . .
- original| 91,877,525 809,312 113 :ge;iggl)t;eshsors anq their subtl(? differences, we chose
allvirtual| 114,607,159 3,323,572 34 ypothetical SF.>A'RC based processor that
porky original| 748,914,861 3,806,797 106 We dubbed P96 because it is meant to resemble the

average processor introduced today.
Table 2: Basic characteristics of benchmark pro-

grams (dynamic counts) For our experiments, we ran all benchmarks on P96 to
provide all functionality through virtual functions, and obtain the base results for the dispatch overhead. To
thus programs using CommonPoint (or similarexamine the effects of the most important processor
frameworks) are likely to exhibit much higher virtual features, we then vied each parameter while keeping
function call frequencies. Lacking real, large, freelyall others constant. Finally, we also measured a few
available examples of this programming style, weindividual configurations that resemble existing
created the “all virtual” programs to provide someprocessors (Table 3). P96-noBTB resembles the
indication of the virtual function call overhead of suchUltraSPARC in that it lacks a BTB, i.e., does not
programs. These versions can also be used predict indirect branches. P96-Pro resembles the
approximate the behavior of programs written inPentium Pro in its branch configuration, having a very
languages where (almost) every function is virtualhigh branch penalty and relatively modest branch
e.g., Java or Modula-3. prediction. Finally, P2000 is an idealized processor
with essentially infinite hardware resources; we use it
to illustrate the impact of the branch penalty on a
processor that has virtually no other limitations on
instruction issue.

For each benchmark, Table 2 shows the number «
executed instructions, the number of virtual functior
calls, and the average number of instructions betwee
calls. All numbers are dynamic, i.e., reflect run-time

execution counts unless otherwise mentioned. Al ghoyig be noted that none of these processors is
programs were simulated in their entire length ajyiended to exactly model an existing processor; for
shown in Table 2. Simulation consumed a total Ogyampje. the Intel Pentium Pro’s instruction set and
about one CPU-year of SPARCstation-20 time. microarchitecture is very different from P96-Pro, and
so the latter should not be used to predict the Pentium
Pro’s performance on C++ programs. Instead, we use
Table 3 shows an overview of recently introducecthese processors to mark plausible points in the design

processors. Since we could not possibly simulate all (space, and their distance and relationship to illustrate
particular effects or trends.

3.3 Processors



Processor P96 P96- | P96- | P2000/ P2000

noBTB| Pro | bpl | bpl0
Size of BTB 256 0 512 1024 1024
Size of BHT 1024 1024 0 1024 1024
Branch Penalty 4 4 15 1 10
Issue Width 4 4 4 32 32
Load Latency 2

Primary I-cache

32K, 2-way associative

Primary D-cache

32K, 2-way associative

Out-of-order ?

Y

Speculative?

Y

Table 4: Characteristics of simulated processors

4. Experimental Results

This section first examine the cost of dynamic dispatc
on the baseline architecture, P96, and then examin

the impact of individual architectural

width).

4.1 Direct cost on P96

4.1.1 Instructions and cycles

parameters
(branch penalty/prediction, load latency, and issu

50% —
45% —
40%— | [ cycles
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30%—
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15% —
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59—

0% L

B instructions

Relative overhead
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iXx-av
com-av
idl-av
richards-av

deltablue-av

Figure 8. Direct cost of standard VFT dispatch
(all-virtual benchmarks)

varies from 1.4 % foeqnto 29% fordeltablue with a
median overhead of 5.2 %. For the all-virtual versions,
the overhead increases to between 4.7 % and 47% with

First, we will examine the cost of dynamic dispatch ord median overhead of 13%. The standard benchmarks
the baseline architecture, P96. Recall that we define tiSPend a median 3.7% of their instructions on dispatch,
cost as the additional cycles spent relative to and the all-virtual versions a median of 13.7%. For the
“perfect” dispatch implementation that implementsstandard benchmarks the cycle cost is larger than the
each dispatch with a direct call. Figure 7 and Figure cost in the number of instructions executed; on
show the results. On the standard benchmarks, the c@verage, it is a median 1.7 times larger. This difference

14% —

12% —

10% —

8% —

6% —

4% —

2% —|

0% —

Relative overhead

Figure 7. Direct cost of

M instructions
[] cycles
c = X e
x
g g8 = 8

idl
richards

7] 29%
s 2
8 8
8

standard VFT

(unmodified benchmarks)

dispatch

confirms that the VFT dispatch sequence does not
schedule well on a superscalar processor, compared to
non-dispatch code. However, this effect varies
substantially between benchmarks. The largest
difference is found ign(2.8 times) and deltablue (3.8
times). Since the dispatch sequence is always the same,
this indicates that the instructions surrounding a call
can significantly affect the cost of virtual function
lookup, or that virtual calls are more predictable in
some programs than in others. We will explore these
questions shortly.

4.1.2 Thunks

Figure 9 compares the cycle cost of standard and thunk
implementations for the unmodified benchméarks
Thunks have a smaller cycle overhead than regular

TSince GCC cannot compildl, idl-av, andlcom-avwith thunks,
these benchmarks are missing from Figure 9 and Figure 10.
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Figure 9. Cycle cost of VFT dispatch, Figure 10. Cycle cost of VFT dispatch,
standard and thunk variants standard and thunk variants (all-
(unmodified benchmarks) virtual benchmarks)

tables for all benchmarks, using a median of 79% cdeltablue the added dependencies stretch the inner
the cycles of the regular implementation. Figure 1(loop from 9 cycles (thunks) to 12 cycles (standard),
shows the cycle cost for the all-virtual benchmarkswhere a direct called implementation would use 8
Here, thunks have 72% of the regular overhead. Trcycles (all times exclude cache misses). Thus the
exact amount of the gain varies greatly betweeoverhead of thunks is only 25% of the overhead of
benchmarks. For example, the thunk overheadxfor standard tables for a large part of the execution, so that
and deltablueis only 15% and 47% of the regular the removal of only two instructions out of five can
overhead, while fotroff, thunks use almost as many avoid more than half the virtual function call overhead
cycles as standard tables (98%). in particular cases. This effect is particularly
pronounced in all-virtual benchmarks that contain

HO‘?’ can thubnks, n shome ;:ases, flmprgve dispattiany calls to accessor functions (i.e., functions that
performance by more than a factor of two? One reasqyo¢ rot;m an instance variable)

for the difference is the unnecessary receiver addre

adjustment that is avoided with thunks (instructions ‘Another part of the difference is due to memory
and 4 in Figure5). In the thunk implementation,hierarchy effects: with perfect cachiTr,]g thunk
instructions that depend on the receiver's address (overhead foixx anddeltabluerises to 48% and 54%.
not have to wait for the virtual function call to

complete, if the target is predicted accurately. Ir

contrast, in the standard implementation instructions

and 4 create a dependency chain from instruction 1 -

any instruction that needs the receiver’s address. Ty perfect caching we mean that there are no cache miss, not even
for cold starts.
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4.1.3 Generalization to other processors we show cost in two ways, each of them relative to
P96. The first graph in each section compares absolute

How specific are these measurements 10 Olggt je. the number of dispatch cycles relative to P96.
(hypothetical) P96 processor? Figure 11 compares trhe second graph compares relative cost, i.e., the

relative dispatch overhead of standard tables on Pspercentage of total execution time (again relative to

with that of the other processors listed in Table 3P96) spent in dispatch. The two measurementsare
Clearly, ~the processor configuration affectSyhgoiytely correlated: if the absolute overhead

performance: longer branch penalties combined Witjncreases, the relative cost may decrease if the rest of

less ambitious branch prediction (P96-Pro) and thyhe appjication is slowed down even more than the
absence of a BTB §P96—noBTB) both impact dlspatcldispatch code. Similarly, the absolute cost may
performance negatively so that all programs spend yecrease while the relative cost increases because the

larger pe.rce-ntage.of their time in dispatch code. Eyeabsolute cost of the rest of the application decreases
P2000 with its 32-instruction issue CPU shows relativig, an more strongly.

overheads that are a median 28% higher than in PS
Thus, we expect future processors to exhibit highe4 2 |nfluence of branch penalty

dispatch overheads for most C++ programs.
Since one of the five instructions in the dispatch

%) - sequence is an indirect branch, the branch

——
. 4 pespro misprediction penalty directly affects the cost of virtual
’ . morasTs function dispatch. Since each dispatch contains a single
-NO! B .
8 o 2 indirect branch, we would expect the absolute
z 3 PRooobpL overhead to increase proportionally to the number of
Soow | Lt oM mispredicted branches. And since the number of
& mispredictions is independent of the branch penalty,
< 20% | the cost should increase linearly with the branch
'% ' penalty.
& 30% 4 S
2 2|3
S g 5|2
& 20% ‘ > name g S
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Figure 11. Dispatch overhead in P96 vs. P96-noBTB porky P | n/a
and P96-Pro richards | R | r
troff T |t

. . . . Table 5: Benchmark abbreviations
To explain these differences in more detail, the nex

few sections present the effects of several processFigure 12 confirms this expectation (see Table 5 for the
characteristics on the direct cost of dynamic dispatclone-letter abbreviations used in Figure 12 - 17). For
In particular, we will investigate the impact of thesmall branch penalties, the actual penalty can be
branch penalty, the size of the branch target buffesmaller than expected if the branch penalty is filled
(BTB), and the issue width. In each experiment, wewith instructions preceding the branch which have not

vary the feature under investigation while keeping alyet completed (e.g. because they are waiting for their
other characteristics constant. To illustrate the trend

11
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Figure 12. Overhead in cycles (relative to P96) for Figure 13. Overhead in % of total execution time
varying branch penalties (relative to P96) for varying branch
penalties
inputs to become available). This effect appears to kin the applications. Thus, the relative dispatch costs
small. given earlier in Figure 7 and Figure 8 are quite

o _ insensitive to branch penalty variations.
The slope of the overhead lines increases with the BT

miss ratio, i.e., the fraction of mispredicted calls.4.3 |nfluence of branch prediction
Richardsand troff have large BTB miss ratios (54%
and 30%), which account for their steep cost curve:AS discussed in section 2.3, branch target buffers
Most of the other benchmarks have a mispredictio(BTBS) predict indirect (or conditional) branches by
rate of 10% or less, which dampens the effect of brancStoring the target address of the branch's previous
penalty on cycle cost. execution. How effective is this branch prediction? Our
baseline processor, P96, has separate prediction
Figure 13 shows that thiraction of execution time mechanisms for conditional and indirect branches since
spent in dispatch can actually decrease with increasirthe former can better be predicted with history-
branch penalty. For examplex has many indirect sensitive 2-bit predictors [HP95]. Thus, varying the
calls that are not part of virtual function calls, and thessize of the BTB will affect only indirect branches, thus

branches are very unpredictable (with a BTB miss ratidirectly illustrating the BTB’s effect on dispatch

of 86%). Consequently, the relative overhead of virtusoverhead.

calls inixx decreases with larger branch penalties sinc

the cost of the rest of the program increases mucn general, smaller BTBs have lower prediction ratios
faster. because they cannot store as many individual branches.

Recall that the processor uses the branch instruction’s
However, for most benchmarks the relative overheaaddress to access the BTB (just like a load instruction
differs less than 20% between the extreme brancuses the data address to access the data cache). If the
penalty values (0 and 10), indicating that the VFTbranch isn’t cached in the BTB, it cannot be predicted.
branches are about as predictable as the other brancl

12
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Figure 14. Overhead in cycles (relative to P96) Figure 15. Qverhea}d in % of tOta}' execution
for varying Branch Target Buffer sizes time (relative to P96) for varying

Branch Target Buffer sizes

Naturally, the smaller the BTB, the fewer branches isize of 128. Generally, smaller benchmarks need fewer
can hold, and thus the larger the fraction of branche ) %

that can't be predicted because they aren’t currentIE;VBe ?:\;[vrgsa:t)ivfi;n :ilfgsmptotlc behavior since they
cached in the BTB. Figure 14 confirms this '

expectation: in general, smaller BTBs increase 100
dispatch overheaH.Apparently, a BTB size of 128
entries is large enough to effectively cache al 90
important branches, as the dispatch overhead does 1
decrease significantly beyond that BTB size. 80
Figure 15 shows the dispatch overhead as a fraction 70|
execution time. In general, the relative overhead varie
in tandem with the absolute overhead, i.e., smalle 60
BTBs increase dispatch overhead. For processors wi O
BTBs with 128 or more entries, P96 should accuratel _§ 50
predict the BTB’s impact on dispatch performance. -

40|
Finally, Figure 16 shows the prediction ratio as ¢
function of the BTB size. The ratio starts at zerc 30
(without a BTB, indirect branches cannot be predicted
and asymptotically reaches a final value around a BT 20

T For very small BTB sizes, the overhead sateasewith a larger

BTB. This is not a bug in our data. In very small BTBs, there are 10+
many conflict misses—branches are evicting each other from tr

BTB because the BTB cannot cache the working set of branche

With very small BTBs, this thrashing is so bad that removing the 0 T T T T T T T T 1

virtual calls does not improve hit ratiosRye, . However, at some O N T QYN ReNF g Q9
point the BTB may be just large enough to hold most indirec DAL= S
branches P40 but still not large enough to also hold the virtual BTB size

function calls. In this case, the difference in BTB effectivenes: . . - .
betweenPjy.o and P suddenly becomes large, thus leading to Figure 16. Indirect branch prediction ratio as a
higher dispatch overhead. function of BTB size
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The asymptotic prediction ratio corresponds to the hfor small values. On a scalar processor (issuing at most
ratio of an inline cacHe [DS84]. For some one instruction per cycle), programs spend a much
benchmarks, prediction works very well, with 90% orsmaller fraction of their time in dispatch. Of course,
more of the calls predicted correctly. But severaabsolute performance would be worse than on P96
benchmarks (especiallgichards ixx, eqn andtroff)  since execution would consume many more cycles (for
show much lower prediction ratios even with veryexample,lcom is three times slower on the one-issue
large BTBs because their calls change targets tcprocessor than on the four-issue processor). With larger
frequently. For example, the single virtual call inissue widths the relative overhead increases more
richards frequently switches between four differentslowly, reaching an asymptotic value of 26% (median)
receiver classes, each of which redefines the virtumore than on P96. Thus, on wider-issue processors, the
function. No matter how large the BTB, such callsrelative cost of dynamic dispatch will increase slightly
cannot be predicted well. The median prediction ratibecause the application code benefits more from the
for the standard benchmarks is only 65% vs. 91% fcadditional issue opportunities than the dispatch c¢ode.
the all-virtual versions; the latter are more predictabl
because many calls only have a single target and th
are predicted 100% correctly after the first call. 16

18

4.4 Influence of load latency 144

Load latency influences dispatch cost since the VF 12
dispatch sequence contains two dependent loc 1
instructions. Thus, higher load latencies should lead t
higher dispatch overhead. Our measurements confir
this assumption: compared to the baseline load laten: |
of two, increasing the load latency to three increase 06
absolute dispatch cost by a median of 51%; the relati\ ]
cost increases by 31%. Similarly, with a load latency o 0.4
one the absolute overhead decreases by 44% and - ]
relative overhead by 37%. (Processors are unlikely t
have load latencies larger than three, so we did n o~ | | | | |

simulate these.) 1 2 4 6 8 12 16

Instruction Issue Width
Clearly, load latency affects the efficiency of dispatct Figure 17. Overhead in % of total execution time
code more than that of “normal” code sequences (relative to P96) for varying
Furthermore, it appears that there are not enouc instruction issue widths
surrounding application instructions to effectively hide
the latency of the loads in the dispatch sequence, ev4 6 Cost per dispatch
for small load latencies.

0.8+

overhead relative to P96

0.2

In [DHV95] we predicted the cost of a single VFT
4.5 Influence of issue width dispatch to be 2L + B + 1, i.e., two load delays plus a
) ) ) ) branch penalty; for P96, this adds up to 9 cycles. How
The final factor, issue width (i.e., the number 0Taccurate is this prediction? Figure 18 shows the cost in

instructions that can bg issued to 'the functional units 'cycles per dispatch for all benchmarks. Clearly, the
ope cycle) can also |.nfluenC(.e dispatch performanacost estimate of 9 cycles is too high, but that is not
Figure 17 shows that issue width has a strong impa

*For a few benchmarks (e.gichards) the relative overhead

T Since an inline cache stores a target separately for each call sidecreases with high issue widths. We assume that these benchmarks
its hit rate mirrors that of a branch target buffer of infinite size withbenefit from higher issue rates because they allow critical dispatch
no history prediction bits. instructions to start earlier, thus hiding part of their latency.
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surprising because the above model ignores the effe5. Discussion and Future Work
of branch prediction and co-scheduling of non-dispatc

instructions. In essence, a BTB reduces the effecti\What does this detailed dispatch performance analysis
branch penalty since the full penalty B is only incurrectell us? Will dispatch performance improve with future
upon a misprediction. The cost model could behardware? — Should programmers write  their
improved by using the effective branch penaly; B  applications differently to improve performance?

B * btb_misprediction_ratio. For the standard
benchmarks, with a median misprediction ratio of 35%
this model predicts a cost of 6.4 cycles, which still
overestimates the real cost (median 3.9 cycles
Considering all benchmarks, the median mispredictio
ratio of 11% results in an estimated cost of 5.4 cycle
per dispatch, which overestimates the actual median
2.8 cycles / dispatch by a factor of two.

First, the median dispatch overheads we observed
(5.2% for the standard benchmarks and 13.7% for the
all-virtual versions) can be used as a bound on the
dispatch performance improvements one can hope to
obtain, for C++ programs, from better software or
hardware. Thus, no matter how good a dispatch
mechanism is, we cannot hope for much more than a
performance improvement of around 5-10%. Any
1 further improvement must come from other
10 ¢ optimizations such as customization or inlining
[CUL89, HU94]. Given that better optimizing
compilers are possible [AH96], it hardly seems

©

g 8 appropriate for programmers to compromise the

g 7 structure of their programs to avoid dispatch.

g ° . Many object-oriented systems use or could use VFT-

'; > . like dispatch mechanisms (e.g., implementations of

; 4 . ¢ Java, Modula-3, Oberon-2, and Simula), and thus this

g 3 + . ‘s study bears some significance for those languages as
ol M — well. While the characteristics of typical programs may

¢ differ from the C++ programs measured here, the
general trends should be similar. Together, the standard
and all-virtual programs represent a wide spectrum of

o

FEEXE= % gEgag S 83 program behaviors and call frequencies, and thus we
S T =8gg= 8" % expect many programs written in other languages to

2 3 fall somewhere within that spectrum.
Figure 18. Cycles per dispatch Furthermore, the dependency structure (and thus

performance on superscalar processors) of many other

Dispatch cost varies widely: a single dispatch costs 2 dispatch mechanisms (e.g., selector coloring or row
cycles inlcombut 10.2 cycles ideltablue a difference  displacement) is similar to VFT, as we have shown in
of a factor of 4.8. This variation illustrates the[DHV95]. Therefore, the measurements presented here
combined effects of the factors discussed previouslshould apply to these dispatch mechanisms as well.
such as the BTB hit ratio and the co-scheduling o
application code. The dispatch cost of the all-virtua
programs varies much less since the average cost
dominated by very predictable monomorphic calls (i.e
call sites invoking the same function every time).

Although simulations provide accurate numbers, they
are inordinately expensive and complicated. As
discussed in section 4.6, the analytical model for VFT
'dispatch cost developed in [DHV95] already predicts
dispatch cost fairly well using only two parameters. In
future work, we intend to use the detailed results
presented here as a starting point to construct a better
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model that would allow implementors or programmersand Schmidt [MS94] compare the performance of
to estimate the dispatch cost in their application using VTBL-like techniques for Sather. Neither of these
simple formula containing few processor- orstudies take superscalar processors into account.

application-specific parameters. o
The efficiency of message lookups has long been a

Our results show that there may be room for betteconcern to implementors of dynamically-typed, pure
dispatch algorithms: a 5% or 10% improvement irlanguages like Smalltalk where dispatches are more
performance for most programs is still significant. Wefrequent since these languages model even basic types
hope that our measurements encourage others to sealike integers or arrays as objects. Dispatch consumed a
for better dispatch mechanisms. Previous worlsignificant fraction of execution time in early Smalltalk
suggests that inline caching [DS84] should perfornimplementations (often 30% or more, even in
very well on superscalar processors [DHV95], at leasinterpreted systems). Hash tables reduced this
for call sites with low degrees of polymorphism. Inoverhead to around 5% [CPL83]; however, 5% of a
essence, inline caching is the software equivalent of crelatively slow interpreter still is a lot of time. The
infinite branch target buffer (BTB) since it caches thdntroduction of inline caching [DS84, UP87]
last dispatch target by modifying the call. In addition, itdramatically diminished this overhead by reducing the
contains only a single data dependency and thicommon case to a comparison and a direct call. A
schedules very well [DHV95]. A hybrid, adaptive variant, polymorphic inline caches (PICs), extends the
dispatch implementation that employs inline cachindechnique to cache multiple targets per call site
where appropriate might considerably reduce dispatc[HCU91]. For &LF-93 which uses inline caching and
cost in many programs and thus appears to be {PICs, Holzle and Ungar [HU95] report an average
attractive area for future work. dispatch overhead of 10-15% on a scalar
SPARCstation-2 processor, almost half of which
Finally, will dispatch overhead increase in the future’(6.4%) is for inlined tag tests implementing generic
We believe so, even though the effect is likely to béinteger arithmetic. (This figure also includes other
moderate. As Figure 17 showed, the relative overhezinlined type tests, not just dispatched calls.) Given the
will increase as processors issue more instructions plarge differences in languages, implementation
cycle. At an issue width of 16, the median overheatechniques, and experimental setup, used, it is difficult

increases by about 26%. Future processors might alto compare these results with those presented here.
have longer load latencies, further increasing dispatc _ _ o
cost. General compiler optimizations may a|ScCaIder et al.. [QGQ4] dIS.CUSS bra.nch misprediction
influence dispatch performance. Much current researdP@nalties for indirect function calls in C++. Based on
focuses on compilation techniques to increasMeasurements of seven C++ programs, they conclude
instruction-level parallelism. If compilers successfullythat branch target buffers are effective for many C++
reduce execution time on wide-issue processors, tPrograms. For their suite of programs (which differs
effective dispatch overhead could further increase fcffom ours), they measured an average BTB hit ratio of
programs with unpredictable VFT calls. In summarygl%’ assuming an infinite BTB. In comparison, the hit

over the next few years, we expect the relative dispatd@tios we observed were much lower, with a median hit
cost to rise, though the exact extent is hard to predict.fatio of only 65% for the standard benchmarks. Grove

et al. [G+95] also report more polymorphic C++
6. Related Work programs than Calder, which leads us to believe that
' Calder’'s suite of C++ programs may have been

Rose [Ros88] analyzes dispatch performance for Uncharacteristically predictable.

- I I <
number of table-based techniques, assuming a RI‘Srinivasan and Sweeney [SS95] measure the number of

archltecturg and a scalar processor. The study Cons'd'dispatch instructions in C++ applications, but do not
some architecture-related performance aspects such

the limited range of immediates in instructions. Milton
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calculate the relative dispatch overhead or considdn addition to measuring bottom-line overhead
superscalar issue. numbers, we have also investigated the influence of
specific processor features. Although these features
Much previous work has sought to improvewpically influence the absolute dispatch —cost
performance by eliminating dispatches with Variousconsiderably (i.e., the number of cycles spent in
forms of inlining based on static analysis or profilegispatch code), the relative cost (the percentage of total
information. Holzle and Ungar [HU94] estimate thateyecution time spent in dispatch code) remains fairly
the resulting speedup irES- is five times higher than constant for most parameters except for extreme
the direct cost of the eliminated dispatches. Given thygjyes. Thus, the overheads measured here should

dispatch overheads reported here, this ratio suggepredict the actual overhead on many current processors
significant optimization opportunities for C++ reasonably well.

programs. Preliminary results from an optimizing C++

compiler confirm this assumption [AH96]. Since many object-oriented languages use Vvirtual
function tables for dispatch, and since several other
7. Conclusions dispatch techniques have identical execution

characteristics on superscalar processors, we believe
We have analyzed the direct dispatch overhead of tithat our study applies to these languages as well,
standard virtual function table (VFT) dispatch on aespecially if their application characteristics fall within
suite of C++ applications with a combination ofthe range of programs studied here.
executable inspection and processor simulatior
Simulation allows us to precisely define dispatctAcknowledgments
overhead as the overhead over an ideal dispatt
implementation using direct calls only. On average
dispatch overhead is significant: on a processc
resembling current superscalar designs, progran
spend a median overhead of 5.2% and a maximum
29% executing dispatch code. However, many of thes
benchmarks use virtual function calls quite sparingly
and thus might underrepresent the actual “average
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