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ABSTRACT

Garbage collection yields numerous software engineeramgfits,

but its quantitative impact on performance remains elusae
can compare the cost obnservative garbage collection to explicit
memory management in C/C++ programs by linking in an appro-
priate collector. This kind of direct comparison is not pblesfor
languages designed for garbage collection (e.g., Javegubke pro-
grams in these languages naturally do not contain calfeet® .
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physical memory is scarce, paging causes garbage coligotioin
an order of magnitude slower than explicit memory managémen

Categories and Subject Descriptors

D.3.3 [Programming Language$: Dynamic storage management;
D.3.4 [Processork Memory management (garbage collection)

General Terms

Thus, the actual gap between the time and space performénce oExperimentation, Measurement, Performance

explicit memory management apecise, copying garbage collec-
tion remains unknown.

We introduce a novel experimental methodology that letsiasig
tify the performance of precise garbage collection versymict
memory management. Our system allows us to treat unaltaxed J
programs as if they used explicit memory management bynglyi
on oracles to insert calls thee . These oracles are generated
from profile information gathered in earlier applicatiomsu By
executing inside an architecturally-detailed simulatiois “oracu-
lar” memory manager eliminates the effects of consultingracle
while measuring the costs of callimyalloc andfree . We eval-
uate two different oracles: a liveness-based oracle tlyaeagively
frees objects immediately after their last use, and a rdsdlitya
based oracle that conservatively frees objects just dfegrare last
reachable. These oracles span the range of possible plateme
explicit deallocation calls.

We compare explicit memory management to both copying and
non-copying garbage collectors across a range of benclsnusrk
ing the oracular memory manager, and present real (nonlzstieai)
runs that lend further validity to our results. These resqgliantify
the time-space tradeoff of garbage collection: with fiveetinas
much memory, an Appel-style generational collector withoa-n
copying mature space matches the performance of readhabili
based explicit memory management. With only three timesuadhm
memory, the collector runs on average 17% slower than ekplic
memory management. However, with only twice as much memory,
garbage collection degrades performance by nearly 70%. nWhe
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1. Introduction

Garbage collection, or automatic memory management, gesvi
significant software engineering benefits over explicit mgnman-
agement. For example, garbage collection frees progragiimten
the burden of memory management, eliminates most memdty,lea
and improves modularity, while preventing accidental mgnower-
writes (“dangling pointers”) [50, 59]. Because of theseatdages,
garbage collection has been incorporated as a feature ahberu
of mainstream programming languages.

Garbage collection can improve the productivity of program
mers [48], but its impact on performance is difficult to quint
Previous researchers have measured the runtime perfoenaauac
space impact ofonservative, non-copying garbage collection in C
and C++ programs [19, 62]. For these programs, comparing the
performance of explicit memory management to conservaare
bage collection is a matter of linking in a library like the &won-
Demers-Weiser collector [14]. Unfortunately, measuring per-
formance trade-off in languages designed for garbage atuite
is not so straightforward. Because programs written ingHas-
guages do not explicitly deallocate objects, one cannoplyime-
place garbage collection with an explicit memory managetre=
polating the results of studies with conservative collecteimpos-
sible because precise, relocating garbage collectormfgaionly
for garbage-collected languages) consistently outperfnserv-
ative, non-relocating garbage collectors [10, 12].

It is possible to measure the costs of garbage collectidwitgct
(e.g., tracing and copying) [10, 20, 30, 36, 56] but it is imge
ble to subtract garbage collection’s effect on mutatorqrenfince.
Garbage collection alters application behavior both bitinig and
reorganizing memory. It also degrades locality, espgciathien
physical memory is scarce [61]. Subtracting the costs dbage
collection also ignores the improved locality that exlimemory
managers can provide by immediately recycling just-freeanm
ory [53, 55, 57, 58]. For all these reasons, the costs of geeci
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Figure 1: The oracular memory management framework.

copying garbage collection versus explicit memory managgm
have never been quantified.

Contributions

In this paper, we conduct an empirical comparison of garlwatie
lection to explicit memory management in Java. To enablg thi
comparison, we develop an “oracular” memory manager. Tkism
ory manager relies on an oracle that indicates when therayste
should deallocate objects (i.e., by calliftge on them). During

a profiling run, the system gathers object lifetimes and geae a
program heap trace that is later processed to generatedblesr
We use two different oracles that span the range of possiplecit
deallocation calls. Thifetime-based oracle is the most aggressive:
it uses object lifetimes to instruct the memory managémete ob-
jects after their last use — the earliest time they can s&feliyeed.
Thereachability-based oracle is the most conservative: it reclaims
objects at the last moment a program could fr@lé (i.e., when
they become unreachable). The reachability-based orelis on
precise object reachability information obtained by pesieg the
program heap traces with the Merlin algorithm [33, 34]. WscdBs
these two approaches in detail in Section 3.

We find that an on-line version of the reachability-basedlera
interferes with mutator locality and increases runtimarfra%—
33%. We eliminate this problem by executing the oracular orgm
manager inside an extended version of Dynamic SimpleSeaar
architecturally-detailed simulator [15, 39]. This apmbaallows
us to measure the cost of Java execution and memory manageme
operations while excluding disruptions caused by consylthe
oracle. We believe this framework is of independent intefes
studying memory management policies.

We use this framework to measure the impact of garbage eollec
tion versus explicit memory management on runtime perfocaa
space consumption, and page-level locality. We perforrsetiheca-
surements across a range of benchmarks, garbage colléictors
cluding copying and non-copying collectors), and explicémory
managers.

We find that GenMS, an Appel-style generational collector u
ing a mark-sweep mature space, provides runtime perforetiiat
matches that provided by the best explicit memory managenwt
given five times as much memory, occasionally outperforritiby
up to 9%. With three times as much memory, its performance le
so that it performs an average of 17% slower. Garbage cutect
performance degrades further at smaller heap sizes, titiprain-
ning an average of 70% slower. Explicit memory managemeot a
exhibits better memory utilization and page-level logalgener-
ally requiring half or fewer pages to run with the same nunufer
page faults and running orders-of-magnitude faster whesipal

memory is scarce.

The remainder of this paper is organized as follows: Se@ion
presents the oracular memory management framework inldetai
and Section 3 discusses its implications and limitatioestiSns 4
and 5 present experimental methodology and results congpax-
plicit memory management to a range of different garbaglecol
tors. Section 6 addresses related work, Section 7 disctisses
directions, and Section 8 concludes.

2. Oracular Memory Management

Figure 1 presents an overview of the oracular memory managem
framework. As Figure 1(a) shows, it first executes the Jaga pr
gram to calculate object lifetimes and generate the prodraap
trace. The system processes the program heap trace usesithe M
lin algorithm to compute object reachability times and gates
the reachability-based oracle. The lifetime-based oremiees di-
rectly from the lifetimes computed during the profiling rugising
these oracles, the oracular memory manager executes thapro
as shown in Figure 1(b), allocating objects using callstdloc

and invokingfree on objects when directed by the oracle (see
Figure 2). Because trace generation takes place insiddrthe s
lator and oracle generation happens off-line, the systemsores
only the costs of allocation and deallocation.

Below we describe these steps in detail and discuss oui@uut
to the challenges of generating our oracles, detecting meaiio-
cation operations, and inserting explicit deallocatiothsoaithout
distorting program execution. We discuss the implicati@mg lim-

Ntations of our approach in Section 3.

2.1 Step One: Data Collection and Processing

For its Java platform, the oracular memory manager uses an ex
tended version of Jikes RVM version 2.3.2 configured to pcedu
PowerPC Linux code [2, 3]. Jikes is a widely-used researah pl
form written almost entirely in Java. A key advantage of diked

can be explicitly freed
—
. i freed by !
live o lifetime-based oracle ! dead >
reachable freed by 7 { \ unreachable P
reachability-based oracle

can be collected

Figure 2: Object lifetime. The lifetime-based oracle freesob-
jects after their last use (the earliest safe point), while e
reachability-based oracle frees them after they become un-
reachable (the last possible moment an explicit memory man-
ager could free them).



its accompanying Memory Management Toolkit (MMTK) is that i
allows us to use a number of garbage collection algorithn§ [1

A key difficulty is capturing all the information required hige
Merlin algorithm without affecting program execution. Weed

The oracular memory manager executes inside Dynamic Simple to execute the same code during step one (trace collectsonea

Scalar (DSS) [39], an extension of the SimpleScalar supknsc
architectural simulator [15] that permits the use of dyreaity-
generated code.

Repeatable Runs

do during step two (simulation). Otherwise, memory allarat
and object lifetimes will be different, as the compiler vgnerate
differently-sized chunks of code. However, there is a Sigant
amount of information that the Merlin algorithm requiresclud-
ing all object allocations, intra-heap pointer updatesl program

Because the oracular memory manager uses allocation avder t roots whenever an object could be freed. It is not possibiébtain

identify objects, we must ensure that the sequence of aitosa
is identical from run to run. We take a number of steps in Jikes

this information from the normal optimized code.
Replacing normal opcodes with illegal ones is at the heart of

RVM and the simulator to ensure repeatable runs. We use the our approach for non-intrusively generating the needeg traaes.

“fast” configuration of Jikes RVM, which optimizes as much of
the system as possible and compiles it into a prebuilt Vinte:
chine. Jikes RVM uses timer-based sampling at runtime tionigd
methods once they reach a certain “hotness” level. To editain
this considerable source of nondeterminism, we yssadoadap-
tive methodology [38, 49], which optimizes only “hot” methods,

The new opcodes uniquely identify key events such as when new
objects are allocated. When the simulator encounters sucdpa
code, it outputs a record into the trace. It then executedldual
opcode exactly like its legal variant.

To enable the generation of these illegal opcodes, we extend
Jikes RVM's compiler intermediate representations. JRéM in-

as determined from the mean of 5 runs. We also employ deter- cludes nodes in its IRs to differentiate between method edthin

ministic thread switching, which switches threads basezhupe
number of methods executed rather than at regular timevalter
Finally, we modify DSS to update the simulated OS time and reg
ister clocks deterministically. Rather than use cycle strimction
counts, which will change when we add callsftee , our modi-

the VM and calls to the host system, minimizing the modifimagi
needed to support different OS calling conventions. Wedhulon
these by adding a set of nodes to represent caltsaitoc . This
extension allows the compiler to treat object allocatidke hny
other function call, while emitting an illegal opcode iretieof the

fications advance these clocks a fixed amount at each system ca ysual branch instruction. We also modify Jikes RVM to replac

These changes ensure that all runs are perfectly repeatable

Tracing for the Liveness-Based Oracle

During a profiling run, the simulator calculates objecttlifees and
generates program heap traces for later use. The simulst@ine
per-object lifetime information by recording the locatiohevery
allocated object. At each memory access, the simulatorltuks
up the object being used and updates its latest lifetimeli@ca
tion time). Unfortunately, this does not capture every usaro
object. For example, testing for equality is a use of bothuarg
ment objects, but Java’s equality operation compares aselseand
does not examine memory locations. To capture these olgest u
we also mark all root-referenced objects as being in uses &k
tended definition potentially overestimates object lifeds slightly,
but eliminates the risk of freeing an object too early.

intra-heap reference stores with illegal instructionse§éhopcodes
allow us to detect events needed for heap tracing withoettimg
code that would distort instruction cache behavior.

2.2 Step Two: Simulating Explicit Memory Management

Before each allocation, the simulator consults the oraxlgeter-
mine if any objects should be freed. When freeing an objéct, i
saves the function parameter (the size requestrfalloc ) and
jumps tofree instead, but sets the return address so that execution
returns to themalloc call rather than the following instruction.
The simulator repeats this cycle until there are no objextd be
reclaimed, and then allocation and program execution coes as
normal. Bothmalloc andfree are invoked via method calls.
When these functions are implemented outside of the VM, siney
called using the Jikes foreign function interfad@MSysCall );

The system also preserves objects that we feel a programmerwe discuss the impact of this in Section 3.2.

could not reasonably free. For instance, while our systemdea
tect the last use of code and type information, these objeetaot
something that a developer would be able to deallocate irala re
program. Similarly, our system will not free objects usedpbi-
mize class loading. These optimizations include objectppima
class member, string names, and type information in class il
their Jikes internal representation. Other objects thabgrammer
would not free and we therefore preserve enable lazy methiod ¢
pilation and reduce the time spent scanning jar files. At titeaf
the profiling run, the system preserves all of these objexigtzose
to which these objects refer by extending their lifetimehe end
of the program.

Tracing for the Reachability-Based Oracle

To generate the reachability-based oracle, we computetalejech-
ability information efficiently and precisely using the Meralgo-
rithm [33, 34]. Our off-line implementation of the Merlinga-
rithm operates by analyzing a program heap trace. Durirg thi
trace processing, the Merlin algorithm updates a timestassp-
ciated with an object whenever it might become unreacha&bie,
when a pointer to it is overwritten. Once the entire trace lieen
processed, it generates “death records”, a list ordereddiation
time that indicates which objects become unreachable atithe.

2.3 \Validation: Live Oracular Memory Management

In addition to the simulation-based framework describedvab
we implemented a “live” version of the oracular memory marag
which uses the reachability-based oracle but actually onre real
machine. Like the simulation-based oracular memory manéuze
live oracle executes Java programs, but uses the actualdtiehs

in place of the illegal ones. This live oracular memory maamag
uses the object lifetime information and a buffer recordivigere
objects are allocated to fill a special “oracle buffer” canitag the
addresses of the objects to be freed. To determine the pnégra
running time, we measure the total execution time and thén su
tract the time spent checking if objects should be freed and t
spent refilling the buffer containing the addresses of theab to
free.

To measure the distortion introduced by the oracle, we coenpa
the cost of running garbage collection as usual to runnirt wi
null oracle. The null oracle loads the buffers in the same way as
the real oracular memory manager, but otherwise execution p
ceeds normally (it does not actuafige any objects). We found
that the distortion introduced is unacceptably large anatier For
example, with the GenMS collector, th228_jack benchmark with
the null oracle reports a 12% to 33% increase in runtime gersu



running with no oracle. By contrast, the null oracle slowes shme
collector down by at most 3% when running t24.3_javac bench-
mark. Other collectors also show distortions from the ntdlobe,
but without any obvious or predictable patterns. We atteglihese
distortions to pollution of both the L1 and L2 caches indubgd
processing the oracle buffers.

While the live oracular memory manager is too noisy to be re-
liable for precise measurements, its results lend credemdke
simulation-based approach. As Figure 5 shows, the liveiorers
closely mirrors the trends of the reachability oracle satioh re-
sults.

3. Discussion

In the preceding sections, we have focused on the methogeleg
employ, which strives to eliminate measurement noise asibdi
tion. Here we discuss some of the key assumptions of our apbro
and address possible concerns. These include invdké®y on
unreachable and dead objects, the cost of using foreigrtifunc
calls for memory operations, the effect of multithreadedirem-
ments, unmeasured costs of explicit memory managemenilthe
of custom memory allocators, and the effects of memory mensag
on program structure. While our methodology may appear to hu
explicit memory management (i.e., making garbage cotbedtiok
better), we argue that the differences are negligible.

3.1 Reachability versus Liveness

The oracular memory manager analyzes explicit memory nenag
ment performance using two very different oracles. Thenkss-
based oracle deallocates objects aggressively, invdteeg at the
first possible opportunity it can safely do so. The reacltgtokra-

cle instead frees objects at the last possible moment inrtdgggm
execution, since calls tibee require a reachable pointer as a pa-
rameter.

As described in Section 2.1, the liveness-based oracleiyes
some objects beyond their last use. The liveness-baselt @lao
frees some objects that the reachability oracle does na.ntim-
ber of objects involved is small: onlgseudoJBB at 3.8% and
_201_compress at 4.4% free more than 0.8% more objects. The
liveness-based oracle makes these additional céilseo only for
objects that do not become unreachable but which plausdalidc
be deallocated by a knowledgeable programmer.

Real program behavior is likely to fall between these two ex-
tremes. We would expect few programmers to reclaim objeats i
mediately after their last use, and similarly, we would nqgbet
them to wait until the very last point objects are reachalefoie
freeing them. These two oracles thus bracket the range dit#éxp
memory management options.

We show in Section 5.1 that the gap between these two oracles

is small. Both oracles provide similar runtime performanehile

the liveness oracle reduces heap footprints by at most 1586 ov
the reachability oracle. These results generally coinuiille pre-
vious studies of both C and Java programs. Hirzel et al. coenpa
liveness to reachability on a benchmark suite includingsev ap-
plications [37]. For these, they find that when using an aggive,
interprocedural liveness analysis, they find a significaptfor two

of their benchmarks, reducing average object lifetime b3 ¥ar
gzip (in allocation time) and 21% foyacr2 ); for the others, the
gap remains below 2%. In a study including five of the benchkmar
we examine here, Shaham et al. measure the average impaet of i
sertingnull  assignments in Java code, simulating nearly-perfect
placement of explicit deallocation calls [51]. They repart av-
erage difference in space consumption of 15% over dealigrat
objects when they become unreachable.

3.2 malloc Overhead

When using allocators implemented in C, the oracular memory
manager invokes allocation and deallocation functionsugh the
JikesVMSysCall foreign function call interface. While not free,
these calls do not incur as much overhead as JNI invocafidresr
total cost is just 11 instructions: six loads and storegehegister-
to-register moves, one load-immediate, and one jump. Td8s c
is similar to that of invoking memory operations in C and C++,
wheremalloc andfree are functions defined in an external li-
brary (e.g.libc.so ).

We also examine an allocator which implementalloc and
free within the Jikes RVM. In this case, the oracular memory
manager uses the normal Jikes RVM method call interfacerrath
than theVMSysCall interface. Because we still need to deter-
mine when an allocation occurs and, where appropriatertioals
to free , we still cannot inline the allocation fast path. While this
may prevent some potential optimizations, we are not awkaey
explicitly-managed programming language that implemergs-
ory operations without function call overhead.

3.3 Multithreaded versus Single-threaded

In the experiments we present here, we assume a singlesgarce
environment and disable atomic operations both for JikelslRwd

for the Lea allocator. In a multithreaded environment, nimstad-
safe memory allocators also require at least one atomicatiper
for every call tomalloc andfree : a test-and-set operation for
lock-based allocators, or a compare-and-swap operationdio-
blocking allocators [46]. These atomic operations are \castly

on some architectures. For example, on the Pentium 4, the cos
of the atomicCMPXCH®@peration (compare-and-swap) is around
124 cycles. Because garbage collection can amortize theotos
atomic operations by performing batch allocations andldea!
tions, Boehm observes that it can be much faster than etpiern-
ory allocation [13].

However, the issue of multithreaded versus single-threbahe
vironments is orthogonal to the comparison of garbage ctlte
and explicit memory managers, because explicit memoncailo
tors can also avoid atomic operations for most memory ojoersat
In particular, a recent version of Hoard [6] (version 3.2)imra
tains thread-local freelists, and generally uses atomarains
only when flushing or refilling them. Use of these thread-loca
freelists is cheap, normally through a register reserve@éoess-
ing thread-local variables. On architectures lacking ssugbport,
Hoard places the freelists at the start of each thread stdighéd
on 1MB boundaries), and accesses them by bitmasking a sgiek v
able.

3.4 Smart Pointers

Explicit memory management can have other performances.cost
For example, C++ programs might manage object ownership by
using smart pointers. These templated classes translyaient
plement reference counting, which would add expense toyever
pointer update. For example, on the-bench benchmark, the per-
formance of the Boost “intrusive pointer” that embeds refiee-
counting within an existing class is up to twice as slow as the
Boehm-Demers-Weiser collectdr.

However, smart pointers do not appear to be in widespread use
We searched for programs using the standarth _ptr class or
the Boost library'sshared _ptr [16] on the open-source web site
sourceforge.net and found only two large programs that use
them. We attribute this lack of use both to their cost, singe- C

1Richard Jones, personal communication.



Benchmark statistics
Benchmark Total Alloc  Max Reach Alloc/Mak
201 _compress 125,334,848 13,682,720 9.16
202 _jess 313,221,144 8,695,360 36.02
_205_raytrace 151,529,148 10,631,656 14.25
_209_db 92,545,592 15,889,492 5.82
213 javac 261,659,784 16,085,920 16.27
_228_jack 351,633,288 8,873,460 39.43
ipsixql 214,494,468 8,996,136 23.84
pseudoJBB 277,407,804 32,831,740 8.45

Table 1: Memory usage statistics for our benchmark suite. Te
tal allocation and maximum reachable are given in bytes. Al-
loc/max denotes the ratio of total allocation to maximum reah-

able, and is a measure of allocation-intensiveness.

programmers tend to be particularly conscious of expertgieza-
tions, and to their inflexibility. For example, the same srpainter
class cannot be used to manage scalars and arrays, becatuae C+
rays require a different syntax for deletiatefete [] ).

Instead, C and C++ programmers generally use one of the fol-
lowing conventions: a function caller either allocateseoks that it
then passes to its callee, or the callee allocates objeatti teturns
to its caller (as irstrncpy ). These conventions impose little to
no performance overhead in optimized code.

Nonetheless, some patterns of memory usage are inherdatly d
ficult to manage withmalloc andfree . For example, the al-
location patterns of parsers makes managing individuaatbjan
unacceptably-difficult burden. In these situations, C and @ro-
grammers often resort to custom memory allocators.

3.5 Custom Allocation

Many explicitly-managed programs use custom allocatotisera
than general-purpose allocators both to simplify and telecate
memory management. In particular, Berger et al. show tlggdne
style allocation is both useful for a variety of workloadslaan be
much faster than general-purpose allocation, but that geser-
ally consume much more space than needed [8]. Exploringeust
allocation policies like regions is beyond the scope of tlaiper.

3.6 Program Structure

The programs we examine here were written for a garbageated
environment. Had they been written in a language with ekplic
memory management, they might have been written differentl
Unfortunately, we do not see any way to quantify this effeltt.
would be possible (though onerous) to attempt to measurg it b
manually rewriting the benchmark applications to use expiieal-
location, but we would somehow have to factor out the impéct o
individual programmer style.

Despite the apparent difference in program structure that o
might expect, we observe that it is common for Java programs t
assignnull  to objects that are no longer in use. In this sense,
programming in a garbage-collected environment is at leest-
sionally analogous to explicit memory management. In paldr,
explicit nulling of pointers resembles the usedgflete in C++,
which then can trigger a chain of class-specific object desirs.

4. Experimental Methodology

To quantify the performance of garbage collection versysiak
memory management, we compare the performance of eightihenc
marks across a variety of garbage collectors. Table 1 presen
benchmarks. We include most of the SPECjvm98 benchmarks [18
ipsixql is a persistent XML database system, aseéudoJBB is a

Garbage collectors
MarkSweep non-relocating, non-copying single-genenatio
GenCopy two generations with copying mature space
SemiSpace two-space single-generation
GenMS two generations with non-copying mature space
CopyMS nursery with whole-heap collectian

Allocators

Lea combined quicklists and approximate best-fit
MSEXxplicit MMTk’s MarkSweep with explicit freeing

Table 2: Memory managers examined in this paper. Section 4
presents a more detailed description of the allocators andat-
lectors.

fixed-workload variant of the SPECjbb benchmark [17$eudo-
JBB executes a fixed number of transactions (70,000), which sim-
plifies performance comparisons.

For each benchmark, we run each garbage collector with heap
sizes ranging from the smallest in which they complete ta fou
times larger. For our simulated runs, we use the memory awbpf
sor configuration of a PowerPC G5 processor [1], and assume a 2
GHz clock. We use a 4K page size, as in Linux and Windows.
Table 3 presents the exact architectural parameters.

Rather than relying on reported heap usage, we compare actua
heap footprints by examining each run’s maximum number of heap
pages in use. Pages are “in use” only if they have been adldcat
from the kernel and touched. We do not include unused pages,
such as allocated but untouched pages or pages that havereen
mapped, since they are not assigned physical memory. @gunti
pages in use ensures the proper accounting of all memoreusag
including metadata space, which is occasionally undertego

For the oracular memory management experiments, we use both
the Lea (GNU libc, “DLmalloc”) allocator [44] and a variantthe
MMTk MarkSweep collector. The Lea allocator is an approxina
best-fit allocator that provides both high speed and low nmgmo
consumption. It forms the basis of the memory allocatoridet
in the GNU C library [28]. The version used here (2.7.2) is a hy
brid allocator with different behavior based on object sathough
objects of different sizes may be adjacent in memory. Sniall o
jects (less than 64 bytes) are allocated using exact-sio|pis
(one linked list of freed objects for each multiple of 8 bytethe
Lea allocatorcoalesces objects in these lists (combining adjacent
free objects) in response to several conditions, such asstg|for
medium-sized objects. Medium objects are managed with imme
diate coalescing and splitting of the memory on the quitklénd
approximates best-fit. Large objects are allocated andl fuse
ing mmap The Lea allocator is the best overall allocator (in terms
of the combination of speed and memory usage) of which we are
aware [40].

While the Lea allocator is an excellent point of comparision,
differs significantly from the garbage collectors we exagrirere.
Perhaps most importantly, it is written in C and not Java. roreo
to isolate the impact of explicit memory management, we ddiale
dividual object freeing to MMTk’s MarkSweep collector aratde
object manager (“Treadmill”). Each block of memory maintai
its own stack of free slots and reuses the slot that has besh mo
recently freed. This “allocator” is labelled &8SExplicit in the
graphs.

Table 2 lists the garbage collectors we examine here, alhaftw
are high-throughput “stop-the-world” collectors. Theselude a
non-copying collector (MarkSweep [45]), two pure copyiradjec-
tors (SemiSpace [25], and GenCopy [5]) and two hybrid ctdiec
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Figure 3: Geometric mean of garbage collector performance
relative to the Lea allocator using the reachability oracle

(GenMS and CopyMS). The generational collectors (the ctate
names starting with “Gen”) use an Appel-style variablesdinurs-
ery [5]: the nursery shrinks as survivors fill the heap. We thee
versions of these collectors included with the MMTk memogmm
agement toolkit; the descriptions below are adapted froaciBl
burn et al. [11].

MarkSweep: MarkSweep organizes the heap into blocks divided
into fixed-size chunks, which it manages with freelists. Mar

the reachability oracle. Points in the graph represent ¢ ioot-
print (the x-axis) and runtime (y-axis) for the garbage edtiion
algorithm relative to the explicit memory manager. For edad
ity, we do not include individual graphs for two of the benclrks,
_201_compress and _205_raytrace. Table 4 summarizes the re-
sults for the relative performance of GenMS, the best-pariiog
garbage collector.

These graphs compactly summarize these results and ptiesent
time-space tradeoff involved in using garbage collectiBacause
we present pages actually touched rather than the requiestgd
size, they occasionally exhibit a “zig-zag” effect that dansur-
prising. As heap size increases, the number of heap pagesipr
also increases, but an increase in heap size can sometithezre
the number of heap pages visited. For example, becausegsf fra
mentation or alignment restrictions, a larger heap size caage
objects to straddle two pages. This effect tends to be mast pr
nounced for MarkSweep, which cannot reduce fragmentatjon b
compacting the heap.

As the graphs show, the garbage collectors exhibit sinrigds.
Initially, in small heaps, the cost of frequent garbage emilbn
dominates runtime. As heap sizes grow, the number of fudphe
garbage collections correspondingly decreases. Evéyttatal
execution time asymptotically approaches a fixed value GemMS,
this value is somewhat lower than the cost of explicit menmay-
agement. At its largest heap size, GenMS equals the penfmena
of the Lea allocator. Its best relative performance on easich-
mark ranges from 10% faster fipsixql to 26% slower for209_db,

a benchmark that is unusually sensitive to locality effects
The performance gap between the collectors is lowest fartben

Sweep traces and marks the reachable objects, and lazilymarks with low allocation intensity (the ratio of total bgtallo-

finds free slots during allocation.

cated over maximum reachable bytes). For these benchnéakk;
Sweep tends to provide the best performance, especialiyaites

SemiSpace:SemiSpace uses bump pointer allocation and has two heap multiples. Unlike the other collectors, MarkSweepsduet

copy spaces. It allocates into one, and when this space fills,

need a copy reserve, and so makes more effective use of the hea

it copies reachable objects into the other space and swapsas allocation intensity grows, the generational garbadkeciors

them.

GenCopy: GenCopy uses bump pointer allocation. It is a clas-
sic Appel-style generational collector [5]. It allocateso a
young fursery) copy space and promotes survivors into an
old SemiSpace. Its write barrier records pointers from old
to nursery objects. GenCopy collects when the nursery is
full, and reduces the nursery size by the size of the sursivor
When the old space is full, it collects the entire heap.

GenMS: This hybrid generational collector is like GenCopy ex-
cept that it uses a MarkSweep old space.

CopyMS: CopyMS is a non-generational collector (i.e., without
write barriers) that uses bump pointer allocation to afleca
into a copy space. When this space fills, CopyMS performs a
whole-heap collection and copies survivors to a MarkSweep
old space.

5. Experimental Results

In this section, we explore the impact of garbage collectiod ex-
plicit memory management on total execution time, memory co
sumption, and page-level locality.

5.1 Runtime and Memory Consumption

Figure 3 presents the geometric mean of garbage collectidorp
mance relative to the Lea allocator using the reachabiligcle.
We present runtime versus space results for individual hreacks
across all garbage collectors in Figure 4 . Each graph withim
figure compares the garbage collectors and the Lea allocsitog

generally exhibit better performance, although MarkSwpep
vides the best performance fgosixql until the heap size multi-
ple becomes quite large (over 6x). The two generationakceoll
tors (GenMS and GenCopy) exhibit similar performance tseatt
though GenMS is normally faster. GenMS’s MarkSweep mature
space also makes it more space-efficient than GenCopy’srenatu
space, which is managed by SemiSpace.

The shape of the garbage collection curves confirms analytic
models that predict the performance of garbage collectidretin-
versely proportional to heap size [4; 41, p.35]. Note thatdbst of
explicit memory management does not depend on heap size, and
is linear in the number of objects allocated. While this nsee
proportionality relationship holds for MarkSweep and S@pace,
we find that, on average, GenMS runs in time inversely propor-
tional to thesquare of the heap size. In particular, the function
execution time factor a/(b— heap size factdy + c characterizes
the trend for GenMS, where the execution time factor is perfo
mance dilation with respect to Lea, and heap size factores th
multiple of the minimum required heap size. With the pararet
a= —0.246,b = 0.59, andc = 0.942, the curve is an excellent fit.
Visually, the curves are indistinguishable, and the rmst(roean
square) error of the fit is just @024, where 0 is a perfect fit. We
find a similar result for GenCopy, whose rms error is jufi067
(a= —-0.297,b = 0.784, c = 1.031). As far as we know, such
inverse quadratic behavior has not previously been noteel.doV
not yet have an explanatory model, but conjecture that e
ior arises because the survival rate from nursery collestis also
inversely proportional to heap size.
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Actual PowerPC G4 system

Simulated PowerPC G5 system
L1, I-cache | 64K, direct-mapped, 3 cycle latency
L1, D-cache | 32K, 2-way associative, 3 cycle latency
L2 (unified) | 512K, 8-way associative, 11 cycle laten
L3 (off-chip) | N/A

all caches have 128 byte lines
RAM 270 cycles (135ns)

32K, 8-way associative, 3 cycle latency

32K, 8-way associative, 3 cycle latency
CW56K, 8-way associative, 8 cycle latency

2048K, 8-way associative, 15 cycle laten

all caches have 32 byte lines

95 cycles (95ns)

cy

Table 3: The memory timing parameters for the simulation-based and “live” experimental frameworks (see Section 2.3). file simu-
lator is based upon a 2GHz PowerPC G5 microprocessor, whiléde actual system uses a 1GHz PowerPC G4 microprocessor.

GenMS

vs. Lea w/ Reachability || vs. Lea w/ Liveness

Heap size| Footprint | Runtime Footprint | Runtime
1.00 210% 169% 253% 167%
1.25 252% 130% 304% 128%
1.50 288% 117% 347% 115%
1.75 347% 110% 417% 109%
2.00 361% 108% 435% 106%
2.25 406% 106% 488% 104%
2.50 419% 104% 505% 102%
2.75 461% 103% 554% 102%
3.00 476% 102% 573% 100%
3.25 498% 101% 600% 100%
3.50 509% 100% 612% 99%
3.75 537% 101% 646% 100%
4.00 555% 100% 668% 99%

Table 4: Geometric mean of memory footprints and runtimes
for GenMS versus Lea. The heap sizes are multiples of the min-
imum amount required to run with GenMS.

MSEXxplicit vs. GenMS
w/ Reachability w/ Liveness
Benchmark Footprint | Runtime || Footprint | Runtime
_201_compress 162% 106% 251% 101%
202 _jess 154% 104% 165% 103%
_205_raytrace 131% 102% 147% 100%
-209_db 112% 118% 118% 96%
_213_javac 133% 95% 124% 93%
228 jack 158% 103% 168% 105%
ipsixql 149% 100% 163% 97%
pseudoJBB 112% 106% 116% 87%
Geo. Mean 138% 104% 152% 98%

Table 5: Memory footprints and runtimes for MSExplicit ver-
sus Lea. In this table, we present results comparing results
when run with similar oracles.

Finally, Table 5 compares the footprints and runtimes of MSE
plicit (explicit memory management based on the MMTk Mark-
Sweep implementation) and the Lea allocator when both use th
same oracle. MSExplicit is substantially less memory-fficthan
Lea, requiring between 38% and 52% more space. However, the
results for runtime performance are similar. With the redotlity
oracle, MSExplicit runs an average of 4% slower than Led thiée
liveness-based oracle, it runs 2% faster. The worst-cadd $&x-
plicit is for the locality-sensitive209_db, where its segregated size
classes cause it to run 18% slower when using the reaclyadnilit
acle. On the other hand, it runs 5% faster than Lea2@B_javac
with the reachability oracle, because this benchmark stsesaw
allocation speed.

With the exception 0£209_db, the two allocators are roughly
comparable in performance, confirming the good performaheae
acteristics both of the generated Java code and of the MMTK in
frastructure. Figure 4(f) is especially revealing: in thase, the
runtime performance of MSExplicit is just 3% greater thaat tbf
Lea, but MarkSweep, using the same allocation infrastractuns
from over 300% to 50% slower. These experiments demonstrate
that the performance differences between explicit memoayn-m
agement and garbage collection are due to garbage coligtsaif
and not to underlying differences in allocator infrastruet

Comparing Simulation to the Live Oracle

We also compare the runtime performance of the various garba
collectors with the live oracle described in Section 2.3r these
experiments, we use a PowerPC G4 with 512MB of RAM running
Linux in single-user mode and report the mean value of 5 rtihs.
architectural details of our experimental machine can lbedan
Table 3.

A comparison of the results of our live oracle experimentd an
simulations appears in Figure 5. These graphs compare ¢inesge
ric means of executing all but three of the benchmarks. Bexaf
the memory demands of the heap trace generation processfand d
ficulties in duplicating time-based operating system caile are
currently unable to rupseudoJBB, ipsixgl, and _205_raytrace
with the live oracle.

Despite their different environments, the live and simediadrac-
ular memory managers achieve strikingly similar resultstfeb
ences between the graphs could be accounted for by the G4’s L3
cache and smaller main memory latency compared to our simula
tor. While the null oracle adds too much noise to our datastfyu
its use over the simulator, the similarity of the resultstiergg evi-
dence for the validity of the simulation runs.

Comparing the Liveness and Reachability Oracles

We compare the effect of using the liveness and reachabiised
oracles in Figure 6. This graph presents the average relakv
ecution time and space consumption of allocators using thath
liveness and reachability-based oracles. As usual, allegabre
normalized to the Lea allocator with the reachability-loheea-
cle. The x-axis shows relative execution time; note the cesged
scale, ranging from just 0.98 to 1.04. The y-axis shows ttedive
heap footprint, and here the scale ranges from 0.8 to 1.7sime
mary and individual runtime graphs (Figures 3 and 4) alstuge
a datapoint for the Lea allocator with the liveness oracle.

We find that the choice of oracle has little impact either on ex
ecution time. We expected the liveness-based oracle toowepr
performance by enhancing cache locality, since it recyalgscts
as soon as possible. However, this recycling has at bestedmaix
fect on runtime, degrading performance by 1% for the Leaatior
while improving it by up to 5% for MSExplicit.

When the liveness-based oracle does improve runtime perfor
mance, it does so by reducing the number of L1 data cache snisse
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Figure 5: Comparison of the “live” to the simulated oracular memory manager: geometric mean of execution time relativeat Lea

across identical sets of benchmarks.
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Figure 6: Geometric mean of explicit memory managers rela-
tive to the Lea allocator using the reachability oracle. Whie

using the liveness oracle reduces the mean heap footprintisu
stantially, the choice of oracle has little effect on mean ecution

time.

Figure 4(d) shows thapsixqgl with the liveness-based oracle exe-
cutes 18% faster than with the reachability oracle. Thisrong-
ment is due to a halving of the L1 data cache miss rate. On kiez ot
hand, the liveness-based oracle significantly degraddsedacal-
ity in two other benchmarks,209_db and pseudoJBB, causing
them to execute 23% and 13% slower, respectively. WBi® _db

is notoriously susceptible to cache effects, piseudoJBB result

is surprising. In this case, using the lifetime-based eragbults in
poor object placement, increasing the L2 cache miss rateashn

improve its heap footprint, all other benchmarks see thedrce
consumption reduced by at least 10%.

5.2 Page-level locality

For virtual memory systems, page-level locality can be niore
portant for performance than total memory consumption. Wegnt
the results of our page-level locality experiments in therfaf
augmentedniss curves [52, 61]. Assuming that the virtual mem-
ory manager observes an LRU discipline, these graphs shew th
time taken (y-axis) for different number of pages allocatethe
process (the x-axis). Note that the y-axis is log-scale. ¥geime a
fixed 5 millisecond page fault service time.

Figure 7 presents the total execution times for the Lea alloc
tor, MSEXxplicit, and each garbage collector across all berarks.
For each garbage collector, the fastest-performing hezp\gas
selected.

These graphs show that, for reasonable ranges of availaste m
ory (but not enough to hold the entire application), bothlieip
memory managers substantially outperform all of the gaelwand-
lectors. For instancgseudoJBB running with 63MB of available
memory and the Lea allocator completes in 25 seconds. Wéth th
same amount of available memory and using GenMS, it takee mor
than ten times longer to complete (255 seconds). We seeasimil
trends across the benchmark suite. The most pronouncedscase
_213_javac: at 36MB with the Lea allocator, total execution time
is 14 seconds, while with GenMS, total execution time is Hd-s
onds, over a 15-fold increase.

The culprit here is garbage collection activity, which tssfar
more pages than the application itself [61]. As allocatimiensity
increases, the number of major garbage collections alseases.
Since each garbage collection is likely to visit pages thatteen
evicted, the performance gap between the garbage cobeatwt
explicit memory managers grows as the number of major collec

50%. However, these benchmarks are outliers. Figure 3 showsijgns increases.

that, on average, the Lea allocator with the liveness-basacde
runs only 1% slower than with the reachability oracle.

6. Related Work

The liveness-based oracle has a more pronounced impachom sp Previous comparisons of garbage collection to explicit imgrman-
consumption, reducing heap footprints by up to 15%. Usirg th agement have generally taken place in the context of coabezy

liveness-based oracle reduces Lea’s average heap fddipri7%
and MSExplicit's by 12%. While201_compress’s reliance on
several large objects limits how much the liveness-basadecan

non-relocating garbage collectors and C and C++. In hisighes
Detlefs compares the performance of garbage collectiorptog
memory management for three C++ programs [19, p.47]. He finds
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Figure 7: Estimated time for six of the benchmarks, including page fault service time (note that the y-axis is log-scaleYhe graphs

are presented in increasing allocation intensity.
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that garbage collection generally resulted in poorer petémce
(from 2% to 28% overhead), but also that the garbage-celiect
version ofcfront performs 10% faster than a version modified to
use general-purpose memory allocation exclusively. Hewehe
garbage-collected version still runs 16% slower than thgirl
version ofcfront using its custom memory allocators. Zorn com-
pares conservative garbage collection to explicit memaanage-
ment in the context of C programs [62]. He finds that the Boehm-
Demers-Weiser collector [14] is occasionally faster thaplieit
memory allocation, but that the memory consumed by the BDW
collector is almost always higher than that consumed byiaxpl

7. Future Work
This paper addresses only individual object managemeretendl
objects are allocated witmalloc and freed withfree . How-
ever, custom allocation schemes like regions can drantigtioa
prove the performance of applications using explicit mgmman-
agement [9, 31]. Regions are also increasingly popular ad-an
ternative or complement to garbage collection [26, 27, 29, b
future work, we plan to use our framework to examine the ihpac
of the use of regions and a hybrid allocator, reaps [9], aspeved
to garbage collection.

The Lea allocator we use here places 8-byte object headers pr

memory managers, ranging from 21% less to 228% more. Hicks etto each allocated object. These headers can increase space ¢

al. also find that programs written in Cyclone (a type-saféawd of

C) and linked with the BDW collector can require much more mem
ory than those using pure explicit memory management [38¢yT
also find that conservative garbage collection providesuiginput
equal to explicit memory management for most of their bench-
marks, but that one benchmark showed a significant perfarenan
improvement with explicit memory management. While thégd-s

ies examine conservative garbage collectors running mvithand
C++ programs, we focus on the performance of code writtem fro
the outset to use garbage collection.

Perhaps the closest work to that presented here is by Blatkbu
etal., who measure a similar range of garbage collectorbanch-
marks in the Jikes RVM and the Memory Management Toolkit
(MMTK) [10]. They conclude that generational garbage aditn
achieves locality benefits that make it faster than fresligle al-
location. To approximate explicit memory management, theg-
sure the mutator time of execution with the MMTk mark-sweep
garbage collector, and show that this exceeds the totau&gec
time with generational collectors. This approach does novant
for either cache pollution caused by garbage collectiomerien-
eficial locality effects that explicit memory managers aehi by
promptly recycling allocated objects. In addition, the Mkihark-
sweep collector segregates objects by size and thus disalipta-
tion order. The Lea allocator we use here maintains segrédeade
lists but allows objects of different sizes to be adjacemhamory.
Preserving allocation order is especially important fea)aince it
approximates the locality effects of object inlining [22, 23].

Numerous studies have sought to quantify the overhead ef gar
bage collection and explicit memory management on apphicat
performance [7, 9, 40, 43, 62]. Steele observes garbageceoll
tion overheads in LISP accounting for around 30% of appbecat
runtime [30]. Ungar measures the cost of generational scpng
in Berkeley Smalltalk, and finds that it accounts for just92.6f
CPU time [56]. However, this measurement excludes the iimpac
of garbage collection on the memory system. Using traceedri
simulations of eight SML/NJ benchmarks, Diwan et al. codelu
that generational garbage collection accounts for 19% %6 46
application runtime (measured as cycles per instructi®). [

Using a uniform cost model for memory accesses, Appel ptesen
an analysis that shows that given enough space, garbagetamtl
can be faster than explicit memory management [4] (see Midle
a rebuttal of this claim with respect to stack allocation ofive-
tion frames [47]). He observes that the frequency of cabbestis
inverse to the heap size, while the cost of collection is reféy
constant (a function of the maximum reachable size). Irsinga
the size of the heap therefore reduces the cost of garbagetomh.
Wilson argues that this conclusion is unlikely to hold fordem
machines because of their deep memory hierarchies [60].r&ur
sults on such a system support Appel’s analysis, althougfinde
that an Appel-style collector runs inversely proportityab the
square of heap size.

sumption and impair cache-level locality [24]. We plan talev
ate memory allocators like PHKmalloc [42] and Vam [24] thagu
BiBoP-style (big bag of pages) allocation and so avoid pgec
headers. We intend to compare the virtual memory performanc
of explicit memory management with the bookmarking cothect
which is specifically designed to avoid paging [32].

Finally, this paper examines only stop-the-world, norrémeental,
non-concurrent garbage collectors. While these genepatlyide
the highest throughput, they also exhibit the largest painses.
We would like to explore the effect on pause times of varioais g
bage collectors relative to explicit memory managers, wizlso
exhibit pauses. For example, the Lea allocator normallycaties
objects in a few cycles, but occasionally empties and coeteis
quicklists. It also does a linear best-fit search for largeats. 2
To our knowledge, pauses caused by explicit memory manage-
ment have never been measured or compared to garbageioollect
pauses.

8. Conclusion
This paper presents a tracing and simulation-based expetain
methodology that executes unaltered Java programs ayititesl
explicit memory management. We use this framework to compar
the time-space performance of a range of garbage collettt@s
plicit memory management with the Lea memory allocator. €om
paring runtime, space consumption, and virtual memorypidats
over a range of benchmarks, we show that the runtime perforena
of the best-performing garbage collector is competitivéhvex-
plicit memory management when given enough memory. In par-
ticular, when garbage collection has five times as much mgmor
as required, its runtime performance matches or slightbeesls
that of explicit memory management. However, garbage colle
tion’s performance degrades substantially when it mussosaler
heaps. With three times as much memory, it runs 17% slower on
average, and with twice as much memory, it runs 70% slower. Ga
bage collection also is more susceptible to paging whenipdlys
memory is scarce. In such conditions, all of the garbagecuts
we examine here suffer order-of-magnitude performancelpes
relative to explicit memory management.

We believe these results will be helpful both to practitienand
researchers. For practitioners, these results can guitedioice
of using explicitly-managed languages like C and C++, obgge-
collected languages like Java or C#. As long as their apits
will be running on systems equipped with more than three gime
as much RAM as required, then garbage collection is a rebfona
choice. However, if these systems will have less RAM or ifapp-
lication will be competing with other processes for phykioam-
ory, then practitioners should expect garbage collectioexact a
substantial performance cost. This cost will be more praoned
for systems whose performance depends on maximizing thefuse

2A newer version of the Lea allocator (2.8.2) uses tries tacedhe cost
of this search.



memory, such as in-memory databases and search engines.

For researchers, these results should help guide theitageve

ment of memory management algorithms. This study identifies
bage collection’s key weaknesses as its poor performantighin
heaps and in settings where physical memory is scarce. On the
other hand, in very large heaps, garbage collection isdream-
petitive with or slightly better than explicit memory mareagent.
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